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Abstract A numerical framework based on fuzzy finite difference is presented
for approximating fuzzy triangular solutions of fuzzy partial differential equa-
tions by considering the type of [gH − p]−differentiability. The fuzzy triangle
functions are expanded using full fuzzy Taylor expansion to develop a new
fuzzy finite difference method. By considering the type of gH-differentiability,
we approximate the fuzzy derivatives with a new fuzzy finite-difference. In
particular, we propose using this method to solve non-homogeneous fuzzy
heat equation with triangular initial-boundary conditions. We examine the
truncation error and the convergence conditions of the proposed method. Sev-
eral numerical examples are presented to demonstrate the performance of the
methods. The final results demonstrate the efficiency and the ability of the
new fuzzy finite difference method to produce triangular fuzzy numerical re-
sults which are more consistent with existing reality.
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1 Introduction

In recent decades, fuzzy set theory has been proven to be a useful tool for
modeling systems with uncertainties, giving the models a more realistic look
at reality and enabling them to express themselves with a more comprehensive
outlook.

The fuzzy derivative concept first appeared in Chang and Zadeh’s [14].
Hukuhara’s paper [16] is the starting point for the set-valued and fuzzy differ-
ential equations. Puri and Ralescu [23] suggested the fuzzy differential equa-
tions modeling with uncertainty under the concept of H-differentiability. Fur-
ther studies developed fuzzy differential equations based on the Hukuhara
derivative, such as those presented by Kaleva in [18]. There are some fuzzy
differential equations in this framework, however, for which the diameter of
the solution increases as the time t increases [15].

To overcome this shortcoming, Bede and Gal introduced the weakly gener-
alized differentiability and the strongly generalized differentiability for the
fuzzy functions [7]. Moreover, they presented a more general definition of
derivatives for the fuzzy functions and their applications for solving fuzzy dif-
ferential equations [7,8]. Stefanini and Bede introduced generalized Hukuhara
differentiability (gH-differentiability) [25] for interval-valued functions by us-
ing the concept of generalization of the Hukuhara difference of compact convex
set. They showed that this concept of differentiability has relationships with
weakly generalized differentiability and strongly generalized differentiability.
The disadvantage of the strongly generalized differentiability of a function
compared to H-differentiability is that in this case the fuzzy differential equa-
tion has no unique solution [7]. Also, in [12] the authors studied relationships
between the strongly generalized differentiability and the gH-differentiability
, showing the equivalence between these two concepts when the set of switch-
ing points of the interval-valued function is finite. Recently, Y.Chalco-Cano
et al. [13] provided a new characterization of the switching points for gH-
differentiability and shown that the set of all switching points is at most
countable.

Partial differential equations explain the majority of phenomena in the
fields of mathematics, physics, and engineering. However, mathematical mod-
eling of these phenomena requires a wide variety of data and information.
Unfortunately, the measurement of these variables is inherently uncertain.
Therefore, the fuzzy partial differential equation is a useful tool for modeling
systems with uncertainties [11,1,2,10,22,5,17].

For many fuzzy partial differential equations, analytical solutions are chal-
lenging to obtain. Consequently, it is crucial to create some reliable and ef-
ficient methods for solving fuzzy partial differential equations. Numerous re-
searchers are presently focusing on the numerical solution of fuzzy partial
differential equations, such as difference method [1,4], Adomian method [2,
24], finite volume method [21], etc.

In recent years, there has been an increase in interest in the use of the
finite difference method to solve fuzzy partial differential equations. According
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to our knowledge, all papers that have used this method have rewritten the
fuzzy partial differential equation as two crisp partial differential equations and
solved them using the usual finite difference method. In comparison, this paper
is devoted to developing a new fuzzy finite difference method through fuzzy
arithmetic and fuzzy Taylor expansion. We approximate the fuzzy derivatives
with a fuzzy finite-difference by considering the type of gH-differentiability.
The fuzzy numerical solution of the fuzzy partial differential equations can
be obtained without implicitly embedding them into crisp equations through
our method. Even though this paper deals with the fuzzy heat equation, our
method can be used to find the numerical solution for a wide variety of fuzzy
partial differential equations.

Now, let’s take a quick look at the contents. Section 2 presents some con-
cepts related to fuzzy numbers and generalized Hukuhara differentiability, as
well as some theorems and lemmas used in the central part of the paper. The
fuzzy finite difference method for one variable fuzzy functions is discussed in
Section 3 and we obtain different formulas for forward, backward, and central
difference depending on the type of gH-differentiability. Taking into account
the type of [gH − p]-differentiability, we show corresponding formulas for the
fuzzy finite difference method of the non-homogeneous heat equation in Sec-
tion 4. Further, we describe and analyze in detail the convergence condition
of the method as well as truncation error. A full description is given for one
of the three examples in Section 5. The last section of the paper discusses
conclusions, applications, and future possibilities.

2 Preliminaries

The purpose of this section is to introduce the general terms and definitions
used to describe fuzzy operations and the necessary notations.

The triangular fuzzy number a ∈ RT is defined as an ordered triple a =
(a1,a2,a3) with a1 ≤ a2 ≤ a3. Some properties of the triangular fuzzy number
are discussed in [19], but we will describe some of the properties of this class
of numbers here which are used in this paper.

Definition 21 (See [9], [6]) The generalized Hukuhara difference of two fuzzy
numbers a,b ∈ RF is the fuzzy number c, (if it exists), such that

a⊖gH b = c ⇐⇒







(i). a = b⊕ c;

or (ii). b = a⊕ (−1)c.

Now consider a,b ∈ RT , then

a⊖gH b = c ⇐⇒







(i). c = (a1 −b1,a2 −b2,a3 −b3);

or (ii). c = (a3 −b3,a2 −b2,a1 −b1).

provided that c is a triangular fuzzy number.
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Remark 22 In the rest of this paper, all fuzzy numbers and fuzzy functions
will be considered triangular. Additionally, all the lemmas and theorems will
be proved on the assumption that the generalized Hukuhara difference exists.

Proposition 23 Consider a,b and c are triangular fuzzy numbers and Hukuhara
difference exists, then

1. a⊖ (−1)b = (a1 +b3,a2 +b2,a3 +b1) provided that a⊖ (−1)b is a triangular
fuzzy number.

2. If a = c⊖ (−1)b then b =−1(c⊖a).

Proof Case 1. We have

a⊖ (−1)b = (a1,a2,a3)⊖ (−b3,−b2,−b1)

= (a1 +b3,a2 +b2,a3 +b1).

Case 2. According to assumption a = c⊖ (−1)b and Hukuhara difference ex-
ists, so

a = c⊖ (−1)b

(a1,a2,a3) = (c1,c2,c3)⊖ (−1)(b1,b2,b3)

= (c1,c2,c3)⊖ (−b3,−b2,−b1) = (c1 +b3,c2 +b2,c3 +b1).

So

a1 = c1 +b3, =⇒ a1 − c1 = b3,

a2 = c2 +b2, =⇒ a2 − c2 = b2,

a3 = c3 +b1, =⇒ a3 − c3 = b1.

Then

b = (b1,b2,b3) = (a3 − c3,a2 − c2,a1 − c1)

= (−1)(c1 −a1,c2 −a2,c3 −a3)

= (−1)(c⊖a).

Thus, the proof is complete. ⊓⊔

Proposition 24 Let λ1 and λ2 are two real constants such that λ1,λ2 ≥ 0 (or
λ1,λ2 ≤ 0 ). If y(t) is a triangular fuzzy function, then

λ1y(t)⊖gH λ2y(t) = (λ1 −λ2)y(t), (1)

Proof First consider λ1 and λ2 are positive constants, then

λ1y(t) =
(

λ1y1(t),λ1y2(t),λ1y3(t)
)

, λ2y(t) =
(

λ2y1(t),λ2y2(t),λ2y3(t)
)

.

Now , we have two cases
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i. If λ1 ≥ λ2, we have

λ1y(t)⊖gH λ2y(t) =
(

(λ1 −λ2)y1(t),(λ1 −λ2)y2(t),(λ1 −λ2)y3(t)
)

= (λ1 −λ2)y(t).

ii. If λ1 ≤ λ2 , therefore

λ1y(t)⊖gH λ2y(t) =
(

(λ1 −λ2)y3(t),(λ1 −λ2)y2(t),(λ1 −λ2)y1(t)
)

= (λ1 −λ2)
(

y1(t),y2(t),y3(t)
)

= (λ1 −λ2)y(t).

Hence, we have Eq.(1). The other case (λ1 and λ2 are negative constants) can
be proved in a similar way and we omit the details. ⊓⊔

Definition 25 (See [9]) Let y : (a,b)→RT is a fuzzy-valued function such that
y(t) =

(

y1(t),y2(t),y3(t)
)

, where y1(t),y2(t) and y3(t) are real-valued differen-
tiable functions on (a,b). Then y is a [(i)− gH]−differentiable function at
t0 ∈ (a,b) if and only if

y′gH(t0) =
(

y′1(t),y
′
2(t),y

′
3(t)

)

,

defines a triangular fuzzy number. Similarly, y is a [(ii)− gH]−differentiable
function at t0 if and only if

y′gH(t0) =
(

y′3(t),y
′
2(t),y

′
1(t)

)

,

is a triangular fuzzy number. In general, if y(t) is a [(i)−gH]− or [(ii)−gH]−
differentiable for all t0 ∈ (a,b), then y is generalized Hukuhara differentiable
function on (a,b).

Remark 26 We assume that the notations C k
gH([a,b], RT ) is stand for all tri-

angular fuzzy function f and it’s first k, gH-derivatives which are defined
on [a,b] and fuzzy continuous [3]. Throughout the rest of this paper, y(t) ∈

C
j

gH([a,b], RT ) for j = 1, ...,n−1 and t ∈ [a,b] with no switching point on [a,b].
Moreover, for simplicity

– When y
( j)
gH(t)=

(

y
( j)
1
(t),y

( j)
2
(t),y

( j)
3
(t)

)

, we will use the notation denote y
( j)
i.gH(t)

to show y
( j)
gH(t)

– When y
( j)
gH(t)=

(

y
( j)
3
(t),y

( j)
2
(t),y

( j)
1
(t)

)

, we will use the notation denote y
( j)
ii.gH(t)

to show y
( j)
gH(t).

(Notice the position of functions y
( j)
1
(t) and y

( j)
3
(t) in these triangular fuzzy

functions.) In particular, we have the following cases to show the all kind of
gH-differentiability for y

( j)
gH(t) of order j, when j = 0,1,2.
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Case 1. If y(t), y′gH(t) and y′′gH(t) are [i−gH]−differentiable, we have
y′i.gH(t) =

(

y′1(t),y
′
2(t),y

′
3(t)

)

,y′′i.gH(t) =
(

y′′1(t),y
′′
2(t),y

′′
3(t)

)

,y′′′i.gH(t) =
(

y′′′1 (t),y
′′′
2 (t),y

′′′
3 (t)

)

Case 2. If y(t) and y′gH(t) are [i−gH]−differentiable and y′′gH(t) is [ii−gH]−differentiable,
y′i.gH(t) =

(

y′1(t),y
′
2(t),y

′
3(t)

)

,y′′i.gH(t) =
(

y′′1(t),y
′′
2(t),y

′′
3(t)

)

,y′′′ii.gH(t) =
(

y′′′3 (t),y
′′′
2 (t),y

′′′
1 (t)

)

Case 3. If y(t) and y′′gH(t) are [i−gH]−differentiable and y′gH(t) is [ii−gH]−differentiable,
y′i.gH(t) =

(

y′1(t),y
′
2(t),y

′
3(t)

)

,y′′ii.gH(t) =
(

y′′3(t),y
′′
2(t),y

′′
1(t)

)

,y′′′ii.gH(t) =
(

y′′′3 (t),y
′′′
2 (t),y

′′′
1 (t)

)

Case 4. If y(t) is [i−gH]−differentiable and y′gH(t) and y′′gH(t) are [ii−gH]−differentiable,
y′i.gH(t) =

(

y′1(t),y
′
2(t),y

′
3(t)

)

,y′′ii.gH(t) =
(

y′′3(t),y
′′
2(t),y

′′
1(t)

)

,y′′′i.gH(t) =
(

y′′′1 (t),y
′′′
2 (t),y

′′′
3 (t)

)

Case 5. If y(t) is [ii−gH]−differentiable and y′gH(t) and y′′gH(t) are [i−gH]−differentiable,
y′ii.gH(t) =

(

y′3(t),y
′
2(t),y

′
1(t)

)

,y′′ii.gH(t) =
(

y′′3(t),y
′′
2(t),y

′′
1(t)

)

,y′′′ii.gH(t) =
(

y′′′3 (t),y
′′′
2 (t),y

′′′
1 (t)

)

Case 6. If y(t) and y′′gH(t) are [ii−gH]−differentiable and y′gH(t) is [i−gH]−differentiable,
y′ii.gH(t) =

(

y′3(t),y
′
2(t),y

′
1(t)

)

,y′′ii.gH(t) =
(

y′′3(t),y
′′
2(t),y

′′
1(t)

)

,y′′′i.gH(t) =
(

y′′′1 (t),y
′′′
2 (t),y

′′′
3 (t)

)

Case 7. If y(t) and y′gH(t) are [ii−gH]−differentiable and y′′gH(t) is [i−gH]−differentiable,
y′ii.gH(t) =

(

y′3(t),y
′
2(t),y

′
1(t)

)

,y′′i.gH(t) =
(

y′′1(t),y
′′
2(t),y

′′
3(t)

)

,y′′′i.gH(t) =
(

y′′′1 (t),y
′′′
2 (t),y

′′′
3 (t)

)

Case 8. If y(t), y′gH(t) and y′′gH(t) are [ii−gH]−differentiable,
y′ii.gH(t) =

(

y′3(t),y
′
2(t),y

′
1(t)

)

,y′′i.gH(t) =
(

y′′1(t),y
′′
2(t),y

′′
3(t)

)

,y′′′ii.gH(t) =
(

y′′′3 (t),y
′′′
2 (t),y

′′′
1 (t)

)

Definition 27 (See [9]) Let y : (a,b)→RT is a triangular fuzzy-valued function
and t0 ∈ (a,b) then

∫ b

a
y(t)dt =

(

∫ b

a
y1(t)dt,

∫ b

a
y2(t)dt,

∫ b

a
y3(t)dt

)

Theorem 28 Let y : [a, b]→ RT be a triangular fuzzy function such that y ∈
C n

gH([a,b], RT ) with no switching points in [a,b]. Then for j = 1,2, ...,n, there
are the following different scenarios
i.

y
( j−1)
i.gH (t +∆ t) = y

( j−1)
i.gH (t)⊕

∫ t+∆ t

t
y
( j)
i.gH(x)dx

y
( j−1)
i.gH (t −∆ t) = y

( j−1)
i.gH (t)⊖

∫ t

t−∆ t
y
( j)
i.gH(x)dx,

ii.

y
( j−1)
ii.gH (t +∆ t) = y

( j−1)
ii.gH (t)⊕

∫ t+∆ t

t
y
( j)
ii.gH(x)dx

y
( j−1)
ii.gH (t −∆ t) = y

( j−1)
ii.gH (t)⊖

∫ t

t−∆ t
y
( j)
ii.gH(x)dx,

iii.

y
( j−1)
i.gH (t +∆ t) = y

( j−1)
i.gH (t)⊖ (−1)

∫ t+∆ t

t
y
( j)
ii.gH(x)dx

y
( j−1)
i.gH (t −∆ t) = y

( j−1)
i.gH (t)⊕ (−1)

∫ t

t−∆ t
y
( j)
ii.gH(x)dx,
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iv.

y
( j−1)
ii.gH (t +∆ t) = y

( j−1)
ii.gH (t)⊖ (−1)

∫ t+∆ t

t
y
( j)
i.gH(x)dx

y
( j−1)
ii.gH (t −∆ t) = y

( j−1)
ii.gH (t)⊕ (−1)

∫ t

t−∆ t
y
( j)
i.gH(x)dx,

Proof We have y ∈ C n
gH([a,b], RF), therefore f ( j)(t), j = 0, 1, ..., n are inte-

grable. We will prove parts (i) and (iii); the other parts are similar, and we
omit the details. By using Remark 26 and Definition 27 , we get

y
( j−1)
i.gH (t)⊕

∫ t+∆ t

t
y
( j)
i.gH(x)dx

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊕
(

∫ t+∆ t

t
y
( j)
1
(x)dx,

∫ t+∆ t

t
y
( j)
2
(x)dx,

∫ t+∆ t

t
y
( j)
3
(x)dx

)

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊕
(

y
( j−1)
1

(t +∆ t)− y
( j−1)
1

(t),y
( j−1)
2

(t +∆ t)− y
( j−1)
2

(t),y
( j−1)
3

(t +∆ t)− y
( j−1)
3

(t)
)

=
(

y
( j−1)
1

(t +∆ t),y
( j−1)
2

(t +∆ t),y
( j−1)
3

(t +∆ t)
)

.

And

y
( j−1)
i.gH (t)⊖

∫ t

t−∆ t
y
( j)
i.gH(x)dx

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊖
(

∫ t

t−∆ t
y
( j)
1
(x)dx,

∫ t

t−∆ t
y
( j)
2
(x)dx,

∫ t

t−∆ t
y
( j)
3
(x)dx

)

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊖
(

y
( j−1)
1

(t)− y
( j−1)
1

(t −∆ t),y
( j−1)
2

(t)− y
( j−1)
2

(t −∆ t),y
( j−1)
3

(t)− y
( j−1)
3

(t −∆ t)
)

=
(

y
( j−1)
1

(t −∆ t),y
( j−1)
2

(t −∆ t),y
( j−1)
3

(t −∆ t)
)

.

Now we want to prove case (iii). We have

y
( j−1)
i.gH (t)⊖ (−1)

∫ t+∆ t

t
y
( j)
ii.gH(x)dx

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊖ (−1)
(

∫ t+∆ t

t
y
( j)
3
(x)dx,

∫ t+∆ t

t
y
( j)
2
(x)dx,

∫ t+∆ t

t
y
( j)
1
(x)dx

)

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊖ (−1)
(

y
( j−1)
3

(t +∆ t)− y
( j−1)
3

(t),y
( j−1)
2

(t +∆ t)− y
( j−1)
2

(t),y
( j−1)
1

(t +∆ t)− y
( j−1)
1

(t)
)

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊖
(

y
( j−1)
1

(t)− y
( j−1)
1

(t +∆ t),y
( j−1)
2

(t +∆ t)− y
( j−1)
2

(t),y
( j−1)
3

(t)− y
( j−1)
3

(t +∆ t)
)

=
(

y
( j−1)
1

(t +∆ t),y
( j−1)
2

(t +∆ t),y
( j−1)
3

(t +∆ t)
)

.
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and

y
( j−1)
i.gH (t)⊕ (−1)

∫ t

t−∆ t
y
( j)
ii.gH(x)dx

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊕ (−1)
(

∫ t

t−∆ t
y
( j)
3
(x)dx,

∫ t

t−∆ t
y
( j)
2
(x)dx,

∫ t

t−∆ t
y
( j)
1
(x)dx

)

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊕ (−1)
(

y
( j−1)
3

(t)− y
( j−1)
3

(t −∆ t),y
( j−1)
2

(t)− y
( j−1)
2

(t −∆ t),y
( j−1)
1

(t)− y
( j−1)
1

(t −∆ t)
)

=
(

y
( j−1)
1

(t),y
( j−1)
2

(t),y
( j−1)
3

(t)
)

⊕
(

y
( j−1)
1

(t −∆ t)− y
( j−1)
1

(t),y
( j−1)
2

(t −∆ t)− y
( j−1)
2

(t),y
( j−1)
3

(t −∆ t)− y
( j−1)
3

(t)
)

=
(

y
( j−1)
1

(t −∆ t),y
( j−1)
2

(t −∆ t),y
( j−1)
3

(t −∆ t)
)

,

which proves this case. ⊓⊔

Next, we are going to prove a crucial theorem to all the different cases
in Remark 26, which will be used in the following sections. Actually, we will
obtain four terms of the fuzzy Taylor’s expansion about the point tk for tk ≤ t

and t ≤ tk by considering different type of gH-differentiability for y(t), y′gH(t)
and y′′gH(t).

Theorem 29 Let T= [a,b]⊂ R, y ∈ C 4
gH([a,b], RT ). For t, t ±∆ t ∈ T, we have

Case 1. If y(t), y′gH(t) and y′′gH(t) are [i−gH]−differentiable:

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t −∆ t)

Case 2. If y(t) and y′gH(t) are [i−gH]−differentiable and y′′gH(t) is [ii−gH]−differentiable:

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊖ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t −∆ t)

Case 3. If y(t) and y′′gH(t) are [i−gH]−differentiable and y′gH(t) is [ii−gH]−differentiable:

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊖ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊕ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t −∆ t).
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Case 4. If y(t) is [i−gH]−differentiable and y′gH(t) and y′′gH(t) are [ii−gH]−differentiable:

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊖ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t −∆ t).

Case 5. If y(t) is [ii−gH]−differentiable and y′gH(t) and y′′gH(t) are [i−gH]−differentiable:

y(t +∆ t) = y(t)⊖ (−1)y′ii.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊖ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊕ (−1)y′ii.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊖ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t −∆ t).

Case 6. If y(t) and y′′gH(t) are [ii−gH]−differentiable and y′gH(t) is [i−gH]−differentiable:

y(t +∆ t) = y(t)⊖ (−1)y′ii.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊕ (−1)y′ii.gH(t)⊙∆ t ⊖ (−1)y′′ii.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t −∆ t).

Case 7. If y(t) and y′gH(t) are [ii−gH]−differentiable and y′′gH(t) is [i−gH]−differentiable:

y(t +∆ t) = y(t)⊖ (−1)y′ii.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊖ (−1)y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊕ (−1)y′ii.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊖ (−1)y′′′ii.gH(t)⊙

∆ t3

3!
♢R(t −∆ t).

Case 8. If y(t) and y′gH(t) are [ii−gH]−differentiable and y′′gH(t) is [i−gH]−differentiable:

y(t +∆ t) = y(t)⊖ (−1)y′ii.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

y(t −∆ t) = y(t)⊕ (−1)y′ii.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t −∆ t).

where

R(t +∆ t) =
∫ t+∆ t

t

(

∫ ξ1

t

(

∫ ξ2

t

(

∫ ξ3

t
y
(4)
gH(ξ4)dξ4

)

dξ3

)

dξ2

)

dξ1.

and

R(t −∆ t) =
∫ t

t−∆ t

(

∫ t

ξ1

(

∫ t

ξ2

(

∫ t

ξ3

y
(4)
gH(ξ4)dξ4

)

dξ3

)

dξ2

)

dξ1.

and ♢ can be one of the ⊕, ⊕(−1) or ⊖(−1).
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Proof Since y∈C 4
gH([a,b], RT ) with no switching points, so y

(i)
gH , i= 0, 1,2,3, 4

are integrable on [a,b]. We want to prove Case 1, therefore y(t), y′gH(t) and
y′′gH(t) are [i−gH]−differentiable. According to Theorem 28, we can write

y(t +∆ t) = y(t)⊕
∫ t+∆ t

t
y′i.gH(ξ1)dξ1, (2)

and

y′i.gH(ξ1) = y′i.gH(t)⊕
∫ ξ1

t
y′′i.gH(ξ2)dξ2. (3)

By integration from each side of equation (3), we conclude that
∫ t+∆ t

t
y′i.gH(ξ1)dξ1 =

∫ t+∆ t

t
y′i.gH(t)dξ1 ⊕

∫ t+∆ t

t

(

∫ ξ1

t
y′′i.gH(ξ2)dξ2

)

dξ1

= y′i.gH(t)⊙∆ t ⊕
∫ t+∆ t

t

(

∫ ξ1

t
y′′i.gH(ξ2)dξ2

)

dξ1.

By continuing this process

y′′i.gH(ξ2) = y′′i.gH(t)⊕
∫ ξ2

t
y′′′i.gH(ξ3)dξ3.

Applying the integral operator to y′′i.gH(ξ2), gives
∫ ξ1

t
y′′i.gH(ξ2)dξ2 = y′′i.gH(t)⊙ (ξ1 − t)⊕

∫ ξ1

t

(

∫ ξ2

t
y′′′i.gH(ξ3)dξ3

)

dξ2,

furthermore,
∫ t+∆ t

t

(

∫ ξ1

t
y′′i.gH(ξ2)dξ2

)

dξ1 = y′′i.gH(t)⊙
∫ t+∆ t

t
(ξ1 − t)dξ1 ⊕

∫ t+∆ t

t

(

∫ ξ1

t

(

∫ ξ2

t
y′′′i.gH(ξ3)dξ3

)

dξ2

)

dξ1.

and

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕

∫ t+∆ t

t

(

∫ ξ1

t

(

∫ ξ2

t
y′′′i.gH(ξ3)dξ3

)

dξ2

)

dξ1.

With the similar manner,

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),

where

R(t +∆ t) =
∫ t+∆ t

t

(

∫ ξ1

t

(

∫ ξ2

t

(

∫ ξ3

t
y′′′′gH(ξ4)dξ4

)

dξ3

)

dξ2

)

dξ1,

Now consider y(t) is a continues and [i−gH]-differentiable fuzzy function.
By using Theorem 28 for j = 1 we can write

y(t −∆ t) = y(t)⊖
∫ t

t−∆ t
y′i.gH(ξ1)dξ1,
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according to Theorem 28

y′i.gH(ξ1) = y′i.gH(t)⊖
∫ t

ξ1

y′′i.gH(ξ2)dξ2. (4)

Therefore by integration of (4), we get that
∫ t

t−∆ t
y′i.gH(ξ1)dξ1 =

∫ t

t−∆ t
y′i.gH(t)dξ1 ⊖

∫ t

t−∆ t

(

∫ t

ξ1

y′′i.gH(ξ2)dξ2

)

dξ1

= y′i.gH(t)⊙∆ t ⊖
∫ t

t−∆ t

(

∫ t

ξ1

y′′i.gH(ξ2)dξ2

)

dξ1.

Therefore

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊕
∫ t

t−∆ t

(

∫ t

ξ1

y′′i.gH(ξ2)dξ2

)

dξ1.

But we have

y′′i.gH(ξ2) = y′′i.gH(t)⊖
∫ t

ξ2

y′′′i.gH(ξ3)dξ3.

With repeated integrals we have
∫ t

ξ1

y′′i.gH(ξ2)dξ2 = y′′i.gH(t)⊙ (t −ξ1)⊖
∫ t

ξ1

(

∫ t

ξ2

y′′′i.gH(ξ3)dξ3

)

dξ2, ⇒

∫ t

t−∆ t

(

∫ t

ξ1

y′′i.gH(ξ2)dξ2

)

dξ1 = y′′i.gH(t)⊙
∫ t

t−∆ t
(t −ξ1)dξ1 ⊖

∫ t

t−∆ t

(

∫ t

ξ1

(

∫ t

ξ2

y′′′i.gH(ξ3)dξ3

)

dξ2

)

dξ1.

In this case we can conclude

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊖

∫ t

t−∆ t

(

∫ t

ξ1

(

∫ t

ξ2

y′′′i.gH(ξ3)dξ3

)

dξ2

)

dξ1.

In the same way, the other cases outlined in the theorem are also proven using
Theorem 28 . ⊓⊔

Definition 210 (See [5]) The first generalized Hukuhara partial derivative (
[gH-p]-derivative for short) of a fuzzy-valued function u(x, t) : D⊆R

2 →RF at
(x0, t0) with respect to variables x is defined by

∂xgH
u(x0, t0) = lim

h→0

u(x0 +h, t0)⊖gH u(x0, t0)

h
,

A triangular fuzzy function u(x, t) : D⊆R
2 →RT , without any switching point

on D is called

– [(i)− p]-differentiable w.r.t. x at (x0, t0) if

uxi.gH
(x0, t0) =

(

u1x(x0, t0), u2x(x0, t0),u3x(x0, t0)
)

.
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– [(ii)− p]-differentiable w.r.t. x at (x0, t0) if

uxii.gH
(x0, t0) =

(

u3x(x0, t0), u2x(x0, t0),u1x(x0, t0)
)

.

Moreover, if uxgH
(x, t) is [gH − p]−differentiable at (x0, t0) with respect to x

without any switching point on D and
– if the type of [gH − p]−differentiability of both u(x, t) and uxgH

(x, t) are the
same, then uxgH

(x, t) is [(i)− p]-differentiable w.r.t x and

uxxi.gH
(x0, t0) =

(

u1xx(x0, t0), u2xx(x0, t0),u3xx(x0, t0)
)

.

– if the type of [gH-p]-differentiability u(x, t) and uxgH
(x, t) are different, there-

fore uxgH
(x, t) is [(ii)− p]−differentiable w.r.t x and

uxxii.gH
(x0, t0) =

(

u3xx(x0, t0), u2xx(x0, t0),u1xx(x0, t0)
)

.

3 Finite Difference Methods

Our goal here is to describe the fundamentals of the fuzzy finite difference
method. To accomplish this, we will first show you how to obtain the finite
difference formula for the first and second derivatives of a triangular fuzzy
function y(t).

Now, we describe the essential details of finite difference methods. First,
we select an integer N > 0 and divide the interval [a,b] into (N +1) equal sub-
intervals whose endpoints are the mesh points ti = a+ i∆ t, for i = 0,1, ...,N+1,
where ∆ t = b−a

N+1
so ti+1 − ti = ∆ t. Let y(t) ∈ C 4

gH([a,b],RT ), so based on the
different types of differentiability that mentioned in Remark 26, the first and
second gH-derivative of this fuzzy function can be approximated by fuzzy finite
difference method as follows
Case 3.1 Consider y(t) and y′gH(t) are [i.gH]−differentiable and y′′gH(t) is [i−

gH]−differentiable or [ii−gH]−differentiable.
– The first fuzzy forward difference.

First Consider y′′gH(t) is [i−gH]−differentiable. Hence by using the Case
1 in Theorem 29, we have

y(t +∆ t) = y(t)⊕ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊕ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t +∆ t),(5)

solve for y′i.gH(t) yields

y′i.gH(t) =
y(t +∆ t)⊖ y(t)

∆ t
⊖

∆ t

2
y′′(t)⊖

∆ t2

3!
y′′′(t)⊖·· · ,

By using the fuzzy mean value theorem in [5], for all i = 0,1, ...,N, there
are ξ+ ∈ (t, t +∆ t) such that

y′i.gH(t) =
y(t +∆ t)⊖ y(t)

∆ t
⊖

∆ t

2
y′′(ξ+),
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or

y′i.gH(t)⊖
y(t +∆ t)⊖ y(t)

∆ t
=⊖

∆ t

2
y′′(ξ+) (6)

where the term ∆ t
2

y′′(ξ+) is called truncation error of the forward fuzzy
finite difference approximation. Moreover, the properties of the Haus-
dorff distance [20] are implied that

D
(

y′i.gH(t),
y(t +∆ t)⊖ y(t)

∆ t
⊖

∆ t

2
y′′(ξ+)

)

≤ D
(

y′i.gH(t),
y(t +∆ t)⊖ y(t)

∆ t

)

+D
(

0,⊖
∆ t

2
y′′(ξ+)

)

→ 0,

as ∆ t → 0. Therefore, ∆ t should be sufficiently small to get a good
approximation. Finally, for sufficiently small ∆ t, the first forward fuzzy
finite difference approximation of y′i.gH(t) is

y′i.gH(t)≈
y(t +∆ t)⊖ y(t)

∆ t
.

– The first fuzzy backward difference.
To obtain the backward fuzzy finite difference formula, using Theorem
29 (case 1) we can write

y(t −∆ t) = y(t)⊖ y′i.gH(t)⊙∆ t ⊕ y′′i.gH(t)⊙
∆ t2

2!
⊖ y′′′i.gH(t)⊙

∆ t3

3!
♢R(t −∆ t),(7)

Rearranging equation (7) gives

y(t)⊖ y(t −∆ t)

∆ t
= y′i.gH(t)⊖ y′′i.gH(t)⊙

∆ t

2!
⊕ y′′′i.gH(t)⊙

∆ t2

3!
♢....

For having a more useful approximation value for y′i.gH(t), by using the
fuzzy mean value theorem in [5], there are ξ− ∈ (t −∆ t, t) such that

y(t)⊖ y(t −∆ t)

∆ t
= y′i.gH(t)⊖ y′′i.gH(ξ

−)⊙
∆ t

2!

So by considering ∆ t is small enough, the approximation value obtained
for the first-order gH-derivative is equal to

y′i.gH(t)≈
y(t)⊖ y(t −∆ t)

∆ t
.

– The first fuzzy central difference.
We using Hukuhara subtract Eq. (5) from Eq. (7) and divide by 2∆ t,
then we obtain

y(t +∆ t)⊖ y(t −∆ t)

2∆ t
= y′i.gH(t)⊕

∆ t2

12
y′′′i.gH(ξ ).

On the other hand, given the Hausdorff distance properties, it can be
seen that

D
(y(t +∆ t)⊖ y(t −∆ t)

2∆ t
, y′i.gH(t)⊕

∆ t2

12
y′′′i.gH(ξ )

)

≤ D
(y(t +∆ t)⊖ y(t −∆ t)

2∆ t
,y′i.gH(t)

)

+D
(

0,
∆ t2

12
y′′′i.gH(ξ )

)

→ 0,
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When ∆ t → 0, we have following equation

y′i.gH(t)≈
y(t +∆ t)⊖ y(t −∆ t)

2∆ t
,

is the first fuzzy central difference approximation of y′i.gH(t).
– The second-order fuzzy central difference.

To obtain an appropriate approximation for the second-order derivative
of the fuzzy function y(t), (5) are added to (7), then the equations are
rearranged and divided by ∆ t2

y(t +∆ t)⊕ y(t −∆ t)⊖2y(t)

∆ t2
= y′′i.gH(t)♢

1

∆ t2

(

R(t +∆ t)⊕R(t −∆ t)
)

.

Beside

D

(

y(t +∆ t)⊕ y(t −∆ t)⊖2y(t)

∆ t2
, y′′i.gH(t)♢

1

∆ t2

(

R(t +∆ t)⊕R(t −∆ t)
)

)

≤ D
(y(t +∆ t)⊕ y(t −∆ t)⊖2y(t)

∆ t2
,y′′i.gH(t)

)

+D

(

0,
1

∆ t2

(

R(t +∆ t)⊕R(t −∆ t)
)

)

,

but by the definition of R(t +∆ t) and R(t −∆ t) when ∆ t → 0

D
(y(t +∆ t)⊕ y(t −∆ t)⊖2y(t)

∆ t2
,y′′i.gH(t)

)

→ 0, D

(

0,
1

∆ t2

(

R(t +∆ t)⊕R(t −∆ t)
)

)

→ 0

Hence, for ∆ t sufficiently small, the appropriate approximation obtained
for the second-order derivative y′′i.gH(ti) is equal to

y′′i.gH(t)≈
y(t +∆ t)⊕ y(t −∆ t)⊖2y(t)

∆ t2
.

Now, if y′′gH(t) is [ii−gH]−differentiable we obtain the similar approxi-
mation value for y′i.gH(t) and y′′i.gH(t) and there is no need to repeat the
process of obtaining these approximate values. Accordingly, the type
of gH-differentiability of the second-order derivative has no effect on
the obtained values, and these approximation values all depend on the
fuzzy function y(t) and its first-order derivative y[gH].

Here, for the first and second gH-derivatives, we present the relevant fuzzy
finite difference formulas by considering the type of gH-differentiability. We
will not elaborate on the proof in these cases since it is the same as Case
3.1.

Case 3.2. If y(t) is [i−gH]−differentiable and y′gH(t) is [ii−gH]−differentiable.
In this case y′′gH(t) can be [i−gH]−differentiable or [ii−gH]−differentiable.
– The first fuzzy forward difference.

y′i.gH(t)≈
y(t +∆ t)⊖ y(t)

∆ t
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– The first fuzzy backward difference.

y′ii.gH(t)≈
y(t)⊖ y(t −∆ t)

∆ t

– The first fuzzy central difference.

y′i.gH(t)≈
y(t +∆ t)⊖ y(t −∆ t)

2∆ t

– The second-order fuzzy central difference.

y′′ii.gH(t)≈
−(2y(t)⊖ y(t −∆ t)⊖ y(t +∆ t))

∆ t2

Case 3.3. consider y(t) is [ii−gH]−differentiable and y′gH(t) is [i−gH]−differentiable.
In this case y′′gH(t) may be [i−gH]−differentiable or [ii−gH]−differentiable.
– The first fuzzy forward difference.

y′ii.gH(t)≈
−1(y(t)⊖ y(t +∆ t))

∆ t

– The first fuzzy backward difference.

y′ii.gH(t)≈
−1(y(t −∆ t)⊖ y(t))

∆ t

– The first fuzzy central difference.

y′ii.gH(t)≈
−1(y(t −∆ t)⊖ y(t +∆ t))

2∆ t

– The second-order fuzzy central difference.

y′′ii.gH(t)≈
−1(2y(t)⊖ y(t +∆ t)⊖ y(t −∆ t))

∆ t2

Case 3.4. Let y(t) and y′gH(t) are [ii− gH]−differentiable. y′′gH(t) can be [i−
gH]−differentiable or [ii − gH]−differentiable, the final formulas are ob-
tained same.
– The first fuzzy forward difference.

y′ii.gH(t)≈
−1(y(t)⊖ y(t +∆ t)

∆ t

– The first fuzzy backward difference.

y′ii.gH(t)≈
−1(y(t −∆ t)⊖ y(t))

∆ t

– The first fuzzy central difference.

y′ii.gH(t)≈
−1(y(t −∆ t)⊖ y(t +∆ t))

2∆ t

– The second-order fuzzy central difference.

y′′i.gH(t)≈
(y(t +∆ t)⊕ y(t −∆ t)⊖2y(t))

∆ t2
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4 The Non-homogeneous Fuzzy Heat Equation

In mathematical physics, motion or transport of particles, i.e., ions, molecules,
etc., from higher concentration to lower concentration is modeled by the diffu-
sion equation with appropriate boundary and initial conditions. Heat conduc-
tion in a rod is a prototypical diffusion equation. Consider a uniform rod of
length L which is insulated everywhere except at its two ends and the temper-
ature is transmitted non-uniformly from beginning to end. This temperature
denotes by u(x, t) and x is a coordinate in space, t represents time. Measuring
the temperature is an uncertain problem, and this vagueness maybe appears
in the initial and boundary conditions. Suppose the temperature at the ends
are kept at a fixed fuzzy temperature of u(0, t) and u(L, t), respectively. The
problem is to find the future temperature along the rod by considering the
given fuzzy initial temperature u(x,0). In this case, the above problem is for-
mulated as the following fuzzy non-homogeneous initial-boundary-value heat
equation















utgH
(x, t) = uxxgH

(x, t)⊕F(x, t), x ∈ [0,L], t ∈ [0,T ];
u(x,0) = f (x), x ∈ [0,L],
u(0, t) = g(t), t > 0,

u(L, t) = h(t) t > 0.

(8)

Where f (x),g(t),h(t) and F(x, t) are triangular fuzzy functions such that f (x),g(t),h(x)
and F(x, t) ∈ C 4

gH([0,L]× [0,T ],RT ), and

f (x) =
(

f1(x), f2(x), f3(x)
)

, g(t) =
(

g1(t),g2(t),g3(t)
)

h(t) =
(

h1(t),h2(t),h3(t)
)

, F(x, t) =
(

F1(x, t),F2(x, t),F3(x, t)
)

,

This equation has a unique solution in different states of [gH-p]-differentiatiability
[5] and the main purpose of this section is to obtain an approximate fuzzy so-
lution for the fuzzy heat equation using the fuzzy finite difference method.
Suppose that u(x, t) is the exact fuzzy solution of equation (8) provided that
the types of [gH − p]−differentiability with respect to x and t are the same.
The basic idea is to replace all the derivatives in equation (8) by corresponding
difference approximation.

Let u(x, t)∈C 4
gH([0,L]× [0,T ],RT ), by considering the type of [gH− p]−differentiability,

the following different situations will be happen

Case 1. Let u(x, t) is [(i)− p]−differentiable with respect to t and uxgH
(x, t) is

a [(i)− p]−differentiable fuzzy function with respect to x. In this case, the
heat equation will be as follows

uti.gH
(x, t) = uxxi.gH

(x, t)⊕F(x, t). (9)

– Forward Difference in time: Since u(x, t) is [(i)− p]−differentiable with
respect to t, then different cases 1,2,3 and 4 in Theorem 29 can be used,
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in which

u(x, t +∆ t) = u(x, t)⊕uti.gH
(x, t)⊙∆ t ⊕utti.gH

(x, t)⊙
∆ t2

2!
⊕ .... (10)

Therefore according to Section 3 we obtain

uti.gH
(x, t)≈

u(x, t +∆ t)⊖u(x, t)

∆ t
(11)

– Central Differences in Space: Due to the fact that uxgH
(x, t) is a [(i)−

p]−differentiable function , all cases 1, 2, 7 and 8 which are expressed
in Theorem 29, can be used. So let’s take case 1

u(x+∆x, t) = u(x, t)⊕uxi.gH
(x, t)⊙∆x⊕uxxi.gH

(x, t)⊙
∆x2

2!
⊕uxxxi.gH

(x, t)

⊙
∆x3

3!
♢R(x+∆x, t),

u(x−∆x, t) = u(x, t)⊖uxi.gH
(x, t)⊙∆x⊕uxxi.gH

(x, t)⊙
∆x2

2!
⊖uxxxi.gH

(x, t)

⊙
∆x3

3!
♢R(x+∆x, t).

(12)
Adding and re-arranging:

uxxi.gH
(x, t)≈

u(x+∆x, t)⊖2u(x, t)⊕u(x−∆x, t)

∆x2
. (13)

Now substitute equations (11) and (13) into the main equation (9), accord-
ingly

u(x, t +∆ t)⊖u(x, t)

∆ t
=

u(x+∆x, t)⊖2u(x, t)⊕u(x−∆x, t)

∆x2
⊕F(x, t),

and

u(x, t +∆ t) = u(x, t)⊕

(

∆ t

∆x2

)

(

u(x+∆x, t)⊖2u(x, t)⊕u(x−∆x, t)
)

⊕∆ tF(x, t).

To obtain an approximation solution for equation (9) using the fuzzy finite
difference method, we must divide the domain [0,L]× [0,T ] into a set of
mesh points. Here, we subdivide the domain [0,L]× [0,T ] into Nx + 1 and
Nt +1 equally mesh points

xk = k∆x, k = 0, ...,Nx,

tn = n∆ t, n = 0, ...,Nt .

Now, consider Un
k denotes the mesh function that approximates u(xk, tn) for

k = 0, ...,Nx and n = 0, ...,Nt . By putting mesh point (xk, tn) into equation
(9), the following formula is obtained

Un+1
k =Un

k ⊕µ
(

Un
k+1 ⊖2Un

k ⊕Un
k−1

)

⊕∆ tFn
k , (14)

where µ = ∆ t
∆x2 .
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– Truncation error: Now, we want to investigate the truncation error of
the scheme (14). The truncation error, T (x, t), is the difference between
two side of equation when the exact solution u(xk, tn) is replaced with
the approximation value Un

k , hence

T (x, t) :=
∆+tu(x, t)

∆ t
⊖

δ 2
x u(x, t)

∆x2
,

where

∆+tu(x, t) := u(x, t +∆ t)⊖u(x, t)

δ 2
x u(x, t) := u(x+∆x, t)⊖2u(x, t)⊕u(x−∆x, t)

By using the fuzzy mean value theorem in [5], there is η ∈ (t, t +∆ t)
such that equation (10) can be written as follows

u(x, t +∆ t)⊖u(x, t) = uti.gH
(x, t)⊙∆ t ⊕utti.gH

(x,η)⊙
∆ t2

2!
,

we obtain

∆+tu(x, t) = uti.gH
(x, t)⊙∆ t ⊕utti.gH

(x,η)⊙
∆ t2

2!
, (15)

On the other hand, equations (12) conclude that

δ 2
x u(x, t) = uxxi.gH

⊙∆x2 ⊕
(

R(x+∆x, t)♢R(x−∆x, t)
)

.

So

T (x, t) = (uti.gH
⊖uxxi.gH

)⊕

(

1

2
utti.gH

(x,η)∆ t ⊖
1

∆x2

(

R(x+∆x, t)♢R(x−∆x, t)
)

)

=
1

2
utti.gH

(x,η)∆ t ⊖
1

∆x2

(

R(x+∆x, t)♢R(x−∆x, t)
)

.

Since u(x, t) ∈ C 4
gH([0,L]× [0,T ],RT ), we can consider

D(utti.gH
,0)≤ Mtt , D

(

R(x+∆x, t)♢R(x−∆x, t),0
)

≤ MR .

Then by the help of Hausdorff distance properties [20], we get the fol-
lowing result

D
(

T (x, t),0
)

≤
1

2
Mtt∆ t +

1

∆x2
MR

≤
1

2
∆ t

(

Mtt +
µ

2
MR

)

. (16)

So

T (x, t)→ 0, as ∆ t → 0,∀(x, t) ∈ [0,1]× [0,T ].
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– The convergence of method: To check the convergence of the given
method, suppose fixed point (x∗, t∗) in domain [0,L]× [0,T ]. We say
that the method is convergent if xk → x∗, tn → t∗ implies that

Un
k → u(x∗, t∗).

Let en
k :=Un

k ⊖u(xk, tn) be the error function for finite difference method
in this case. Putting the error function in equation (14) and using
Proposition 24 results to

en+1
k = en

k ⊕µ
(

en
k+1 ⊖2en

k ⊕ en
k−1

)

⊖T n
k ∆ t

= (1−2µ)en
k ⊕µen

k+1 ⊕µen
k−1 ⊖T n

k ∆ t,

where T n
k := T (xk, tn). Now, if µ ≤ 1

2
the coefficient of the three terms

of en on the right-hand side of the above equation will be positive, and
the result will be unity. Let us to consider

En
:= max{D(en

k ,0), k = 0,1, ...,Nx)}.

So

D(en+1
k ,0)≤ En +D(T n

k ,0)∆ t.

Since this inequality holds for all values of k, then

En+1 ≤ En +D(T n
k ,0)∆ t.

On the other hand, by definition of en
k we know that E0 = 0. In this case

En ≤ nD(T n
k ,0)∆ t, which is achieved with a simple induction. Therefore

form (16) we obtain

En ≤
1

2
∆ t

(

Mtt +
µ

2
MR

)

T

→ 0 as ∆ t → 0.

In fact we showed that the approximate solution Un
k obtained by finite

difference method (14) converge to the exact solution u(xk, tn) provided
that µ ≤ 1

2
for sufficiently large value of Nt , besides D(uxx,0)≤ Mxx and

D
(

R(x+∆x, t)♢R(x−∆x, t),0
)

≤ MR .
The following algorithm summarizes the proposed fuzzy finite difference.

Algorithm 41
1. Choose Nt and Nx such that ∆ t

(∆x)2 ≤ 1
2
.

2. Compute U0
k =

(

f1(xk), f2(xk), f3(xk)
)

for k = 0,1, ...,Nx.
3. For n = 0,1, ...,Nt :
i. apply Un+1

k =Un
k ⊕µ

(

Un
k+1

⊖2Un
k ⊕Un

k−1

)

⊕∆ tFn
k for all k = 1, ...,Nx −1.

ii. set the boundary value Un+1
0

=
(

g1(tn+1),g2(tn+1),g3(tn+1)
)

.
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iii. set the boundary value Un+1
Nx

=
(

h1(tn+1),h2(tn+1),h3(tn+1)
)

.

In the following, we will briefly consider the other case of the [gH− p]−differentiability
for equation (8). The whole process of proof for the following situations is the
same as in case 1, so we will not go into details and we just express the algo-
rithm.
Case 2. Consider the following fuzzy heat equation

utii.gH
(x, t) = uxxii.gH

(x, t)⊕F(x, t) (17)

in this equation u(x, t) is [(ii)− p]−differentiable with respect to t and
uxgH

(x, t) is a [(ii)− p]−differentiable fuzzy function with respect to x.
Algorithm 42

1. Choose Nt and Nx such that ∆ t
(∆x)2 ≤ 1

2
.

2. Compute U0
k =

(

f1(xk), f2(xk), f3(xk)
)

for k = 0,1, ...,Nx.
3. For n = 0,1, ...,Nt :
i. apply Un+1

k =Un
k ⊕µ

(

Un
k+1

⊖2Un
k ⊕Un

k−1

)

⊖(−1)∆ tFn
k for all k = 1, ...,Nx−

1.
ii. set the boundary value Un+1

0
=
(

g1(tn+1),g2(tn+1),g3(tn+1)
)

.

iii. set the boundary value Un+1
Nx

=
(

h1(tn+1),h2(tn+1),h3(tn+1)
)

.

5 Numerical Examples

We will solve a few examples of the fuzzy finite difference method in this section
to illustrate its efficiency and accuracy in solving the fuzzy heat equation. All
calculations were performed on a PC running Mathematica software.

In the following example, the fuzzy finite difference method is explained in
detail.
Example 51 (Numerical illustration) Consider the following initial-boundary
non-homogeneous fuzzy heat equation















uti.gH
= uxxi.gH

⊕ (2x,3x,5x), x ∈ [0,2], t ∈ [0,1];
u(x,0) =

(

2x,3x,5x
)

,

u(0, t) = 0, u(2, t) =
(

4t +4,6t +6,10t +10

)

(18)

This equation has exact fuzzy solution u(x, t) =
(

2(t +1)x,3(t +1)x,5(t +1)x
)

.
Considering Algorithm 41, step-by-step procedure to solve the given exam-

ple is as follows
1. Suppose Nx = 2 and Nt = 3, then ∆ t

∆x2 = 1
3

and

t0 = 0, t1 =
1

3
, t2 =

2

3
, t3 = 1,

x0 = 0, x1 = 1, x2 = 2.
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2. For k = 0,1,2

U0
k =

(

2(xk),3(xk),5(xk)
)

.

Therefore

U0
0 = (0,0,0), U0

1 = (2,3,5), U0
2 = (4,6,10).

3. For n = 0,1,2

Un+1
k = Un

k ⊕µ
(

Un
k+1 ⊖2Un

k ⊕Un
k−1

)

⊕∆ tFn
k , k = 1

Un+1
Nx

= (4tn+1 +4,6tn+1 +6,10tn+1 +10),

Un+1
0

= (0,0,0).

Hence
– n=0

U1
1 = U0

1 ⊕µ
(

U0
2 ⊖2U0

1 ⊕U0
0

)

⊕∆ tF0
1

= (2,3,5)⊕
1

3

(

(4,6,10)⊖2(2,3,5)⊕ (0,0,0)
)

⊕
1

3
(2(x1),3(x1),5(x1))

= (2,3,5)⊕
1

3
(2,3,5) =

(

8

3
,4,

20

3

)

.

U1
2 = (4t1 +4,6t1 +6,10t1 +10) =

(

16

3
,8,

40

3

)

.

U1
0 = (0,0,0).

– n = 1

U2
1 = U1

1 ⊕µ
(

U1
2 ⊖2U1

1 ⊕U1
0

)

⊕∆ tF1
1 =

(

10

3
,5,

25

3

)

.

U2
2 = (4t2 +4,6t2 +6,10t2 +10) =

(

20

3
,10,

50

3

)

.

U2
0 = (0,0,0).

– n=2

U3
1 = U2

1 ⊕µ
(

U2
2 ⊖2U2

1 ⊕U2
0

)

⊕∆ tF2
1 =

(

4,6,10

)

.

U3
2 = (4t3 +4,6t3 +6,10t3 +10) =

(

8,12,20

)

.

U3
0 = (0,0,0).

By placing the values (xk, tn) in the exact solution, it is easy to verify Un
k =

u(xk, tn). Then the exact solution of the fuzzy heat equation (18) is obtained
by this method.
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Example 52 Consider the following initial-boundary fuzzy heat equation























uti.gH
= uxxi.gH

⊕ (xet ,3.5xet ,4.5xet), x ∈ [0,1], t ∈ [0,1];
u(x,0) =

(

x,3.5x,4.5x
)

,

u(0, t) = (0,0,0),

u(2, t) =
(

et ,3.5et ,4.5et
)

.

Note that the exact solution of this equation is u(x, t) =
(

xet ,3.5xet ,4.5xet
)

. Let
Nx = 2 and Nt = 10. The numerical results are shown in Table 1. In addition,
the approximate solution, Un+1

1
, and the exact solution, u(x1, tn+1), are shown

in Figures 1 when x1 =
1
2
, n = 0,1, ...,Nt and for all α ∈ [0,1]. We observe that

the fuzzy finite difference method is an accurate method for solving the given
fuzzy heat equation.

xi u(xk, tn) Un
k

( 1
2
,0.1), (0.5525, 1.9340, 2.4866) (0.55, 1.925, 2.475)

( 1
2
,0.2) (0.6107, 2.1374, 2.7481 ) (0.6103, 2.1356, 2.7429)

( 1
2
,0.3) (0.67492, 2.3622, 3.0371) (0.6710, 2.3688, 3.0399)

( 1
2
,0.4) (0.7459, 2.6106, 3.3566) (0.7416, 2.6158, 3.3574)

( 1
2
,0.5) (0.8243, 2.8852, 3.7096) (0.8196, 2.8857, 3.7884)

( 1
2
,0.6) (0.9110, 3.1887, 4.0997) (0.9158, 3.1804, 4.0863)

( 1
2
,0.7) (1.0068, 3.5240, 4.5309) (1.0051, 3.5339, 4.5309)

( 1
2
,0.8) (1.1127, 3.8947, 5.0074) (1.11641, 3.8824, 4.9788)

( 1
2
,0.9) (1.2298, 4.3043, 5.5341) (1.2227, 4.3097, 5.5024)

( 1
2
,1) (1.3591, 4.7569, 6.1161) (1.3513, 4.7498, 6.1811)

Table 1 Exact and approximate values by finite difference method for Example 52
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Fig. 1 Graphs of fuzzy-valued functions of u(x1, tn+1)(Right) and Un+1
1

(Left) of Example 52.

Example 53 Consider the following fuzzy PDE

utii.gH
= uxxii.gH

, x ∈ [0,0.5], t ∈ [0,1];

where u(x,0) =
(

sin(πx),3sin(πx),5sin(πx)
)

, u(0, t) = (0,0,0) and u(0.5, t) =
(

e−π2t ,3e−π2t ,5e−π2t
)

with exact solution u(x, t)=
(

sin(πx)e−π2t ,3sin(πx)e−π2t ,5sin(πx)e−π2t
)

.
According to the procedure outlined in Algorithm 42, ∆ t and ∆x should be

consider large such that ∆ t
∆x2 ≤ 1

2
. We consider Nx = 2 and Nt = 50. So we have
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many sub-intervals and it is not possible to show the approximate numbers,
Un

j , and only the approximate and exact solution are shown in Figures 2. In
addition, Figures 3 represent the logarithm of the error for various Nt .

Fig. 2 Graphs of u(x1, t
n+1) (Right) and Un+1

1
(Left) for Example 53
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Fig. 3 Graph of the finite difference approximation error of Example 53.

6 Conclusion

We presented the new fuzzy finite difference method for approximating the
fuzzy triangular solution of the fuzzy non-homogeneous heat equation with
triangular initial-boundary conditions. To do this, the fuzzy Taylor expansion
was extended according to the type of gH−differentiability, and the finite
difference formulas for the first and second derivatives of a triangular fuzzy
function y(t) were obtained. Moreover, the convergence conditions for solving
the fuzzy heat problem were also investigated. Several numerical examples
were presented to demonstrate the performance of the methods. The final
results demonstrated the efficiency and the ability of the new fuzzy finite
difference method to produce triangular fuzzy numerical results which are
more consistent with existing reality. Even though this paper deals with the
fuzzy non-homogeneous heat equation, our method can be used to find the
numerical solution for a wide variety of fuzzy partial differential equations.
The fuzzy numerical solution of the fuzzy partial differential equations can be
obtained without implicitly embedding them into crisp equations through our
method.
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