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Abstract
A newly emerged coronavirus disease affects the social and economical life of the world. This virus mainly infects the
respiratory system and spreads with airborne communication. Several countries witness the serious consequences of the
COVID-19 pandemic. Early detection of COVID-19 infection is the critical step to survive a patient from death. The chest
radiography examination is the fast and cost-effective way for COVID-19 detection. Several researchers have been motivated
to automate COVID-19 detection and diagnosis process using chest x-ray images. However, existing models employ deep
networks and are suffering from high training time. This work presents transfer learning and residual separable convolution
block for COVID-19 detection. The proposed model utilizes pre-trained MobileNet for binary image classification. The
proposed residual separable convolution block has improved the performance of basic MobileNet. Two publicly available
datasets COVID5K, and COVIDRD have considered for the evaluation of the proposed model. Our proposed model exhibits
superior performance than existing state-of-art and pre-trained models with 99% accuracy on both datasets. We have achieved
similar performance on noisy datasets. Moreover, the proposed model outperforms existing pre-trained models with less
training time and competitive performance than basic MobileNet. Further, our model is suitable for mobile applications as it
uses fewer parameters and lesser training time

1 Introduction

The newly discovered severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has triggered the latest out-
break, namely coronavirus disease (COVID-19) (Liu and
Zhang 2020). The epidemic disease has affected the social
and economical life of the world and has spread rapidly
within few months. Several countries witness the seri-
ous consequences of the COVID-19 pandemic. Recently,
COVID-19 has reiterated in few countries as a second
wave with incremental growth. World Health Organization
(WHO) has reported that globally 227,940,972 confirmed
cases of COVID-19, including 4,682,899 deaths till Septem-
ber 2021 (epidemiological 2021). Thus,COVID-19 detection
and diagnosis have received a contemporary research task.

The COVID-19 disease is a type of pneumonia that infects
the respiratory system and spreads through close contact. The
isolation of infected patients is the preliminary step to break
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communal spread. In addition to that appropriate medication
can increase the survival of patients from death. The detec-
tion of COVID-19 infection becomes a tedious task from
the physical symptoms like fever, cold, dyspnea, fatigue,
and myalgia (Rousan et al. 2020). The reverse transcription-
polymerase chain reaction (RT-PCR) is a traditional clinical
test used for the detection of COVID-19 infection. How-
ever, long turnaround time and limited availability of testing
kits are the major difficulties with RT-PCR tests (Liu et al.
2020). Thus, the researchers have been motivated for the
implementation of automatic COVID-19 detection models.
A wide variety of models have been reported for COVID-
19 detection as follows. Sakib et al. (2020) have generated
synthetic chest x-ray images with COVID-19 infection to
train the customCNNmodel usinggeneric data augmentation
and generative adversarial network. Authors have achieved
93.94% of accuracy in COVID-19 detection. Horry et al.
(2020) have optimized the VGG19 model for COVID-19
detection from x-ray, Ultrasound, and CT scan images. They
have attained 86%, 100%, and 84% of precision on x-ray,
Ultrasound, and CT scans, respectively. Abbas et al. (2021)
have proposed aDeTraCmodel that investigates class bound-
aries using a class decomposition mechanism. An accuracy
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Fig. 1 Chest x-ray for COVID-19 detection

of 93.1% has been achieved for COVID-19 detection from
x-ray images. On the other hand, Erdoğan and Narin (2021)
have utilized pre-trainedmodels for feature extraction and the
Relieff algorithm for feature selection. They have employed a
support vector machine for the classification of cough acous-
tic signals and achieved 98.4% accuracy. A transfer learning
model with a support vectormachine has presented by (Narin
2020) for three-class chest image classification. Similarly,
feature selectionmethods fromdeep features on x-ray images
have devised by (Narin 2021) for COVID-19 detection.

Nowadays, medical imaging plays a vital role in health-
care services for disease detection (Panayides et al. 2020;
Hariri and Narin 2021). Some of the health care applications
are brain metastases detection (Dikici et al. 2020), ischemic
stroke detection (Kodama et al. 2018), ulcer classification
(Goyal et al. 2018), and patient risk prediction (Ju et al. 2020).
Recent studies have proved that medical imaging technology
can be an alternative to RT-PCR as it is highly sensitive for
the diagnosis and screening of COVID-19 (Ng et al. 2020)
(Liu et al. 2020). Apart from the clinical tests, radiography
examination is the fast and cost-effective test for COVID-
19 detection. Moreover, digital x-ray equipment is available
in most hospitals and no need for any additional transporta-
tion costs. In general, COVID-19 infection can be identified
by the examination of multifocal and bilateral ground-glass
opacity and/or consolidation (Rousan et al. 2020; Cleverley
et al. 2020). Ground glass opacity is referred to as a region
of hazy lung radiopacity in chest radiography. The central
mediastinum and heart appear white in a normal chest x-
ray and the lungs appear black due to air. There is a change
in blackness at the lung portion due to denser ground-glass
opacity in COIVD infection.

Figure 1a depicts normal chest x-ray finding while Fig.
1b visualizes ground-glass opacity (white arrows) due to
COVID-19 infection. Similarly, outlined arrows in Fig. 1b
indicates a consolidation of left upper andmid zones of lungs.
Thus, the identification of ground-glass opacity and consoli-
dation patterns is essential for COVID-19 detection. Figure 1
also illustrates the effect of COVID-19 on intensity changes
near the upper heart region. Thus, the visual examination

of these patterns is a challenging task for computer-aided
COVID-19 detection systems. Apart from the implemen-
tation issues, the class imbalance is one of the significant
drawbacks of existing COVID-19 datasets. An insufficient
number of COVID-19 positive samples and progressive
updates of datasets are major concerns about COVID-19
datasets. The existing proposals have reported their results
on balanced datasets having a limited number of COVID-
19 positive samples. Thus, we have considered two publicly
available chest x-ray datasets for COVID-19 detection. The
datasets have been chosen such that one dataset consists
of data imbalance and the other dataset has balanced data.
Details of the two datasets are as follows.

1. COVID-XRay-5K (COVID5K) has created by Minaee
et al. (Minaee et al. 2020) and has recently updated with
5184 chest x-ray images. This dataset can be used for
binary classification as it contains 5000normal chest x-ray
images and 184 COVID-19 positive images. This dataset
exhibits data imbalance with a huge number of COVID
negative chest x-ray images.

2. Covid radiography (COVIDRD) database of chest x-ray
images has recently published by Kaggle (Kaggle covid-
19 2021). This dataset consists of three classes including
normal (1341), COVID-19 (1200), and viral pneumo-
nia (1345). As our objective is COVID-19 detection and
hence we have considered only normal and COVID-19
positive chest x-ray images. This dataset presents the bal-
anced positive and negative chest x-ray images.

The remaining paper has organized as follows; Sect. 2
presents the literature review. Section 3 elaborates details of
the proposed methodology. The quantitative analysis of the
proposed model has discussed in Sects. 4 and 5 presents the
conclusions of the paper.

2 Literature review

The COVID-19 detection from chest x-ray images has
become a contemporary research task due to implementa-
tion and dataset issues. The deep learningmodels are popular
and successful for image classification. In this section, we
have reported the literature review of COVID-19 detection
(binary) models. Narin et al. (2021a) have employed pre-
trained ResNet50 model for the three binary classification
tasks including normal/COVID-19, normal/viral pneumo-
nia and normal/bacterial pneumonia. Maghdid et al. (2021)
have utilized a modified pre-trained AlexNet model for
COVID-19 detection. Jaiswal et al. (2020) have proposed
COVIDPENwhich is a pruned EfficientNet-based model for
COVID-19 detection. Minaee et al. (2020) have presented
Deep-COVID using deep transfer learning for prediction of
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Table 1 Review of COVID-19
detection methods

References Year Method Sens.% Spec.% Acc.%

(Narin et al. 2021a) 2021 Pre-trained models – 98.2 96.1

Maghdid et al. (2021) 2021 TL and AlexNet 72 100 94.1

Jaiswal et al. (2020) 2020 TL and DenseNet201 – – 99.82

Minaee et al. (2020) 2020 TL and ResNet18 98 90.7 –

Heidari et al. (2020) 2020 TL and VGG16 98 100 94.5

Hemdan et al. (2020) 2020 COVIDX-Net 100 80 –

Afshar et al. (2020) 2020 COVID-CAPS – – 98.3

COVID-19. Heidari et al. (2020) have performed histogram
equalization and bilateral low-pass filter as pre-processing.
Then, the classification results have obtained using a transfer
learning-based convolutional neural network model. Hem-
dan et al. (2020) have proposed a COVIDX-Net using
modified VGG19 model for COVID-19 detection. Afshar
et al. (2020) have implemented a framework known as
COVID-CAPS which is based on a capsule network for
COVID-19 detection.

Table 1 lists the summary of existing models for binary
classification of COVID-19 cases. The implementation of
an effective COVID-19 detection system is still a challeng-
ing task due to the recent spreading trend of the COVID-19
(Sakib et al. 2020).

Moreover, the implementation of time-efficient mod-
els with better performance is another objective for the
COVID-19 detection models. It motivated us to implement
a time-efficient COVID-19 detection model that can work
on two datasets. The major contributions of the work are as
follows.

1. Implementation of a time-efficient generalized model for
COVID-19 detection that can work on two datasets.

2. The proposed residual separable convolution block
improves the performance of the basic MobileNet model.

3. Our proposedmodel is compatible with theMobile vision
application as it usesMobileNet and produces similar per-
formance with reduced input sizes.

3 Proposedmethodology

Recently, deep neural networks have been established as suc-
cessful hands-on models for image classification due to the
availability of a huge Imagenet dataset. MobileNet, ResNet,
GoogleNet, and Inception ResNet are the most popular mod-
els for classification. However, there is a scarcity of large
medical image datasets like Imagenet for medical image
classification. It motivated researchers to employ transfer
learning to improve medical image classification perfor-
mance. In this section,wehavepresented the transfer learning

procedure along with implementation details of the proposed
model.

3.1 Transfer learning

Transfer learning involves sharing of weights or knowl-
edge extracted from one problem domain to solve other
related problems. High accuracy can be achieved with trans-
fer learning when problems are closely related. The existing
pre-trained models are trained with the Imagenet dataset
and can perform thousand of class classification. It needs
customization of the output layer to handle binary classifica-
tion. Figure 2a visualizes a pre-trained model for COVID-19
detection and the implementation steps are as follows.

1. Firstly, a pre-trained model is assigned with Imagenet
weights and then output layers are removed to customize
the output layer.

2. Multi-dimensional feature map obtained from the above
pre-trained model is then flattened to generate a one-
dimensional feature vector.

3. A softmax layer with two neurons is employed to pro-
duce the final classification results from the above one-
dimensional feature vector.

The pre-trained model obtained from the above process
needs training with medical image data. Thus, the models
are trained with chest x-ray image datasets for the detection
of COVID-19 infection.

3.2 Proposed residual separable convolution block

In our experiments, we have observed that GoogleNet per-
forms well on both datasets. On the other hand, Inception
ResNet exhibits the worst performance on the COVIDRD
dataset due to the insufficient size of the dataset. How-
ever,MobileNet andResNet50 produce average performance
due to ample convolutions. MobileNet (Howard et al. 2017)
is the popular time-efficient model designed especially for
mobile vision applications. Our objective is to design a fast
COVID-19 detection and hence we have considered pre-
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Fig. 2 Block diagram of the proposed model

trained MobileNet. We have proposed a residual separable
convolution (RSC) block as shown in Fig. 2b to improve
MobileNet performance. In this process, we have replaced
flatten layer of the pre-trainedMobileNetmodel with anRSC
block. The resulting model is referred to as MobileNet and
residual separable convolution block (MNRSC) model. The
proposed RSC block uses two separable convolution layers,
a global average pooling, a dense layer, and a dropout layer
to enhance the spatial feature vectors. We have devised sep-
arable convolution with a factored residual connections to
reiterate feature maps. Then a global pooling layer converts
themulti-dimensional spatial features into a one-dimensional
feature vector. In general, the global pooling acts as flat-
ten layer and also avoids over-fitting (Lin et al. 2014). A
dense layer with 512 neurons has been employed to estab-
lish a traditional neural network. In addition to global average
pooling, we have utilized a dropout layer after dense layer to
further reduce over-fitting due to class imbalance. The pro-
posed MNRSC model has been designed using MobileNet
and an RSC block. The steps involved in the implementation
of MNRSC are as follows.

1. Pre-trainedMobileNet: It accepts input image I(w, h, c)
of size (224×224×3) and produces feature vector MN
(x, y, z) of size (7×7×1024).

2. RSC block: It transforms MN(x, y, z) into vector F(x)
as follows.

– Two successive separable convolutions (SC2D) with
512 filters having kernel size of (1×1) are per-
formed to generate feature maps of SC1(x, y, z)

and SC2(x, y, z) having dimensions as (7×7×512).
SC1(x, y, z) = SC2D(MN(x, y, z))
SC2(x, y, z) = SC2D(SC1(x, y, z))

– Now, factored SC1(x, y, z) is added to SC2(x, y, z)
to produce feature vector of size (7×7×512).This step
invokes factored residual connection to avoid degra-
dation problem of neurons.
SC2(x, y, z) = SC2(x, y, z) + 2 ∗ SC1(x, y, z)

– Global average pooling has been employed to gen-
erate feature vector G(k) of size 512. It maps a
three-dimensional vector into a one-dimensional vec-
tor.

G(z) =
∑y

j=1
∑x

i=1 SC2(i, j,z)
x∗y

– Finally, a dense layer with 512 neurons forms a fully
connected neural network to produce feature vector
F(z) of size 512.
F(z) = Dense(G(z))

3. Classification: Finally, a softmax layer with two neurons
has been utilized for binary chest x-ray classification as
Normal or COVID-19.

4 Results and discussion

In this section, we have presented a detailed analysis of
the proposed model using various parameters including
input size, and noisy dataset. Four popular fine-tuned mod-
els including MobileNet, InceptionResNet, GoogleNet, and
ResNet have been considered for the evaluation. The pro-
posed model has been compared with the recent COVID-19
detection model includingMinaee et al. (2020) andMaghdid
et al. (2021).

4.1 Experimental setup

We have evaluated the proposed model using four vital per-
formance metrics like accuracy, sensitivity, specificity, and
jaccard similarity. Sensitivity measures the true positive rate
while specificity calculates the true negative rate. Accuracy
and jaccard similarity focus on overall classification perfor-
mance. The proposed model and other pre-trained models
have implemented using python and tensorflow. All experi-
ments have been conducted on an Intel Xeon processor with
a 25 GBGPU system.We have trained the proposed and pre-
trainedmodels using Adam optimizer with an initial learning
rate of 0.0001. Table 2 lists out the complete hyper-parameter
setup utilized for the experiments.

4.2 Evaluation on COVID5K dataset

COVID-Xray-5K (COVID5K) dataset is the publicly avail-
able dataset published byMinaee et al.Minaee et al. (2020). It
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Table 2 Hyperparameter setup Hyperparameter Value

Batch size 8

Optimizer Adam

Initial learning rate 0.0001

Number of epochs 10

Table 3 Fivefold cross-validation on COVID5K dataset

Fold Accuracy Sensitivity Specificity Jaccard

1 100.00 100.00 100.00 100.00

2 99.86 99.86 99.85 99.72

3 99.52 99.52 99.65 99.08

4 99.66 99.66 99.80 99.34

5 99.61 99.61 99.60 99.27

Avg. 99.73 99.73 99.78 99.48

Std. 0.20 0.20 0.16 0.37

consists of 5184 chest x-ray images. The proposedmodel has
evaluated on the dataset and Table 3 lists out cross-validation
results. The proposed MNRSC model has achieved 100%
accuracy in the firstfold and 99% in other folds. Similar
performance has observed in other metrics. This table also
manifests that the proposed model procures a mean accuracy
of 99% with a standard deviation of 0.2%. Figure 3 depicts
training and validation loss of the proposed MNRSC model
in the fourthfold. The proposed MNRSC model exhibits a
high validation loss in the first threefold and attains fast
convergence within ten epochs due to the use of Adam opti-
mizer. Figure 3 demonstrates that the validation loss becomes
consistent after the sixthfold. The proposed model achieves
consistent loss due to the deployment of a residual separable
convolution block.

Figure 4 visualizes the confusion matrix obtained by the
proposed model on COVID5K dataset. From this figure, it

Fig. 4 Confusion matrix on COVID5K dataset

Table 4 Sample x-ray images along with actual and predicted labels

COVID5K

(1) (2) (3)

Actual 0 1 0

Predicted 0 1 1

can be observed that only two COVID-19 positive samples
have been wrongly classified.Whereas, six COVID-19 nega-
tive samples are classifiedwrongly on the COVID5Kdataset.

We have investigated the reasons behind the behavior of
the proposed model. Table 4 lists out three x-ray image
samples from COVID5K dataset. We have found that our
proposed model is ineffective with dis-oriented images and
can be observed from samples (3) of Table 4. In these sam-
ples, other parts like the abdomen have been included due
to the wrong orientation. However, our model classifies cor-
rectly in case of other images.

Fig. 3 Training and validation
loss on COVID5K dataset
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Fig. 5 Performance comparison
on COVID5K dataset

Table 5 Comparison with state-of-art model

References Sensitivity Specificity

Minaee et al. (2020) 98.00 90.70

Maghdid et al. (2021) 98.77 99.02

MNRSC 99.73 99.78

4.2.1 Comparison with state-of-art model

The proposed model has been compared with the recent
COVID-19 detection models. Authors have reported sen-
sitivity and specificity and hence we also have considered
the same metrics for comparison. Table 5 lists out the
performance comparison with the state-of-art models. The
proposed MNRSC model outperforms the existing model

with 99% of sensitivity and specificity. Our model achieves
an improvement of 1% in sensitivity and 9% in sensitivity
than Minaee et al..

4.2.2 Comparison with pre-trained models

We have identified four best-performing pre-trained mod-
els including GoogleNet, Inception ResNet, MobileNet, and
ResNet50, whose accuracy is greater than 98%. These mod-
els have produced similar performance on both datasets
after fine-tuning. The input size is the primary factor that
influences the computational cost and performance. The
low-resolution images are preferred for fast computation
especially for time-constrained applications like mobile
applications. Thus, we have started our experiments with var-
ious input sizes including (224×224) and (128×128) for the
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Fig. 6 Comparison of ROC curves

evaluation. The detailed analysis with various input sizes is
as follows.

– Performance with input image size (224×224):
Figure 5a depicts comparison of four metrics with input
size (224×224). This figure visualizes that the proposed
model outperforms existing pre-trained models in accu-
racy, sensitivity, and jaccard. The proposedmodel reports
lower specificity than GoogleNet and similar perfor-
mance on other models.

– Performance with input image size (128×128):
Figure 5b compares the resultswith input size (128×128)
and the proposed model exhibits superior performance
on the COVID5K dataset in all metrics except sensitiv-

ity. The proposed MNRSC model fails to attain better
sensitivity due to data imbalance.

ROC curve visualizes the plot between true positive rate
vs false positive rate. Figure 6 visualizes a comparison of
ROC curves among the proposed model and its competitive
models. The existing pre-trained models report lesser perfor-
mance on theCOVID5Kdataset as shown in Fig. 6. However,
our model exhibits the best characteristics of its competitive
models.

4.2.3 Performance analysis on noisy data

In general, noise is another image artifact that influences
the performance of the model. Thus, we have evaluated the
proposed model on noisy datasets. Medical images suffer
from random noise and hence we have imposed the random
Gaussian noise on the dataset.We have created a noise image
having zero mean with a standard deviation of 5. Table 6
lists out sample noise images along with their original and
random noise images. If I (w, h, c) is image, RNμ,σ (w, h, c)
is random noise function, then the noise image N I (w, h, c)
can be obtained using eq. 1.

Table 6 Sample noise image generation

(a) Original (b) Random noise (c) Noise image
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Table 7 Comparison on noisy
COVID5K dataset

Model Accuracy Sensitivity Specificity Jaccard

GoogleNet 99.71 99.71 99.94 99.43

InceptionResNet 99.17 99.17 99.84 98.38

ResNet50 99.86 99.86 99.88 99.73

MobileNet 99.32 99.32 99.96 98.66

MNRSC 99.71 99.71 99.88 99.43

Bold indicates best score

Table 8 Number of parameters and training time

Model # Parameters Training time (sec.)

GoogleNet 21.905 M 101.5

InceptionResNet 54.413 M 234.2

ResNet50 23.788 M 118.2

MobileNet 3.329 M 89.9

MNRSC 3.626 M 93.5

N I (w, h, c) = I (w, h, c) + RNμ=0,σ=5(w, h, c) (1)

Table 7 compares the results of the proposed model with
its competing models on the noisy COVID5K dataset. The
proposed MNRSC model has acquired second with 99.71%
accuracy.

4.2.4 Empirical time complexity

Training time is another vital factor that needs to be con-
sidered while designing effective deep networks. In general,
training time mainly depends on the number of parameters
and training images. In pre-trained MobileNet, the soft-
max layer receives a vector of size 50176 (7×7×1024)
which can be treated as neurons for decision making. A
softmax layer maps these 50176 neurons into two neurons
for binary classification. In the proposed model, a softmax
layer receives only 512 neurons as the RSC block transforms
(7×7×1024) vector into 512 neurons. The proposed model
uses 0.3 M additional parameters than basic MobileNet.
Table 8 evidence that the proposed MNRSC model out-
performs its competitive models other than the MobileNet
model. However, the proposedMNRSCmodel takes an addi-
tional training time of 4 sec. on COIVD5K than MobileNet.

4.3 Evaluation on COVIDRD dataset

Covid radiography (COVIDRD) is another dataset published
byKaggle (Kaggle covid-19 2021). Table 9 lists out the cross-
validation results of the proposed model on the dataset. This
table reveals that the proposedmodel attains 100%specificity
in the first fourfold and 99.81% in the fifthfold. We have

Table 9 Fivefold cross-validation on COVIDRD dataset

Fold Accuracy Sensitivity Specificity Jaccard

1 99.71 99.71 100.00 99.41

2 99.80 99.80 100.00 99.61

3 99.80 99.80 100.00 99.61

4 99.90 99.90 100.00 99.80

5 99.61 99.61 99.81 99.22

Avg. 99.76 99.76 99.96 99.53

Std. 0.11 0.11 0.08 0.22

achieved a consistent performance of 99% for other metrics
including accuracy, sensitivity, and jaccard.

Figure 7 visualizes the training and validation loss on the
COVIDRD dataset. The proposed model reports consistent
loss after the sixth epoch and attains optimal loss within ten
epochs. The proposed model has classified seven COVID-
19 positive samples wrongly as negative on the COVIDRD
dataset as shown in Fig. 8. However, our model has predicted
all COVID-19 negatives samples correctly. Table 10 lists out
three x-ray image samples from the COVIDRD dataset. Our
model fails to detect dis-oriented images as shown in the
sample (3) of Table 10. In this image head of the patient has
included due to the wrong orientation.

4.3.1 Comparison with state-of-art model

Table 11 lists out the performance comparisonwith theDeep-
COVIDmodel. TheDeep-COVIDmodel attains 98.29%, and
98.02%of sensitivity, and specificity of respectively.Thepro-
posed MNRSC model outperforms the existing model with
99% of sensitivity and specificity. It proves that our model
achieves an improvement of 1% in both sensitivity and speci-
ficity. In medical image classification, even 1% improvement
is considered as a significant performance.

4.3.2 Comparison with pre-trained models

Performance comparison with existing pre-trained models is
as follows.
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Fig. 7 Training and validation
loss on COVIDRD dataset

Fig. 8 Confusion matrix on COVIDRD dataset

Table 10 Sample x-ray images along with actual and predicted labels

COVIDRD

(1) (2) (3)

Actual 0 1 1

Predicted 0 1 0

Table 11 Comparison with state-of-art model

References Sensitivity Specificity

Minaee et al. (2020) 98.29 98.02

Maghdid et al. (2021) 96.16 97.49

MNRSC 99.76 99.96

– Performance with input image size (224×224):
Figure 9a depicts comparison of four metrics with input
size (224×224). This figure visualize that the proposed
model outperforms existing pre-trained models in all
metrics. This figures also highlight that there is a signif-

Fig. 9 Performance comparison on COVIDRD dataset

icant improvement of 7% than its backbone MobileNet
in Jaccard similarity.

– Performance with input image size (128×128):
Figure 9b compares the resultswith input size (128×128)
and the proposedmodel exhibits superior performance on
COVIDRD dataset in all metrics.

Figure 10visualizes comparisonofROCcurves among the
proposed model and its competitive models. The proposed
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Fig. 10 Comparison of ROC curves

Table 12 Comparison on noisy COVIDRD datasets

Model Accuracy Sensitivity Specificity Jaccard

GoogleNet 99.53 99.53 99.70 99.06

InceptionResNet 99.61 99.61 99.70 99.22

ResNet50 99.53 99.53 99.78 99.06

MobileNet 99.25 99.25 98.96 98.52

MNRSC 99.65 99.65 100.0 99.29

Bold indicates best score

Table 13 Number of parameters and training time

Model # Parameters Training time (sec.)

GoogleNet 21.905 M 51.0

InceptionResNet 54.413 M 116.5

ResNet50 23.788 M 58.9

MobileNet 3.329 M 44.5

MNRSC 3.626 M 46.7

model exhibits similar performance as pre-trained models on
the COVIDRD dataset as shown in Fig. 10.

4.3.3 Performance analysis on noisy datasets

Our model outperforms its competing models on a noisy
COVIDRD dataset with 99.65% accuracy and can be
observed from Table 12.

4.3.4 Empirical time complexity

Table 13 shows that the proposed MNRSC model out-
performs its competitive models other than the MobileNet
model. However, the proposedMNRSCmodel takes an addi-
tional training time of 2 sec. on COIVDRD dataset than
MobileNet.

Fig. 11 Convolution results at first layer

4.4 Discussion

We have analyzed high-level feature maps of the proposed
model. Figure 11a and b depict convolution results after the
first layer on Normal and COVID-19 image samples, respec-
tively. These figures visualize the structural, edge, and con-
trast features of the images. Consider the feature map in the
first-row seventh column of Fig. 11. Where the structure of
the skeleton and heart has degenerated. Thus, these samples
have resulted in thewrong classification.Theproposedmodel
exhibits better sensitivity on COVID5K and better specificity
on the COVIDRD dataset. However, the difference between
sensitivity and specificity is negligible and hence our model
exhibits optimal performance. Moreover, our model pro-
duces the best results on a balanced dataset like COVIDRD.
On the other hand, it achieves competitive performance on
imbalanced datasets like COVID5K. The proposed residual
separable convolution block over MobileNet achieves sig-
nificant performance on both datasets. Further, the following
conclusions can be made from the above analysis.

– Our model produces better results on a balanced dataset
and competitive results on an imbalanced dataset.

– Our model exhibits superior performance in accuracy,
sensitivity, and Jaccard on the COVID5K dataset.

– Ourmodel outperforms existingmodels in all keymetrics
on the COVIDRD dataset.

123



COVID-19 detection from chest x-ray using MobileNet and residual separable convolution block 2207

– It also reports consistent results with various input sizes
and hence it is compatible with low-scale devices like
mobiles.

– The proposedmodel attains a 7% improvement in jaccard
similarity than the MobileNet model on the COVIDRD
dataset.

5 Conclusion

COVID-19 detection from x-ray images has become con-
temporary research due to an increase in the number of
COVID-19 cases and imbalanced datasets. However, the
implementation of time-efficient models with better perfor-
mance is still challenging. In this work, we have proposed a
MobileNet and residual separable convolution block model
for chest x-ray image classification. The proposed residual
separable convolution block uses two separable convolu-
tions, global average pooling, a dense layer, and a dropout
layer. The separable convolutions with a factored residual
connection have been utilized to take advantage of com-
putational cost and feature enhancement. Global average
pooling has been devised instead of Flatten layer to con-
sider image-level features. Two publicly available datasets
have been considered for the performance evaluation of the
proposed model. The proposed model outperforms exist-
ing pre-trained models and state-of-art models with 99%
accuracy in all key metrics except specificity. However, the
difference between sensitivity and specificity is negligible
and hence our model exhibits optimal performance. The pro-
posed model achieves similar results on noisy datasets. Our
proposed model incurs less training time than the existing
pre-trained model and exhibits competitive performance as
basic MobileNet. Further, the proposed model is compati-
ble with mobile applications as it uses fewer parameters and
lesser training time.

The proposed model fails to exhibit superior performance
on the noisy datasetwith imbalanced data. In our futurework,
we have planned to design an efficient COVID-19 detection
model for low quality and noisy datasets.
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