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ABSTRACT  

Image denoising is a fundamental task in computer vision and image processing system with an aim of estimating 

the original image by eliminating the noise and artifact from the noise-corrupted version of the image. In this 

study, a nonlocal means (NLM) algorithm with NSST (non-subsampled shearlet transform) has been designed to 

surface a computationally simple image denoising algorithm. There are three steps in our process; First, NSST is 

employed to decompose source image into coarser and finer layers. The number of decomposition level of NSST 

is set to two, resulting in one low frequency coefficient (coarser layer) and four high frequency coefficients (finer 

layers). The two levels of decomposition are used in order to preserve memory, reduce processing time, and reduce 

the influence of noise and misregistration errors. The finer layers are then processed using NLM algorithm, while 

the coarser layer is left as it is. The NL-Means algorithm reduces noise in finer layers while maintaining the 

sharpness of strong edges, such as the image silhouette. When compared to noisy images, this filter also smoothes 

textured regions, resulting in retaining more information. To obtain a final denoised image, inverse NSST is 

performed to the coarser layer and the NL-means filtered finer layers. The robustness of our method has been 

tested on the different multisensor and medical image dataset with diverse levels of noise. In the context of both 

subjective assessment and objective measurement, our method outperforms numerous other existing denoising 

algorithms notably in terms of retaining fine image structures. It is also clearly exhibited that the proposed method 

is computationally more effective as compared to other prevailing algorithms. 

Keywords: non-local means, image denoising, multiscale decomposition, nonsubsampled Laplacian pyramid 

(NSLP), shearlet filter 

 

I. INTRODUCTION  

Image denoising is the process to eliminate noise or distortions from the images. It is mostly used as image pre- 

or post-processing to boost the quality of the processed images for further image analysis and understanding. 

Digital image is often prone to noise degradation during the image acquisition in imaging systems owing to sensor 

characteristics and complex camera processing procedures [1-2]. The elimination of noise from the captured 

image is a necessary step for improving image quality in computer vision applications [3-4]. Denoising of images 

in general seeks to obtain a clear image 𝑥 from a noisy observation 𝑦 = 𝑥 + 𝑛, in which 𝑛 is the corrupted noise. 

An AWGN (additive white Gaussian noise) having standard deviation (𝜎) is a popularly used assumption on 𝑛. 

In particular, in order to remove noise that is varying in different settings and follows normal distribution [5], has 

recently got a lot of attention. Image priors are of key importance for image denoising from the Bayesian 

perspective [6]. In the past few decades, several techniques have been proposed to exploit the image priors for 

image denoising [7-8], and other image reconstruction works [9]. These algorithms are roughly categorised into 

nonlocal self-similarity (NSS) related algorithms [10], low rankness or sparsity related methods [13], dictionary 

learning related methods [11], generative learning related algorithms [12], and discriminative learning related 

algorithms [13] are few examples. The NSS prior is derived from the fact that a local patch in the natural image 

has several nonlocal similar patches across the images where, Euclidean distance is often used to measure the 

similarity. Existing denoising algorithms have successfully utilized the NSS prior for example BM3D [14], 

WNNM [15], and N3Net [16], among others. Regardless their ability to improve denoising quality, this patch 

level NSS prior utilized in this method undergo one major obstacle i.e. they tend to introduce artefacts around the 

edges. This can be attributed to the fact that finding nearly identical patches for complete reference patches in the 

natural image is quite difficult, particularly when the number of identical patches is more. BM3D-SAPCA [17] 



proposed a solution to overcome this flaw of finding shape adaptive similar patches. Further another improvement 

can be observed in [18]. However, shape artefacts would be included in the denoised images as a result. Multiscale 

strategies [19] has been introduced for improving the similarity, however the information would be lost in the 

course level and same counterparts would be failed to detect. In this work, we take the advantage of both spatial 

and transform domain denoising by integrating the nonlocal means algorithm and NSST. The key concept of our 

work is demonstrated in Figure 1. With the help of multiscale directional transform, i.e. the geometry of 

multidimensional data can be captured using the NSST. Shear parameters is then used to capture the singularities. 

The non-local mean filtering facilitates preservation of edge features and details of the multi-resolution 

representation. High-contrast elements such as textures in general are rarely preserved while suppressing noise. 

As a result, this serves as a motivation to use a combination of non-subsampled Shearlet transform and a nonlocal 

means algorithm to denoise images. The advantages of combined adaptable approach especially exhibit the 

capacity to extract multidimensional data geometry. It could also effectively indicate edges in high-noise images.   

The remainder of this paper is organised as follows: Section 2 broadly summarise the previous related works. 

Section 3 illustrated a key concept of NSST.  The proposed image denoising method using NSST decomposition 

and the non-local means algorithm is demonstrated in Section 4. Section 5 has been dedicated to exhibit the 

numerous experimental results which demonstrates the analysis, discussions, and efficiency of our method with 

other comparative methods. Finally, a summary of the conclusion is mentioned in Section 6.  

 

II. SUMMARY OF PREVIOUS WORKS 

In this section, recent developments of image denoising are presented and discussed. Self-similar patches are used 

in many important denoising algorithms; NLM (Non-Local Means Algorithm) [20] and BM3D (Block Matching 

3D transform) [21]. Many versions have been proposed as a result of their improvisation and evolution, including 

SADCT (Shape Adaptive Discrete Cosine Transform) [22], SAPCA (Shape Adaptive Principal Component 

Analysis) [17] and many more that explore self-similar patches in transform domain. The dictionary learning 

oriented algorithms [23] use self-identical patches and learn overcomplete dictionaries from clear image to 

recognise and formulate sparsity. Numerous algorithms [24-25] have looked for using the maximum likelihood 

approach to train the statistical priors, such as the gaussian mixture model (GMM) of natural patches or patch 

reconstruction. For multi-resolution study on transform domain methods, a novel multiscale directional transform 

known as shearlet has been proposed in literature. The single Shearlet function [26] is defined by the direction of 

the singularities, a translation and a shear. However, it has unbound support depending on the space domain, as 

well as functions that are band-limited. As a result, the spatial domain efficiently helps the compact representation 

components for local characteristics of any images.  [27]. NSST can also accurately characterise an image's 

geometric and textural features [28]. It has the ability to breakdown an image into the number of directional 

elements. A NSST has a lower computing complexity and sparse approximation capabilities than the NSCT 

(nonsubsampled contourlet transform) [29]. By introducing the texture measure as smooth penalty weight or 

spatially varying data fidelity in the sparse norm & non local total variation algorithms, the nonlocal version of 

generalised RTV (NLGRTV) for denoising has been introduced in [30]. The important concept is to employ the 

updated texture measure as the spatially changing penalty weight & substitute local candidate pixel in the smooth-

penalty term with the nonlocal set [30]. Takeda et al. [31] extend the application of kernel regression to deblurring. 

This algorithm employed a novel image prior that generalises some of the most widely used regularisation 

techniques. Chambolle et al. [32] addressed a wide range of theoretical and practical aspects of Total Variation-

based image reconstruction algorithms. Graham Treece has suggested a rather recent filter based on morphological 

filtering for adaptively eliminate the quantity of noise contain in the images. It is called bitonic filtering and works 

on the idea of bitonicity which means it keeps image information that is locally bitonic i.e. a signal comprising of 

one minima or maxima in the given range. It targets to remove the noise pixels that are constantly varying with 

low range of frequency. The bitonic filtering is the nonlocal filter that creates a weighted gaussian result by 

combining the opening & closing weights of filter. It is a type of adaptive image denoising that keeps edges whilst 

reducing noise without requiring advance knowledges of the quantity of noise. In case of AWGN and impulse 

noise, this filter has superior denoising efficiency than median, gaussian etc filters [33]. B.K Shreyamsha 

presented a noise thresholding and Gaussian/Bilateral filtering-based denoising method. An idea of method noise 

has been proposed in this scheme. The dissimilarity between the input image and denoised image using a particular 

approach is referred to as method noise. The noisy images are supposed to be contaminated/degraded via Gaussian 

Additive noise having zero mean & a known variance has been regulated to test at low and high noise value in 

GBFMT [34]. The contaminated images are filtered utilizing bilateral filtering & the resulting residual images are 

hard thresholded in the wavelet domain. In a similar study, a non-local filter was used instead of a bilateral filter 

to take use of the idea of method noise thresholding (NLMNT) [35]. A method known as WBF (weighted bilateral 

filter) has been developed optimising standard bilateral filtering and its adaptation in the weighted form with the 

goal of minimising the MSE (man square error). Chaudary et al. presented the sure & fast strategy for image 



denoising by utilising bilateral filter [36]. Random field methods are another popular topic that is often used in 

image denoising along with other low-level processing applications including image segmentation & 

classification. In this algorithm, the intensity of a pixel is determined by its neighbours. These algorithms are 

primarily based on the principle that the global representation of images may be generated through its local 

physical structure, that is done using the conditional probability distribution function known as markov random 

field (MRF) [37]. Tomasi and Munich proposed the bilateral filter (BF) as the improvised version of neighbouring 

filter that weighs the distance to the reference pixels rather than following the fixed neighbourhood [38]. The 

authors of the paper [39] have summarised the comparison classification and assessment of several image 

denoising algorithms. A large number of researchers have put in a lot of time & efforts to create a structural 

literature that shows significant progressive growth achieved through the series of sequential incremental 

enhancements. Goyal et al. [40] proposed an effectual denoising method based on NSST domain morphological 

filtering and Bitonic filtering. With the use of morphological techniques structural information and contrast has 

been regulated. NSST accurately represents the detailed directional features [41]. In multi-baseline InSAR 

(interferometric synthetic aperture radar), interferometric phase filtering is a critical step. Multi-baseline 

interferometric phase filtering methods primarily follow single baseline INSAR approaches and which do not 

fully exploit its data supremacy is being proposed in [42] i.e. statistically-based joint filtering of multi-baseline 

InSAR. An innovative framework for denoising of images based on NSST and bilateral filtering is discussed in 

[43]. This method employs NSST to separate high and low frequency coefficients of a noisy input image. The 

noise from the low frequency coefficient is removed using the weighted bilateral filter (WBF), while noise from 

the high frequency coefficient is removed using thresholding [43]. The continued advancement and widespread 

uses of CT (computed tomography) in medical imaging has increased the exposure of high radiation doses to the 

patients. However, using low radiation dose might result in increased noise and artefacts that adversely affects 

radio-diagnosis. This issue has been addressed in the nonsubsampled shearlet (NSST) domain in [44]. It is a 

strategy based on a novel shrinkage function. The proposed approach uses SURE-LET (stein unbiased risk of 

estimation & liner expansion of threshold) technique for effectively modelling noise on multivariate shrinkage 

algorithms. The enhanced nonlocal means (NLM) along with NSST been used to develop a new denoising 

methodology for MRI images [45]. The parameters have been tuned to maximise output while maintaining high-

quality denoising. The image restoration algorithms have largely focussed on removal of AWGN as it degrades 

the uniform information subsequent and hinders subsequent image processing at large. A new framework for 

multi-level image denoising is proposed in [46] which progressively reduces Gaussian noise while retaining 

information as much as possible. The advantages of complex valued process such as the closeness of the 

convolution provided by the tensor products of 1D complex valued filters, noise stability of residual blocks and 

nonlinear activation on are exploited by introducing a CNN for denoising of images with key computational 

operation described in the complex number field in [47]. A novel model based denoising approach has been 

proposed by incorporating the nonlinear filtering operator, a reliability matrix, and a high-dimensional feature 

transformation function into the traditional consistency prior to simultaneously incorporate the valuable 

achievements of traditional methods into the network design while also improving network interpretability [48]. 

 

III. NONSUBSAMPLED SHEARLET TRANSFOMR [NSST]  

 

Shearlet are considered as an extremely appropriate sparse directional image representation frame within MST 

(Multi-scale transform) theory so far [50]. These are affine systems with composite dilation of dimension 𝑛 = 2  

and is explained as follows. 

 

𝛹𝑗,𝑙,𝑘(𝑥) =  |𝑑𝑒𝑡𝐴|𝑗/2 𝛹(𝑆𝑙𝐴𝑗𝑥 − 𝑘), 

 

where 𝛹 ∈ 𝐿2𝑅)2, 𝐴 is an anisotropic matrix, that is related with scale transformation and 𝑆 is the shear matrix 

that is affiliated via area preserving geometrical transformation for example rotations and shear.   

The scale, direction and shift parameter are denoted 𝑗, 𝑙 & 𝑘, respectively. For each 𝑎 > 0 & 𝑠 ∈ 𝑅, the matrices 𝐴 

and 𝑆 plays the crucial role in the ST operation and represented as follows [51] 

 

𝐴 = [
𝑎 0
0 √𝑎

],   𝑆 = [
1 𝑠
0 1

],    

 

 

If we assume that 𝑎 = 4 and 𝑠 = 1; we get 

 

𝐴 = [
4 0
0 2

],   𝑆 = [
1 1
0 1

],    

 

(1) 

(2) 

(3) 



Let 𝐴1= [
4 0
0 2

]  and 𝑆1= [
1 0
1 1

]  , for any 𝜉 = (𝜉1,𝜉2) ϵ 𝑅2 and 𝜉1 ≠ 0; also let 𝛹(0) and 𝛹(1) is specified by   

𝛹̂(0)(𝜉) = 𝛹̂(0)(𝜉1, 𝜉2) = 𝛹̂1(𝜉1)𝛹̂2  (
𝜉2

𝜉1

) 

𝛹̂(1)(𝜉) =  𝛹̂(1)(𝜉1, 𝜉2) = 𝛹̂1(𝜉1)𝛹̂2  (
𝜉1

𝜉2
), 

 

Where 𝛹̂1, 𝛹̂2ϵ 𝐶∞(𝑅̂), supp 𝛹̂1 ⊂ [−
1

2
, −1/16] ∪ [1/16,1/2], and supp 𝛹̂1 ⊂ [-1,1]. 

 

Each element of 𝛹̂𝑗,𝑙,𝑘 is supported by the pair of trapezoids, approximately  2𝑗  ×  22𝑗 in size, orientated along 

slope lines 𝑙2−𝑗   

 

The ST function is then obtained: 

𝛹𝑗,𝑙,𝑘
(0)

 (𝑥) = 2
3𝑗

2 𝛹(0)(𝑆0
𝑙 𝐴0

𝑗
𝑥 − 𝑘) 

 

𝛹𝑗,𝑙,𝑘
(1)

 (𝑥) = 2
3𝑗

2 𝛹(1)(𝑆1
𝑙𝐴1

𝑗
𝑥 − 𝑘), 

 

where 𝑗 ≥ 0, −2𝑗 ≤ 𝑙 ≤ 2𝑗 − 1, and 𝑘 ∈ 𝑍2. 

 

ST has the following characteristics: good spatial & frequency localisation, robust anisotropic directionality 

selectivity, good parabolic scaling & sparse representation. Still ST causes a Gibbs phenomenon due to the 

shortage of shift invariance. The version of shift invariant form of ST is NSST. A NSLP (nonsubsampled 

Laplacian pyramid) filters are utilised as a replacement for LP filters utilised in the ST operation. NSLP 

implements multi-scale decomposition. Each NSLP decomposition level can generate one low frequency & one 

high frequency coefficient. Then, repeatedly, the next NSLP decomposition is conducted on the last (prior) low 

frequency coefficient in order to capture the singularities of an input image. When the decomposition level is aet 

at 𝐽, input image is decomposed into 𝐽 + 1 coefficients of equal size of the input image, one of that is the low 

frequency coefficient. To achieve multidirectional factorization, a shear filter (SF) is applied to the high frequency 

coefficients of each NSLP decomposition level without sub-sampling ensuring the shift invariance quality of 

NSST. Suppose, perform 𝑙 stages of directional decomposition on the high-frequency coefficient decomposes by 

NSLP, resulting in 2𝑙 directional sub-bands of similar size as input [51]. Figure 2 depicts the two-level 

decomposition of the NSST. NSLP decomposition and their corresponding directional decomposition by SF are 

depicted in the schematic diagram in Figure 2. 

 

IV. PROPOSED DENOISING METHOD   

This section presents a proposed denoising technique that combines NSST decomposition, NL-Means algorithm, 

and inverse NSST. The proposed denoising approach consists of three stages: NSST decomposition, NL-Means 

filtering of finer layers and NSST reconstruction. Figure 1 depicts the illustrative framework of proposed method. 

First, a NSST decomposition yields low and high frequency coefficients that reflect various feature information. 

The coarser elements of the input image contain low-frequency coefficient while the finer detailed features contain 

the high-frequency coefficients. The more visual significant details and contrast information can be found in the 

coarser layer of the images. More contour and edge information are provided by the finer layers of images. The 

finer layers are then processed using a nonlocal means algorithm, while the coarser layer is left as it is. It is 

possible to retain feature i.e. edges and structures of finer detailed layers using the nonlocal means algorithm. 

Finally, using inverse NSST to the base layer and the NLM filtered detail layers, a denoised image is obtained

. 

(4) 

(5) 



 
 

 

 

 

 

Fig.1.  Framework of the proposed method 

4.1 NSST implementation steps  

 

The NSST could be achieved in two steps  

 

(A) Multiscale decomposition: To achieve multi-resolution decomposition, a NSP (non-subsampled pyramid) 

filter bank decomposes each input image in the set of low & high frequency sub images. Firstly, NSP decomposes 

input image into low frequency and high frequency coefficient. The singular points will be generated by iterating 

the NSP decomposition of each layer on the low frequency coefficients retrieved by upper layer decomposition. 

The sub band image will possess same size as input image if down-sampling is not performed. Finally, we get a 

low pass image and the 𝑗 band pass images from 𝑗 level decomposition. 

 

(B) Directional localization; To achieve multi-direction decomposition, the sheralet filter bank decomposed this 

high frequency sub images. The pseudo polarisation coordinates are first converted to cartesian coordinates. A 

“Meyer” wavelet is then utilised to create a window function & create shearlet filters. Lastly, the directional sub 

band images are obtained by convolving the sub band images with "Meyer" window function. Figure 2 indicates 

the two-level decomposition representation. The source image 𝐴 are decomposed by NSST in low frequency 

bands; 𝐿𝐴(m,n) as well as high-frequency coefficient 𝐻𝑘,𝑙
𝐴 (𝑚, 𝑛). The decomposed high frequency coefficient in 

the 𝑘𝑡ℎdirection the 𝑙𝑡ℎ decomposition level is denoted by k and l. The domain variables of the NSST are indicated 

by letters 𝑚 and 𝑛. One low frequency coefficient and four high frequency coefficients of input image are achieved 

by the two-level NSST decomposition. 
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Fig. 2. Two level multiscale and multidirectional decomposition of NSST 

 

4.2 The Nonlocal means algorithm  

 

A nonlocal means algorithm [52] is the nonlinear, edge preserving filter which calculates each output pixels as 

the weighted sum of the input pixels. The set of input pixels which contribute to one output pixel will come from 

the large region of source image, hence it’s called a nonlocal. The weights are computed by distance between 

small image patches which is the key property of nonlocal means filter. A nonlocal means filter is the variant of 

bilateral filter [53], that computes filter weights based on distance between pair of pixel values rather than small 

patches. Denoising performance is greatly enhanced as a result of this extension, and nonlocal means and its 

versions are among the mostly used denoising techniques.   

 

The nonlocal means filter calculates the filtered vale 𝑢̂(𝑝) of a pixel 𝑝 in a colour image 𝑢 = (𝑢1,𝑢2,𝑢3) as the 

weighted average of pixel in the square neighbourhood of size 2𝑟 + 1 x 2𝑟 + 1 centred on 𝑝, as defined by 

𝑢̂𝑖(𝑝) =  
1

𝐶𝑝

∑ 𝑢𝑖(𝑞) 𝑤 (𝑝, 𝑞)

𝑞𝜖𝑁(𝑝)

 

 

where 𝑁(𝑝) 𝑖𝑠 𝑡ℎ𝑒 square neighbourhood centred on 𝑝, 𝑤(𝑝, 𝑞) represent weight contribution of  𝑞 to 𝑝, 𝑖 
represent colour channel index and 𝐶(𝑝) represent normalisation factor, 

 

𝐶(𝑝) =  ∑ 𝑤(𝑝, 𝑞).

𝑞𝜖𝑁(𝑝)

 

 

A distance between the pair of small patches of size 2𝑓 + 1 x 2𝑓 + 1 centred at 𝑝 & 𝑞 is used to calculate the 

weight 𝑤(𝑝, 𝑞) of a neighbour 𝑞. The average of per-pixel and per-color channel squared distance 𝑑𝑖
2(𝑝, 𝑞) over 

the patches is called the patch distance 𝑑2(𝑃(𝑝), 𝑃(𝑞)). 

 

𝑑𝑖
2(𝑝, 𝑞) = (𝑢𝑖(𝑝) − 𝑢𝑖(𝑞))2, 

 

𝑑2(𝑃(𝑝), 𝑃(𝑞)) =
1

3(2𝑓 + 1)2
∑ ∑ 𝑑𝑖

2(𝑝 + 𝑛, 𝑞 + 𝑛)

𝑛𝜖𝑃(0)

3

𝑖=1

 

 

Here 𝑃(0) indicates the offset to each pixel within a patch, 𝑃(𝑝) & 𝑃(𝑞) are the patches centred on 𝑝 and 𝑞, 

respectively. The computed squared distance is biased due to the noisy input image, which is an important 

observation. As a result, the original nonlocal means filter subtracts the variance of the computed squared distance 

from the patch distance to remove the noise contributions. A modified patch distance is calculated using uniform 

pixel noise with variance 𝜎2 & uncorrelated pixels 𝑝 & 𝑞 as 

 

max (0, 𝑑2(𝑃(𝑝), 𝑃(𝑞)) − 2𝜎2). 

 

An exponential kernel is then used to calculate the weight 𝑤(𝑝, 𝑞) of the contribution of pixel 𝑞 to 𝑝 as 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



𝑤(𝑝, 𝑞) = 𝑒𝑥𝑝
−

max (0,𝑑2(𝑃(𝑝),𝑃(𝑞))−2𝜎2)

𝑘22𝜎2   
 

Where 𝑘 is a damping factor set by the user to control the strength of filter. A more conservative filter is produced 

with a lower 𝑘 value. 

 

We also employ the patchwise extension described by [54], which results in outputs that are slightly smoother. 

We weight complete pixels in the patch centred at 𝑝 with 𝑤(𝑝, 𝑞) in place of weighting only the pixel 𝑝 at the 

centre of patch with the weight  𝑤(𝑝, 𝑞). Each pair of pixels appears as 2𝑓 + 1 x 2𝑓 + 1 patches. Every time with 

the different weight 𝑤(𝑝 + 𝑛, 𝑞 + 𝑛), where 𝑛 is the offset of  𝑝 and 𝑞 in the patch. A final weight 𝑊(𝑝, 𝑞) for 

the pair of pixels in the patchwise implementation is just the average of complete weights which involve these 

two pixels;   

 

𝑊(𝑝, 𝑞) =
1

(2𝑓 + 1)2
 ∑ 𝑤(𝑝 + 𝑛, 𝑞 + 𝑛)

𝑛𝜖𝑃(0)

 

 

The value of 𝜎 determines the size of the patch and research window. When 𝜎increases, we need a larger patch to 

ensure that patch comparison is reliable. At the same time, we need to enhance the research window to boost the 

algorithm's noise-removal capabilities by locating more similar pixels. Where ℎ = 𝑘𝜎 is the value of the filtering 

parameter. As the dimension of the patch increases, the value of  𝜎 drops. The distance between two pure noise 

patches concentrates more around 2𝜎2 for larger sizes, and hence a smaller value of 𝑘 can be utilised for filtering. 

 

 4.3 NSST Reconstruction 

In order to generate a final denoised image, inverse NSST is applied to base layer and the NLM filtered detail 

layers. 

 

 

4.4 Performance metrices 

 

The method of evaluation is required to demonstrate the effectiveness of the denoising methods.  Subjective and 

objective assessment methods are two types of evaluation procedures that are often used. Qualitative approaches 

are manmade visual analysis that aids in describing the visual quality of the images. There are variety of strategies 

that can be employed for objective analysis [40]. The PSNR and its Mean value are quantitative evaluation metrics 

estimated for measuring the effectiveness of denoised image reconstructed in our method. The PSNR is expressed 

in decibels. The larger the PSNR value, the greater the quality of the resulting denoised image.  It is computed as 

follows: 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

 

Where MAXI indicates the maximum possible pixel value of an image. The cumulative error between an original 

image and denoised image is called mean squared error (MSE). The lower the estimated MSE value, the superior 

the image denoising performance. It is computed as follows: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

 

 

The vector 𝑛 predictions is derived from the sample on 𝑛data points on all variables & 𝑌 is the vector of observed 

values of the variable being predicted, with 𝑌̂ being the predicted values. 

 

To further assess the consistency of the different algorithms, we introduce calculating the mean/average of PSNR 

values, which may be computed as follows,  

𝑀𝑒𝑎𝑛 = ∑
𝑃𝑆𝑁𝑅𝑖

𝑛

𝑛

𝑖=0

 

 

(12) 

(13) 

(14) 

(15) 



Above metric can be used to determine the stability in the performance of the of different algorithms at various 

noise levels.   

 

 

 

 

 

    

 

             

Fig. 3.  Input images (a) House; (b) MRI; (c) PAN 

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION 

 

(A) Experimental setup   

With the aim to test the effectiveness of our denoising method, we have utilized three images: house image, 

magnetic resonance imaging (MRI) image and panchromatic (PAN) image that is remote sensing, medical and 

natural image, respectively [55]. We had evaluated the effectiveness of our denoising method with different set 

of images. The images are of size 256*256 pixels. The efficiency of our method was evaluated utilizing standard 

8-bit gray scale image contaminated by zero mean white gaussian noise. The proposed method has been performed 

in MATLAB 2019b on intel (R) core (TM) i3-7020 CPU @ 2.70 GHz system with 8 GB memory. An 

effectiveness of our method is compared with NLGRTV [30], Locally Adaptive Kernel Regression (LARK) [31], 

Total variation minimization [32], Bitonic filter [33], GBFMT [34], NLFMT [35], RBF [36], Markov Random 

Field (MRF) [37] and SBF [38]. For this experiment, a radius of the aussian filter is set to 3 (three), however as 

larger value could induce excessive smoothing & blurring. For SBF, the spatial kernel parameter is set to 4 (four) 

 

 

 

 

 

 

 

 

 

 

Fig.4. A source MRI image contaminated by gaussian noise on 𝜎 (standard deviation) = 10,20,30,40,50 

   

 

 

 

 

 

 

 

 

 

Fig.5.  A source House image contaminated by gaussian noise on 𝜎 (standard deviation) = 10,20,30,40,50 
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   Fig.6.  A source PAN image contaminated by gaussian noise on 𝜎 (standard deviation) = 10,20,30,40,50   

and a kernel range parameter is set at 20. The performance of our method is measured for 𝜎 = 10,20,30,40,50 

for low to high noise levels. The standard test images are shown in Figure 3. These images are then added with 

white gaussian noise of difference variance. The noisy image for MRI, House, and PAN are shown in Figures 4, 

5, and 6 at various levels of noise. 

 

(B) Experimental results   

This section demonstrates an experimental results achieved by processing the standard test image datasets used in 

our algorithm and results are compared visually as well as quantitatively with several algorithms such as NLGRTV 

(nonlocal version of general relative total variation), Locally Adaptive Kernel Regression (LARK), Total variation 

minimization, Bitonic filter, NLFMT, GBFMT, RBF, Markov Random Fields (MRF), SBF and proposed method 

and proposed method. The results are provided for all three datasets & five distinct noise give the comparative 

visual analysis and quantitative results at various settings. The qualitative evaluation results for the MRI at 𝜎 =
10 is shown in Fig 7 (a-j). Figures 8 to 11 demonstrate the findings of MRI using various algorithms with noise 

levels of 𝜎 = 20,30,40 and 50. The visual findings for the house image at 𝜎 = 10,20,30,40 and 50 utilizing 

various approaches are shown in Figure 12 to 16. Similarly, Figure 17 to 21 demonstrates the denoised 

performance of PAN image at 𝜎 = 10,20,30,40 and 50, respectively using various algorithms. Table 1 

demonstrates the objective performance with regard to PSNR values at 𝜎 = 10,20,30,40 and 50 utilizing the 

NLGRTV, LARK, Total variation minimization, Bitonic filter, NLFMT, GBFMT, RBF, Markov Random Fields 

(MRF), SBF and proposed method and our proposed algorithm for MRI image, PAN image & House image 

 

(C) Result analysis and discussions  

 

We have demonstrated the qualitative and quantitative evaluations of our proposed algorithm in this section and 

compare it with other algorithms. 

 

(i) Qualitative Evaluation 

 

We have evaluated the proposed denoising algorithm with PSNR value, mean value and visual human perception 

after implementing it. In order to evaluate our findings, we considered three images: MRI, House, and PAN. 

Despite the fact that PSNR measures the intensity differences between the images, qualitative analysis plays the 

prominent role in order to verify and validate the visual quality of the denoised image. of image quality is crucial 

for qualitative judgement. It aids in identifying whether or not edge features are retained, to examine either images 

carry artifacts and either noise has been eliminated. From Figures 7 to 21, it is noticeable that our method surpasses 

other prevailing methods in the context of qualitative analysis at standard deviations of 𝜎 = 10,20,30. Therefore 

at low to moderate levels such as at standard deviation 𝜎 = 10, 20 and 30, our method retained edges and sharp 

gradients, also tips are crisper, boundaries and counters are well sharp after removing noise. Therefore, practically 

at low to moderate noise levels, our method performs better then prevailing methods. As a result, proposed method 

has performed better visual performance then other benchmarking methodologies such as NLGRTV, LARK, Total 

variation minimization, Bitonic filter, NLFMT, GBFMT, RBF, Markov Random Fields (MRF), SBF. However, 

NLFMT, GBFMT, MRF, and SBF have performed quite similar visual performance at low to moderate noise 

levels as compares to proposed method but rest of the approaches failed miserably in maintaining fine textures 

and causes over-blurring of the images, resulting in data loss. A proposed method produces overall better visual 

results when compared to other algorithms and simultaneously emerges as a preferable algorithm for quality 

performance at low to moderate noise levels. Our method performs nearly better performance as compares to 

other benchmarking methods. Despite the fact that the algorithm was created to deal with noise at moderate and 

high noise levels, but our method is efficient to obtain comparable results at low noise levels too. The following 

factors are responsible for the improving the performance of proposed method i.e. nonsubsampled shearlet 

transform (NSST) has potential to captures the geometry of multidimensional information. Shear parameters are 

than used to capture the singularities. The non-local means filter reduces noise in detail images while maintaining 

the sharpness of strong edges, such as the image 
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Fig. 7. MRI image  𝜎 = 10, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) MRF, 
(i) SBF, (j) Our method 

 
Fig. 8. MRI image at 𝜎 = 20, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 

(a)) (d)) (c)) 

(e)) (f)) (h)) (g)) 

(b)) 

(j)) (i)) 



 
 

 

Fig. 9. MRI image at 𝜎 = 30, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 
MRF, (i) SBF, (j) Proposed 

 
 

Fig.10.  MRI image at 𝜎 = 40, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 
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Fig.11. MRI image at 𝜎 = 50, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Proposed 
 

 
 

Fig.12.  House image at  𝜎 = 10, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 
MRF, (i) SBF, (j) Our method 
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Fig.13.  House image at 𝜎 = 20, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1 (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Proposed 

 
Fig.14.  House image at 𝜎 = 30, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 
MRF, (i) SBF, (j) Our method 
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Fig.15. House image at 𝜎 = 40, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 
MRF, (i) SBF, (j) Our method 

 
Fig.16. House image at  𝜎 = 50, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 

(a)) (d)) (c)) 

(e)) (f)) (h)) (g)) 

(b)) 

(j)) (i)) 
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Fig.17. PAN image at  𝜎 = 10, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 

 
Fig.18. PAN image at 𝜎 = 20, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 
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Fig.19.  PAN image at 𝜎 = 30, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 

 
Fig.20. PAN image at 𝜎 = 40, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, (f) GBFMT, (g) RBF, (h) 

MRF, (i) SBF, (j) Our method 
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Fig.21. PAN image at 𝜎 = 50, denoising result (a) NLGRTV, (b) Ker. Reg., (c) TV1, (d) Bitonic, (e) NLFMT, 

(f) GBFMT, (g) RBF, (h) MRF, (i) SBF, (j) Proposed  
 

silhouette. When compared to noisy images, this filter also smooths textured regions, resulting in more 

information. The combined technique can able to combine the benefits of efficient algorithms having exceptional 

ability to extract multidimensional data geometry. It could also effectively present edges in low-noise for any 

given image. Bitonic filter and RBF perform roughly identical and somewhat better in terms of visual perception, 

but with insufficient noise removal and loss of fundamental feature information. Bitonic outperforms Ker, Reg, 

TV1, and NLGRTV algorithms because it removes high amount of noise from the images. The proposed approach, 

on the other hand, was able to totally eradicate the noisy pixels and maintains sharp edges and smooth gradients. 

We zoomed in on different regions of an image to check the fine texture details of denoised image and noticed 

that the texture details are more clearly visible in the images in proposed algorithm, however while zooming 

images in other methods result in presence of noise pixels instead of texture details. As a result, the proposed 

method may be concluded that, it maintains better performance than other comparative algorithms in case of 

qualitative assessment. 

 

(ii) Quantitative Evaluation  

 

In order to assess the effectiveness of our method quantitatively, we have computed PSNR value and its mean 

value for the test image datasets. The quantitative assessment of our method along with other methods is illustrated 

in Table 1. As shown in Table 1, the objective metric values of our algorithm are generally greater than other 

comparative algorithms. The PSNR values clearly shows that proposed algorithm performs better at moderate to 

high noise levels from the Table 1. Whereas the results of proposed algorithm are slightly better at low noise level, 

meanwhile still appropriate and effective as compares to other existing algorithms. Given that the noise levels of 

the image to be denoised is undefined beforehand, therefore selecting a good denoising filter only due to PSNR 

performance is not reasonable.  In order to overcome this problem, we propose to measure the mean value of 

PSNR, which exhibits the stability in the performance of different algorithms across various range of noise levels. 

Table 1 shows that proposed algorithm is capable to provide superior results for House, MRI and PAN image 

based on the objective metrics. The proposed approach and SBF both perform well on PAN  

 

 

Table 1: Quantitative assessment in terms of PSNR and Mean value for House, MRI and PAN image with noise 

levels of σ=10,20,30,40 and 50  
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image, however our PSNR performance is best when the noise level rises from low to high levels. Altogether, 

PSNR performance varies dramatically with rising noise levels for all denoising methods except ours. As a result, 

our algorithm is capable to provide stable and consistent performance across the wide range of noise levels. As 

we progress from standard deviation 10 to 50, the PSNR rates for methods other than our proposed method drop 

dramatically. For example, at 𝜎 (standard deviation) 10 and 50, the PSNR value for House and MRI image in SBF 

decreases from 33.23 to 15.14 and 32.18 to 15.13, respectively, resulting in a difference of 18.09 and 17.05. For 

image House, MRI and PAN, the difference between PSNR value on 𝜎 (standard deviation) 10 and 50 for   our 

algorithm is less than other methods. In case of House, MRI and PAN image, however the difference between 

PANR value on 𝜎 (standard deviation) 10 and 50 for NLGRTV and TV1 had less differences, but their total PSNR 

performance is significantly low when compared to the other approaches. Bitonic and RBF had the least 

differences in PSNR values for image House, MRI and PAN. However, on standard deviation of 10 to 50, the 

overall PSNR value for House, MRI, and PAN image with our method is more than other comparative approaches. 

Therefore, the key benefits of our algorithm are being able to exhibits consistent performance with low noise 

contents. Our proposed technology has a far lower retardation rate than current denoising strategies. As a result, 

our algorithm may be used to deal with a wide range of noise levels. Execution time of proposed algorithm was 

found to be 4.25 seconds. Stage 1 and 2 denoising process take 2.45 seconds and 2.00 seconds, respectively. This 

can be further lowered by using specialised hardware with the high configuration. Also, our proposed method 

exhibits faster experimental operation than other comparative algorithms and can be used for effective denoising 

process for numerous image datasets. 

 

VI. CONCLUSION 

 

In this paper, we introduce an effective denoising algorithm by the decomposition of the image in coarser and 

finer layers and their subsequent processing. The proposed method maintains edges in the images in case of low 

to high noise levels. In this method, the advantages of both spatial and transform domain techniques are employed 

to handle the challenges of increasing noise levels in various image datasets. In comparison to SBF, MRF, RBF, 

NLFMT, GBFMT, and bitonic filter, the proposed method exhibits high stability and consistency for different 

Datasets Methods σ =10 σ =20 σ =30 σ =40 σ =50 

MRI 

NLGRTV [30] 24.12 23.71 20.14 22.54 22.27 

Ker. Reg. [31] 28.45 27.63 26.01 22.86 18.91 

TV1[32] 28.71 27.04 25.96 23.99 21.21 

Bitonic [33] 29.39 27.27 25.25 23.25 21.70 

NLFMT [35] 29.52 23.55 20.08 17.66 15.84 

GBFMT [34] 29.56 23.58 20.10 17.69 15.87 

RBF [36] 30.20 28.59 28.54 24.03 21.63 

MRF [37] 30.64 26.61 20.80 17.99 16.32 

SBF [38] 32.18 25.78 20.79 17.44 15.13 

Proposed 33.64 29.06 26.33 24.13 22.48 

House 

NLGRTV [30] 26.87 26.62 25.48 25.24 25.67 

Ker. Reg. [31] 29.94 30.89 30.57 24.44 17.52 

TV1[32] 31.78 29.93 28.49 27.19 25.47 

Bitonic [33] 31.89 29.59 27.29 25.51 24.00 

NLFMT [35] 28.13 22.12 18.67 16.31 14.58 

GBFMT [34] 28.14 22.14 18.68 16.33 14.60 

RBF [36] 31.75 30.98 29.69 27.19 25.37 

MRF [37] 32.80 26.39 19.15 16.51 14.93 

SBF [38] 33.23 26.11 20.95 17.60 15.14 

Proposed 35.03 31.33 28.98 27.21 25.75 

PAN 

NLGRTV [30] 17.43 17.26 19.00 16.65 16.73 

Ker. Reg. [31] 23.90 23.16 20.50 18.61 15.76 

TV1[32] 19.45 18.94 18.39 17.85 17.41 

Bitonic [33] 20.16 19.88 19.48 16.91 14.74 

NLFMT [35] 28.33 22.41 19.02 16.68 14.94 

GBFMT [34] 28.37 22.45 19.07 16.72 14.97 

RBF [36] 19.54 19.37 19.14 18.84 18.40 

MRF [37] 26.88 23.27 19.24 16.77 15.18 

SBF [38] 28.62 23.44 19.60 16.91 14.74 

Proposed 28.72 23.58 20.79 19.66 18.56 



noise levels. The proposed method shows comparable performance in case of low noise level; however, it has 

shown great potential to perform much better performance at moderate to high noise levels. The proposed 

algorithm is capable to reduce noise while simultaneously preserving the edges in the images. When there is an 

unknown quantity of noise in different type of image datasets, the proposed method can be used as single denoising 

solution.  
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