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Abstract The main focus of this paper is to develop an efficient analytical method

to obtain the traveling wave fuzzy solution for the fuzzy generalized Hukuhara con-

formable fractional equations by considering the type of generalized Hukuhara con-

formable fractional differentiability of the solution. To achieve this, the fuzzy con-

formable fractional derivative based on the generalized Hukuhara differentiability is

defined, and several properties are brought on the topic, such as switching points and

the fuzzy chain rule. After that, a new analytical method is applied to find the exact

solutions for two famous mathematical equations: the fuzzy fractional Wave equa-

tion and the fuzzy fractional Diffusion equation. The present work is the first report

in which the fuzzy traveling wave method is used to design an analytical method to

solve these fuzzy problems. The final examples are asserted that our new method is

applicable and efficient.
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1 Introduction

During the last decade, the interest of mathematicians in fuzzy differential equations

has been rapidly increasing. The main reason for this development is that using these

problems will lead to a much more effective and elegant way of treating real-life

issues. A particular subgroup of fuzzy differential equations is described with opera-

tors of fractional nature. Fractional calculus is a set of methods and hypotheses that

extend the concept of a derivative operator from integer-order n to arbitrary order α .

Modeling like biological population models, the predator-prey models and infectious

diseases models, etc are generalized to fractional order. Fractional calculus is not

only a productive and emerging field, but it also represents a new philosophy, how to

construct and apply a certain type of nonlocal operator to real-world problems [17,

18,19,26,27,32,33].

The interest in fractional fuzzy differential equations aroused in 2012 with a paper

by Agarwal et al. [5]. The existence and uniqueness of a fuzzy solution for fractional

differential equations are proved in [7]. The concepts of fuzzy fractional integral and

Caputo partial differentiability based on generalized Hukuhara differentiability for

the fuzzy multivariable functions have been introduced by H. Viet Long et al. [37].

Hoa et al. [20] introduced the fuzzy Caputo-Katugampola fractional differential equa-

tions in fuzzy space, and under generalized Lipschitz condition, the existence and

uniqueness of the solution proved. The analytical solutions to some linear fractional

partial fuzzy differential equations under certain conditions were investigated in [31].

The perturbation-iteration algorithm was developed for numerical solutions of some

types of fuzzy fractional partial differential equations with generalized Hukuhara

derivative [35]. H. Zureigat et al.[38] analyzed the compact Crank-Nicholson scheme

to solve the fuzzy time diffusion equation with fractional order 0 < α ≤ 1. Some

new methods and useful materials concerning fuzzy fractional differential and fuzzy

fractional partial differential equations are introduced in [1].

Recently, a new well-behaved simple fractional derivative called ”the conformable

fractional derivative” is defined by [25,6]. This new definition seems to be a natural

extension of the usual derivative. Researchers started to combine this new defini-

tion with fuzzy calculus [22,23,29]. They used the concept of H-differentiability or

strongly generalized differentiability. But it is well-known that the usual Hukuhara

difference between two fuzzy numbers exists only under very restrictive conditions

[16,9]. To overcome this shortcoming, we will introduce the fuzzy conformable frac-

tional derivative under generalized Hukuhara differentiability, and prove some im-

portant properties for this kind of differentiability.

Consider the following generic form of second order fuzzy fractional partial dif-

ferential equation defined based on generalized Hukuhara conformable fractional

derivative

D
α
tgH

υ = F
(

υ ,υxgH
,υxxgH

,D
2α
ttgH

υ
)

, (1)

with 0 < α ≤ 1. The main contribution of this paper is to find the wave traveling solu-

tions for the problem (1). For this purpose, the concept of generalized Hukuhara con-

formable fractional differentiability is introduced thoroughly in the fuzzy functions.
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Next, the fuzzy fractional wave equation and fuzzy Diffusion equation are introduced

based on the generalized Hukuhara conformable fractional differentiability. Finally,

we discuss the fuzzy traveling wave solutions for these equations by considering the

type of αgH -differentiability.

We now give a brief outline of the main sections of the paper and state the aims

and objectives of each section. Section 3 deals with aspects of background knowl-

edge in fuzzy mathematics and fuzzy derivatives with emphasis on the generalized

Hukuhara differentiability. In Section 4, generalized Hukuhara conformable frac-

tional differentiability are studied some properties for this concept of differentiability

are proved. A fuzzy fractional Wave equation and a fuzzy fractional diffusion equa-

tion under generalized Hukuhara conformable fractional differentiability are intro-

duced in Sections 5 and 6, respectively. Moreover the fuzzy traveling wave solutions

of these equations are investigated in different scenarios. Finally in Section 7, the

conclusions are given.

2 Related Works

The concept of the fuzzy derivative was first introduced by Chang and Zadeh [15].

The starting point of the topic in the set-valued differential equation and also fuzzy

differential equation is Hukuhara’s paper [21]. Puri and Ralescu [30] suggested the

fuzzy differential equations modeling with uncertainty under the concept of H-differe-

ntiability. Subsequently, Kaleva in [24] proposed fuzzy differential equations using

the Hukuhara derivative, and some other authors developed it. But for some fuzzy

differential equations in this framework, the diameter of the solution is unbounded as

the time t increases [16].

To overcome this shortcoming, Bede and Gal introduced the weakly generalized

differentiability and the strongly generalized differentiability for the fuzzy functions

[9]. Moreover, they presented a more general definition of derivatives for the fuzzy

functions and their applications for solving fuzzy differential equations [9,10]. Ste-

fanini and Bede, by the concept of generalization of the Hukuhara difference of com-

pact convex set, introduced generalized Hukuhara differentiability [36] for interval-

valued functions. They showed that this concept of differentiability has relationships

with weakly generalized differentiability and strongly generalized differentiability.

The disadvantage of the strongly generalized differentiability of a function compared

to H-differentiability is that the fuzzy differential equation has no unique solution [9].

Also, in [13] the authors studied relationships between the strongly generalized dif-

ferentiability and the generalized Hukuhara differentiability, showing the equivalence

between these two concepts when the set of switching points of the interval-valued

function is finite.
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Table 1 Related Fuzzy Works

Article Achievements /Advantages Disadvantages

Chang et al. [15]

(1972)

Define a fuzzy function and its inverse, fuzzy parametric

functions, fuzzy observation, and control.

Hukuhara [21]

(1967)

The first definitions of Hukuhara difference,

and Hukuhara derivative

Hukuhara difference between two

fuzzy numbers is not always a fuzzy number.

Puri et al.[30]

(1986)

Prove the Rȧdström embedding theorem and

define the concept of the differential of a fuzzy function

The diameter of the solution is unbounded

as the time t increases.

Kaleva [24]

(1987)

Define a fuzzy differential equations using

the Hukuhara derivative

The diameter of the solution is unbounded

as the time t increases.

Bede et al. [9]

(2005)

Define the strongly generalized differentiability

and the weakly generalized differential of a

fuzzy function using the Hukuhara derivative

The fuzzy differential equations may not

have a unique.

Stefanini et al. [36]

(2009)

Define the generalized Hukuhara difference

and generalized Hukuhara differentiability

for interval-valued functions

Allahviranloo et al. [2]

(2015)

Define the fuzzy generalized Hukuhara partial

differentiability and solve the fuzzy heat equation

Harir et al. [22]

(2020)

Define the fuzzy Generalized Conformable

Fractional Derivative using the Hukuhara derivative

Hukuhara difference between two fuzzy numbers

is not always a fuzzy number.

Harir et al. [23]

(2021)

Prove the existence and uniqueness theorem for

a solution to a fuzzy fractional differential equation

by using the concept of conformable differentiability

The diameter of the solution is unbounded

as the time t increases.

Martynyuk et al. [29]

(2020)
Define the fractional-like Hukuhara-type derivatives

Hukuhara difference between two fuzzy numbers

is not always a fuzzy number.

Chalco-Cano et al. [14]

(2020)

A new characterization of the switching points

for generalized Hukuhara differentiability
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In this way, they use the LU-parametric representation of fuzzy numbers and

fuzzy valued functions to obtain valid approximations of fuzzy generalized Hukuhara

derivative and solve fuzzy differential equations [12]. Allahviranloo [2] introduced

the fuzzy generalized Hukuhara partial differentiability and solved the fuzzy heat

equation under generalized Hukuhara differentiability. Moreover, in [28] the authors

obtained the fuzzy solutions of the fuzzy Poisson equation under generalized Hukuhar-

a differentiability. Recently, Y.Chalco-Cano et al. [14] provided a new characteriza-

tion of the switching points for generalized Hukuhara differentiability and shown that

the set of all switching points is at most countable.

3 Preliminaries

In the following, we focus on the basic definitions and the necessary notation which

will be used throughout the paper. Let E is the set of fuzzy numbers and T⊂E shows

the set of all triangular fuzzy numbers.

Let a =
(

a1,a2,a3

)

and b =
(

b1,b2,b3

)

are two triangular fuzzy numbers, so

the generalized Hukuhara difference, a⊖gH b, is defined as follows [11]

a⊖gH b = c ⇐⇒







(i). c = (a1 −b1,a2 −b2,a3 −b3),
or,

(ii). c = (a3 −b3,a2 −b2,a1 −b1).

Actually

a⊖gH b =
(

min{a1 −b1,a3 −b3},a2 −b2,max{a1 −b1,a3 −b3}
)

.

In this article, we assume that a⊖gH b ∈ T.

Let f : [a,b]→ T and it’s first k generalized Hukuhara derivatives are continuous

fuzzy triangular functions without any switching points on domain I := [a,b] [11].

Definition 31 (See [8]). Let f : I→ E be a fuzzy function and t0 ∈ I. If

∀ε > 0 ∃δ > 0 ∀t
(

0 < |t − t0|< δ ⇒ D( f (t),L)< ε
)

,

Here, D is the Hausdorff distance . Then, we say that L ∈E is limit of f in t0, which is

denoted by limt→t0 f (t) = L. Also the fuzzy function f is said to be fuzzy continuous

if

lim
t→t0

f (t) = f (t0),

Theorem 32 (See [3]) Let f ,g : I → E be two fuzzy functions. If limt→c f (t) = L1

and limt→c g(t) = L2, L1,L2 ∈ E then

lim
t→c

[ f (t)⊖gH g(t)] = L1 ⊖gH L2.
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Definition 33 (See [11]) The fuzzy function f (t) is generalized Hukuhara differen-

tiable ([gH]-differentiable) at t0 ∈ I if

f ′gH(t0) = lim
h→0

f (t0 +h)⊖gH f (t0)

h
,

belongs to E. In addition we can say that f (t) is

– [(i)−gH]-differentiable function if and only if for all t ∈ I

f ′i.gH(t) =
(

f ′1(t), f ′2(t), f ′3(t)
)

,

defines a triangular fuzzy number.

– [(ii)−gH]-differentiable function if and only if for all t ∈ I

f ′ii.gH(t) =
(

f ′3(t), f ′2(t), f ′1(t)
)

,

is a triangular fuzzy number.

Proposition 34 (See [34]) Let λ1 and λ2 are two real constants such that λ1,λ2 ≥ 0

(or λ1,λ2 ≤ 0 ). If f (t) is a triangular fuzzy function, then

λ1 f (t)⊖gH λ2 f (t) = (λ1 −λ2) f (t). (2)

Definition 35 (See [11]) Let f : I→T is a fuzzy function and f (t)=
(

f1(t), f2(t), f3(t)
)

and t0 ∈ I then

∫ b

a
f (t)dt =

(

∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt,

∫ b

a
f3(t)dt

)

.

Theorem 36 (See [11]) If f is a gH-differentiable fuzzy function with no switching

point in the interval I, then we have

∫ b

a
f ′gH(t)dt = f (b)⊖gH f (a).

Lemma 37 (See [37]) If f : I→ T be a triangular fuzzy function with no switching

point in interval I, then we have

1. If f (t) is [i−gH]-differentiable , then

∫ b

a
f ′i.gH(t)dt = f (b)⊖ f (a).

2. If f (t) is [ii−gH]-differentiable , then

∫ b

a
f ′ii.gH(t)dt = (−1) f (a)⊖ (−1) f (b).

Lemma 38 (See [28])
∫ a

b f (t)dt =⊖
∫ b

a f (t)dt; where ⊖ denote Hukuhara difference

and f (t) be a fuzzy function.
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Definition 39 (See [2]) Let (x0, t0) ∈ D ⊆ R
2, then the first generalized Hukuhara

partial derivative ([gH − p]-derivative for short) of a fuzzy value function υ(x, t) :

D → E at (x0, t0) with respect to variables x, t are the fuzzy functions ∂xgH
υ(x0, t0)

and ∂tgH
υ(x0, t0) given by

∂xgH
υ(x0, t0) = lim

h→0

υ(x0 +h, t0)⊖gH υ(x0, t0)

h
,

∂tgH
υ(x0, t0) = lim

k→0

f (x0, t0 + k)⊖gH υ(x0, t0)

k
,

provided that ∂xgH
υ(x0, t0) and ∂tgH

υ(x0, t0) ∈ E.

Definition 310 (See [2]) A triangular fuzzy function υ(x, t)=
(

υ1(x, t),υ2(x, t),υ3(x, t)
)

,

without any switching points on D is called

– [(i)− p]-differentiable with respect to t at (x0, t0) if and only if

υti.gH
(x0, t0) =

(∂υ1(x, t)

∂ t
,

∂υ2(x, t)

∂ t
,

∂υ3(x, t)

∂ t

)∣

∣

∣

x=x0,t=t0

,

defines a triangular fuzzy number, and

– it’s [(ii)− p]-differentiable if and only if

υtii.gH
(x0, t0) =

(∂υ3(x, t)

∂ t
,

∂υ2(x, t)

∂ t
,

∂υ1(x, t)

∂ t

)∣

∣

∣

x=x0,t=t0

,

defines a triangular fuzzy number.

Moreover, if υx(x, t) is [gH − p]-differentiable at (x, t) with respect to x without any

switching point on D and

– if the type of [gH − p]-differentiability of both υ(x, t) and υx(x, t) are the same,

then υx(x, t) is [(i)− p]-differentiable w.r.t x and

υxxi.gH
(x0, t0) =

(∂ 2υ1(x, t)

∂x2
,

∂ 2υ2(x, t)

∂x2
,

∂ 2υ3(x, t)

∂x2

)∣

∣

∣

x=x0,t=t0

,

– if the type of [gH − p]-differentiability υ(x, t) and υx(x, t) are different, therefore

υx(x, t) is [(ii)− p]-differentiable w.r.t x and

υxxii.gH
(x0, t0) =

(∂ 2υ3(x, t)

∂x2
,

∂ 2υ2(x, t)

∂x2
,

∂ 2υ1(x, t)

∂x2

)∣

∣

∣

x=x0,t=t0

.
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4 Generalized Hukuhara Conformable Fractional Derivative

In this section, we are going to introduce conformable fractional derivative based on

the generalized Hukuhara derivative. Moreover, we will prove several properties for

this kind of differentiability.

Definition 41 Let f : [0,∞) → E be a triangular fuzzy function. The generalized

Hukuhara conformable fractional derivative of f of order α ∈ (0,1) is defined by

T α
gH( f )(t) = lim

ε→0

f (t + εt1−α)⊖gH f (t)

ε
, (3)

provided that T α
gH( f )(t) ∈ E. If the generalized Hukuhara conformable fractional

derivative of f of order α exists, then we simply say f is αgH -differentiable.

Theorem 42 If a fuzzy function f : [0,∞) → E is αgH -differentiable at t0 > 0, α ∈
(0,1], then f is continuous at t0.

Proof We have f (t +εt1−α)⊖gH f (t) =
f (t+εt1−α )⊖gH f (t)

ε ⊙ε . By using Theorem 32,

we conclude that

lim
ε→0

[ f (t + εt1−α)⊖gH f (t)] = lim
ε−→0

f (t + εt1−α)⊖gH f (t)

ε
⊙ lim

ε−→0
ε,

then

lim
ε→0

[ f (t + εt1−α)⊖gH f (t)] = T α
gH( f )(t)⊙0.

Now, let h = εt1−α
0 , therefore

lim
h→0

[ f (t +h)⊖gH f (t)] = 0.

Therefore, according to Definition 31, it can be concluded that the function f is fuzzy

continuous. ⊓⊔

Definition 43 Let f : [0,∞) → E be a triangular fuzzy function. The generalized

Hukuhara conformable fractional derivative of f of order β ∈ (1,2) is defined by

T
β

gH( f )(t) = lim
ε→0

f ′gH(t + εt2−β )⊖gH f ′gH(t)

ε
, (4)

provided that T
β

gH( f )(t) ∈ E. If the generalized Hukuhara conformable fractional

derivative of f of order β exists, then we simply say f is βgH -differentiable.

Definition 44 Let α ∈ (0,1) and f is αgH -differentiable at a point t > 0. We can say

that f (t) is

– αi.gH -differentiable function if and only if for all t > 0

T α
i.gH( f )(t) =

(

T α( f1)(t),T
α( f2)(t),T

α( f3)(t)
)

, (5)

defines a triangular fuzzy number.
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– αii.gH -differentiable function if and only if for all t > 0

T α
ii.gH( f )(t) =

(

T α( f3)(t),T
α( f2)(t),T

α( f1)(t)
)

, (6)

be a triangular fuzzy number.

Here, T α( fi)(t), i= 1,2,3 is the conformable fractional derivative for the real valued

function fi(t) [25].

Definition 45 We say that a point ξ0 ∈ (0,∞), is a switching point for the differen-

tiability of f , if in any neighborhood V of ξ0 there exist points ξ1 < ξ0 < ξ2 such

that

Type I. at ξ1 (5) holds while (6) does not hold and at ξ2 (6) holds and (5) does not

hold, or

Type II. at ξ1 (6) holds while (5) does not hold and at ξ2 (5) holds and (6) does not

hold.

Theorem 46 Let α ∈ (0,1) and f be αgH -differentiable at a point t > 0. Then

T α
gH( f )(t) = t1−α f ′gH(t).

Proof In Definition 41, let h = εt1−α and then ε = tα−1h. Hence

T α
gH( f )(t) = lim

ε→0

f (t + εt1−α)⊖gH f (t)

ε

= lim
h→0

f (t +h)⊖gH f (t)

htα−1

= t1−α lim
h→0

f (t +h)⊖gH f (t)

h

= t1−α f ′gH(t).

So the desired result was obtained. ⊓⊔

Remark 47 Using Theorem 46 and Definition 45 , it can be similarly easily shown

that for β ∈ (1,2)

T
β

gH( f )(t) = t2−β f ′′gH(t),

where f is gH-differentiable of second order.

Example 48 Consider the fuzzy function f : [0,π]→ E defined by

f (t) = (1.3sin(t),5.2sin(t),9.6sin(t)).

We have the following αgH -derivatives of f (t)














T
1
2

gH( f )(t) = (1.3t
1
2 cos(t),5.2t

1
2 cos(t),9.6t

1
2 cos(t)) t ∈ [0, π

2
],

T
1
2

gH( f )(t) = (9.6t
1
2 cos(t),5.2t

1
2 cos(t),1.3t

1
2 cos(t)) t ∈ [π

2
,π].
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Fig. 1 r-cut representation of f (t) (left) and its T
1
2

gH( f )(t) (right) for r ∈ [0,1] of Example 48

Therefore, the fuzzy function f (t) is αi.gH -differentiable function on t ∈ [0, π
2
].

This function is switched to αii.gH -differentiable at t = π
2

. Hence, the point t = π
2

is a

switching point of Type I for the the differentiability of f .

Theorem 49 Let g : I → ζ is real valued differentiable at t, and f : ζ → E be a

fuzzy function such that f is gH-differentiable at the point g(t) without any switching

points, and α ∈ (0,1).

– Assume f (t) is [(i)− gH]-differentiable at g(t), then function ( f og)(t) is αi.gH -

differentiable if

T α
i.gH( f og)(t) =







t1−α g′(t)⊙ f ′i.gH(g(t)), If g′(t)> 0,

⊖(−1)t1−α g′(t)⊙ f ′i.gH(g(t)), If g′(t)< 0.

– Let f (t) is [(ii)− gH]-differentiable at g(t), then the function ( f og)(t) is αii.gH -

differentiable if

T α
ii.gH( f og)(t) =







t1−α g′(t)⊙ f ′ii.gH(g(t)), If g′(t)> 0,

⊖(−1)t1−α g′(x)⊙ f ′ii.gH(g(x)), If g′(t)< 0.

Proof First let f (t) is [(i)−gH]-differentiable at g(t). We have the following cases

i. If g′(t)> 0. Hence by attention to Theorem 46 we have

t1−α g′(t)⊙
(

f ′1(g(t)), f ′2(g(t)), f ′3(g(t))
)

=
(

t1−α g′(t) f ′1(g(t)), t
1−α g′(t) f ′2(g(t)), t

1−α g′(t) f ′3(g(t))
)

= T α
i.gH( f og)(t).
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ii. If g′(t)< 0, then

⊖(−1)t1−α g′(t)⊙
(

f ′1(g(t)), f ′2(g(t)), f ′3(g(t))
)

=⊖(−1)
(

t1−α g′(t) f ′3(g(t)), t
1−α g′(t) f ′2(g(t)), t

1−α g′(t) f ′1(g(t))
)

=⊖
(

− t1−α g′(t) f ′1(g(t)),−t1−α g′(x) f ′2(g(t)),−t1−α g′(t) f ′3(g(t))
)

=
(

t1−α g′(t) f ′1(g(t)), t
1−α g′(t) f ′2(g(t)), t

1−α g′(t) f ′3(g(t))
)

= T α
i.gH( f og)(t).

We can use the same procedure when f (t) is [(ii)−gH]-differentiable at g(t). ⊓⊔

5 Fuzzy Traveling Wave Solution of The Fuzzy Fractional Wave Equation

We want to find traveling wave fuzzy solution of the fuzzy one-dimensional homo-

geneous fractional wave equation. Consider this problem as follows







D2α
ttgH

υ ⊖gH κ2 ⊙υxxgH
= 0, (x, t) ∈ R× [0,∞),

υ(x,0) = f (x), Dα
tgH

υ(x,0) = g(x)
(7)

Where α ∈ ( 1
2
,1) and Dα

tgH
is the generalized Huhuhara conformable fractional partial

derivatives with respect to t and υxgH
is the generalized Hukuhara partial derivative

with respect to x. Here, f (x),g(x) are given continuous fuzzy functions. We will find

the triangular analytical fuzzy solutions of Eq.(7) by using traveling wave method

provided that the types of αgH -differentiability of υ(x, t) with respect to t and [gH −
p]-differentiability with respect to x are the same. By considering the type of αgH -

differentiability of υ(x, t) with respect to t, we have different cases as follow:

1-1-gH . Let υ(x, t) and Dα
tgH

υ are αi.gH -differentiable with respect to t, and υ(x, t)

and υxgH
are [i− p]-differentiable with respect to x. Then U (ξ ) is a [(i)− gH]-

differentiable fuzzy. Here, we outline the main steps of traveling wave method.

function

Step 1. Consider the fuzzy one-dimensional homogeneous fractional wave equa-

tion (7)

υ(x, t) = U (ξ ), where ξ = x− γ
tα

α
.

which can be analyzed through a change of variables υ(x, t) = U (ξ ). Here,

U is a continuous function and gH-differentiable in ξ and γ is a positive real

constant.

Step 2. We have

∂ξ

∂ t
=−γtα−1

< 0,
∂ξ

∂x
= 1 > 0,
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therefore, by using the Theorem 49, the fuzzy multivariate chain rule [28], we

have

D
α
ti.gH

υ = t1−α ⊙
di.gHU

dξ
⊙

∂ξ

∂ t
=⊖γ ⊙

di.gHU

dξ
, ⇒ D

2α
tti.gH

υ = γ2 ⊙
d2

i.gHU

dξ 2
,

υxi.gH
=

di.gHU

dξ
⊙

∂ξ

∂x
=

di.gHU

dξ
, ⇒ υxxi.gH

=
d2

i.gHU

dξ 2
.

Hence the equation (7) is reduced to the following fuzzy ordinary differential

equations of ξ

γ2
d2

i.gHU

dξ 2
⊖gH κ2

d2
i.gHU

dξ 2
= 0. (8)

Step 3. To find fuzzy solutions for ordinary differential equations (8) and (17), we

need some auxiliary boundary conditions. Which in this article, we consider

the following auxiliary boundary conditions

lim
ξ→±∞

U (ξ ) = 0, lim
ξ→±∞

dU

dξ
= 0, lim

ξ→±∞

d2U

dξ 2
= 0. (9)

By using Proposition 34, Eq.(17) can also be written as follows

(γ2 −κ2)
d2

i.gHU

dξ 2
= 0 (10)

One possibility is for
d2

i.gHU

dξ 2 = 0. In which case we have

U (ξ ) = C1 ⊕C2ξ ⇒ υ(x, t) = C1 ⊕C2(x− γ
tα

α
)

where C1 and C2 are fuzzy integral constants. But the boundary conditions (9)

cannot be satisfied unless C2 = 0. Thus the only traveling solution is a fuzzy

constant.

Another possibility is for γ2 = κ2. In this case

υ(x, t) = U (x−κ
tα

α
), υ(x, t) = U (x+κ

tα

α
) (11)

are traveling wave solutions of thefuzzy fractional wave equation and U can

be any two gH-differentiable function. In general, it follows that any solution

to the fuzzy fractional wave equation can be obtained as a superposition of

two traveling waves,

υ(x, t) = F (x+κ
tα

α
)⊕G (x−κ

tα

α
) (12)

Since equation (12) is a fuzzy solution for equation (7), then it must apply to

the initial conditions of the equation (7)

υ(x,0) = f (x), Dα
tgH

υ(x,0) = g(x). (13)
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Hence, the initial condition υ(x,0) = f (x) concludes

F (x)⊕G (x) = f (x). (14)

By considering Theorem 49 we have

Dα
tgH

υ(x, t) = κ ⊙F
′
i.gH(x+κ

tα

α
)⊖κ ⊙G

′
i.gH(x−κ

tα

α
),

By the initial condition Dα
tgH

υ(x,0) = g(x), we can write

F
′
i.gH(x)⊖G

′
i.gH(x) =

1

κ
g(x)

After integration by using Lemma 37

(

F (x)⊖F (0)
)

⊖
(

G (x)⊖G (0)
)

=
1

κ

∫ x

0
g(s)ds ⇒ F (x)⊖G (x) =

(

F (0)⊖G (0)
)

⊕
1

κ

∫ x

0
g(s)ds

(15)

The following system of equations is obtained by Eqs.(19) and (15)











F (x)⊕G (x) = f (x),

F (x)⊖G (x) =
(

F (0)⊖G (0)
)

⊕ 1
κ

∫ x
0 g(s)ds,

such that this system of equations has the following fuzzy solutions

F (x) =
1

2
f (x)⊕

1

2

(

F (0)⊖G (0)
)

⊕
1

2κ

∫ x

0
g(s)ds,

G (x) =
1

2
f (x)⊖

1

2

(

F (0)⊖G (0)
)

⊖
1

2κ

∫ x

0
g(s)ds,

On the other hand, according to Lemma 38, G (x) can be rewritten as follows

G (x) =
1

2
f (x)⊖

1

2

(

F (0)⊖G (0)
)

⊕
1

2κ

∫ 0

x
g(s)ds

By substituting these equations for F and G into the general solution (12),

the fuzzy traveling wave solution is obtained as follow

υ(x, t) =
1

2

(

f (x+κ
tα

α
)⊕ f (x−κ

tα

α
)
)

⊕
1

2κ

∫ x+κ tα

α

x−κ tα
α

g(s)ds (16)

Here, υ(x, t) and Dα
tgH

υ are αi.gH -differentiable with respect to t, and υ(x, t)

and υxgH
are [(i)−gH]-differentiable with respect to x.

2-2-gH . Let υ(x, t) and Dα
tgH

υ are αii.gH -differentiable with respect to t and υ(x, t)

and υxgH
are [(ii)−gH]-differentiable with respect to x then U (ξ ) is a [(ii)−gH]-

differentiable fuzzy function. In this case, the main steps of the fuzzy traveling

wave method are as follows
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Step 1. Let we can analyzed he fuzzy one-dimensional homogeneous fractional

wave equation (7) through the following change variables

υ(x, t) = U (ξ ), where ξ = x− γ
tα

α
,

where U is a continuous function and gH-differentiable in ξ and γ is a posi-

tive real constant.

Step 2. We have
∂ξ

∂ t
=−γtα−1

< 0,
∂ξ

∂x
= 1 > 0,

therefore, by using the Theorem 49, the fuzzy multivariate chain rule [28], we

have

D
α
tii.gH

υ = t1−α ⊙
dii.gHU

dξ
⊙

∂ξ

∂ t
=⊖γ ⊙

dii.gHU

dξ
, ⇒ D

2α
ttii.gH

υ = γ2 ⊙
d2

ii.gHU

dξ 2
.

υxii.gH
=

dii.gHU

dξ
⊙

∂ξ

∂x
=

dii.gHU

dξ
, ⇒ υxxii.gH

=
d2

ii.gHU

dξ 2
.

Hence the equation (7) is reduced to the following fuzzy ordinary differential

equations of ξ

γ2
d2

ii.gHU

dξ 2
⊖gH κ2

d2
ii.gHU

dξ 2
= 0. (17)

Step 3. As we explained in case 1-1-gH, any solution of the fuzzy fractional wave

equation can be obtained as follow

υ(x, t) = F (x+κ
tα

α
)⊕G (x−κ

tα

α
). (18)

Equation (18) is a fuzzy solution for equation (7), then the initial condition

υ(x,0) = f (x) yields

F (x)⊕G (x) = f (x). (19)

On the other hand, using Theorem 49 and the initial value Dα
tgH

υ(x,0) = g(x),
we have

υtii.gH
(x, t) = κ ⊙F

′
ii.gH(x+κ

tα

α
)⊖κ ⊙G

′
ii.gH(x−κ

tα

α
), ⇒ κF

′
ii.gH(x)⊖κG

′
ii.gH(x) = g(x).

Integrate each side of the above equation by using Lemma 37, therefore

(

(−1)F (0)⊖ (−1)F (x)
)

⊖
(

(−1)G (0)⊖ (−1)G (x)
)

=
1

κ

∫ x

0
g(s)ds,

and

G (x)⊖F (x) =
(

G (0)⊖F (0)
)

⊕
(−1)

κ

∫ x

0
g(s)ds.
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Consequently, we find that










F (x)⊕G (x) = f (x),

G (x)⊖F (x) =
(

G (0)⊖F (0)
)

⊕ (−1)
κ

∫ x
0 g(s)ds.

By solving this system and using Lemma 38, the following results are ob-

tained

G (x) =
1

2
f (x)⊕

1

2

(

G (0)⊖F (0)
)

⊖
(−1)

2κ

∫ 0

x
g(s)ds,

F (x) =
1

2
f (x)⊖

1

2

(

G (0)⊖F (0)
)

⊖
(−1)

2κ

∫ x

0
g(s)ds.

So the final solution of Eq. (7) is

υ(x, t) =
1

2

(

f (x+κ
tα

α
)⊕ f (x−κ

tα

α
)
)

⊖
(−1)

2κ

∫ x+κ tα

α

x−κ tα
α

g(s)ds. (20)

Where υ(x, t) and Dα
tgH

υ are αii.gH -differentiable with respect to t, and υ(x, t)

and υxgH
are [(ii)−gH]-differentiable with respect to x.

Example 51 Consider the following fuzzy fractional wave equation















D
7
4

ttgH
υ ⊖gH υxxgH

= 0, (x, t) ∈ R× (0,∞),

υ(x,0) =
(

3.9x,6.7x,9.5x
)

, D
7
8

tgH
υ(x,0) =

(

3.9,6.7,9.5
)

.

To find a 1−1−gH-differentiable solution for this problem, we use the equation (16)

υ(x, t) =
1

2

(

f (x+κ
tα

α
)⊕ f (x−κ

tα

α
)
)

⊕
1

2κ

∫ x+κ tα

α

x−κ tα
α

g(s)ds

=

(

3.9

2

(

(x+
8

7
t

7
8 )+(x−

8

7
t

7
8 )
)

,
6.7

2

(

(x+
8

7
t

7
8 )+(x−

8

7
t

7
8 )
)

,
9.5

2

(

(x+
8

7
t

7
8 )+(x−

8

7
t

7
8 )
)

)

⊕

(

1

2

∫ x+ 8
7 t

7
8

x− 8
7 t

7
8

3.9ds,
1

2

∫ x+ 8
7 t

7
8

x− 8
7 t

7
8

6.7ds,
1

2

∫ x+ 8
7 t

7
8

x− 8
7 t

7
8

9.5ds

)

=
(31.2

7
t

7
8 +3.9x,

53.6

7
t

7
8 +6.7x,

76

7
t

7
8 +9.5x

)

Example 52 Consider the following fuzzy fractional wave equation














D
3
2

ttgH
υ ⊖gH υxxgH

= 0, (x, t) ∈ R× (0,∞),

υ(x,0) = (2.1x2,5x2,7.9x2), D
3
4

tgH
υ(x,0) = 0.
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We want to find a 1− 1− gH-differentiable solution for this problem. By equation

(16) we have

υ(x, t) =
1

2

(

f (x+
4

3
t

3
4 )⊕ f (x−

4

3
t

3
4 )
)

=
(

1.05,2.5,3.95
)

(

(

x+
4

3
t

3
4

)2

+
(

x−
4

3
t

3
4

)2
)

.

We plot this solution in Figure 2.

Fig. 2 Representation of υ(x, t) for all r ∈ [0,1] of Example 52

Example 53 Consider the following fuzzy fractional wave equation















D
14
8

ttgH
υ ⊖gH υxxgH

= 0, (x, t) ∈ R× (0,∞),

υ(x,0) =
(

2e−x,3.6e−x,6.5e−x
)

, D
7
8

tgH
υ(x,0) = 0

We want to find a 1− 1− gH-differentiable solution for this problem. By equation

(16) we have

υ(x, t) =
1

2

(

f (x+
8

7
t

7
8 ))⊕ f (x−

8

7
t

7
8 )
)

=
(

e−
8t

7
8

7 −x

(

1+ e
16t

7
8

7

)

,1.8e−
8t

7
8

7 −x

(

1+ e
16t

7
8

7

)

,3.25e−
8t

7
8

7 −x

(

1+ e
16t

7
8

7

)

)
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This solution is plotted in Figure 3.

Fig. 3 Graph of υ(x, t) of Example 53

6 Fuzzy Traveling Wave Solution of The Fuzzy Fractional Diffusion Equation

Consider the following fuzzy fractional linear diffusion equation

D
α
tgH

υ = K ⊙υxxgH
(21)

with the initial condition

υ(x,0) = f (x), (22)

where f (x) ∈ E.

Step 1. To find a traveling wave solution for equation (21), consider

υ(x, t) = U (ξ ), where ξ = x−K
tα

α
,

where U is a continuous function and gH-differentiable in ξ .

Step 2. We have
∂ξ

∂ t
=−K tα−1

< 0,
∂ξ

∂x
= 1,

Let υ(x, t) is αi.gH -differentiable with respect to t, and υ(x, t) and υxgH
are [(i)−

p]-differentiable with respect to x. Then U (ξ ) is a [(i)−gH]-differentiable fuzzy

function and

D
α
ti.gH

υ = t1−α ⊙
di.gHU

dξ
⊙

∂ξ

∂ t
=⊖K ⊙

di.gHU

dξ
.

υxi.gH
=

di.gHU

dξ
⊙

∂ξ

∂x
=

di.gHU

dξ
, ⇒ υxxi.gH

=
d2

i.gHU

dξ 2
.
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Hence the equation (21) is reduced to the following fuzzy ordinary differential

equation of ξ

d2
i.gHU

dξ 2
⊕

di.gHU

dξ
= 0. (23)

Step 3. To find fuzzy solutions for ordinary differential equation (23), we need some

auxiliary boundary conditions. Which in this article, we consider the following

auxiliary boundary conditions

lim
ξ→±∞

U (ξ ) = 0, lim
ξ→±∞

dU

dξ
= 0, lim

ξ→±∞

d2U

dξ 2
= 0. (24)

We integrate both sides of Eq(23). According to the auxiliary boundary conditions

expressed in Eq.(24), the integration constants are zero and

di.gHU

dξ
⊕U = 0. (25)

This equation has the following fuzzy solution [4]

U(ξ ) = C e−ξ
,

which satisfies the condition U(ξ ) = 0 when ξ → ∞. Therefore

υ(x, t) = C e−(x−K
tα

α )
.

Using the initial condition (22), we can write

C = f (x)ex
,

and finally the fuzzy solution for the fuzzy linear diffusion equation is equal

υ(x, t) = f (x)eK
tα

α . (26)

The other case of differentiability can be examined in a similar way.

Example 61 Consider the following fuzzy fractional Diffusion equation















D
1
3

tgH
υ = υxxgH

,

υ(x,0) =
(

3ex,6.2ex,9.9ex
)

.

So using equation (26) we have

υ(x, t) =
(

3e−x+3t
1
3
,6.2e−x+3t

1
3
,9.9e−x+3t

1
3
)

.

We plot this solution in Figure 4.
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Fig. 4 Graph of υ(x, t) for r = 1
4

of Example 61

7 Conclusion

In this paper, we have defined the generalized Hukuhara conformable fractional deriva-

tive and the type of differentiability of this derivative is studied in detail, and we have

proved some novel properties for it. The fuzzy traveling wave solution of the frac-

tional Wave equation and fractional Diffusion equation was obtained by considering

the type of αgH -differentiability. To demonstrate the efficiency of the method, the

fuzzy traveling wave solutions of some examples were obtained. All results show that

this method is a compelling and efficient method for obtaining an analytical solution

for the fuzzy linear fractional partial differential equation.
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