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Data

Xuanhui Yan, Lifei ChenB and Gongde Guo
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Abstract Symbolic data are usually composed of some categorical variables used to represent discrete entities in many

real-world applications. Mining of symbolic data is more difficult than numerical data due to the lack of inherent geometric

properties of this type of data. In this paper, we use two kinds of kernel learning methods to create a kernel estimation

model and a non-linear classification algorithm for symbolic data. By using the kernel smoothing method, we construct a

squared-error consistent probability estimator for symbolic data, followed by a new data transformation model proposed

to embed symbolic data into Euclidean space. Based on the model, the inner product and distance measure between

symbolic data objects are reformulated, allowing a new Support Vector Machine (SVM), called SVM-S, to be defined for

non-linear classification on symbolic data using the Mercer kernel learning method. The experiment results show that

SVM can be much more effective for symbolic data classification based on our proposed model and measures.

Keywords symbolic data · kernel learning method · data transformation model · non-linear classification

1 Introduction

Symbolic data, alternatively known as categorical data or nominal data, are widely used in real-world applications, where

the attributes are represented by symbols, which are qualitative category of things [1]. Taking two attributes, named

gender and height, respectively, for example, the former is usually represented by the category “male” or “female”, while

the latter can be with one of the categories from {“low”, “medium”, “high”}. Compared to numeric data, mining of

symbolic data is a more challenging task due to the lack of inherent geometric characteristics [2–7]: for example, some

important measures that have been successfully applied to numeric data, such as Euclidean distance, inner product and

mean, are not well-defined for symbolic data [8].

As an important tool in data mining, data classification, which assigns unlabeled samples to known classes by using

supervised learning method, has been a subject of wide interest in categorical data mining, especially in the fields of

business, finance, social sciences and health sciences. A number of methods have been developed to classify symbolic

data, including decision trees (DT), Naive Bayes (NB) [9] and distance-based methods such as the k-nearest neighbors

(KNN) and the prototype-based classifiers [10,11]. Since both DT and NB are typically based on the assumption that

symbolic attributes are conditionally independent given the class attribute, they cannot identify the non-linear correlation

between attributes, which has been validated to be useful in high-quality classification [12,13]. With an elaborate distance

measure, it is possible to apply the traditional distance-based classifiers to non-linear categorical data classification;

however, defining such a meaningful distance measure directly on symbolic data is currently a difficult problem due to

the challenges discussed previously [8,14].

Recently, kernel learning has been popular in efficiently learning the non-linear correlation between attributes and

in non-linear data classification [15–17]. For example, the non-linear Support Vector Machine (SVM) [18] makes use

of Mercer kernel functions to embed raw objects into a reproducing kernel Hilbert space, such that the data can be

classified in the new space with high-quality. Such a method cannot thus be directly applied to non-linear symbolic data

classification, because, essentially, it is designed for numeric data, where the Mercer kernels and some key intermediate

operations, such as inner product, are well-defined. Popular solution to this problem is to transform symbolic data into

numeric data as a preprocessing, using a frequency estimation-based encoding model such as the well-known One-Hot
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2

Encoding [19]. Note that such a data transformation model typically results in large estimation variance, as measured

by the finite-sample mean squared error [20,21].

For the sake of utilizing the intrinsic no-linear learning capabilities of kernel methods, in this paper, we propose a

kernel learning model for symbolic data classification. By using the kernel smoothing method [22], the probability density

of each discrete symbol can be estimated, based on which we present a new data transformation model, namely, the

kernel-based self-representation model, to embed symbolic data objects into Euclidean space. Based on the model, we

define the novel inner product and distance measures for symbolic data, and show that a kernel-based attribute-weighting

scheme can be combined into the distance measure with the space transformation. Applying the proposed model and

measures to SVM, we provide a new classifier for symbolic data, named SVM-S, for non-linear classification on symbolic

data.

The following sections of the paper are organized as follows. Section 2 introduces related work. Section 3 describes

the kernel probability estimator for symbolic data. Section 4 presents our data transformation model and the non-linear

SVM classifier for symbolic data, SVM-S. Section 5 experimentally evaluates the proposed model and SVM-S. Section 6

gives our conclusion and discusses future directions.

2 Related work

2.1 A sampling of classification methods for symbolic data

Real-world application of data mining usually needs to deal with various types of data, such as image, text, audio, and

video, et al,. A few methods have been suggested to classify symbolic data in the input space, including decision trees

such as the C4.5 classifier [23], Naive Bayes (NB) and distance-based methods such as the KNN algorithm. A decision

tree is a flowchart-like tree structure, where each internal node denotes a test on an attribute, each branch represents

an outcome of the test, and each leaf node holds a class label. Decision trees generally use entropy gain (e.g., C4.5)

or the gini index (e.g., CART [24]) to choose split attribute, so it can be directly applied to symbolic data, but it

would encounter difficulties when the data set contains a large number of classes or attributes. NB is a probability-based

classification based on the Bayes theorem and the assumption that each attribute is conditionally independent given the

class. Moreover, for categorical data, NB computes the posterior probability with frequency estimator. Note that such

an estimator generally results in large estimation variance, especially when the number of samples is small.

Distance-based classifiers engage us because of their inherent implicity and flexibility. They classify samples by the

dissimilarity or distance between them; therefore, the performance of a distance-based classifier largely depends on the

effectiveness of the chosen distance measure. When applied to symbolic data, the distance measure must be specially

designed for symbolic attributes: examples include the simple matching (SM) distance [25], frequency difference [14] and

the information theory-based measures [26]. Since such a measure is typically defined for the categories distributed on

each symbolic attribute, the correlation between attributes is eliminated from the dissimilarity computation.

2.2 Data transformation methods

To enable those methods that are originally defined for numeric data, such as SVM, BP Neural Network [27], and

restricted Boltzmann machine [28], to complex data machine learning, a natural solution is to convert the data into

numerical vectors, that is, to embed them into Euclidean space. For example, the Word2Vec family of algorithms [29]

maps each word into a numerical vector by using artificial neural networks, and the Locally Linear Embedding (LLE)

method embeds the data from manifold space to a low-dimensional Euclidean space [30].

For symbolic data, due to the lack of spatial structure, it is impossible to directly use those measures that are typically

defined for numeric data, such as the mean, variance, and inner product measures. If symbolic data can be mapped to

Euclidean space, many essential issues, like distance measures, will be easily addressed, and therefore those algorithms

originally designed for numerical data can be easily transposed to symbolic data mining. For instance, Label Encoding,

one of the popular encoding techniques, assigns a unique integer for each symbol based on alphabetical ordering; thus,

the transformed data (i.e., a series of integer values) are ordinal. However, the symbolic data usually are not with natural

ordering in practice. Another popular technique is One-Hot Encoding [19], which converts each symbol into a set of

binaries. It thus easily results in the dummy variable trap (also known as the multi-collinearity problem) [31].

Recently, a few alternative encoding methods have been suggested. For example, NPOD [32] (Neural Probabilistic

Outlier Detection method for categorical data) embeds symbolic data into Euclidean space by using a log-bilinear neural

network, where the relationship between two symbolic attributes is analogous to that of words and their context in the

article. However, symbolic data from many real-world applications often lack natural semantics. Moreover, with such a

method, the symbols have to be encoded in advance to feed the artificial neural network, using the One-Hot encoding

techniques. Qian [33] suggested an alternative transformation method using the data self-representation trick, based on

which a general framework for space-structure-based categorical data clustering (abbreviated SBC) was derived. In this

method, symbolic data are embedded into Euclidean space with a set of N -dimensional vectors, where N is the size of

the dataset. Since N would be large in practice, such a method generally results in a huge increase in the storage and

computing costs.
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3

2.3 Kernel learning on symbolic data

Due to intrinsic non-linear learning capabilities, kernel learning methods have been widely used in machine learning

in recent years. A successful example is the non-linear SVM, which makes use of the kernel trick [18] to map the raw

data to high-dimensional feature space with Mercer kernel functions. By the implicitly mapping, the samples in the

input space that are difficultly separated by a linear hyperplane would become linearly separable in the high-dimensional

feature space. Here, the kernel can be regarded as a similarity measure between samples, due to the equivalence between

the inner product and the distance metric for two sample vectors. However, as discussed previously, the inner product

operation defined in Euclidean space does not naturally exist for symbolic data.

Another type of kernel learning methods is the so-called kernel smoothing [22], which refers to the smoothing band-

width method used in non-parametric density estimation, non-parametric regression and trend estimation [18,34]. The

work of using the kernel smoothing method for symbolic data learning can be traced back to Aitchison and Aitken in

1976 [35], where a discrete kernel function was defined and used to estimate the probability distribution of symbolic

data, called kernel density estimation (KDE) or simply kernel estimation. Then, Li et al. [20] presented a data-driven

bandwidth estimation method, and Chen et al. [4,5,36–39] proposed a series of KDE-based classification algorithms for

symbolic data. For example, in the K2NN algorithm [38], which is an extension to the conventional KNN classifier, a

weighted SM distance measure was derived based on the KDE on symbolic data; in [39], three new linear classifiers were

defined for symbolic data classification and, interestingly, it was demonstrated that the classes can be more separable by

kernel learning of symbolic attributes.

In this paper, we propose a KDE-based data transformation model to embed symbolic data into Euclidean space,

called kernel-based self-representation of symbolic data, followed by the newly defined inner product and distance mea-

sures for symbolic data. The results thus allow symbolic data to be non-linearly classified using a Mercer kernel-based

classifier; in particular, we shall show that the SVM can be much more effective for symbolic data classification based

on our novel formulation to the inner product and distance measures.

3 Kernel estimation model for symbolic data

3.1 Discrete kernel estimation

In what follows, the symbolic data set is denoted by DB = {z1, z2, . . . , zN} with zi = (xi, yi) being the ith training

sample, i = 1, 2, ..., N , where N is the number of samples. Here xi = (xi1, xi2, . . . , xiD) is a data object featured by D

symbolic attributes, and yi is the class label of xi. The set of categories of the dth attribute, where d = 1, 2, . . . , D, is

denoted by Od with |Od| being the cardinality(i.e., the dth attribute takes |Od| discrete values). An arbitrary category

of Od is denoted by odl 2 Od, l 2 {1, 2, . . . , |Od|}. The frequency estimator of odl is given as

f(odl) =
1

N

X

xi2DB

I(xid = odl), (1)

where I(·) is the indicator function, i.e., I (true) = 1, I (false) = 0.

Let Xd be a random variable associated with the observations for the dth attribute, and denote its probability density

by p(Xd). In order to estimate p(Xd), we define the discrete kernel function as follows:

` (Xd, odl;�d) =

(

1�
|O

d
|�1

|O
d
|
�d , Xd = odl

1
|O

d
|
�d , Xd 6= odl

, (2)

where �d 2 [0, 1] , called bandwidth, which is the smoothing parameter of the kernel function corresponding to the dth

attribute. Note that Eq. (2) can be rewritten in a much simpler form, given as

` (Xd, odl;�d) =
1

|Od|
�d + (1� �d )I(Xd = odl). (3)

It can be seen that the kernel function defined by Eq. (2) or (3) satisfies the basic property of a probability distribution,

i.e.,
P

odl2Od
` (Xd, odl;�d) = 1�

|O
d
|�1

|O
d
|
�d +

�

|Od

�

��1
�

1
|O

d
|
�d = 1 .

Now, based on the kernel density estimation (KDE) method [42,21], the kernel probability density of p(odl) , denoted

by p̂ (odl;�d) , can be estimated, i.e.,

p̂(odl;�d) =
1
N

P

xi2DB ` (xid, odl;�d)

= f (odl)
⇣

1�
|O

d
|�1

|O
d
|
�d

⌘

+ [1� f (odl)]
1

|O
d
|
�d

= (1� �d) f (odl) +
1

|O
d
|
�d .

(4)
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4

It is worthy to remark that the kernel probability estimation of odl, as shown in Eq. (4), depends on both the frequency

estimator f (odl) and the bandwidth �d, which, in fact, is related to the data distribution characteristics of the dth

attribute. Moreover, we have the interesting property of the estimation, as shown in the following theorem.

Theorem 1 Given �d 2 [0, 1], p̂(odl|�d) is a squared-error consistent estimator of p(odl).

Proof. The mean square error (MSE) of estimating p (odl) by p̂ (odl;�d) is

MSE (odl,�d) = E

n

[p̂ (odl;�d)� p (odl)]
2
o

= Var (p̂ (odl;�d))� [E (p̂ (odl;�d))� p (odl)]
2

= Var (p̂ (odl;�d))� [Bias (p̂ (odl;�d))]
2
,

(5)

where E[·] is the mathematical expectation, Var[·] and Bias[·] denote the variance and bias of the estimation, respectively.

It can be seen that MSE(odl,�d) =
(1�λd )2

N [p (odl)� p2 (odl)]� �2d[|Od|
�1 � p (odl)]

2 = O
�

1
N

�

given �d 2 [0, 1], where

O (·) is the big-Oh notation (the ‘O ’ stands for ‘order of’) and N is the number of samples. Since 1
N ! 0 as N ! 1,

p̂(odl;�d) is a consistent estimate of p(odl). The full proof is given in Appendix A. 2

In addition, from the proof of Theorem 1, we can find that the smaller �d, the smaller deviation. It can also be seen

that by minimizing the mean square error, the bias and variance of the kernel estimation can be balanced.

3.2 Bandwidth optimization

Bandwidth optimization, which determines the asymptotic characteristics of the kernel estimation [5], is a key issue in

KDE methods. Because the optimal bandwidth is closely related to the data distribution, it is a reasonable choice to use

a data-driven method [34,40], that is, to learn the optimal bandwidth from the data themselves. Here, we aim to learn

the optimal bandwidth by minimizing the MSE of the kernel estimation, as given in Eq. (5). Substituting for p̂(odl;�d)

in Eq. (5) according to Eq. (4), the loss function to be optimized can be rewritten as

L (�d) =
X

odl2Od

E[((1� �d)f(odl) +
�d
|Od|

� p(odl))
2]. (6)

We then have the following results.

Theorem 2 For the dth attribute, the optimal bandwidth obtained by minimizing the loss function L (�d) is

�
⇤
d =

|Od|�
2
d

|Od|(N + �2
d
�N�2

d
)� �2

d

, (7)

with �2
d = 1�

P

odl2Od
[p(odl)]

2.

Proof. The proof is given in Appendix B. 2

Note that the underlying probability distribution p(odl) is unknown, which means that �2
d cannot be directly es-

timated. A practical approach is to use the frequency distribution of the training samples, such that �2
d can be eas-

ily estimated by the standard deviation of the training samples. In this way, with �2
d in Eq. (7) replaced by S2

d =

1�
P

odl2Od
[f(odl)]

2, the optimal bandwidth becomes

�
⇤
d =

|Od|S
2
d

|Od|(N(1� S2
d
) + S2

d
)� S2

d

. (8)

Here are some comments on the optimal kernel bandwidth according to Eq. (8):

(1) The larger the S2
d , the larger the bandwidth. Note that, S2

d is widely known as the Gini-Simpson Index [41] and

can be used to measure the data dispersion. In particular, when the data of an attribute is uniformly distributed, its

bandwidth would reach the maximum.

(2) The larger the number of samples N, the smaller the bandwidth. If N ! 1, then �⇤d ! 0 and the kernel

probability estimate p̂ (odl|�d) = (1� �d) f (odl)+
λd

|O
d
|
will be very close to the frequency estimation. This also indicates

the following property on the asymptotic characteristics of the kernel estimation.

Corollary 1. The p̂ (odl;�d) is a consistent estimate of p (odl) by the optimization of kernel bandwidth �d.

Proof. It can be seen from Eq. (8) that �d ! 0 as N ! 1. , given that 0  S2
d < 1. Now, combing the results from

the proof of Theorem 1 that MSE (odl,�d) =
(1�λd )2

N [p (odl) � p2 (odl)] � �2d[|Od|
�1 � p (odl)]

2, we can obtain that

MSE (odl;�d) ! 0 as N ! 1. 2
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4 Kernel-based data transformation with SVM-S

4.1 Kernel-based self-representation model

In this subsection, a new data transformation model is proposed to embed symbolic data onto Euclidean space, based

on the kernel estimation method discussed in the previous section. We will begin by representing the category taken on

each attribute, say, xid on the dth symbolic attribute, Ad, of the sample xi, by a probability vector, as set out in the

following Definition 1.

Definition 1 (Category self-representation) For the category xid taken on Ad of xi, its self-representation is denoted

by v(xid), given as

v(xid) =< v1(xid), . . . , v2(xid), . . . , v|O|d(xid) >

with

vl(xid) = p(Xd = odl|xid = odl)

subject to kv(xid)k1 = 1. Here, p(Xd = odl|xid = odl) denotes the conditional probability of Xd taking each category

odl 2 Od given the fact that xd = odl.

To estimate the conditional probabilities in Definition 1, we use the kernel estimator as defined in Eq. (3), i.e.,

p(Xd = odl|xid = odl)
def
= ` (xid, odl;�d). Since

P|Od|
l=1 ` (xid, odl;�d) = 1

|O
d
|
�d + (1� �d ) + (|Od| � 1) 1

|O
d
|
�d ⌘ 1, the

constraint kvidk1 = 1 in Definition 1 is always satisfied. Based on this, our kernel-based symbolic data transformation

model can be obtained, as follows:

Definition 2 (Kernel-based data transformation model, KDTM) Each symbolic data object xi is embedded in

the Euclidean space by transformed into a numeric vector Xi, defined as

Xi =< v1(xi1), . . . , vl(xi1), . . . , v|O1|(xi1), . . . , v1(xid), . . . , vl(xid), . . . , v|O1|(xid), . . . , v1(xiD), . . . , vl(xiD), . . . , v|O1|(xiD) > .

Table 1: Illustration of the KDTM for N symbolic data objects

Transformation

Attributes
A1 A2 . . . AD

x1 ! X1 v(x11) v(x12) . . . v(x1D)

x2 ! X2 v(x21) v(x22) . . . v(x2D)
...

...
...

...
...

xN ! XN v(xN1) v(xN2) . . . v(xND)

Table 1 illustrates our KDTM for the data set DB consisting N symbolic data objects x1,x2, . . . ,xN . From the

table, we see that the dimensionality of KDTM becomes D0 =
PD

d=1 |Od|. In practice, the dimensionality of the input

space, D, and the number of categories on each attribute (say, |Od| for d = 1, 2, . . . , D), are usually much smaller than N

in practice; therefore, we have that D0 ⌧ N . Compared with the representation model suggested in [33], where D0 = N ,

the dimensionality of the resulting Euclidean space obtained by our KDTM would be much smaller, providing a better

usability for large-scale data classification.

4.2 Inner product and distance measures of symbolic data

Based on our KDTM involving only numeric values, the inner product of two symbolic objects can be formulated, as

shown in the following definition.

Definition 3 (Inner product of symbolic objects) The inner product of two symbolic data objects xi and xj is

defined as

hxi,xji = Xi · X
>
j =

D
X

d=1

v(xid) · v(xjd)
>
. (9)

In a bit more detail, based on Definition 1, we have that

v(xid) · v(xjd)
> =

8

>

<

>

:

�

|Od

�

��1
�

⇣

λd

|O
d
|

⌘2
+
h

λd

|O
d
|
+ (1� �d )

i2
, xid = xjd

�

|Od

�

��2
�

⇣

λd

|O
d
|

⌘2
+ λd

|O
d
|

h

λd

|O
d
|
+ (1� �d )

i

, xid 6= xjd

= λd

|Od|
(1� λd

|Od|
) +

h

λ
2

d

|O
d
|2

+ λd

|O
d
|
(1� �d ) + (1� �d )

2
i

I
�

xid = xjd
�

.

(10)
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It is easy to verify that the inner product defined in Definition 3 satisfies the common properties of symmetry,

linearity and additivity. Furthermore, for the case where xjd = yjd, the value of Eq. (10) has one more term of
h

λ
2

d

|O
d
|2

+ λd

|O
d
|
(1� �d ) + (1� �d )

2
i

than that for xjd 6= yjd, which is an obviously reasonable result.

On the other hand, the distance between two symbolic objects can also be calculated using the similar approach.

First, based on our KDTM, the dissimilarity between xi and xj on the dth attribute can be easily measured by
P|Od|

l=1 [vl(xid)� vl(xjd)]
2. Then, substituting the conditional probability with Eq. (3), we compute the squared dis-

tance between xi and xj by adding up the dissimilarity for each attribute, as given in the following Definition 5.

Definition 4 (Distance measure of symbolic objects) The distance between symbolic objects xi and xj is defined

as

Dist
�

xi,xj

�

=
q

PD
d=1

P

o2Od
[ (1� �d )(I (xid = o)� I(xjd = o))]2

=

q

2
PD

d=1 I
�

xid 6= xjd
�

(1� �d )
2
.

(11)

From Eq. (11), we can see that the distance measure is dependent on the bandwidth �d. This means that our distance

measure for symbolic data is defined based on the data distribution characteristics in a data set. In addition, Eq. (11)

implies that each symbolic attribute is, in effect, assigned with an individual weight, which is 2(1��d)
2. As the bandwidth

is related to the data dispersion (see Theorem 2), it can be seen that the attribute weight is inversely proportional to

the data dispersion. Note that such a weighting scheme is similar to that commonly used for numerical data [45].

4.3 SVM-S: SVM for symbolic data

This subsection aims at deriving an SVM for non-linear classification of symbolic data, named SVM-S, using our new data

transformation model KDTM and the inner product or distance measure formulated in the previous subsections. The

main goal of the SVM algorithm is to establish a maximum margin classification model in the feature space to maximize

the distance between the hyperplane and the two classes of samples. Using a Mercer kernel function, (·, ·), SVM is

able to map non-linearly separable samples (in the input space) onto a high-dimensional feature space, so that they can

be effectively classified in the new space. Generally, such a classification model is learned by solving the optimization

problem defined by (see [18] for more details of the formulation)

min
α

1

2

N
X

i=1

N
X

j=1

↵i↵jyiyj(xi,xj)�

N
X

i=1

↵i

s.t.

N
X

i=1

↵iyi = 0 and 0  ↵i  C, i = 1, 2, . . . , N. (12)

There are several choices for the kernel function , including the commonly used polynomial kernels and Gaussian

kernels, defined as p(xi,xj) = (a + xi · x
>
j )b and g(xi,xj) = exp(��kxi � xjk

2), respectively. Clearly, such kernels

cannot be computed for symbolic objects, where both the inner product xi · x
>
j and distance measure kxi � xjk

2 are

not defined. However, based on our KDTM defined in Definition 2, the kernels can be adapted to symbolic data using

the definitions in Definitions 3 and 4. Formally, for the symbolic objects xi and xj , we compute the kernels by

p(xi,xj) = (a+ hxi,xji)
b (13)

based on our new inner product formulation in Eq. (10), and

g(xi,xj) = exp(��[Dist(xi,xj)]
2) (14)

using the new distance measure presented in Eq. (11). In this way, the traditional SVM can be adapted for non-linear

symbolic data classification, as outlined in Table 2.

It is interesting to remark that, similar to the kernel trick [18], in our SVM-S, the inner product or distance between

symbolic objects can be directly computed using Eq. (10) or (11) in the input space, without actually converting symbolic

data to Euclidean space by KDTM.

5 Experimental analysis

In this section, we aim at verifying the rationality and effectiveness of the proposed KTDM and the performance of the

classification algorithm SVM-S for symbolic data.
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Table 2: Outline of the SVM-S algorithm

Input: Training data set, test set.

Output: Class labels of all samples in the test set.

begin

1. Learn the kernel bandwidths from the training samples using Eq. (8);

2. Calculate the kernel matrix for the training samples, using Eq. (13) or Eq. (14) for the chosen Mercer kernel function;

3. Solve the optimization problem shown in Eq. (12), and obtain the SVM model based on the method presented in [18];

4. Identify the class of the test samples using the SVM prediction method, with the inner product or distance

between symbolic objects also computed using the new formulation in Eq. (10) or Eq. (11).

end

∗ The source codes of SVM-S are freely available at https://github.com/Yan-XuanHui/SVM-S.git.

Table 3: Summary of the real-world data sets used in the experiments

Dataset #Classes #Attributes #Size Domain

Promoters 2 57 106 life sciences

Dermatology 6 34 366 life sciences

Vote 2 16 435 social science

Soybean 19 35 683 life sciences

BreastCancer 2 9 699 life sciences

Tic-Tac-Toe Endgame 2 9 958 Sports competition

GermanCredit 2 20 1000 Business finance

Car 4 6 1728 Business finance

Chess (King-Rook vs. King-Pawn) 2 36 3196 Sports competition

5.1 Data sets and experimental setup

Nine real-world symbolic datasets were used in the experiments, all of which were obtained from the UCI Machine

Learning Repository (http://archive.ics.uci.edu/ml/index.php). Table 3 summarizes the details.

We chose to compare the performance of our SVM-S with a few representative classifiers: KNN, K2NN algorithm [38],

Naive Bayes(NB), Random Forest (RF) [43], XGBoost [44], and SVM [18]. For KNN and SVM, the pairwise distance

was computed using the Euclidean distance function based on the One-Hot Encoding method [19]. In the experiment,

all algorithms were tested on nine data sets and their experimental results were compared in terms of the weighted

F1-Measure, which is WF1= 1
N

Pm
k=1 (Fk ⇥ nk), where m is the number of classes, and Fk is the F1-Measure of the kth

class, nk is the number of samples in the kth class.

As it is currently a difficult problem to choose an appropriate kernel function for SVM (and our SVM-S), a training-

and-validation method was used to config the SVMs in the experiments. For each dataset, first, we divided the training

set into two disjoint subsets to create a validation set and a new training subset. Next, two SVMs (one with a polynomial

kernel and another with a Gaussian kernel) were trained on the training subset and their classification accuracies on the

validation set were computed. Finally, the kernel corresponding to the highest accuracy was chosen for each dataset. The

results showed that the SVM with a Gaussian kernel was preferred for Vote, GermanCredit and Tic-Tac-Toe sets, while

the SVM with a polynomial kernel can be more accurate on the remaining six sets.

5.2 Classification performance

In all the experiments, each dataset was classified by each classifier 20 times using 10-fold cross-validation, and the

average WF1-score was calculated. For fairness, the grid search method is utilized to find the optimal parameters of each

algorithm on each data set. The test results of each algorithm on the nine data sets are summarized in Table 4. The

highest WF1-score on each data set is highlighted in bold typeface.

From Table 4, we can see that our SVM-S achieves the highest classification score on seven data sets (BreastCancer,

Promoters, Soybean, Dermatology, Vote, GermanCredi and Tic-Tac-Toe). On the Chess data set, SVM-S obtains com-

parable accuracy to XGBoost; in fact, the classification performance of Random Froest, XGBoost, SVM and SVM-S on

this set are approximately equivalent, all reaching a high classification score of more than 99%. SVM-S is slightly worse

than XGBoost on the Car set, due to the fact that the set is extremely imbalanced (the numbers of samples in the major

class and the smallest class are 1210 and 65, respectively). Overall, our SVM-S significantly outperforms KNN, Random

Forest, SVM and K2NN algorithms for symbolic data classification. Moreover, it can be more accurate than XGBoost,

the state-of-the-art classification algorithm, as evidenced by the average WF1-scores shown in the last line of Table 4,

which are 0.973 and 0.942, respectively.
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Table 4: Comparison of WF1-score on various data sets

Dataset

Algorithm
KNN NB RF XGBoost SVM K2NN SVM-S

Promoters 0.819 0.953 0.916 0.953 0.934 0.842 0.972

Dermatology 0.965 0.973 0.972 0.956 0.947 0.976 0.990

Vote 0.925 0.920 0.963 0.968 0.954 0.955 0.981

Soybean 0.922 0.948 0.938 0.942 0.939 0.925 0.962

BreastCancer 0.955 0.958 0.967 0.954 0.974 0.956 0.988

Tic-Tac-Toe 0.987 0.686 0.974 0.983 0.987 0.969 0.997

GermanCredit 0.721 0.740 0.748 0.739 0.623 0.736 0.892

Car 0.925 0.827 0.968 0.993 0.983 0.939 0.986

Chess 0.965 0.862 0.991 0.994 0.991 0.978 0.993

Avg. WF1-Score 0.910 0.874 0.937 0.942 0.926 0.920 0.973

Our SVM-S can be viewed as an SVM variant that specially designed for symbolic data classification. Its excellent

performance in symbolic data classification is mainly due to the use of our newly formulated inner product and distance

measure for symbolic data. This shows that our proposed methods not only provide a new solution for applying the

Mercer kernel learning method to symbolic data mining, but also obtain better performance than other commonly used

algorithms.

5.3 Attribute-weight analysis

To gain insights into the good performance of our SVM-S, we now focus on experimentally analyzing the kernel-based

data transformation model KDTM. As discussed in Section 4.2, converting symbolic data objects into numeric vectors

using our KDTM is equivalent to weighting each symbolic attribute according to its data dispersion. To demonstrate the

effectiveness of the kernel-based weighting scheme, in this set of experiments, the weights learned by KDTM for each

attribute of the nine datasets are used for further analysis.

As shown in Eq. (11), the weight assigned to the dth symbolic attribute equals to 2(1��d)
2, with the bandwidth �d

computed by Eq. (8). To provide context, we chose the entropy-based attribute weighting method [46] for comparisons,

which is defined by
1�entropy(Ad)

N�
P

D

d0=1
entropy(A

d0
)
, where entropy(Ad) denotes the entropy of the dth attribute in terms of

the category distribution. For convenience, we use wkernel and wentropy to denote the two kinds of attribute-weights,

respectively. The weights learned by different methods on the nine datasets are shown in Fig. 1.

To examine the relationship between the two sets of the weights, the Pearson correlation coefficient was used,

computed by ⇢X,Y =
E[(X�µX)(Y�µY ]

σXσY
. Here, X,Y denote wkernel and wentropy, respectively. From the figure, an

obvious positive correlation between wkernel and wentropy on the same dataset can be observed. The values of Pearson

correlation coefficient between wkernel and wentropy are beyond 0.9 on the eight data sets except BreasetCancer, on

which the correlation coefficient is larger than 0.87. We also observe that the weights wkernel and wentropy are precisely

equal on the Car data set; this is because the data for each attribute in this set is uniformly distribution (note that our

KDTM is an unsupervised data transformation model). This means that the attribute weighting scheme implied in our

KDTM behaves similarly to the entropy-based method; this, consequently, provides our model with more capacity to

distinguish between symbolic attributes.

6 Concluding remarks

In this work, we first use a kernel smoothing method to construct the kernel probability estimation model for symbolic

data, and proved its convergence and consistence. By doing so, we then propose a kernel-based data transformation

model, called KDTM, to embed symbolic data into Euclidean space. We also define new measures for the inner product

and kernel-based weighted distance computation for symbolic objects. Finally, we extend the traditional SVM to SVM-S

(i.e., SVM for symbolic data) by using the newly defined measures for non-linear classification on symbolic data. The

performance of the proposed methods are evaluated on nine real-world symbolic data sets, and the experimental results

show their outstanding classification accuracy outperforming popular methods.

The important enlightenment of SVM is that some kind of non-linear transformation can be achieved by the inner

product based on the kernel learning method, for example, kernel principal component analysis (KPCA) [47]. Therefore,

our work in this paper (e.g., the new kernel-based inner product measure) can help to extend more related methods

to non-linearly mining on symbolic data. Another interesting extension would be to extend our kernel-based method to

learning more complex data, such as mixed-type data and multi-variate time series.
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(a) Promoters (b) Dermatology (c) Vote

(d) Soybean (e) BreastCancer (f) Tic-Tac-Toe Endgame

(g) GermanCredit (h) Car (i) Chess

Fig. 1: Relationship between our kernel-based weights (wkernel) and the entropy-based weights (wentropy) on the nine

data sets. (X-axis: Attribute index, Y-axis: Weight)
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Appendices
A Proof of Theorem 1

Since [I (·)]2 = I (·) and
P

o2Od
[p(o)] = 1 , the expectation of p̂ (odl|�d) can be obtained from Eq. (4):

E (p̂ (odl|�d)) = E [` (Xd, odl,�d)]

=
P

o2Od
[ 1
|O

d
|
�d + (1� �d )I (o = odl)]p(o)

= λd

|O
d
|
+ (1� �d) p (odl) .

So, the Bias (p̂ (odl|�d)) and theVar (p̂ (odl|�d)) can be computed as:

[Bias (p̂ (odl|�d))]
2 =



�d
|Od|

� �dp (odl)

�2

= �
2
d

h

|Od|
�1 � p (odl)

i2
= O

⇣

�
2
d

⌘

,

and
Var (p̂ (odl|�d)) =

1
NVar [` (Xd, odl,�d)]

= 1
N

h

E
�

`2 (Xd, odl,�d)
�

� (E (` (Xd, odl,�d)))
2
i

= 1
N

⇢

P

o2Od

h

λd

|O
d
|
+ (1� �d )I (o = odl)

i2
p(o)�

h

λd

|O
d
|
+ (1� �d) p (odl)

i2
�

= 1
N [ (1� �d )

2
p (odl)� (1� �d )

2p2 (odl)]

=
(1�λd )2

N

⇥

p (odl)� p2 (odl)
⇤

By combining the above two equalities, the theorem is proved.

B Proof of Theorem 2

For each odl in Eq. (6), we have that

E

h

((1� �d) f (odl) +
λd

|O
d
|
� p(odl))

2
i

=

(1� �d)
2
E
⇥

f2 (odl)
⇤

+ 2
h

λd�λ
2

d

|O
d
|

+ (�d � 1)p(odl))
i

E [f (odl)] + [p(odl)]
2 � 2λd

|O
d
|
p(odl) +

λ
2

d

|O
d
|2
.

Base on the facts that E [f(odl)] = p(odl) and [I(·)]2 = I(·), the above equality can be simplified as

(1� �d)
2
⇣

E
⇥

f2 (odl)
⇤

� (E[f (odl)])
2
⌘

+ (1� �d)
2
p2(odl)

+ 2
h

λd�λ
2

d

|O
d
|

+ (�d � 1)p(odl))
i

p(odl) + p2(odl)�
2λd

|O
d
|
p(odl) +

λ
2

d

|O
d
|2

= (1� �d)
2 p(o

dl
)(1�p(o

dl
))

N + �2d[p(odl)]
2 �

2λ2

d

|Od|
p(odl) +

λ
2

d

|O
d
|2

=
h

�2d �
(1�λd)

2

N

i

p2(odl) +
h

(1�λd)
2

N �
2λ2

d

|O
d
|

i

p(odl) +
λ
2

d

|O
d
|2
.

Therefore, L (�d) can be computed as

L (�d) =
h

�2d �
(1�λd)

2

N

i

P

odl2Od
[p(odl)]

2 +
(1�λd)

2

N �
λ
2

d

|O
d
|

=
⇣

1� 1
|O

d
|

⌘

�2d +
h

(1�λd)
2

N � �2d

i

�2
d .

Let
∂L(λd)
∂λd

= 0, we get the optimal estimate of �d, and Eq. (7) .
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