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Abstract: Feature selection is an important data preprocessing method in data mining and machine learning, yet it faces the 

challenge of “curse of dimensionality” when dealing with high-dimensional data. In this paper, a self-adaptive level-based 

learning artificial bee colony (SLLABC) algorithm is proposed for high-dimensional feature selection problem. The 

SLLABC algorithm includes three new mechanisms: (1) A novel level-based learning mechanism is introduced to accelerate 

the convergence of the basic artificial bee colony algorithm, which divides the population into several levels and the 

individuals on each level learn from the individuals on higher levels, especially, the individuals on the highest level learn 

from each other. (2) A self-adaptive method is proposed to keep the balance between exploration and exploitation abilities, 

which takes the diversity of population into account to determine the number of levels. The lower the diversity is, the fewer 

the levels are divided. (3) A new update mechanism is proposed to reduce the number of selected features. In this 

mechanism, if the error rate of an offspring is higher than or is equal to that of its parent but selects more features, then the 

offspring is discarded and the parent is retained, otherwise, the offspring replaces its parent. Further, we discuss and analyze 

the contribution of these novelties to the diversity of population and the performance of classification. Finally, the results, 

compared with 8 state-of-the-art algorithms on 12 high-dimensional datasets, confirm the competitive performance of the 

proposed SLLABC on both classification accuracy and the size of the feature subset.  

Keywords: Artificial bee colony algorithm, Feature selection, Classification, High-dimensionality 

1 Introduction 

Feature selection (FS) is an important data preprocessing method in data mining. With the rapid development of data 

acquisition technology, the number of features collected in many applications increases greatly. However, not all of them are 

related to the given target. Irrelevant and redundant features may even reduce the performance of classification. This curse 

of dimensionality is a major obstacle in machine learning and data mining (Gheyas and Smith 2010). Hence, FS aims to 

choose a small number of relevant and non-redundant features to achieve similar or even better classification performance 

than using all features. FS methods can be categorized into three types: wrapper, filter and embedded. Filter methods 

analyze intrinsic properties of features and rank their importance, ignoring objective function (Rakshit et al. 2013). Wrapper 

methods utilize objective function to evaluate the quality of different feature subsets and select the best one (Grande et al. 

2007). Compared with filter methods, wrapper methods usually obtain higher accuracy. However, they have high 

computational cost, especially for high-dimensional, large datasets. Embedded methods attempt to reduce the computation 

cost of reclassifying different subsets that are performed in wrapper methods. They perform feature selection in the process 

of training. Therefore, the performance of an embedded method is usually specific to the given learning algorithms, which 

results in poor robustness with respect to the change of learning algorithms (Rao et al. 2019). In this study, we focus on the 

wrapper method. 

In principle, FS is an NP-hard combination problem. Given a feature set with n  features, the number of all possible 

feature subsets is 2n , which makes it too costly and restrictive practically to specify the best feature subset with traditional 

exhaustive search approaches since the size of the search space increases exponentially as the number of features increases. 

Therefore, evolutionary computation (EC) techniques attract attention due to their global search strategies and have been 

proven to be effective in dealing with the FS problems (Oh et al. 2004). There are many typical EC techniques, such as 



genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) and differential evolution (DE). 

All these EC techniques show the effectiveness in dealing with feature selection. Details will be described in the next 

section. 

In this paper, we concentrated on a recent EC technique, i.e., artificial bee colony (ABC) Algorithm, which was 

proposed by Karaboga in 2005 (Karaboga 2005) and simulates the intelligent foraging behaviors of a honey bee swarm. 

Compared with other evolutionary algorithms, ABC algorithm has many advantages, such as strong robustness, high 

flexibility, simple structure, few control parameters and strong ability to explore a wide space. Accordingly, ABC is chosen 

for feature selection in this paper. However, when dealing with FS problem, the basic ABC algorithm has some drawbacks, 

including a slow convergence, insufficient exploitation and the best solution in the bee population is memorized but is not 

used to guide the population update.  

To address the above issues, many studies have been developed, however, few of them are developed for 

high-dimensional FS, and most of them aim to improve the classification performance by combining ABC algorithm with 

other algorithms, which have more complex parameters to control than a single algorithm (reviewed at length in section 2). 

Therefore, we propose a self-adaptive level-based learning artificial bee colony algorithm (SLLABC) for feature selection 

given as follows:  

(1) Introducing a novel level-based learning mechanism into ABC algorithm. The bees are divided into high to low 

levels according to their fitness. each bee “emulates those better than itself” from higher levels, except for the bees in the 

highest-level learning from each other. This novel mechanism effectively improves the exploitation abilities of the ABC 

algorithm, and accelerates the convergence of the ABC algorithm. 

(2) Proposing a self-adaptive method for determining the number of levels. The number of levels is dynamically and 

automatically adjusted by diversity of individuals during evolution. The higher the diversity of individuals, the more the 

levels and the lower the probability of dominant individuals being learned, and vice versa. This method preserves high 

exploration in early evolution and promotes high exploitation in later evolution. 

(3) Proposing a new update strategy for optimal individuals. Different from some single-objective methods that only 

consider the accuracy, as well as the multi-objective methods that adopt multi-objective fitness functions, this strategy takes 

both error rate and subset size into consideration but gives priority to the lower error rate, which impels the population to 

approach the optimal subset with both the minimum error rate and the smallest size. 

The rest of this paper is organized as follows. Section 2 reviews the relevant literature on EC-based feature selection 

algorithms. Section 3 introduces the basic artificial bee colony algorithm. In Section 4, the SLLABC algorithm is proposed 

based on three new strategies. The experimental results are shown in Section 5. Finally, conclusions are given in Section 6. 

2 Related Works 

To eliminate the negative impact of the irrelevant and redundant features, a variety of feature selection methods have 

been proposed. However, due to the inefficiency of traditional search approaches in feature selection which is a complex 

combinatorial optimization problem, various EC-based feature selection algorithms have been proposed. The forerunner is 

Siedlecki and Sklansky who prove that genetic algorithm (GA) is a powerful tool for feature selection when the 

dimensionality of the given feature set is greater than 20 (Siedlecki and Sklansky 1993). After that, to further improve the 

performance of GA for feature selection, many different improvements have been proposed in search mechanisms 

(Demirekler and Haydar 1999; Jeong et al. 2015; Wang et al. 2020) and fitness function (Canuto and Nascimento 2012; 

Sousa et al. 2013). A feature selection method (Derrac et al. 2009) based on GA utilizes the cooperative coevolution (CC) 

framework (Potter and Jong 2000) but is not investigated in the large datasets. With the same idea of “divide and conquer”, 

particle swarm optimization (PSO) achieves better performance than GA algorithm (Song et al. 2020; Van den Bergh and 

Engelbrecht 2004). However, the traditional personal best and global best updating mechanism in PSO limits its 



performance for feature selection and the potential of PSO for feature selection has not been fully investigated. Therefore, 

Xue et al. have proposed new initialization strategies and new personal best and global best updating mechanisms (Xue et al. 

2014b). As the dimension of the problem increases, most PSO-based FS methods consume a significant amount of memory 

and require a high computational cost. A variable-length PSO (Tran et al. 2018) has been developed to deal with 

high-dimensional data. Compared with fixed-length PSO methods, the proposed variable-length PSO can achieve much 

smaller feature subsets with significantly higher classification performance in much shorter time. A PSO variant namely 

competitive swarm optimizer (CSO) directly adopts predominant particles in the current swarm to guide the update of 

particles (Cheng and Jin 2015), the diversity of this optimizer is greatly promoted and thus shows good performance in 

dealing with large scale optimization. In Ref. (Gu et al. 2018), the CSO is applied to high dimensional FS problem. Recently, 

a hybrid CSO (Ding et al. 2020) algorithm has been proposed to improve the drawbacks of the original CSO with low 

computational efficiency and avoid falling into local optimum. The CC framework has been applied to differential evolution 

(DE) as well, namely DECC (Shi et al. 2005). DE is also a very popular evolutionary algorithm used in FS problems. Xue et 

al. designed a DE-based multi-objective feature selection algorithm (Xue et al. 2014a). After that, a binary DE variant with 

self-learning (MOFS-BDE) is employed to improve the classification performance of DE (Zhang et al. 2020). Since FS is a 

discrete combinatorial problem, it has been widely achieved by ant colony optimization (ACO) which was designed to solve 

discrete optimization problems originally. Interestingly, the CC framework has also been applied to ACO algorithm (Vieira 

et al. 2010). However, ACO usually represents FS as a graph problem that restricts the scalability of the algorithm and the 

interaction between features. Hence, some hybrid algorithms of ACO and other EC algorithms have been proposed to 

improve its scalability, such as a hybrid algorithm of ACO and GAs (Hamamoto et al. 2015), three mechanisms for hybrid 

ACO-PSO based approaches for feature selection (Menghour and Souici-Meslati 2016). Recently, Meenachi and 

Ramakrishnan have hybridized ACO and fuzzy rough set to select global optimal features (Meenachi and Ramakrishnan 

2020). Except for the above algorithms, many other EC-based feature selection algorithms have also been developed. Since 

too many studies exist, we cannot review them all. Here, to save space, we only list the above typical works. For a 

comprehensive review of EC-based algorithms, readers can refer to Ref. (Xue et al. 2016) and Ref. (Nguyen et al. 2020). 

This paper concentrated on the ABC-based FS algorithm. More and more papers have developed ABC variants for FS 

in the past decade. Gao et al. claimed that the ABC is good at exploration but poor at exploitation. In order to overcome this 

issue, opposition-based learning method and chaotic maps are used in the initialization of the algorithm, and the update rule 

of basic algorithm is replaced with a new update rule by considering the best solution in the population (Gao et al. 2011). A 

discrete binary ABC variant (DisABC) substantially modifies the search mechanism by using the Jaccard similarity 

coefficient for feature selection problems (Hancer et al. 2015). An ABC variant namely CLABC (Cooperative learning ABC) 

utilizes a cooperative learning strategy with modified search mechanisms and multiple search equation (Harfouchi and 

Habbi 2015). In another study, the population of ABC is divided into two groups, called diversity population-DP and 

convergence population-CP. In CP, the promising food sources are stored to improve convergence ability of the algorithm, 

and historical unpromising food sources are stored in DP to maintain diversity of the population (Cui et al. 2018). In order 

to improve the local search capability of the basic algorithm, a quick ABC algorithm (Karaboga and Gorkemli 2014) and 

some update strategies based on normal distribution have been proposed in Ref. (Babaoglu 2015). To overcome slow 

convergence issue and tendency to local optimum of basic ABC, opposition-based learning and generalized 

opposition-based learning have been integrated with the basic ABC (Zhou et al. 2015). 

Despite many ABC variants have been proposed, few of them are developed for high-dimensional FS. In other words, 

the most existing ABC variants are at the cost of higher computational complexity and more complex algorithm 

implementation. 

Comparing the ABC algorithm with other swarm intelligence algorithms, one of its advantages is that exploration and 



development are clearly separated. Particularly, the employed bees and the onlooker bees that focus on neighboring 

solutions perform exploitation, while the scout bees that focus on renewing random solutions perform exploration. However, 

many studies combine ABC with other optimization algorithms to keep the balance between exploration and exploitation. 

ABC has been combined with DE to perform FS for classification in ABC-DE (Zorarpacı and Özel 2016). This algorithm 

contains a new binary neighborhood search mechanism and a modified onlooker bee process for the ABC algorithm; it also 

has a new binary mutation phase for the DE algorithm. In another study, a hybrid study based on ABC and quantum 

evolutionary algorithm has been proposed and ABC is used for improving the local search capability of the hybrid algorithm 

(Duan et al. 2010). By combing the characteristics of ACO and ABC algorithms, a novel hybrid algorithm AC-ABC has 

been proposed to optimize feature selection (Shunmugapriya and Kanmani 2017). In this variant, ants are committed to 

exploiting the optimal feature subset, and the bees use the feature subset generated by ants as their food source.  

Although the above hybrid algorithms achieve promising results, they also have more parameters than a single 

algorithm, including the parameters from both basic algorithms and the parameters to control the hybridization. Given the 

clear separation between exploration and exploitation, a novel search mechanism was introduced into ABC algorithm in this 

study to control them instead of hybridizing the ABC algorithm with other algorithms. 

3 Artificial Bee Colony Algorithm 

In the basic ABC algorithm, the colony of artificial bees is divided into three types: employed bees, onlooker bees and 

scout bees. The employed bees search for food sources and share their information with onlooker bees. The onlooker bees 

select one of the food sources according to the information from employed bees, and exploit the neighborhood space of the 

food sources to produce a new food source. An employed bee whose food source has been improved through a 

predetermined number of trials becomes a scout bee and starts to randomly search for a new food source. The basic 

implementation of ABC comprises four phases: 

(1) Initialization phase: The algorithm randomly produces food sources. Each food source is described as a vector in 

the search space:  ,1 ,2 ,, ,...,
i i i i D

x x x x ,and is generated by Eq. (1): 

 min max min

, (0,1)( )i j j j jx x U x x    (1) 

Where,  1,2,...,i SN and SN  is the number of the food source and is equal to the number of employed bees or onlooker 

bees.  1,2,...,j D and D  is the dimensionality of the search space. ,i jx is the j th dimension of 
ix . (0,1)U  is a random 

variable which distributed uniformly, min

jx  and max

jx  are the maximum and minimum boundary value, respectively. 

(2) Employed bee phase: Each employed bee is associated with a food source. Employed bees need to modify the 

position of their food source to find new better ones. Thereby, they learn from a neighbor source 
kx  which is selected 

randomly among all sources except for itself. The new food source is produced by Eq. (2): 

  , , , , ,'i j i j i j i j k jx x x x    (2) 

Where, 
ix  is the current food source, ,i j is a uniformly distributed random value within [-1,1]. After 'ix  is produced, its 

fitness value is evaluated and compared with 
ix . If 'ix  is better than 

ix , 'ix  replaces 
ix  to enter next iteration and its 

counter holding the number of trials is reset to 0. Otherwise, the current source 
ix  is kept into next iteration and its counter 

holding the number of trials is increased by 1. 

(3) Onlooker bee phase: After each iteration, all employed bees give information about their sources to onlooker bees. 

Each onlooker bee selects a food source according to the fitness values by roulette-wheel scheme, where the better the 

fitness value of the source, the higher the probability of being selected. The probability value is calculated by Eq. (3): 
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Where, 
ifit  is the fitness value of source 

ix , which is calculated by Eq. (10). After calculating the probability value of each 

source, a random number (0,1)rand  is generated to determine which source to choose. If (0,1)ip rand ,
ix  is chosen to 

update just as in the employed bee phase. 

(4) Scout bee phase: Each source has a counter which is zero at the beginning. If the counter holding the number of 

trials exceeds the predefined threshold value, its corresponding food source will be abandoned and replaced by a new food 

source, which is generated by Eq. (1). 

When the ABC algorithm is applied to feature selection, we abstract each food source into a feature subset, and the 

quality of the food source is the fitness value of the feature subset. Each individual is represented with a binary string. "1" in 

the string means the feature is selected and "0" means the feature is not selected. 

4 The proposed method 

4.1 A novel level-based learning strategy 

Yang et al. (Yang et al. 2017) proposed a level-based learning (LL) mechanism for PSO, namely level-based learning 

swarm optimizer (LLSO), and apply it to continuous space optimization problems. In LLSO, two particles are selected from 

two different levels to instruct the current particle to update the position, and the particles in the highest level directly enter 

the next iteration without update. Due to the difference between ABC and PSO, a novel LL mechanism is proposed for 

ABC-based feature selection to solve the problem in discrete space. 

The novel LL mechanism is described as follows: 

(1) The individuals in the population are sorted in ascending order of the fitness values firstly. 

(2) The sorted population is divided into NL  levels, the individuals with good fitness values are assigned to high 

levels, and the individuals with poor fitness values are assigned to low levels. The number of individuals in each level is the 

same. Note that the whole swarm may not be equally partitioned by /NP NL . In this situation, we assign the last %NP NL  

individuals into the lowest level.  

(3) Each individual “emulates those better than itself” by learning from a random individual in higher levels, and the 

individuals in the highest level learn from a random individual in the same level to update their positions. 

To have a better understanding of the novel LL mechanism, we take an example in Fig. 1, in which the population is 

divided into four levels. Level1 is the highest level, and Level4 is the lowest level. According to the above process, each 

individual in Level4 needs to learn from an individual randomly selected in Level3 or Level2 or Level1, each individual in 

Level3 needs to learn from one individual randomly selected in Level2 or Level1, each individual in Level2 needs to learn 

from one individual randomly selected in Level1, and each individual in Level1 learns from another individual randomly 

selected in the same level. In short, kx  in Eq. (2) is selected randomly from many individuals in the selected level which is 

one of the higher levels.  

Obviously, the number of candidate exemplars for individuals in different levels is different. In other words, as the 

level that an individual belongs to goes higher, this individual has fewer exemplars in the higher levels in total to learn from. 

This level-based learning strategy encourages more exploration among individuals in lower levels and more exploitation 

among those in higher levels. 

 



 

Fig.1 The framework of the novel level-based learning strategy. 

4.2 A self-adaptive method for determining the number of levels  

The number of levels NL  has an important impact on the performance of feature selection. Yang et al. (Yang et al. 

2017) believe that different data sets have different numbers of levels, and then proposed a dynamic version of LLSO 

(DLLSO) to determine the number of levels. The description of DLLSO is as follows: Firstly, to input a set containing 

different integers that represent the candidate numbers of levels. Then, at each generation, LLSO selects an integer from the 

set based on their probabilities, and the performance of LLSO with this level number is recorded at the end of the generation. 

The greater the improvement in the fitness value of the current optimal solution is, the more likely it is to choose this integer 

as NL  in the next iteration.  

The method of determining the number of levels by DLLSO needs to give a predefined set of candidate integers 

according to the given problem, which is hard to be given successfully. Therefore, a self-adaptive method to determine NL  

is proposed in this study. The basic idea of this method is to use the diversity of the population, i.e., the similarity of 

individuals within the population, to obtain the series NL. The details are as follows: 

(1) The distance between individuals is used to measure the similarity between individuals. In feature selection, the 

value of each dimension of individuals is 0 or 1, so Hamming distance is used to measure the similarity between individuals, 

which is defined as follows: 

 , , ,

1

D

i j i d j d

d

H x x


   (4) 

Where, ,i jH  is the Hamming distance between ix  and jx , ix  and jx  are two different individuals in the 

population, D  is the dimensionality of the search space.  

Then the average diversity tAve  of the population in the t th iteration is calculated as Eq. (5). 
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Where ()mean  denotes the mean function, and NP  is the population size. 

(2) Due to mutual learning, the individuals in the population tend to be similar during evolution, which leads to a 

decrease in the average diversity of the population. To avoid a sharp decline in the exploration performance in the early 

iteration, we divide the population into more levels to enhance the diversity of level selection and reduce the probability of 

individuals in dominant levels to be learned owing to the small number of individuals in each level, which can avoid a sharp 

decline in population diversity, while in later iterations, the diversity in individual selection becomes more important. 

Increasing the probability of dominant individuals being learned is beneficial for the colony to exploit the search space more 

intensively. Therefore, the decline rate of the average diversity is used to determine the NL  in the current iteration. The 

decline rate of the average diversity can be calculated from the following formula:  



  
2, 2

, 2

,

temp

NL fix temp temp NP

NP temp NP


  
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 (6) 

where, the lower and upper bounds of NL  are 2 and NP , respectively. ( )fix temp  returns the maximum integer which is 

not more than temp . temp  is calculated as follows： 

 
0

tAve
temp NP

Ave
   (7) 

Where, 
tAve  is the average diversity of the population at t th iteration, and 0Ave  is the average diversity after 

initializing. 

Compared with DLLSO that gives a predefined set, our method of determining NL  by using the average diversity of 

the population is simple and easy to implement. It not only saves a lot of parameter trial work but also has good 

performance in balancing exploration and exploitation. The experiments in section 4 will show the comparative results of 

the two methods.  

4.3 A new mechanism for updating the individuals 

In ABC algorithm, the update mechanism is very important to the performance of the algorithm. If the food source in 

the employed bee or onlooker bee phase is not updated for a long time, it will be abandoned and reinitialized to produce a 

new food source, which reduces the convergence speed of the algorithm. Meanwhile, FS mainly contains two objectives, i.e., 

minimizing the classification error rate and minimizing the number of selected features, simultaneously. However, in most 

feature selection algorithms, the fact that the individuals with the same error rates may select different features is not taken 

into consideration. 

On the one hand, for two individuals with the same fitness value, the number of features they select may be different. 

For example, there are two individuals  1 1 0 0 1 1x   and  2 1 1 1 1 1x   with the same fitness value, and 2x  selects five 

features, which is more than 1x . If 2x  is chosen to instruct the current individual to update, it increases the dimension of 

the solution, which is not conducive to minimize the number of selected features.  

On the other hand, for two individuals with both the same error rates and the same number of selected features, the 

features they select may be different. For example, there are two individuals  3 0 1 0 1 1x   and  4 1 1 1 0 0x   with the 

same fitness value and the same number of selected features. However, they select different features. Specifically, 3x  

selects the second, the fourth and the fifth features, while 4x  selects the first, the second and the third features. 

Therefore, a new update mechanism is proposed to increase the update frequency of food sources and minimize the 

number of selected features. Let ( )sum x  represent the number of features selected by individual x , and ( )fitness x  be the 

fitness value of the individual (the smaller the better). Therefore, individuals are updated in the following way:  

(1) If ( ') ( )t t
fitness x fitness x , then +1 't t

x x ; 

(2) If ( ') ( )t t
fitness x fitness x  and ( ') ( )t t

sum x sum x , then +1 't t
x x ; 

(3) If ( ') ( )t t
fitness x fitness x  and ( ') ( )t t

sum x sum x , then +1 't t
x x ; 

(4) Else, +1t t
x x . 

where t
x  and 't

x  denote the current individual and its offspring (i.e., the candidate individual), respectively. 1t
x

  

denotes the individual entering the next iteration. To give readers a clearer understanding of this mechanism, we give an 

example, as shown in Fig.2:  

There are nine cases of whether an individual updates or not in Fig.2. The first three cases indicate that if the fitness 

value of t
x  is larger than 't

x , it will be replaced by 't
x  regardless of the number of features it selects, which is shown as 



case 3-6. If t
x  has the same fitness value with 't

x  and its number of selected features is the same as or more than 't
x , it 

will also be replaced by 't
x , otherwise it will enter the next iteration directly. In another three cases, t

x  with smaller 

fitness value than 't
x  will enter the next iteration without update. The impact of the new update mechanism on the 

performance of the algorithm will be analyzed in the section of experimental studies. 

 

Fig.2 An example of an individual updating by using the new mechanism 

4.4 A self-adaptive level-based learning artificial bee colony algorithm 

 Notably, ABC algorithm was originally proposed for continuous optimization. To make the ABC algorithm be suited 

for feature selection, we introduce a transfer function to convert the population from continuous values into discrete values. 

This idea has been showed to be effective in some feature selection methods (Ghamisi et al. 2014; Mafarja et al. 2018; 

Mohammadi and Abadeh 2014; Zhang et al. 2015). The transfer function is given as follows: 
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Where ,i dx  is the position of the ith bee in dimension d . rand  is a random number in [0, 1]. The function of ()sigmoid  

is formulated as 

 
10( 0.5)

1
( )

1
sigmoid

e
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 (9) 

We combined the novel level-based learning mechanism, the self-adaptive method for determining the number of 

levels and the new update mechanism to develop an improved artificial bee colony algorithm, namely self-adaptive 

level-based learning artificial bee colony algorithm (SLLABC) for feature selection. The pseudo code of the SLLABC 

algorithm is shown by Algorithm 1. 



Algorithm 1: The pseudo code of Self-adaptive Level-based Learning Artificial Bee Colony Algorithm 

Input: Population size NP, Maximum number of iterations MaxIt, Abandonment limit L, counter=0, t=0. 

Output: The optimal food source best
x , the best fitness value ( )

best
f x .  

Initialize the population 
ix ,( 1,2,...,i NP ) by using Eq. (1).  

Evaluate the fitness value of each individual by using Eq. (10). 

Calculate the average diversity of the population 0Ave  by using Eq. (5). 

While t < MaxIt do 

 Calculate the number of levels NL by using Eq. (6). 

Sort all individuals in ascending order of fitness values and divide them into NL levels. 

% Employed bee phase  

 For each individual 
ix  in Level 1 do 

  Randomly select one different individual 
kx  in this level. 

  Generate a new individual according to Eq. (2) and convert it into discrete values by using Eq. (8). 

  Evaluate the fitness value of the new individual by using Eq. (10). 

  Update 
ix  according to the new update mechanism, and increase its counter by 1 if not update. 

 End 

 For each individual 
ix  in other levels do 

  Randomly select one different individual kx  in higher levels. 

  Generate a new individual according to Eq. (2) and convert it into discrete values by using Eq. (8). 

  Evaluate the fitness value of the new individual by using Eq. (10). 

  Update ix  according to the new update mechanism, and increase its counter by 1 if not update. 

 End 

 Calculate the selection probability of each individual by using Eq. (3). 

% Onlooker bee phase 

 For each onlooker bee do 

  Select a food source ix  according to the selection probability by roulette-wheel scheme.  

  Randomly select one different individual kx  in the whole population. 

  Generate a new individual according to Eq. (2) and convert it into discrete values by using Eq. (8). 

  Evaluate the fitness value of the new individual by using Eq. (10). 

  Update ix  according to the new update mechanism, and increase its counter by 1 if not update. 

 End 

% Scout bee phase 

 For each individual in the population do 

  If counter >= L then 

   Initialize a new individual to replace the current one. 

   Evaluate the fitness value of the new individual by using Eq. (10). 

  End 

 End 

End 

Output best
x  and ( )

best
f x . 

4.5 Complexity Analysis 

According to Algorithm1, the SLLABC can be divided into four phases: initialization, employed bee phase, onlooker 

bee phase and scout bee phase. The time complexity of SLLABC is analyzed as follows. 
(1) Initialization can be finished in linear time scale, i.e.,  O NP D . 

(2) Employed bee phase includes four parts: sort and division, selection, update, and evaluation. In fact, it takes 

  O NP log NP NP   to sort all individuals and divide them into NL levels in each iteration. The selection 

operator executes  O NP  basic operations. During the update of individuals in all levels, it takes  O NP D

Evaluation operator needs  O NP  basic operations.  

(3) Onlooker bee phase includes four parts: probability calculation, selection, update and evaluation. Update operator 

has the complexity of  O NP D  and other parts can be implemented with linear time scale, i.e.,  O NP . 

(4) Scout bee phase includes two parts: initialization and evaluation. The computational complexity of initialization 

and evaluation are both  O NP  at worst. 



Note that for evaluating the individuals, the above analysis only considers the number of the individuals evaluated in 

each iteration. Overall, SLLABC only takes extra   O NP log NP NP   in each iteration compared with the basic ABC 

algorithm, which takes  O NP D  in each iteration.  

As for the space complexity, SLLABC have the same space as basic ABC, i.e.,  O NP D . 

Therefore, the computational complexity of SLLABC is competitive compared with the basic ABC algorithm. 

5 Experimental studies  

5.1 Experimental design 

To verify the performance of the proposed feature selection algorithm, a series of experiments are conducted on a total 

of 12 standard datasets. These datasets together with their number of features, instances and classes are listed in Table 1. 

They were obtained from http://featureselection.asu.edu/datasets.php and http://archive.ics.uci.edu/ml/datasets.php. Among 

them, there are microarray gene expression data, image (face) detection data and email text data etc. These datasets have 

been processed by the providers in advance. In addition, they not only come from different applications fields, but also the 

number of features varies from 310 to 22283, instances vary from 62 to 165, and classes vary from 2 to 15, which makes 

our experiments universal.  

Table 1. Properties of the datasets 

Dataset Features Samples Classes 

LSVT 310 126 2 

Yale 1024 165 15 

Colon 2000 62 2 

SRBCT 2308 83 4 

DBWorld 4702 64 2 

Leukemia1 5327 72 3 

DLBCL 5469 77 2 

ALLAML 7129 72 2 

Pixraw10P 10000 100 10 

Prostate 10509 102 2 

Leukemia2 11225 72 3 

GLI_85 22283 85 2 

A suitable classifier is important to evaluate the feature subsets. Because of its effectiveness, the well-known 

K-Nearest Neighbor (KNN) (Liao and Vemuri 2002) is adopted to evaluate the performance of all algorithms in our 

experimental studies, where K=5. In order to reduce the risk of overfitting, the average classification error rate by 10-fold 

Cross Validation is taken as the fitness value. The fitness function is shown as follows: 
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ii
error

fitness   (10) 

where, ierror  is calculated as follows： 

 
   

   
i

Number of Misclassified Samples
error

Total Number of Samples
  (11) 

The proposed algorithm and other algorithms in comparison are in MATLAB language. The population size of all 

algorithms is 50, the maximum number of iterations is 100. For fair comparison, each algorithm runs 10 times 

independently. All experiments are executed on a computer with Intel(R) Core (TM) i5-7500 CPU and 16GB RAM. 

5.2 Experimental results and discussions 

As previously discussed, this paper employed three new strategies. This section performs an extensive analysis on 



these three new strategies. After that, the proposed SLLABC algorithm is compared with the other eight algorithms for 

feature selection to evaluate its comprehensive performance.  

5.2.1 Discussion on the diversity of two level-based learning mechanisms and its influence 

First of all, we investigate the potency of individuals in level 1 learning from each other, and compare the diversity 

curve, convergence curve and the average feature subset size of the two mechanisms, denoted as SLLABC and SLLABC-1, 

respectively. Where, the individuals in level 1 are directly passed to the next iteration without updating in the SLLABC-1 

algorithm, while in the SLLABC algorithm, they learn from each other in level 1 for updating. 

Fig.3 shows diversity curve of SLLABC and SLLABC-1. To avoid contingency, we run these two algorithms 10 times 

independently to obtain the mean diversity in each iteration.  

In terms of the value of diversity, the diversities of SLLABC are higher than that of SLLABC-1 on the dataset LSVT, 

Yale, and Colon in the later iterations. However, the diversity of SLLABC is lower on the dataset Leukemia1. On the most 

datasets, the diversity value of SLLABC algorithm is not significantly different from that of SLLABC-2. In terms of the 

coincidence degree of the curve, the diversity curve on all data sets of SLLABC almost coincides with that of SLLABC-1 in 

the first 10 iterations. In addition, for datasets with a small number of features, LSVT, Colon and Leukemia1, the curves of 

the two algorithms are significantly different. while there is almost no difference between the curves of the two algorithms 

on the datasets with higher dimensions such as ALLAML, GLI_85 and Pixraw10P. The reason for this phenomenon may be 

that the number of individuals in level 1 is only a very small part of the whole population, especially in the 

high-dimensional feature selection, and in late iterations when the diversity of the population is very low, the individuals 

learning from each other does not play an important role in diversity.  

Fig.4 shows the feature subset size of SLLABC and SLLABC-1. We can see that SLLABC selected less features than 

SLLABC-1 on 6 datasets, On the other 6 datasets, i.e., LSVT, SRBCT, Leukemia1, ALLAML, Pixraw10P and GLI_85, 

SLLABC selected more features than SLLABC-1. 

The convergence curves of the two algorithms are plotted in Fig. 5. It shows the decline of the error rate. On most 

datasets, the effect of SLLABC on reducing the error rate in the early iterations is not obvious, but it is always able to 

achieve a lower error rate than SLLABC-1 in the middle-and-later iterations. Specially, although SLLABC-1 obtained 

smaller feature subsets on the above six datasets in Fig.4, the corresponding performance on error rate in Fig.5 is not better 

than SLLABC. This may be due to that the individuals in level 1 only account for a small proportion of the whole 

population at the early stage of the evolution, and learning from each other cannot enhance the diversity significantly, but 

can make the individuals in the level 1 jump out of the local optima, so then the possibility of achieving a lower error rate 

was improved. 

It is generally accepted that the exploration and exploitation ability of EAs can be implied by the diversity of the 

population, the lower diversity is, the less the exploration potential of individuals is and the more on exploiting potential is, 

and vice versa. The error rate convergence curve verifies this view as well. Therefore, according to the discussion above, we 

draw such a conclusion that the mechanism of individuals learning from each other in the first level does not play an 

important role in improving the exploration ability, but can enhance the exploitation performance of the population in most 

cases. 



 

Fig 3. The Diversity Curve of SLLABC and SLLABC-1 

 

Fig 4. The Average Feature Subset Size of SLLABC and SLLABC-1 

 

Fig 5. The Convergence Curve of SLLABC and SLLABC-1 

5.2.2 Discussion on the diversity of two methods of determining level number and its influence 

Secondly, in order to study the potency of the self-adaptive method for determining the number of levels, Fig.6-8 show 

the comparison between SLLABC and SLLABC-2, the former using the self-adaptive level-based learning method and the 

latter using the original dynamic level-based learning (DLL) method. The DLL method needs to give a definite set of level 

numbers S . In order to study the influence of different S  on classification performance, this study uses two sets, one is 



the empirical value 1 [4,6,8,10,20,50]S   obtained by Yang, and the other 2 [5,10,20,30,40,50]S   is listed at random. The 

algorithms using 1S  and 2S  are referred here as SLLABC-2-1 and SLLABC-2-2, respectively. Noted that, SLLABC-2 

contains SLLABC-2-1 and SLLABC-2-2. 

AS shown in Fig.6, in the first 10 iterations, the diversity curves of the three algorithms are not significantly different 

on all data sets. However, at the middle and the end of run, the diversity curves of SLLABC are lower than those of 

SLLABC-2 on Yale, SRBCT, DLBCL and GLI_85. In addition, there are significant differences in diversity curves between 

SLLABC-2-1 and SLLABC-2-2, especially on the datasets Yale, ALLAML and Prostate.  

Fig.7 shows the number of the features selected by the three algorithms. The feature subset of SLLABC is smaller than 

that of SLLABC-2-1 on six datasets, and smaller than that of SLLABC-2-2 on five data sets. Only on a few data sets, i.e., 

Leukemia1 and ALLAML, the feature subset of SLLABC is larger than that of both SLLABC-2-1 and SLLABC-2-2. Fig. 8 

plots the decline of the error rate by the three algorithms. We find that the decline rates of the three methods are similar in 

the early stage, however, the convergence rate of SLLABC-2-1 and SLLABC-2-2 are slower than the SLLABC at the 

middle and end of run on the most datasets, which indicates that the self-adaptive strategy for NL has a better exploitation 

ability. It is also worth mentioning that, on the datasets LSVT, ALLAML, Pixraw10P and Prostate, the final error rate of 

SLLABC is lower than that of SLLABC-2-1 but higher than that of SLLABC-2-2. On the dataset Leukemia2, the final error 

rate of SLLABC-2-2 is lower than that of the other two compared algorithms.  

Comparing the three curves in Fig.6 and Fig.8, we find that a lower diversity may not result in a higher error rate. On 

the contrary, SLLABC achieves a lower diversity in figure 6 and a lower error rate as well in figure 8, which demonstrates 

that the exploration of SLLABC-2-1 and SLLABC-2-2 are overemphasized and thus resulting in a poor exploitation, while 

SLLABC is able to compromise exploration and exploitation better than SLLABC-2-1 and SLLABC-2-2. In addition, the 

SLLABC-2-1 and SLLABC-2-2 algorithms using different S also have great differences in the number of features and error 

rate. It indicates that how to determine the S  in DLL strategy is very important, which may need to be summarized by 

different experiments according to different problems. Fortunately, the performance of the SLLABC using the adaptive 

strategy proposed in this paper is better than that of the other two algorithms using the original dynamic strategy in most 

cases. All in all, the self-adaptive strategy for NL is promising for the proposed algorithm. 

 

Fig 6. The Diversity Curve of SLLABC, SLLABC-2-1 and SLLABC-2-2 



 

Fig 7. The Average Feature Subset Size of SLLABC, SLLABC-2-1 and SLLABC-2-2 

 

Fig 8. The Convergence Curve of SLLABC, SLLABC-2-1 and SLLABC-2-2 

5.2.3 Discussion on the diversity of two update mechanisms and its influence 

To investigate the influence of the new update mechanism on the performance of feature selection, SLLABC is 

compared with SLLABC-3, the former adopts the new update mechanism and the latter adopts the original update method, 

i.e., the size of feature subset is not taken into account.  

As can be seen Fig.9, SLLABC-3 maintains a higher diversity than SLLABC on each dataset, and its value of diversity 

remains high. It is worth mentioning that at the end of run, the diversity values of SLLABC-3 on the first three data sets are 

not less than 0.4, which is not conducive to the fast convergence of the algorithm. This is verified by the convergence curve 

in Fig.11. In Fig.11, SLLABC achieves a lower or the same error rate at the end of run on most datasets. The only exception 

is found on the Pixraw10P dataset, which might be due to the internal attributes and samples of the dataset and we cannot 

confirm at present. 

After that, to investigate the differences between the two update mechanisms, we draw a histogram of the average 

feature subset size shown as Figs.10. We can see that SLLABC-3 outperforms SLLABC on only two datasets, i.e., 

DBWorld and ALLAML. Therefore, the new update mechanism is promising in dimensionality reduction. 



 

Fig 9. The Diversity Curve of SLLABC and SLLABC-3 

 

Fig 10. The Average Feature Subset Size of SLLABC and SLLABC-3 

 

Fig 11. The Convergence Curve of SLLABC and SLLABC-3 

5.2.4 Comparison of the performance between SLLABC and other algorithms 

In this section, we further investigate the performance of SLLABC algorithm by comparing it with eight feature 

selection methods, including the popular PSO variants, i.e., CSO (Gu et al. 2018), 2D_UPSO (Hafiz et al. 2018) and 

VS_CCPSO (Song et al. 2020), the novel GWO variants, i.e., ALO_GWO (Zawbaa et al. 2018) and MbGWO-SFS 



(El-Kenawy et al. 2020), a variant of Dragonfly Algorithm, i.e., HLBDA (Too and Mirjalili 2021), a GA variant, i.e., FRGA 

(Too and Abdullah 2021), and an ABC variant, i.e., AC_ABC (Shunmugapriya and Kanmani 2017). In particular, CSO, 

VS_CCPSO and ALO_GWO have performed well in dealing with high-dimensional problems. Moreover, for the compared 

algorithms, the parameters are set as recommended in the corresponding papers. Table 2 gives the parameter settings of the 

above algorithms.  

Table 2. Experimental parameters and settings 

Method Parameter Setting 

All algorithms Population size, NP  50 

Maximum number of iterations, MaxIt  100 

Number of runs 10 

CSO The influence factor of the mean position,   0.1 

2D_UPSO Inertia weight,  0.729 

Acceleration constant, 1c , 2c  1.49,1.49 

unification factor,   [0.2,0.4] 

Refresh Gap, RG  3 

VS_CCPSO The number of feature subspaces, M 2 (on LSVT),  

4 (on Yale),  

8 (on Colon, SRBCT),  

10(on other datasets) 

Convergence speed control factor, prob  0.7 

ALO_GWO Adjustment constant,  ω=2 when t>0.1T, 
ω=3 when t>0.5T, 
ω=4 when t>0.75T, 
ω=5 when t > 0.9T, 

ω = 6 when t > 0.95T 

MbGWO-SFS Mutation ratio 0.1 

Crossover ratio 0.9 

Maximum diffusion level 1 

AC_ABC Pheromone exponential weight,  1 

Evaporation rate,   0.7 

Heuristic exponential weight,   0.8 

  in ACO  0.3 

Initial Pheromone, 0  0.2 

  in ABC  0.4 

HLBDA Personal learning rate, pl 0.4 

 Global learning rate, gl 0.7 

FRGA / / 

SLLABC Abandonment limit L  25 

First of all, we plot the convergence curves of the nine algorithms, as shown in Fig.12. Evidently, in terms of 

convergence behavior, AC_ABC, MbGWO-SFS, CSO, HLBDA and FRGA show unsatisfactory performance, while 

SLLABC algorithm can accelerate to detect the global best subset over the complex feature space. Even though ALO_GWO 

algorithm shows a very fast convergence speed in the early iterations, it starts to decelerate after 20 iterations. In contrast, 

SLLABC is able to maintain a fast convergence over the course of iterations and can always converge to a smaller error rate 

than any other algorithm at the end of each run. Moreover, on the dataset LSVT, Leukemia1, DLBCL, ALLAML, Prostate, 

Leukemia2 and GLI-85, the SLLABC still has a downward trend in the 100th iteration. In other words, SLLABC algorithm 

not only preserves good exploration and exploitation abilities and can particularly compromise these two well to search the 

space during the evolution.  

 



 

Fig 12. The convergence curves of SLLABC and other compared algorithms 

Table 3 shows the worst, the best, the mean and the standard deviation of the error rate obtained by SLLABC and other 

compared algorithms, and the best ones obtained on each dataset are bold. Subsequently, the Wilcoxon rank sum test 

(Wilcoxon 1992) is adopted to compare the results obtained by the SLLABC algorithm and other compared algorithms at a 

significance level of 0.05. The result is given in Table 4, wherein the symbol ‘+’denotes the SLLABC algorithm 

outperforms the compared algorithm significantly, while ‘-’ indicates otherwise. On some datasets, the compared algorithms 

have similar performance with SLLABC, which is marked as ‘=’. 

The experimental results in Table 3 show that VS_CCPSO algorithm achieves lower error rate than other algorithms 

on datasets with a small number of features such as LSVT and Yale, while SLLABC outperforms other algorithms on 

datasets with a large number of features. It achieves the minimum mean error rate, the minimum best and the minimum 

worst error rate on ten datasets, ten datasets and eight datasets, respectively. In addition, the SLLABC was able to perform 

more stably in comparison with the state-of-the-art algorithms, as smaller standard deviation values supported these 

findings.  

The result of Wilcoxon rank sum test indicates that, the error rate of SLLABC algorithm is significantly lower than that 

of most algorithms on most datasets. Specifically, compared with VS_CCPSO algorithm, SLLABC underperforms 

VS_CCPSO on the datasets with a small number of features such as LSVT and Yale. Nevertheless, SLLABC is superior to 

or level pegging with VS_CCPSO on higher-dimensional datasets. The difference in error rate is insignificant between 

SLLABC and ALO_GWO in all datasets except DLBCL. In a word, SLLABC algorithm can achieve high classification 

accuracy for feature selection, especially on very high-dimension datasets. 

Since the number of the selected features determines the computational cost of a classification algorithm, it is also a 

key performance index of feature selection. We compare the size of the feature subset of SLLABC algorithm with that of 

other algorithms. Table 5 shows the results of the maximum (worst), the mean, the minimum value (best) and the standard 

deviation (std) value of features selected by SLLABC and other algorithms. Inspecting the results, VS_CCPSO are 

outstanding on LSVT, Yale and SRBCT. Combined with Table 3, VS_CCPSO gets lower error rates and fewer features on 

these datasets, but the performance on very high-dimensional datasets is not as good as SLLABC. 2D_UPSO obtains the 

smallest feature subsets on higher-dimensional datasets, but its standard deviation in each dataset is large, which indicates 

that 2D_UPSO is unstable on reducing feature size. SLLABC algorithm does not obtain the smallest feature subset on each 

data set, however, it reserves fewer features on most data sets, and its standard deviation value is not large. On the whole, 

SLLABC has a good performance on dimensionality reduction for very high dimensional feature selection. 

Table 6 shows the results of Wilcoxon rank sum test on feature subset size. The effect of dimensionality reduction by 

SLLABC algorithm is substantially better than other algorithms on most datasets. However, when a dataset only contains 



the key features that must be used by classifiers, removing any one of them may increase the error rate. Although the subset 

size of 2D_USPO, MbGWO-SFS and HLBDA can be reduced, their classification accuracy is not improved. In contrast, the 

features selected by SLLABC can usually provide key information, which is good at enhancing the classification 

performance. The summarized results concluded that the proposed SLLABC was more capable of selecting significant 

features compared to the state-of-the-art algorithms in high-dimensional datasets. 

For a better evaluation of the proposed SLLABC algorithms, not only the accuracy and the size of feature subsets but 

also the computational complexity needs to be investigated. To provide a more intuitive representation of the time 

consumption, this paper calculates the CPU execution times of SLLABC and other algorithms under the same physical 

conditions. Table 7 summarizes the worst(longest), the mean and the best(shortest) CPU execution time (in seconds) 

between SLLABC and other compared algorithms. Table 8 shows the result of the Wilcoxon rank sum test on execution 

time. 

As can be seen from Table 7, SLLABC algorithm still performs well on very high-dimensional datasets, which takes 

less execution time, but is inferior to CSO on the data sets with a small number of features. However, what is interesting is 

that as the dimension of datasets increase, the advantage of the SLLABC in time consumption is becoming more and more 

obvious. Combining tables 7-8, SLLABC algorithm consumes less time than most algorithms and obtains higher accuracy 

and fewer features on the very high-dimensional datasets. Therefore, our proposed SLLABC algorithm is a valuable feature 

selection tool, and it can be implemented for other real-world applications. 



Table 3 Comparison of classification error rate between SLLABC and other compared algorithms 

Datasets Index CSO 2D_UPSO VS_CCPSO ALO_GWO MbGWO-SFS HLBDA FRGA AC_ABC SLLABC 

LSVT 

worst 0.081 0.097 0.063 0.078 0.111 0.332 0.073 0.08 0.072 

mean±std 0.063±0.008 0.083±0.014 0.046±0.011 0.065±0.009 0.099±0.012 0.277±0.046 0.059±0.006 0.100±0.013 0.060±0.006 

best 0.055 0.062 0.032 0.054 0.072 0.2224 0.054 0.056 0.054 

Yale 

worst 0.32 0.333 0.242 0.291 0.357 0.304 0.3132 0.315 0.285 

mean±std 0.295±0.015 0.310±0.015 0.224±0.010 0.263±0.018 0.337±0.012 0.285±0.016 0.298±0.009 0.336±0.017 0.263±0.012 

best 0.268 0.283 0.212 0.23 0.32 0.261 0.2842 0.266 0.247 

Colon 

worst 0.176 0.126 0.097 0.088 0.155 0.148 0.1429 0.157 0.081 

mean±std 0.113±0.027 0.091±0.024 0.071±0.016 0.0693±0.008 0.115±0.029 0.114±0.022 0.109±0.0232 0.171±0.019 0.069±0.008 

best 0.081 0.062 0.048 0.064 0.062 0.076 0.0667 0.095 0.06 

SRBCT 

worst 0.049 0.036 0.036 0.025 0.096 0.039 0.069 0.063 0 

mean±std 0.033±0.015 0.018±0.012 0.029±0.008 0.005±0.009 0.058±0.032 0.0039±0.0001 0.039±0.013 0.035±0.014 0 

best 0 0 0.012 0 0.011 0.004 0.024 0.022 0 

DBWorld 

worst 0.255 0.107 0.047 0.062 0.167 0.1095 0.2214 0.3857 0.033 

mean±std 0.126±0.054 0.08±0.019 0.048±0.005 0.034±0.012 0.113±0.035 0.075±0.026 0.156±0.039 0.361±0.013 0.030±0.005 

best 0.062 0.048 0.063 0.017 0.079 0.031 0.1071 0.345 0.017 

Leukemia1 

worst 0.084 0.096 0.028 0.057 0.125 0.0313 0.098 0.068 0.043 

mean±std 0.062±0.014 0.058±0.020 0.028±0.00 0.034±0.020 0.066±0.028 0.020±0.007 0.074±0.012 0.096±0.016 0.019±0.012 

best 0.039 0.027 0.028 0 0.029 0.0143 0.055 0.125 0 

DLBCL 

worst 0.075 0.05 0.091 0.038 0.063 0.0432 0.079 0.077 0.014 

mean±std 0.051±0.012 0.034±0.130 0.044±0.019 0.021±0.014 0.038±0.013 0.026± 0.013 0.043±0.014 0.054±0.014 0.006±0.007 

best 0.038 0.013 0.026 0 0.025 0.0044 0.025 0.038 0 

ALLAML 

worst 0.113 0.084 0.042 0.082 0.109 0.128 0.125 0.134 0.043 

mean±std 0.102±0.008 0.059±0.018 0.028±0.011 0.044±0.026 0.071±0.026 0.099±0.014 0.109±0.014 0.117±0.011 0.022±0.015 

best 0.093 0.029 0.014 0 0.025 0.084 0.082 0.095 0 

Pixraw10P 

worst 0.05 0.01 0.01 0.04 0.04 0.044 0.06 0.04 0.01 

mean±std 0.041±0.003 0.01±0 0.01±0 0.012±0.010 0.026±0.015 0.044±0 0.042±0.008 0.040±0 0.007±0.005 

best 0.04 0.01 0.01 0 0.01 0.044 0.03 0.04 0 

Prostate 

worst 0.126 0.097 0.078 0.079 0.117 0.091 0.126 0.146 0.076 

mean±std 0.112±0.013 0.083±0.012 0.063±0.011 0.066±0.011 0.088±0.021 0.080±0.009 0.113±0.013 0.132±0.012 0.063±0.006 

best 0.089 0.057 0.049 0.049 0.058 0.063 0.086 0.116 0.057 

Leukemia2 

worst 0.082 0.052 0.097 0.029 0.055 0.029 0.084 0.07 0.029 

mean±std 0.061±0.014 0.030±0.119 0.063±0.018 0.015±0.010 0.037±0.016 0.017±0.006  0.065±0.015 0.095±0.016 0.010±0.009 

best 0.041 0.014 0.028 0 0 0.013 0.043 0.125 0 

GLI_85 

worst 0.129 0.083 0.106 0.071 0.106 0.087 0.119 0.15 0.074 

mean±std 0.094±0.015 0.074±0.008 0.081±0.017 0.058±0.008 0.077±0.021 0.068±0.010 0.099±0.014 0.104±0.024 0.054±0.009 

best 0.081 0.06 0.047 0.047 0.047 0.052 0.083 0.082 0.044 



Table 4 Wilcoxon rank sum test on error rate of SLLABC and the compared algorithms  

Datasets CSO 2D_USPO VS_CCPSO ALO_GWO MbGWO-SFS HLBDA FRGA AC_ABC 

LSVT 0.70480(=) 0.00130(+) 0.01680(-) 0.23950(=) 0.00018(+) 0.00018(+) 0.73320(=) 0.00018(+) 

Yale 0.00220(+) 0.00025(+) 0.00018(-) 0.96980(=) 0.00018(+) 0.01726(+) 0.00024(+) 0.00018(+) 

Colon 0.00018(+) 0.04880(+) 0.51450(=) 0.70300(=) 0.00350(+) 0.00044(+) 0.00076(+) 0.00018(+) 

SRBCT 0.00006(+) 0.00070(+) 0.00005(+) 0.07790(=) 0.00006(+) 0.00006(+) 0.00059(+) 0.00006(+) 

DBWorld 0.00016(+) 0.00016(+) 0.00005(+) 0.53570(=) 0.00016(+) 0.00120(+) 0.00016(+) 0.00016(+) 

Leukemia1 0.00020(+) 0.00048(+) 0.01670(+) 0.10930(=) 0.00048(+) 0.84898(+) 0.00016(+) 0.00017(+) 

DLBCL 0.00014(+) 0.00034(+) 0.00013(+) 0.02530(+) 0.00046(+) 0.00334(+) 0.00014(+) 0.00015(+) 

ALLAML 0.00018(+) 0.00110(+) 0.34050(=) 0.04400(=) 0.00110(+) 0.00018(+) 0.00017(+) 0.00018(+) 

Pixraw10P 0.00011(+) 0.07670(=) 0.10580(=) 0.19360(=) 0.01510(+) 0.00004(+) 0.00012(+) 0.00010(+) 

Prostate 0.00018(+) 0.00360(+) 0.03340(+) 0.62160(=) 0.00890(+) 0.00356(+) 0.00018(+) 0.00018(+) 

Leukemia2 0.00017(+) 0.00170(+) 0.00022(+) 0.18570(=) 0.00220(+) 0.01072(+) 0.00017(+) 0.00017(+) 

GLI_85 0.00017(+) 0.00070(+) 0.00690(+) 0.12880(=) 0.01040(+) 0.03020(+) 0.00017(+) 0.00025(+) 

‘+/-’: the result obtained by SLLABC is significantly better/worse than the compared algorithm. ‘=’: there is no statistically significant difference e between the results obtained by SLLABC and the compared algorithm. 



Table 5 Comparison of the size of subsets selected by SLLABC and other compared algorithms 

Datasets Index CSO 2D_UPSO VS_CCPSO ALO_GWO MbGWO-SFS HLBDA FRGA AC_ABC SLLABC 

LSVT 

worst 176 167 43 134 175 83 164 170 116 

mean±std 151.5±11.18 120.9±32.33 32.4±6.54 102.5±16.13 114±35.05 63.7±12.45 148.3±8.18 150.9±9.15 88.1±24.84 

best 137 60 22 80 80 51 139 140 40 

Yale 

worst 524 494 210 304 514 503 529 543 283 

mean±std 504.1±16.48 265.9±130.20 133±31.85 236.4±40.42 349.4±131.51 478.3±17.76 500.5±14.71 506.3±23.16 246.5±23.31 

best 474 69 103 164 155 449 474 476 213 

Colon 

worst 1036 409 241 468 841 852 1036 1013 272 

mean±std 983±24.57 155.3±128.09 207.8±17.99 261.2±111.75 316±248.93 811.3±34.03 989.5±27.50 995.6±14.06 192.6±59.23 

best 951 38 178 122 16 762 957 975 107 

SRBCT 

worst 1160 462 342 615 1043 943 1178 1178 453 

mean±std 1127.1±20.12 288.2±99.15 258.8±36.10 408.3±112.17 504.5±326.15 899.6±37.23 1145.1±23.69 1136.2±23.35 364.4±57.78 

best 1092 175 211 190 93 846 1086 1092 262 

DBWorld 

worst 2354 640 793 689 603 2157 2398 2384 686 

mean±std 2316.2±25.27 303.6±175.46 670.6±50.42 446.5±161.63 230.1±181.22 2212±44.13 2306.8±36.44 2338±27.91 545.5±88.75 

best 2283 85 623 129 39 2272 2267 2301 395 

Leukemia1 

worst 2733 1969 862 1220 1718 2431 2731 2705 996 

mean±std 2664.6±45.62 826.9±602.85 757.8±70.67 867.4±216.70 1000.6±494.98 2341.4±60.99 2654.8±43.94 2645.6±43.31 670.3±139.32 

best 2580 116 668 594 301 2223 2578 2588 513 

DLBCL 

worst 2788 3169 1108 2067 2234 2256 2795 2770 733 

mean±std 2737.6±29.06 1282±945.43 768.7±156.55 1097.8±518.60 1146.1±554.51 2379.9±72.54 2732.4±39.51 2733.1±27.78 515.4±152.96 

best 2697 84 546 593 500 2496 2666 2676 325 

ALLAML 

worst 3588 880 1788 1401 3556 3289 3668 3660 787 

mean±std 3563.3±29.63 306.8±240.62 1324.6±211.14 846.5±355.27 985.8±1221.53 3149.5±69.91 3551.3±53.23 3537±47.15 559.6±167.54 

best 3488 55 1012 219 10 3045 3488 3477 261 

Pixraw10P 

worst 5102 617 2601 5087 5090 4230 5083 5120 345 

mean±std 5015.6±44.26 260.4±159.31 2549.4±32.26 882.1±1494.17 3142.8±1726.43 4201.3±33.95 5014.2±44.08 5006.7±57.34 257.8±47.35 

best 4956 87 2518 128 843 4121 4945 4941 195 

Prostate 

worst 5314 1573 2724 2600 5788 5027 5330 5268 1221 

mean±std 5246.2±34.33 861.7±497.88 1675.9±416.34 1440.3±601.09 1396.3±1798.33 4933.3±69.17 5266.3±54.01 5194.9±50.11 859.9±224.18 

best 5190 165 1248 737 188 4796 5164 5128 423 

Leukemia2 

worst 5706 3812 2613 1842 2852 5191 5661 5676 1408 

mean±std 5627.1±51.48 1160.5±1129.14 1999.7±379.97 1336.5±353.31 1274.4±737.39 5069±81.75 5606.5±45.78 5608.7±44.51 965.9±292.32 

best 5551 109 1375 503 326 4941 5500 5554 493 

GLI_85 

worst 11461 2266 6564 4728 7105 10946 11301 11898 1011 

mean±std 11157.5±123.77 1439.3±666.99 4836.4±1226.11 2971.2±1173.92 3859.5±2095.64 10746.2±94.40 11134±72.322 11682.5±169.07 1408.2±279.81 

best 11054 265 2557 1587 1231 10640 11049 11327 2028 



Table 6 Wilcoxon rank sum test on feature subset size of SLLABC and the compared algorithms 

Datasets CSO 2D_USPO VS_CCPSO ALO_GWO MbGWO-SFS HLBDA FRGA AC_ABC 

LSVT 0.00018(+) 0.0309(+) 0.00033(-) 0.34430(=) 0.25650(=) 0.00018(-) 0.00018(+) 0.00018(+) 

Yale 0.00018(+) 0.9397(=) 0.00018(-) 0.52050(=) 0.14050(=) 0.00018(+) 0.00018(+) 0.00018(+) 

Colon 0.00018(+) 0.2123(=) 0.67760(=) 0.24130(=) 0.16200(=) 0.00018(+) 0.00018(+) 0.00018(+) 

SRBCT 0.00018(+) 0.0640(=) 0.00058(-) 0.27290(=) 0.57080(=) 0.00018(+) 0.00018(+) 0.00018(+) 

DBWorld 0.00018(+) 0.0036(-) 0.00460(+) 0.0890(=) 0.00220(-) 0.00018(+) 0.00018(+) 0.00018(+) 

Leukemia1 0.00018(+) 0.8501(=) 0.05850(=) 0.03760(+) 0.14030(=) 0.00018(+) 0.00018(+) 0.00018(+) 

DLBCL 0.00018(+) 0.0091(+) 0.00220(+) 0.00100(+) 0.00830(+) 0.00018(+) 0.00018(+) 0.00018(+) 

ALLAML 0.00018(+) 0.0113(-) 0.00019(+) 0.02570(+) 0.90970(=) 0.00018(+) 0.00018(+) 0.00018(+) 

Pixraw10P 0.00018(+) 0.6774(=) 0.00018(+) 0.12120(=) 0.00005(+) 0.00018(+) 0.00018(+) 0.00018(+) 

Prostate 0.00018(+) 0.6776(=) 0.00018(+) 0.01730(+) 0.47270(=) 0.00018(+) 0.00018(+) 0.00018(+) 

Leukemia2 0.00018(+) 0.6775(=) 0.00024(+) 0.01130(+) 0.47250(=) 0.00018(+) 0.00018(+) 0.00018(+) 

GLI_85 0.00018(+) 0.4274(=) 0.00018(+) 0.00044(+) 0.00280(+) 0.00018(+) 0.00018(+) 0.00025(+) 

‘+/-’: the result obtained by SLLABC is significantly better/worse than the compared algorithm. ‘=’: there is no statistically significant difference e between the results obtained by SLLABC and the compared algorithm.  

  



Table 7 Comparison of the execution time of SLLABC and other compared algorithms 

Index CSO 2D_UPSO VS_CCPSO ALO_GWO MbGWO-SFS HLBDA FRGA AC_ABC SLLABC 

worst 63.371 44.877 91.4 104.99 103.748 290.1387 55.89 180.771 173.237 

mean±std 55.479±3.99 42.871±1.45 83.365±4.22 89.583±6.15 82.59±12.61 273.60±10.47 53.87±1.15 172.112±4.14 161.725±8.76 

best 51.559 40.934 77.4 84.482 65.106 260.409 52.68 164.527 146.876 

worst 149.053 281.945 512.424 27731.33 259.051 358.774 181.9049 1156.99 327.613 

mean±std 147.222±1.70 261.572±11.93 482.005±22.63 3046.772±8673.28 190.899±35.52 319.500±21.67 166.880±9.41 547.563±233.72 323.785±2.31 

best 144.516 243.148 454.417 270.011 138.69 303.378 153.1691 402.912 319.685 

worst 56.685 64.409 164.709 307.25 78.255 373.564 86.7477 272.698 185.095 

mean±std 55.833±0.64 62.7±1.22 153.435±7.04 287.624±15.66 58.746±17.07 346.607±28.32 85.4007±0.6720 271.671±0.66 173.467±6.43 

best 54.855 60.785 140.173 251.879 22.212 300.571 84.6242 270.248 165.401 

worst 65.577 254.26 343.204 327.805 156.609 393.483 138.48 409.926 286.936 

mean±std 64.838±0.42 240.938±10.01 274.998±26.58 310.947±14.73 109.007±29.12 387.267±5.937 129.49±3.48 381.792±10.78 276.089±7.26 

best 63.989 225.862 252.63 274.578 64.867 374.012 125.69 374.011 269.191 

worst 281.358 1159.546 464.986 3233.149 304.799 494.64 406.8648 930.697 435.142 

mean±std 268.705±10.77 638.785±196.96 419.94±23.72 840.963±842.08 117.015±81.38 457.78±26.15 388.54±13.73 901.812±15.02 406.466±17.62 

best 249.771 491.703 400.598 493.194 39.214 427.11 362.0077 880.246 381.876 

worst 431.972 3527.4 583.3 852.191 833.202 646.2008 718.59 1268.146 366.042 

mean±std 417.733±10.54 1406.175±1019.12 548.949±23.25 774.579±51.32 466.616±246.93 604.89±15.80 589.83±70.64 1257.020±9.37 351.099±9.81 

best 395.618 810.926 510.37 661.116 189.53 588.5002 537.25 1243.446 335.278 

worst 445.163 5717.368 721.665 5198.543 1334.396 651.1005 949.5288 2463.556 660.04 

mean±std 436.211±4.25 1518.828±1477.24 631.813±50.29 1259.770±1387.91 709.665±354.33 644.1225±3.4531 911.57±22.32 2409.589±23.93 596.838±41.63 

best 428.788 908.618 572.629 709.577 248.444 640.0396 883.5772 2385.534 534.197 

worst 662.023 870.531 898.862 949.384 1103.361 3269.92 1647.53 3013.38 647.866 

mean±std 646.212±10.86 800.979±31.18 827.998±55.03 780.630±73.08 468.714±341.35 1012.09±794.42 1548.87±62.91 2954.409±41.94 629.844±11.60 

best 629.11 765.574 744.722 692.513 179.502 724.69 1437.23 2895.124 614.5 

worst 1694.86 30984.457 3472.743 3131.419 3728.951 1025.376 1995.26 4192.29 1030.314 

mean±std 1657.939±35.83 6075.577±8752.85 3417.893±27.89 1428.083±600.28 2855.928±811.59 1010.468±7.3863 1733.92±165.313 4187.257±4.78 983.82±35.51 

best 1611.872 3134.863 3374 1154.445 952.366 997.993 1598.76 4177.647 922.686 

worst 2017.032 31523.541 2709.83 3599.993 4961.877 1924.05 3865.52 8418.34 1899.147 

mean±std 1929.810±33.30 6722.332±8734.11 2261.695±204.57 2435.872±740.75 2024.488±1510.35 1962.19.96±41.1396 2990.89±595.33 8370.281±33.96 1849.568±32.75 

best 1900.973 3556.431 2007.704 1589.21 1409.162 1782.46 2377.18 8328.043 1801.274 

worst 877.073 33301.351 2107.527 7818.939 2569.846 1008.52 1242.01 2738.697 769.983 

mean±std 852.612±10.87 5670.962±9735.36 1820.362±157.23 2342.933±2004.79 1051.291±590.92 997.62±8.81 1183.29±56.87 2722.613±8.012 714.082±32.10 

best 838.053 2290.118 1636.275 1393.611 542.45 986.23 1102.25 2710.739 666.025 

worst 4081.994 4962.481 4628.113 3752.538 6563.272 1645.678 2964.19 9283.474 2669.54 

mean±std 3996.313±34.94 4846.751±76.51 3872.890±562.97 3013.793±494.32 3689.243±1706.51 1422.544±104.0785 2950.18±9.504 9229.960±44.18 2507.958±118.14 

best 3965.587 4759.073 2946.259 2165.611 1203.425 1363.649 2934.81 9142.98 2320.219 



Table 8 Wilcoxon rank sum test on execution time of SLLABC and the compared algorithms 

Datasets CSO 2D_USPO VS_CCPSO ALO_GWO MbGWO-SFS HLBDA FRGA AC_ABC 

LSVT 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 

Yale 0.00018(-) 0.00018(-) 0.00018(+) 0.00460(-) 0.00018(-) 0.14047(=) 0.00018(-) 0.00018(-) 

Colon 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(+) 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 

SRBCT 0.00018(-) 0.00018(-) 0.21230(=) 0.00058(+) 0.00018(-) 0.00018(-) 0.00018(-) 0.00018(-) 

DBWorld 0.00018(-) 0.00018(+) 0.18590(=) 0.00018(+) 0.00018(-) 0.00077(+) 0.03764(-) 0.00018(-) 

Leukemia1 0.00018(+) 0.00018(+) 0.00018(+) 0.00018(+) 0.62320(=) 0.00018(+) 0.00018(+) 0.62320(=) 

DLBCL 0.00018(-) 0.00018(+) 0.16200(=) 0.00018(+) 0.51480(=) 0.02113(+) 0.00018(+) 0.51480(=) 

ALLAML 0.01130(+) 0.00018(+) 0.00018(+) 0.00018(+) 0.14050(=) 0.00018(+) 0.00018(+) 0.14050(=) 

Pixraw10P 0.00018(+) 0.00018(+) 0.00018(+) 0.00018(+) 0.00310(+) 0.12122(=) 0.00018(+) 0.00310(+) 

Prostate 0.00018(+) 0.00018(+) 0.00018(+) 0.10410(=) 0.14470(=) 0.24132(=) 0.00018(+) 0.14470(=) 

Leukemia2 0.00018(+) 0.00018(+) 0.00018(+) 0.00018(+) 0.10410(=) 0.00018(+) 0.00066(+) 0.10410(=) 

GLI_85 0.00018(+) 0.00018(+) 0.00018(+) 0.01400(+) 0.14050(=) 0.00018(-) 0.00018(+) 0.14050(=) 

‘+/-’: the result obtained by SLLABC is significantly better/worse than the compared algorithm. ‘=’: there is no statistically significant difference e between the results obtained by SLLABC and the compared algorithm.  

 

  



6 Conclusions 

This paper aims to propose a Self-adaptive Level-based Learning Artificial Bee Colony (SLLABC) algorithm to deal 

with the feature selection problem on high-dimensional classification.  

First of all, we described a novel level-based learning (LL) mechanism for ABC algorithm in detail. In basic ABC 

algorithm, the current individual learns from an individual selected randomly from the whole population, while after 

introducing the novel level-based learning mechanism, it has to learn from a better individual, and the individuals in the first 

level have to learn from each other. This mechanism enhances the exploitation of ABC algorithm and makes algorithm 

obtain the optimal solution more quickly. 

Secondly, a self-adaptive method was proposed to determine the number of levels. Compared with the dynamic method 

for the number of levels, our new method adaptively adjusts the level number according to the average diversity of the 

population instead of artificial empirical values. The experimental results show that the self-adaptive method improves the 

exploitation ability and dimensionality reduction of ABC algorithm. 

Furthermore, to improve the performance of ABC algorithm, we proposed a new update mechanism. If a candidate 

individual has the same accuracy as the current individual, but its number of selected features is the same as or less than the 

current individual, then replaces the current individual to enter the next iteration. This strategy effectively not only reduces 

the number of selected features but also improves the update frequency of individuals to enhance the exploration ability of 

ABC algorithm.  

Finally, the proposed algorithm SLLABC is compared with SLLABC-1, SLLABC-2, SLLABC-3, and the results show 

that SLLABC can effectively balance the exploration and exploitation during the evolution. We further compared SLLABC 

with eight state-of-the-art algorithms on classification error rate, size of subset, and execute time. The results corroborate 

that proposed SLLABC is indeed a competitive algorithm to feature selection problems, especially with high-dimension 

data.  

Moreover, it is worth mentioning that the novel level-based learning mechanism and the new update mechanism 

proposed in our paper are universal to NP-hard problems. Like most EAs, however, SLLABC has high computational 

complexity due to the characteristics of random search and repeated evaluations. Therefore, how to reduce execution time 

by using sample reduction strategies or parallelization is one of the directions for future study. Additionally, minimizing the 

size of the feature subsets and maximizing the classification accuracy are both important indicators in feature selection, 

hence formulating feature selection as a multi-objective combinatory optimization problem to meet various requirements of 

decision-makers is a direction for our future study. 
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