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Abstract In this paper, we propose a tabu search algorithm

for the two-echelon vehicle routing problem with time win-

dows and simultaneous pickup and delivery (2E-VRPTWSPD),

which is a new variant of the two-echelon vehicle routing

problem (2E-VRP) by considering the time window con-

straints and simultaneous pickup and delivery. In 2E-VRPTW

SPD, the pickup and delivery activities are performed simul-

taneously by the same vehicles through the depot to satel-

lites in the first echelon and satellites to customers in the sec-

ond echelon, where each customer has a specified time win-

dow. To solve this problem, firstly, we formulate the prob-

lem with a mathematical model. Then, we implement a vari-

able neighborhood tabu search algorithm with the proposed

solution representation of dummy satellites to solve large-

scale instances. Dummy satellites time windows are used in

our algorithm to speed up the algorithm. Finally, we gen-

erate two instance sets based on the existing 2E-VRP and

2E-VRPTW benchmark sets and conduct additional experi-

ments to analyze the performance of our algorithm.

Keywords Two-echelon vehicle routing problem · time

windows · pickup and delivery · tabu search

1 Introduction

In recent years, the transportation cost in logistics is increas-

ing rapidly. The vehicle routing problem (VRP), which aims

to determine the best routing plan for vehicles to serve a set
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of customers, are widely used to fit this situation. The two-

echelon vehicle routing problem (2E-VRP) is a well-known

variant of the classic VRP. It involves a two-echelon dis-

tribution network with a CD (i.e. central depot), a set of

satellites, and a set of final customers. In 2E-VRP, vehi-

cles are divided into two types, each has a specific capac-

ity. Delivery tasks in the first level are usually accomplished

by first-echelon vehicles with a large capacity, while in the

second level are usually accomplished by second-echelon

vehicles with a small capacity. Freight is first transported

from the depot to satellites by first-echelon vehicles. Then,

the cargoes on the first-echelon vehicles are loaded into the

second-echelon vehicles at satellites. Finally, the freight is

transported to customers by second-echelon vehicles. Each

customer has a demand and must be served exactly once.

The objective is to minimize the sum of the total routing

cost of the two vehicle types.

In real city logistics, more constraints need to be con-

sidered. For example, time window constraints are always

considered by the activities like take-out service or the de-

livery for some special food which needs fresh-keeping. Si-

multaneous pickup and delivery is another important VRP

operations, which allow the pickup and delivery of cargoes

for a customer simultaneously.

In this study, we consider a two-echelon vehicle routing

problem with time windows and simultaneous pickup and

delivery problem (2E-VRPTWSPD), which is a new vari-

ant of 2E-VRP. This problem can easily be applied in some

real-world circumstances. For example, consider the deliv-

ery of some medical supplies in a multi-modal urban distri-

bution. The first-echelon vehicles serve between cities, and

the second-echelon vehicles are city freighters who directly

visit customers’ houses. Customers may use some medical

products in their own house for convenience. Some part of

the medical product, such as the wrapper for some liquid

or the used syringe needle, need to be called back immedi-
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ately, because the abandon wrapper with remnant medicine

will pollute the environment, or even be illicitly purchased

by drug traffickers and then caused harms. Thus, the reverse

logistic becomes an important part in the delivery system.

Many reverse logistic examples in multi-modal distribution

are the applications of 2E-VRPTWSPD.

We consider several practical features of 2E-VRPTWSPD.

First, the called-back part is lighter than the original prod-

uct. This means that the pickup demand in each customer

is smaller than the delivery demand. This is a practical as-

sumption, although it is easy to adjust our method to adapt

to the general problem, in which the pickup demand may

be larger. Second, we find that in most literature on 2E-

VRPTW, the service duration in satellites is always fixed.

However, in practice, the time used to transfer cargoes is re-

lated to the quality of cargoes. In this paper, we assume that

the service time in satellites is positively correlated with the

quantity of cargoes.

Our work can be summarized as follows. We first intro-

duce 2E-VRPTWSPD, which is a new variant of 2E-VRP,

and propose a mixed integer programming mathematical model

to formulate the problem. We then provide a heuristic algo-

rithm that includes a greedy algorithm and a variable neigh-

borhood tabu search phase to solve the problem. The model

formulations and the heuristic algorithm are tested by the

instances we generated.

For the remaining parts of the paper, Section 2 reviews

studies on the related work. Section 3 formally defines 2E-

VRPTWSPD and introduces a mixed-integer linear program-

ming model. Section 4 presents the solution approach. Sec-

tion 5 describes the test instances and the results, and ana-

lyzes the speciality of the problem and algorithm. Section 6

gives conclusions and future directions on this subject.

2 Literature review

2E-VRPTWSPD is an extension of 2E-VRP by further con-

sidering time window constraints and simultaneous pickup

and delivery. To our best knowledge, this is the first study

that considers both features in 2E-VRP. In this section, we

briefly review two related problems: 2E-VRP and VRPSPD.

2E-VRP was studied since the pioneer work of Crainic

et al. (2009). The authors proposed a general problem un-

der the name two-echelon, synchronized, scheduled, multi-

depot, multiple-tour, heterogeneous VRPTW (2SS-MDMT-

VRPTW), and 2E-VRP is the special case of this problem.

Formal description and model of 2E-VRP were introduced

by Perboli and Tadei (2010) and Perboli et al. (2011). The

authors proposed an MIP formulation and derived valid in-

equalities. Several meta-heuristics were proposed to solve

2E-VRP after that. Crainic et al. (2011) proposed multi-

start heuristics by separating the two echelons apart to solve

the two routing sub-problems. Hemmelmayr et al. (2012)

proposed an Adaptive Large Neighborhood Search (ALNS)

combined with a local search. Crainic et al. (2013); Zeng

et al. (2014) proposed heuristic algorithms based on Greedy

Randomizied Adaptive Search Procedure (GRASP), respec-

tively. Breunig et al. (2016) developed a Large Neighbor-

hood Search (LNS) for 2E-VRP. Cuda et al. (2015) pub-

lished a survey on two-echelon routing problems, which sum-

marized the development of 2E-VRP. Only a few researchers

considered the time window constraints of these problems,

which named 2E-VRPTW. Dellaert et al. (2019, 2021) pro-

posed a branch-and-price-based algorithm. Li et al. (2020)

introduced a two-echelon vehicle routing problem with time

windows and mobile satellites (2E-VRP-TM) and proposed

an Adaptive Large Neighborhood Search (ALNS) to solve

it.

2E-VRPTWSPD can be treated as VRPSPD when the

satellites and time windows are removed. VRPSPD was first

introduced by Min (1989). Many heuristic and meta-heuristic

approaches for solving VRPSPD have been proposed. For

example, Bianchessi and Righini (2007); Chen and Wu (2006);

Crispim and Brandão (2005) devised several Tabu Search

(TS) algorithms for VRPSDP. Ropke and Pisinger (2006)

designed Large Neighborhood Search (LNS). Mu et al. (2016)

introduced parallel Simulated Annealing (SA). Considering

the time windows constraints, Angelelli and Mansini (2002)

proposed an exact method and Mingyong and Erbao (2010);

Wang and Chen (2012) proposed Genetic Algorithms. Liu

et al. (2013) proposed both a Genetic Algorithm (GA) and

a Tabu Search (TS) method. A few of researchers combined

2E-VRP with VRPSPD, such as Belgin et al. (2018). The

authors introduced a two-echelon vehicle routing problem

with simultaneous pickup and delivery (2E-VRPSPD) and

proposed a node-based mathematical model and a hybrid

heuristic approach based on variable neighborhood descent

(VND) and local search (LS) to solve it.

3 Problem Descriptions

2E-VRPTWSPD is defined on a directed graph G = (V,A)

with vertex set V =V0∪VS ∪VC, where V0 is the set of depot

location (only one depot in this set), VS is the set of satellite

locations, and VC is the set of customer locations. The arc

set A consists of two different sets A1 and A2, where A1 =
{(i, j) | i, j ∈ V0 ∪VS} is the set of first-echelon arcs, and

A2 = {(i, j) | i, j ∈VS ∪VC, i 6= j}\{(i, j) | i, j ∈VS, i 6= j} is

the set of second-echelon arcs. There is a nonnegative trans-

portation cost ci j associated with each arc (i, j).

Each customer i ∈ VC has a delivery demand di and a

pickup demand pi. As we have already mentioned in Sec-

tion 1, we assume that the pickup demand of a customer is

less than its delivery demand. Each satellite s ∈VS has a de-

livery demand and a pickup demand, which are not known
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at the beginning, but they can be calculated once the assign-

ment of customers to the corresponding satellites is deter-

mined. Specifically, the total delivery demand of a satellite s

can be calculated as ∑i∈S di, where S is the set of customers

assigned to satellite s. Similarly, the total pickup demand is

calculated as ∑i∈S pi.

The demand of each customer i ∈ VC must be satisfied

within a time window [ei, li]. The time window means that

the service is not allowed to start either before or after a

section. Waiting is permitted at all locations at no cost. Fur-

thermore, no time window is considered for either satellites

or the depot. Upon the arrival to customer i, delivery freight

requires a service time si. Furthermore, the service time of a

satellite is proportional to the quantity of cargoes unloaded

from the first-echelon vehicles with a parameter τ . Once a

first-echelon vehicle has arrived at a satellite, its cargoes are

loaded onto the second-echelon vehicles as soon as possible.

The capacities of vehicles are denoted as Q1 and Q2 in the

first-echelon and second-echelon, respectively. Also, let K1

and K2 be the set of vehicles in the first-echelon and second-

echelon, respectively.

2E-VRPTWSPD tries to find an assignment of customers

to satellites in the second-echelon stage, and determine the

vehicle routes with a minimum total cost in both echelons.

It is worth noting that no direct shipments from the depot to

customers are allowed. Detailed mathematical formulation

of 2E-VRPTWSPD is provided in Appendix.

In actual, 2E-VRPTWSPD involves three stages of rout-

ing. As illustrated in Figure 1, firstly, the first-echelon ve-

hicles (i.e., FV d
1 ) start from the depot to deliver cargoes to

satellites. Secondly, the second-echelon vehicles (i.e., SV1,

SV2, SV3) start from satellites to serve customers with the

simultaneously pickup and delivery manner, and finally re-

turn to their satellites with pickup cargoes. Thirdly, the first-

echelon vehicles (i.e., FV
p

1 ) start from the depot to collect

cargoes on satellites.

Different from most 2E-VRP where each first-echelon

vehicle can only visit a satellite at most once, our problem

relaxes such requirement. Since the service time of a satel-

lite depends on the quantity of cargoes shifted from the first-

echelon vehicle to the second-echelon vehicle(s), it is pos-

sible that a first-echelon vehicle visits a satellite more than

once to potentially lower the total cost.

Figure 1 and 2 illustrate two 2E-VRPTWSPD examples.

The numbers next to the line segments are the distance of

arcs. Information about the distribution process is shown in

the table in the right part, where [ei, li] is the time window,

ai is the arrival time at each customer or satellite, si is the

service time, and di is the demand on customers or the total

demand for customers assigned to the satellites. In these two

examples, we set τ = 0.1.

Detailed explanations of the figures are as follows. In

Figure 1, a first-echelon vehicle FV d
1 starts from CD, firstly

arrives at S1 at time aS1
= 12. Then, in the second-echelon at

S1, FV d
1 costs (dC1

+dC5
) · τ = 5 units of time to unload its

cargoes for C1 and C5. The second-echelon vehicle, denote

as SV1, starts from S1 at 17, and arrives at C1 at time 22.

Back to FV d
1 , it next immediately unloads cargoes for C3

and C4, which cost 10 units of time. Hence, SV2 can only

start its delivery at time 27 and reach C3 at time 32. For

FV d
1 , after finishing its assignment of cargoes with the total

service time 5+ 10 = 15, it starts from S1 at time 27 and

reaches S2 at time 47. Further information is shown in the

table. In this routing plan, the time window of C2 is violated.

In Figure 2, FV d
1 starts from CD to visit S1. Only the

cargoes for SV1 are transferred. Then, FV d
1 serves S2, and

returns to S1 to transfer cargoes for SV2. Because of time-

saving of the service time at SV2, the arrival time of C2 is ad-

vanced. This routing plan is feasible, and its cost is less than

that using two first-echelon vehicles. This example shows

that for 2E-VRPTW with un-fixed service time, which is

more general in real-world, it is reasonable to visit a satellite

more than once. Note that the route of FV
p

1 is not influenced,

because there is no time constraint for the pickup stage of

first-echelon vehicles.

4 Solution Approach

To solve medium-to-large size 2E-VRPTWSPD instances, a

variable neighborhood tabu search algorithm is implemented.

The key ideas of the algorithm are as follows.

We try to improve the solution representation of satel-

lites by providing a new concept called dummy satellites.

This representation can greatly simplify the design of op-

erators and other algorithmic components. Besides, we add

dummy time windows to these dummy satellites to acceler-

ate the search. Two operators in three vehicle routing stages,

a total of six neighborhood operators, are used in our tabu

search to explore the search space. A greedy algorithm is

provided to construct an initial solution and estimate whether

a feasible solution exists or not. Another important feature

of our approach is the possibility of exploring infeasible so-

lutions during the search. We penalize the violation of time

windows and vehicle capacities. The penalty strategy can fa-

cilitate the exploration of the search space and is particularly

useful for those tightly constrained instances.

4.1 Solution Representation

Solution representation is an important factor that affects the

performance of a heuristic algorithm. We propose dummy

satellites by splitting each satellite into several dummy satel-

lites. Each dummy satellite only connects with one second-

echelon tour and can only be served once.
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Fig. 1 Example for visiting a satellite twice in one route(a)

Fig. 2 Example for visiting a satellite twice in one route(b)

Fig. 3 Solution without split dummy satellites

Figure 4 shows an example of the solution with dummy

satellites corresponding to the original solution in Figure 3.

As in Figure 3, there are 3 satellites and 4 second-echelon

routes. In particular, satellite S1 has 2 second-echelon routes.

Therefore, we divide S1 into 2 dummy satellites, DS1−1 and

DS1−2. Each of them has only 1 second-echelon route. To

unify the expression, S2 and S3 are also represented as DS2−1

and DS3−1.

Fig. 4 Solution with split dummy satellites

In addition, we propose time windows for these dummy

satellites. When the second-echelon route of a dummy satel-

lite is determined, the latest arrival time of first-echelon ve-

hicles to this satellite can also be determined. In other words,

there is a deadline restriction for the first-echelon vehicle,

and the deadline depends on how the second-echelon vehi-

cles route.

Inspired by the method used in Li et al. (2020), we de-

rive the computational formula to simplify the disposal of
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the first-echelon network as follows. For the ith customer de-

livered from a dummy satellite j (or route j), we introduce

a variable T S
j
i to represent the maximum duration for the

first-echelon vehicle that can postpone to arrive at satellite j

related to customer i’s time window:

T S
j
i =

i−1

∑
k=1

max{l
j

k −a
j

k,0}+ l
j
i −a

j
i

where e
j
i , l

j
i and a

j
i is the left end, right end time window

and the arriving time for the ith customer in route j.

We also use T S j to represent the minimum value for all

customers in the second-echelon route starting from satellite

j (denoted as route( j)):

T S j = min{T S
j
i | i ∈ route( j)}

Then we can get the latest arrival time to satellite j for

first-echelon vehicles:

l j = a
j
1 +T S j − c j j∗ − s j

where j∗ is the first customer in j’s route, s j is the ser-

vice time of dummy satellite j (note: to distinguish with the

service time si of a customer i, we use the superscript). This

equation connects the deadline time of customers to satel-

lites by considering the time cost from dummy satellites to

its first customer.

Figure 5 and 6 show examples of how to construct dummy

satellite time windows. Each example includes some second-

echelon route j (denoted “DS✙ customer 1✙ customer 2

✙ ...”). Assume that we already have the route plan. The

time line of each route is illustrated above the route. As

shown in Figure 5, T S
j
1 = t1, T S

j
2 = t2 + t3, T S

j
3 = t2 + t4,

T S j = min{T S
j
1,T S

j
2,T S

j
3}, l j = a1+T S j −c j1−s j. In Fig-

ure 6, no matter what time a first-echelon vehicle arrives at

j, customer 2’s time window constraints cannot be satisfied.

For this situation, we set l j =−1. The application of dummy

satellite time windows is explained in Section 4.4.2.

4.2 Search Space

In 2E-VRPTWSPD, if a route violates the maximum load

constraint or time window constraints, the corresponding so-

lution is infeasible. Similar to Cordeau et al. (2001), we use

a weighted penalty function to take these violations into ac-

count.

Consider the fitness function f (s)= c(s)+αt(s)+βd(s)

of a solution s, where c(s) is the objective value of 2E-

VRPTWSPD, t(s) and d(s) respectively represent the vio-

lations of the time window and vehicle capacity, calculated

as follows:

t(s) = ∑
i∈VC

∑
v∈K2

max{(av
i − li),0}

Algorithm 1 Greedy create initial solution

Input: SList, CList

Output: feasibility, solution

classify customers to satellites (SList, CList);

RS1, feaisibility = construct RS1 (SList, CList);

DSList = generate dummy satellites(RS1);

RS2 = construct RS2(DSList);

RS3 = construct RS3(DSList);

solution = create solution by RS1, RS2, RS3;

return feasibility and solution;

d(s) = ∑
k∈K1

max{wk −Q1,0}+ ∑
k∈K2

max{wk −Q1,0}

, where K1, K2 is the set of the first and second-echelon ve-

hicles, av
i is the arrival time for the ith customer in route v,

wk is the delivery or pickup demand for vehicle k. α and β

are the corresponding weights. The weights are dynamically

adjusted within an interval [LB,UB], where LB and UB are

predetermined by preliminary experiments.

Initially, α and β are randomly chosen within the in-

terval. Whenever the vehicle capacity constraint or the time

window constraint is violated, the respective weight (α or

β ) is multiplied by a parameter δ > 1; when the solution is

feasible, the respective weight is divided by δ . Note that the

updated weight must also lie in the interval [LB,UB].

4.3 Initial Solution

We adopt a greedy algorithm to construct an initial solution

and estimate whether a feasible solution exists. The greedy

algorithm is shown in Algorithm 1, where SList, CList, and

DSList represent the lists of available satellites, customers

and dummy satellites, respectively. f easibility is a binary

indicator for the problem. solution is the routing plan.

Three route sets RS1–RS3 are built. RS1 includes the

second-echelon routes starting from a dummy satellite to

serve customers. RS2 is the set of first-echelon routes start-

ing from the depot to delivery. RS3 is the set of first-echelon

routes from the depot to pickup cargoes on dummy satellites.

The algorithm includes a classification phase and a construc-

tion phase.

4.3.1 Classification of Customers

In order to serve a customer as soon as possible, we first

classify the customers according to the distances to their

closest satellite. Specifically, for each customer i∈VC, choose

the satellite s ∈VS which minimizes the sum of the distance

between CD to s and s to i.
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Fig. 5 Example of dummy satellite time windows (feasible)

Fig. 6 Example of dummy satellite time windows (infeasible)

4.3.2 Construction of Routes

The problem for constructing RS1 is essentially a VRPTW.

To construct a new route, a customer with the minimum

of the latest-service-starting time is firstly inserted into the

route. Then, the customer with the maximum savings is in-

serted step-wise. Before inserting customers into the route,

a validity check is applied for the time windows of each

customer in the route and the load for the vehicle, since

the insertion of customers will change the transfer time in

dummy satellites. After the second-echelon route is deter-

mined, dummy satellites are generated.

Similarly, the problem for RS2 is a VRP with deadline

constraints (no left end time window), and for RS3 is a clas-

sic CVRP. The corresponding routes are constructed in the

same way.

4.4 Variable Neighborhood Tabu Search Algorithm

Tabu Search (TS) is a memory-based search strategy to guide

the local search to continue its search beyond local optimal-

ity Belhaiza et al. (2014); Glover (1990). When a local op-

timum is encountered, a move to the best neighbor is made

to explore the solution space, even though it may cause a

deterioration in the objective function value. TS seeks the

best admissible move that can be determined in a reasonable

amount of time.

Variable Neighborhood Search (VNS) is a generic local

search methodology introduced by Mladenović and Hansen

(1997). It has been successfully applied to a variety of con-

texts, including graph theory, packing problems, and loca-

tion routing. The main idea of VNS is to define multiple

neighborhoods to enlarge the search space.

Our Variable Neighborhood Tabu Search Algorithm is

based on both TS and VNS. In each iteration of tabu search,

it randomly selects two neighborhoods N1 and N2, and gen-

erates two neighboring solutions sN1 and sN2. The better one

is recorded by s∗, and then updates the global best solution

sbest . Detailed procedures are shown in Algorithm 2.

Algorithm 2 Variable Neighborhood Tabu Search Algo-

rithm
Input: An instance

Output: Best solution

s0 = Greedy();

s∗ = s0, sbest = s0;

while the stopping condition is not met do

N1 = a random neighborhood;

N2 = another random neighborhood;

sN1 = choose a best solution in N1(s∗);

sN2 = choose a best solution in N2(s∗);

s∗ = best solution between sN1 and sN2;

if s∗ better than sbest then

sbest = s∗;

end if

update tabu list;

end while

4.4.1 Neighborhood Structures

In the literature, λ − interchange is one of the best neighbor-

hood structures for optimizing VRPTW. We consider two

types of λ − interchange, which are denoted as (l1, l2)−

interchange. l1 and l2 represent two continuous segments of

two different routes.

We choose to adopt (1,0)− interchange and (1,1)−

interchange. Figure 7 to 10 show several examples of λ −

interchange for the first-echelon and second-echelon routes,

where rectangles represent the depot and dummy satellites,

and circles represent customers.

Figure 7 shows an example of (1,0)− interchange op-

erator in the second echelon. Two routes (i.e., “DS1 −C1 −

C2 −C3 −C4 −DS1” and “DS2 −C5 −C6 −C7 −C8 −DS2”)
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are selected. A customer of the former route (C2) is removed

and then inserted into the latter route. Figure 8 shows an ex-

ample of (1,1)− interchange operator. A customer of the

former route (C2) and a customer of the latter route (C6) are

exchanged. For the first-echelon operators, when the dummy

satellites are moved, its associated customers are moved as

well. Take Figure 9 as an example, C3 is inserted into the

latter route with dummy satellite DS2.

In sum, (1,0)− interchange and (1,1)− interchange are

applied in all the three route planning stages to obtain 6 dif-

ferent operators, named O1d
1−0, O1d

1−1, O2
1−0, O2

1−1, O
1p
1−0, and

O
1p
1−1.

4.4.2 Solution Evaluate Strategy

In tabu search, the objective function should be evaluated

when a new solution is created by neighborhood operators.

In 2E-VRPTWSPD, the operators of different stages always

have interaction effects. For example, when a second-echelon

operator is applied, the first-echelon vehicles’ transfer time

in satellites will be changed, and the corresponding first-

echelon route will be affected. Therefore, it will cost a lot

of time to evaluate new generated solutions.

We therefore use the dummy time windows mentioned

above to improve the evaluation process of solutions. For

each dummy satellite, if its corresponding second-echelon

route is determined, the dummy time window is kept un-

changed. As the definition of dummy satellite time windows,

if a first-echelon vehicle arrives at the dummy satellite be-

fore its deadline, no time window constraints of customers

will be violated, and thus the fitness function will not change.

To be more specific, when an operator is applied, the

arrival time of dummy satellites in the first-echelon routes

may be affected. For some dummy satellite whose second-

echelon route is not changed, we can check whether its new

arrival time is earlier than the right end of its time window.

If so, there is no time window violation in this dummy satel-

lite, then we can omit the calculation for its associated cus-

tomers.

5 Computational Results

In this section, we present the computational study of our

mathematical model and heuristic algorithm to examine their

performances.

5.1 Problem Settings

To our best knowledge, there is no previous approaches stud-

ied 2E-VRPTWSPD. We hereby consider a small and a large

instance set modified from the literature.

The small-scale instances are originated from Dellaert

et al. (2019) and used to compare the exact solution with the

heuristic solution. The original instances are used to solve

multi-depot 2E-VRPTW with up to 15 customers and 3 satel-

lites. To ensure that the mathematical model can get the op-

timal solutions, we remove some customers, satellites, and

depots to obtained 2E-VRPTWSPD instances. The pickup

demand of customers is half of their delivery demand. We

set Q1 = 125 ,Q2 = 50 and τ = 0.5. The scales of instances

are 7, 10, 12 customers with 2 satellites, each type has 6 in-

stances. Each instance is represented by a notation that con-

sists of the number of satellites, number of customers, and

instance id. For example, “7-2-1” denotes the first instance

with 2 satellites and 7 customers.

For large-scale instances, we make use of instances pro-

posed by Hemmelmayr et al. (2012) for 2E-VRP. The in-

stances scale is 100 customers with 5 satellites, 100 cus-

tomers with 10 satellites, 200 customers with 10 satellites,

each type has 6 instances. To adapt to 2E-VRPTWSPD, we

generate time windows for these instances using the method

proposed by Solomon (1987), and randomly generate pickup

demand. Notice that we keep the original notations, like ”100-

10-1” or ”100-10-1b”. There is no obvious similarity be-

tween these two instances in Hemmelmayr et al. (2012).

We used the commercial solver CPLEX 12.6.3 to solve

the mathematical formulation directly. The heuristic was coded

in Java SE 1.8.0. All the experiments were conducted on an

ASUS personal computer with an AMD Ryzen™ 7 4800H

2.90GHz CPU, 8G RAM, and Windows 10 operating sys-

tem. For each small-scale instance, CPLEX ran with default

settings until finding an exact solution or stopping due to

the exhaustion of the predetermined maximum computation

time, which was set to 1 hour. For the heuristic algorithm,

we set the stop principle of both maximum number of iter-

ations (I1) and maximum number of iterations without im-

proving the best solution (I2). For small-scale instances, we

set I1 = 1000 and I2 = 200. For large-scale instances, we set

I1 = 25000 and I2 = 5000.

5.2 Results on Small-scale Instances

A direct solution of the mathematical formulation can be

obtained by the exact method of CPLEX 12.6.3 on small-

scale instances. We then use the results of small-scale in-

stances to examine the performance of our heuristic algo-

rithm. In Table 1, we list the exact and heuristic results on

the small-scale instances. Column 1 indicates the instance

name. Columns 2 and 3 show the objective value (Ob jE )

and computation time (TE ) of the exact solution obtained

by CPLEX. Columns 4 and 5 show the minimum result of

objective value executed 10 times (Ob jMinH ) and the per-

centage gap between columns 2 and 4 (GAP1). Columns 6,

7, 8 and 9 show the maximum objective value (Ob jMaxH ),
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Fig. 7 (1−0)− interchange operators for the second-echelon route.

Fig. 8 (1−1)− interchange operators for the second-echelon route.

Fig. 9 (1−0)− interchange operators for the first-echelon route.

Fig. 10 (1−1)− interchange operators for the first-echelon route.

percentage gap between columns 2 and 6 (GAP2), average

objective value (Ob jMaxH ), and the percentage gap between

columns 2 and 7 (GAP3). Column 10 shows the computa-

tion time (TH ) of the heuristic solution.

The performance measurements considered in the com-

parison are: (1) Percentage Gap (Gap): calculated as 100%∗

(Ob jH −Ob jE)/Ob jE , where Ob jH is the objective value

obtained by the heuristic; (2) CPU time of the mathematical

model or the heuristic.

From Table 1, it is observed that the mathematical model

can reach optimum on all 6 instances with 7 customers and

2 satellites, and on 8 instances out of all 18 instances. Our

heuristic algorithm can also find all these 8 optimal results.

For 17 out of 18 instances, it can find better or at least the

same results compared with the mathematical model. On all

the instances with 7, 10 or 12 customers and 2 satellites, our

heuristic algorithm costs very tiny computing power, i.e., the

maximum CPU time is smaller than 0.05s.

5.3 Results on Large-scale Instances

The comparison of heuristic solutions with exact solutions

on small-scale instances shows the effectiveness of our method.

In general, the heuristic approach is applicable in tackling

large-scale instances. Table 2 shows the results of our heuris-

tic algorithm on large-scale instances with 100 or 200 cus-

tomers and 10 or 15 satellites. The first column of Table 2

displays the instance name. The second to eighth columns

report the objective value, number of the first-echelon routes

for delivery, number of second-echelon routes, the objective

value for first-echelon in distribution, the objective value for

second-echelon and the objective value for first-echelon in

collection, respectively.

The experimental results show that our algorithm has

a good convergence performance, as we find that most in-

stances are finished due to reaching the maximum number

of iterations without improving the best solution. For the

instances with 100 customers, the algorithm is converged

within about 1 minute; for 200 customers, the solutions are
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Table 1 Exact and heuristic results on small-scale instances.

Instance Formulation Heuristic

Ob jE TE Ob jMinH GAP1 Ob jMaxH GAP2 Ob jAveH GAP3 TH

7-2-1 315.74 2.44 318.61 0.91 318.61 0.91 318.61 0.91 0.002

7-2-2 310.90 1.94 310.90 0.00 310.90 0.00 310.90 0.00 0.004

7-2-3 253.20 1.02 253.20 0.00 253.20 0.00 253.20 0.00 0.002

7-2-4 303.02 89.51 303.02 0.00 303.02 0.00 303.02 0.00 0.016

7-2-5 326.45 153.96 326.45 0.00 326.45 0.00 326.45 0.00 0.006

7-2-6 355.23 137.53 355.23 0.00 355.23 0.00 355.23 0.00 0.010

Ave 0.15 0.15 0.15

10-2-1 280.33 2052.14 280.33 0.00 280.33 0.00 280.33 0.00 0.010

10-2-2 353.31 3600.00 353.31 0.00 353.31 0.00 353.31 0.00 0.013

10-2-3 286.64 3600.00 286.64 0.00 286.64 0.00 286.64 0.00 0.029

10-2-4 385.36 3600.00 385.36 0.00 385.36 0.00 385.36 0.00 0.015

10-2-5 417.73 3600.00 406.51 -2.69 413.40 -1.04 407.28 -2.50 0.020

10-2-6 453.01 3600.00 422.82 -6.66 468.02 3.31 427.44 -5.65 0.041

Ave -1.56 0.38 -1.36

12-2-1 505.96 3600.00 362.98 -28.26 362.98 -28.26 362.98 -28.26 0.023

12-2-2 484.73 3600.00 464.18 -4.24 521.18 7.52 499.73 3.10 0.020

12-2-3 231.81 8.90 231.81 0.00 231.81 0.00 231.81 0.00 0.018

12-2-4 488.63 3600.00 375.20 -23.21 379.12 -22.41 377.95 -22.65 0.023

12-2-5 469.75 3600.00 410.37 -12.64 483.54 2.93 445.40 -5.19 0.023

12-2-6 505.96 3600.00 362.98 -28.26 362.98 -28.26 362.98 -28.26 0.021

Ave -16.10 -11.41 -13.54

Table 2 Heuristic results of large-scale instances

Instance Ob j n1 n2 n3 Ob j1 Ob j2 Ob j3 T

100-5-1 2293.21 4 27 2 551.50 1445.38 296.34 44.37

100-5-1b 2060.28 5 17 2 692.86 1071.08 296.34 56.88

100-5-2 1952.62 5 28 2 539.62 1149.64 263.36 27.97

100-5-2b 1473.74 4 17 2 431.85 778.53 263.36 12.39

100-5-3 1781.76 5 27 2 604.11 909.37 268.28 36.52

100-5-3b 1552.63 4 18 2 493.92 790.43 268.28 44.34

100-10-1 2135.61 6 27 2 598.79 1256.86 279.96 25.60

100-10-1b 1845.14 6 19 2 620.35 968.58 256.20 53.11

100-10-2 2051.30 5 27 2 377.86 1494.38 179.06 24.87

100-10-2b 1906.62 7 18 2 514.48 1212.47 179.67 63.46

100-10-3 1686.65 4 25 2 479.07 926.49 281.09 45.50

100-10-3b 1805.02 5 21 2 596.01 933.38 275.63 47.23

200-10-1 3376.97 9 48 2 978.80 2119.76 278.41 282.18

200-10-1b 2877.07 9 36 2 937.91 1647.47 291.70 226.62

200-10-2 2947.96 8 51 2 784.07 1910.94 252.95 94.05

200-10-2b 2747.89 10 33 2 992.45 1442.47 312.98 215.56

200-10-3 3444.24 8 48 2 752.27 2432.41 259.56 175.04

200-10-3b 2814.80 8 33 2 768.21 1816.63 229.97 235.26

astringed within about 5 minutes. We further provide the

convergence plot for two selected instances “100-10-3b” and

“200-10-3” in Figure 11. The plot indicates the fast conver-

gence of the algorithm in the first few iterations.

Finally, we find that the running time of the algorithm

depends more on the number of customers than the number

of satellites, because the scale of customers is much larger

than that of satellites. For large-scale instances, the distance

traveled by the second-echelon vehicle is larger than the

first-echelon vehicle. Compared with the third stage, the first

stage delivery requires more vehicle paths due to the dead-

line constraints and larger delivery demand, thus its objec-

tive function Ob j1 is larger than Ob j3.

5.4 Effects of Different Operators

Our tabu search procedure depends on six operators to ex-

ploit the search space, as mentioned in Section 4. To verify

the importance of each operator, we respectively removed

one of the operators in {O1d
1−0,O

1d
1−1,O

2
1−0,O

2
1−1,O

1p
1−0,O

1p
1−1}

from our algorithm to generate 6 variants, and then com-

pared the result of these variants with the original algorithm.
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(a) Instance 100-10-3b

(b) Instance 200-10-3

Fig. 11 The convergence plot for two instances.

To carry out comparative experiments, we used the set

of large instances as the benchmark. Table 3 reports the gap

between our algorithm and its six variants for each tested

instance. Column 1 indicates the instance. Columns 2 to 7

indicate the percentage gap between our algorithm and its

six variants, denoted as GAP1 to GAP6. A negative value of

GAPn indicates that the result is better.

As shown in Table 3, our algorithm performs better than

6 variants in most of the test instances. Specifically, the re-

sult of our algorithm is the best one in 14 instances, except

100-5-3, 100-10-1b, 100-10-3b and 200-10-2b. The biggest

percentage gap between the best solution with our heuristic

is 1.21. Considering the random factor of the heuristic, this

analysis implies that excluding the use of any operator will

impair the solution quality.

Table 3 Gaps of the proposed algorithm and its six variants.

Instance GAP1 GAP2 GAP3 GAP4 GAP5 GAP6

100-5-1 32.20 7.84 22.00 10.88 11.88 4.47

100-5-1b 33.63 6.10 35.96 8.73 9.20 10.03

100-5-2 21.45 5.11 32.67 4.10 6.74 7.66

100-5-2b 19.90 0.67 25.59 2.68 9.49 6.51

100-5-3 25.87 -0.24 26.87 7.96 13.79 6.07

100-5-3b 25.04 1.34 21.41 11.05 7.88 9.85

100-10-1 11.04 2.45 18.67 5.24 3.58 6.55

100-10-1b 11.79 -0.15 29.84 2.05 12.39 4.80

100-10-2 16.35 4.72 21.91 14.38 7.02 10.00

100-10-2b 15.03 5.88 34.64 6.99 2.69 3.21

100-10-3 6.63 6.54 18.30 3.38 8.88 2.88

100-10-3b 16.23 -1.21 29.35 2.62 5.71 2.07

200-10-1 9.60 1.96 24.53 12.28 10.94 5.87

200-10-1b 18.18 10.66 36.68 9.81 13.41 10.73

200-10-2 10.91 1.26 15.39 3.69 3.26 3.37

200-10-2b 9.55 -0.02 26.95 7.92 5.78 4.97

200-10-3 10.02 3.90 17.87 11.07 5.78 7.24

200-10-3b 29.28 10.34 35.89 10.51 16.54 10.43

Table 4 Time cost for heuristic with or without satellite time windows

Instance T0 T1 GAP

100-5-1 58.27 72.00 23.57

100-5-1b 59.32 63.82 7.58

100-5-2 56.23 69.74 24.02

100-5-2b 55.63 61.52 10.60

100-5-3 58.31 67.73 16.16

100-5-3b 55.63 60.58 8.90

100-10-1 56.92 67.89 19.26

100-10-1b 58.46 64.01 9.51

100-10-2 56.57 65.72 16.19

100-10-2b 58.22 61.20 5.12

100-10-3 56.25 67.24 19.52

100-10-3b 58.87 68.30 16.01

200-10-1 251.96 324.34 28.73

200-10-1b 259.35 290.85 12.15

200-10-2 249.78 335.35 34.26

200-10-2b 255.33 286.17 12.08

200-10-3 253.92 370.01 45.72

200-10-3b 255.88 339.62 32.73

Ave 19.00

5.5 Impact of the Satellite Time Windows

As described in Section 4, our heuristic algorithm uses dummy

satellite time windows to speed up the search. To evalu-

ate its merit, we removed this technique from our algorithm

and tested the reduced execution time. We conducted exper-

iments on 18 large-scale instances. Notice that removing the

satellite time windows will not change the final solution, so

we omit the presentation of objective values.

Table 4 lists the experimental results, which include the

running time with/without satellite time windows (T0/T1),

and the percentage gap (GAP) calculated by 100% ∗ (T1 −

T0)/T0. The last row summarizes the average result over 18

instances.
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From this table, we find that the algorithm with satellite

time windows is faster on all 18 instances. To be specific,

the satellite time windows is able to speed up the search pro-

cedure with 19.00% on average. For the best one (instance

200-10-3), the percentage gap can reach 45.72%. The exper-

iments demonstrate the importance of introducing the satel-

lite time windows to accelerate the algorithm.

6 Conclusions

In this paper, we introduce a two-echelon vehicle routing

problem with time windows and simultaneous pickup and

delivery (2E-VRPTWSPD). It extends the classic two-echelon

vehicle routing problem (2E-VRP) and has several applica-

tions in practice. A mathematical model is proposed to de-

scribe the problem. We then present a variable neighborhood

tabu search heuristic algorithm to solve the problem. To test

our algorithm, we generate two instance sets of small and

large scale based on the existing instance sets. The results

show that our heuristic approach is effective and efficient to

find good solutions for 2E-VRPTWSPD. Furthermore, we

show by statistical analysis that our strategies of combing

multiple neighborhood operators and including the usage of

satellite time windows can significantly improve the perfor-

mance and speed of the heuristic.

Our future research on 2E-VRPTWSPD will focus on

the design of more powerful valid inequalities and exact

algorithms. Branch-and-price or other algorithms based on

column generation are a class of the most successful exact

algorithms to solve many routing problems. We believe that

they can be applied to solve 2E-VRPTWSPD to optimality.
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A Arc-Based Formulation for 2E-VRPTWSPD

To model the 2E-VRPTWSPD, we introduce dummy node sets V s
DS

for each satellite s. V ′
S = ∪

s∈VS

V s
DS represents node set of the first eche-

lon. Let A′
1 =

{

(i, j) | i, j ∈V0 ∪V ′
S, i 6= j

}

and A′
2 = {(i, j) | i, j ∈V ′

S ∪
VC, i 6= j}\{(i, j) | i, j ∈V ′

S, i 6= j}.

Inspired by the ideas from Liu et al. (2018) and Li et al. (2019),

we first formulate 2E-VRPTWSPD as a mixed-integer programming

formulation, based on the used vehicles in the first and second echelon.

The variables in this model are defined as follows.

– x1k
i j : a binary decision variable and relative to the first echelon ve-

hicles, which is equal to 1 if arc (i, j) ∈ A′
1 is traveled by vehicle

k ∈ K1 for distribution, and 0 otherwise;

– x2k
i j : a binary decision variable and relative to the first echelon ve-

hicles, which is equal to 1 if arc (i, j) ∈ A′
1 is traveled by vehicle

k ∈ K1 for collection, and 0 otherwise;

– w1k
s : a decision variable representing the quantity delivered to satel-

lite s ∈V ′
S by vehicle k ∈ K1;

– w2k
s : a decision variable representing the quantity collected to satel-

lite s ∈V ′
S by vehicle k ∈ K1;

– u1k
s : a decision variable representing the position of satellite s ∈V ′

S

in the route of vehicle k ∈ K1 for distribution;

– u2k
s : a decision variable representing the position of satellite s∈V ′

S

in the route of vehicle k ∈ K1 for collection;

– fi j: a decision variable representing the amounts of the delivery

commodities travel through arc (i, j) ∈ A′
2;

– gi j : a decision variable representing the amounts of the pickup

commodities travel through arc (i, j) ∈ A′
2;

– yv
i j : a binary decision variable and relative to the second echelon

vehicles, which is equal to 1 if vehicle v ∈ K2 travels through arc

(i, j) ∈ A′
2, and 0 otherwise;

– ak
s : a decision variable representing the arrival time of the first-

echelon vehicle to satellite s ∈V ′
S in the route of vehicle k ∈ K1;

– av
i : a decision variable representing the arrival time of the second-

echelon vehicle to customer i ∈VC in the route of vehicle v ∈ K2;

– sk
s : a decision variable representing the service time of satellite

s ∈V ′
S in the route of vehicle k ∈ K1.

With these variables and parameters, we can formulate the follow-

ing mixed integer program:

min ∑
k∈K1

∑
(i, j)∈A′

1

ci j

(

x1k
i j + x2k

i j

)

+ ∑
v∈K2

∑
(i, j)∈A′

2

ci jy
v
i j (1)

subject to

∑
(i, j)∈A′

1

x1k
i j = ∑

( j,i)∈A′
1

x1k
ji , ∀i ∈V0 ∪V ′

S,k ∈ K1 (2)

∑
(i, j)∈A′

1

x2k
i j = ∑

( j,i)∈A′
1

x2k
ji , ∀i ∈V0 ∪V ′

S,k ∈ K1 (3)

∑
(0, j)∈A′

1

x1k
0 j ≤ 1, ∀k ∈ K1 (4)

∑
(0, j)∈A′

1

x2k
0 j ≤ 1, ∀k ∈ K1 (5)

∑
k∈K1

∑
(i, j)∈A′

1

x1k
i j ≤ 1, ∀i ∈V ′

S (6)

∑
k∈K1

∑
(i, j)∈A′

1

x2k
i j ≤ 1, ∀i ∈V ′

S (7)

u1k
i +1 ≤ u1k

j +M
(

1− x1k
i j

)

, ∀i ∈V ′
S, j ∈V ′

S,k ∈ K1 (8)

1 ≤ u1k
j +M

(

1− x1k
0 j

)

, ∀ j ∈V ′
S,k ∈ K1 (9)

u2k
i +1 ≤ u2k

j +M
(

1− x2k
i j

)

, ∀i ∈V ′
S, j ∈V ′

S,k ∈ K1 (10)

1 ≤ u2k
j +M

(

1− x2k
0 j

)

, ∀ j ∈V ′
S,k ∈ K1 (11)

w1k
s ≤ M ∑

(s,i)∈A′
1

x1k
si , ∀s ∈V ′

S,k ∈ K1 (12)

w2k
s ≤ M ∑

(s,i)∈A′
1

x2k
si , ∀s ∈V ′

S,k ∈ K1 (13)

∑
s∈V ′

S

w1k
s ≤ Q1, ∀k ∈ K1 (14)

∑
s∈V ′

S

w2k
s ≤ Q1, ∀k ∈ K1 (15)

∑
(i, j)∈A′

2

yv
i j = ∑

( j,i)∈A′
2

yv
ji, ∀i ∈VC ∪V ′

S,v ∈ K2 (16)

∑
v∈K2

∑
( j,i)∈A′

2

yv
i j = 1, ∀i ∈VC (17)

∑
v∈K2

∑
j∈VC

yv
i j = ∑

k∈K1

∑
(i, j)∈A′

1

x1k
i j , ∀i ∈V ′

S (18)

∑
i∈V ′

S

∑
(i, j)∈A′

2

yv
i j ≤ 1, ∀v ∈ K2 (19)

∑
( j,i)∈A′

2

f ji = ∑
(i, j)∈A′

2

fi j +di, ∀i ∈VC (20)

∑
( j,i)∈A′

2

g ji = ∑
(i, j)∈A′

2

gi j − pi, ∀i ∈VC (21)

∑
k∈K1

w1k
s = ∑

(s,i)∈A′
2

fsi, ∀s ∈V ′
S (22)

∑
k∈K1

w2k
s = ∑

(s,i)∈A′
2

gis, ∀s ∈V ′
S (23)

sk
s = τ ∗w1k

s , ∀s ∈V ′
S,k ∈ K1 (24)

(d j − p j)∗ ∑
v∈K2

yv
i j ≤ fi j +gi j

≤ Q2 ∗ ∑
v∈K2

yv
i j +(pi −di)∗ ∑

v∈K2

yv
i j

∀(i, j) ∈ A′
2 (25)

ak
j ≥ ak

i + ci j + sk
i −M

(

1− x1k
i j

)

,

∀i ∈V ′
S, j ∈V ′

S,k ∈ K1 (26)

ak
j ≥ c0 j −M

(

1− x1k
0 j

)

,

∀ j ∈V ′
S,k ∈ K1 (27)

av
j ≥ ak

i + ci j + sk
i −M



2− yv
i j − ∑

(h,i)∈A′
1

x1k
hi



 ,

∀i ∈V ′
S, j ∈VC,k ∈ K1,v ∈ K2 (28)

av
j ≥ av

i + ci j + si −M
(

1− yv
i j

)

,

∀i ∈VC, j ∈VC,v ∈ K2 (29)
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av
i ≥ ei, ∀i ∈VC,v ∈ K2 (30)

av
i ≤ li, ∀i ∈VC,v ∈ K2 (31)

x1k
i j ,x

2k
i j ∈ {0,1}, ∀(i, j) ∈ A′

1,k ∈ K1 (32)

w1k
s ,w2k

s ,u1k
s ,u2k

s ≥ 0, ∀s ∈V ′
S,k ∈ K1 (33)

fi j,gi j ≥ 0, ∀(i, j) ∈ A′
2 (34)

yv
i j ∈ {0,1}, ∀(i, j) ∈ A′

2,v ∈ K2 (35)

sk
s ,a

k
s ≥ 0, ∀s ∈V ′

S,k ∈ K1 (36)

av
i ≥ 0, ∀i ∈VC,v ∈ K2 (37)

The objective function (1) minimizes the sum of the first-echelon

and second-echelon traveling cost. Constraints (2)-(3) are the flow con-

servation constraints for each satellite. Constraints (4)-(7) ensure that

a dummy satellite can be visited at most once. Constraints (8)-(11)

avoid the presence of sub-tours in the first echelon. Constraints (12)-

(13) guarantee that a first-echelon vehicle can conduct distribution or

collection at a satellite, only if the vehicle visits that satellite. Con-

straints (14)-(15) are the capacity constraints of each first-echelon ve-

hicle. Constraints (16) are the flow conservation constraints in the sec-

ond echelon. Constraints (17) ensure that each customer is visited only

by one vehicle. Constraints (18) ensure that each dummy satellite is

served by one second-echelon vehicle. Constraints (19) ensure that

each second-echelon vehicle is used at most once. Constraints (20)-

(21) are the flow conservation constraints for distribution and collec-

tion, respectively. Constraints (25) bound the flow of goods traveling

on each arc not exceeded the capacity of the second-echelon vehicle.

Constraints (22) ensure that the amount of distribution to the customers

from a satellite is equal to that of delivery to this satellite from the de-

pot. Constraint (23) guarantee that the amount of collections from the

customers to a satellite is equal to that of pickup from this satellite

to the depot. Constraints (24) build the relation between outturn and

service time on each satellite. Constraints (26)-(29) calculate the ar-

rival time of vehicles to satellite and customers. Constraints (28) relate

the arrival time of a first-echelon vehicle and the departure time of a

second-echelon vehicle if they meet at a satellite to carry a demand. It

denotes that a second-echelon vehicle can depart from a satellite only

after the freight is delivered to the satellite and ready to be delivered.

Constraints (30) and (31) are hard time window constraints for the cus-

tomers. Constraints (32)-(37) are the domain constraints.
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