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Abstract

The Costas-array problem is a combinatorial constraint-satisfaction problem (CSP) that remains unsolved for many array
sizes greater than 30. In order to reduce the time required to solve large instances, we present an Ant Colony Optimization
algorithm called m-Dimensional Relative Ant Colony Optimization (mDRACO) for combinatorial CSPs, focusing specifically
on the Costas-array problem. This paper introduces the optimizations included in mDRACO, such as map-based association
of pheromone with arbitrary-length component sequences and relative path storage. We assess the quality of the resulting
mDRACO framework on the Costas-array problem by computing the efficiency of its processor utilization and comparing its
run time to that of an ACO framework without the new optimizations. mDRACO gives promising results; it has efficiency
greater than 0.5 and reduces time-to-first-solution for the m = 16 Costas-array problem by a factor of over 300.

Keywords CSP - Costas array - ACO - Parallelism

1 Introduction

Costas arrays are square arrays of 1s and Os such that there
is exactly one element with value 1 in each row and column
and no three or four distinct elements with value 1 form
a (potentially degenerate) parallelogram (Drakakis 2011).
John P. Costas first described these arrays in 1965 as rep-
resentations of sequences of SONAR pulse frequencies with
optimal auto-correlation properties (Costas 1984); they have
since been applied in other areas, such as communication
systems and cryptography (Taylor et al. 2011). Costas arrays
are also objects of theoretical interest to the research commu-
nity. Golomb and Taylor (1984) describe several algebraic
constructions for certain classes of Costas arrays in 1984,
which remain the only known Costas-array constructions
(Drakakis 2011). All Costas arrays of order m < 29 are
known (Drakakis et al. 2011), but the existence of Costas
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arrays for many sizes m > 30 remains an open question
(Drakakis 2011).

The problem of finding Costas arrays is a constraint-
satisfaction problem (CSP). CSPs are multi-variable combi-
natorial problems that require that each variable be assigned
a value such that the assignments satisfy a set of constraints.
Because there exist NP-complete CSP instances (Bulatov
et al. 2000), no polynomial-time algorithm for the general
CSP is known. In order to reduce the time to solve large CSP
instances, researchers have developed parallel algorithms to
pool the computational resources of multiple processors.
The Costas-array problem is a common benchmark prob-
lem for assessing parallelized CSP solvers (see Arbelaez and
Codognet 2014, Caniou et al. 2015, and Truchet et al. 2013
for examples).

Researchers also apply heuristic algorithms that perform
stochastic or approximate searches to combinatorial prob-
lems. One family of such algorithms is the Ant Colony
Optimization (ACO) metaheuristic. Modeled after the for-
aging patterns of ants, ACO algorithms traverse a graph of
the search space, probabilistically preferring paths with com-
ponents of higher learned favorability (Dorigo and Di Caro
1999). Dorigo proposed the first ACO algorithm (Dorigo
et al. 1996) to solve constraint-optimization problems such
as the Traveling Salesman Problem (TSP), but researchers
have applied ACO to CSPs as well (Roli et al. 2001).
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1.1 Costas arrays

Definition 1 A constraint-satisfaction problem (CSP) (Bula-
tov et al. 2000) is an ordered triple (V, D, C), where V is
the set of variables, D is the domain,' and C is the set of
constraints. Each constraint C; is of the form (s;, p;), where
s; describes a tuple of variables s; : {1,...,m;} — V and
pi 18 an m;-ary relation on D, p; € D™i.

A solution of the constraint-satisfaction problem instance
(V, D, C) is afunction f : V — D such that for all con-
straints C; = (s;, pi), f o Si € pi.

In general, each variable V; of a CSP can have its own
corresponding domain D;. Rather than explicitly defining
a domain D; for each variable in the definition above, we
let D = |J D; and add a unary constraint (s, p) such that
s(1) = V; and p = D; to each variable.

Definition 2 A Costas array (Drakakis 2011) of size m is an
m x m array of 1s and Os such that there is exactly one element
with value 1 in each row and column, and there are no equal
displacement vectors between distinct pairs of distinct ele-
ments with value 1. (Equivalently, no three or four elements
with value 1 form a (potentially degenerate) parallelogram.)

Costas arrays are permutation arrays, so each Costas array
A of size m can be represented as a permutation P of the
integers from 1 through m such that, if A;; =1, then P; =
Jj. A permutation that corresponds to a Costas array in this
manner is said to satisfy the Costas-array property.

The Costas-array problemis an existence problem. Whether
there exist Costas arrays of size m for all positive integers m
remains an open question (Drakakis 2011). The smallest m
for which it is unknown whether a Costas array of size m
exists is 32 (Drakakis 2011).

1.2 Ant colony optimization
1.2.1 Summary of the ACO metaheuristic

Ant Colony Optimization (ACO) is a class of heuristics for
solving constraint-optimization problems.”? In ACO algo-
rithms, processes called ants probabilistically traverse a
graph representing the search space, modifying the graph
properties that determine ant behavior to increase the proba-
bility of future ants selecting paths with optimal properties.
We summarize the elements of an ACO algorithm and its ant
processes as described in Dorigo and Di Caro (1999).

- C ={cy,...,cy}is afinite set of components

! In this paper, we only consider constraint-satisfaction problems with
domains of finite cardinality.

2 We describe the adaptation of ACO to constraint-satisfaction prob-
lems in Sect. 2.1.
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L = {ljj : (ci,cj) € C‘}, where C € C? is a set of
connections between components

— Any finite sequence of components s = (¢;, ..., ;) is
called a state; states need not be of a particular length or
contain all components

— S is the set of all possible states

— Jg is a cost associated with the state s

— £2 is a set of constraints on S

— P is a set of requirements on S

— § C Sis the set of all states that satisfy the constraints
2; S is then the set of feasible states

— € 8 is a solution if y satisfies all requirements P

— Given two states s = (¢j,...,cj),s52 € §, s2is a

neighbor of s if sp € S and there exists cx such that

(Ci,...,cj,ck) = s (thatis, s1 is a prefix of 52); the set

N of states that are neighbors of s is called the neigh-

borhood of s.

The graph G = (C, L) is the construction graph. Any
solution ¥ can be expressed as a feasible path on G; we seek
a solution ¥ such that J,,/ is minimal.

Information is associated with states s (pathson G) andi €
N5 (possible next steps) in the form of pheromone values tg;
and heuristic values ng;. Ants, which search for the solution
¥, have the following properties:

— An ant k can be assigned a start state s; and one or more
end conditions ey

— An ant k in state s can move to any component such that
the resulting state s” € N

— The probability Py; that an ant k in state s moves to i
is governed by a function of 7y and ng; called the ant-
routing table Ag;

— An ant k dies once it reaches an end state ey

— If ant k has started at state s and after a sequence of steps
has died, it has completed one iferation.

ACO also executes procedures outside of the ant pro-
cesses. Pheromone evaporation is the periodic decrease in
all pheromone values to prevent early convergence on a
suboptimal solution. Based on properties of the solutions dis-
covered by ants, ACO also increases some pheromone values
to encourage exploration of promising states. Ants indirectly
communicate with each other to improve solution quality
through these changes to the pheromone values.

1.2.2 Prior work

ACO algorithms have been adapted to efficiently solve opti-
mization and constraint problems in a variety of real-world
and theoretical settings including: job scheduling in min-
ing supply chains (Thiruvady et al. 2016); planning selective
maintenance (Liu et al. 2018); vehicle routing (Zhang et al.
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2019; Yan 2018); k-SAT (Ning et al. 2018); n-Queens
Completion (Ye et al. 2017); and Minimum Connected Dom-
inating Set (Bouamama et al. 2019). ACO effectively solves
optimization problems even in probabilistic settings, where
the computation of the heuristic value n can be more com-
plicated than in simpler problems like TSP (Liu et al. 2018).

The main deficiency of ant colony algorithms in general
is the tendency to prematurely converge on local minima that
are globally suboptimal (Deng et al. 2019; Guan et al. 2019);
many successful implementations of ACO achieve perfor-
mance improvements by adding countermeasures against
early convergence. To this end, many ACO implementations
are augmented with an additional non-ACO optimization
step, such as Local Search (LS) (Guan et al. 2021, 2019;
Thiruvady et al. 2016). Performing LS on the solutions found
by an ant colony can both improve convergence time by
examining promising regions of the space more systemat-
ically and prevent early stagnation by sufficiently perturbing
solutions that have reached a local minimum. For example,
Guan et al. (2021) implement an automatic updating mech-
anism within ACO (AU-ACO) that attempts to replace the
solution constructed by each ant with a better one that differs
by only one variable assignment; the resulting AU-ACO algo-
rithm converges approximately five to ten times faster than
ACO without automatic updating on binary CSP tests. Some
implementations apply a more complicated LS step less fre-
quently, such as only once the ant colony detects that it is
in a stagnant state; for example, Guan et al. (2019) maintain
the information entropy associated with each path, initiat-
ing a crossover-based local search once some iteration adds
little information to the system. (The entropy along the best-
discovered path does not change significantly.) In addition to
LS, Thiruvady et al. (2016) consider augmenting ACO with
simulated annealing, but find this approach ineffective. Oth-
ers (Bouamama et al. 2019; Zhang et al. 2019) likewise apply
additional mutations to discovered solutions when adapting
ACO to the Minimum Connected Dominating Set and Vehi-
cle Routing problems, respectively.

A second approach for improving ACO implementations
focuses on modifying the interactions between ants by con-
sidering novel methods of manipulating the application of
pheromone to the problem graph. Ye et al. (2017) augment
the path-construction process with a system of pheromone-
based negative feedback (in addition to the standard positive
feedback of ACO) to steer ants away from explored poor solu-
tions; this ACO with negative feedback (ACON) significantly
outperforms their implementation of standard ACO. Ning
et al. (2018) monitor the degree of similarity of solutions
found in consecutive rounds and employs a pheromone-
smoothing technique to escape local minima when stagnation
is detected, achieving superior performance. Deng et al.
(2019) likewise consider a rule for diffusing pheromone

applied by ants to nearby states to further encourage explo-
ration and prevent stagnation.

1.2.3 Our contributions

We present a novel ACO algorithm, m-Dimensional Rela-
tive Ant Colony Optimization (mDRACO). The central idea
behind mDRACO is to improve ACO performance by maxi-
mizing the information contained in the pheromone through
which ants interact with each other; this idea contrasts
with approaches that augment ACO with LS or manipu-
late pheromone primarily with the objective of reducing the
chance of stagnation.

As discussed in Sect. 2.4.1, mDRACO associates pher-
o-mone with arbitrary-length subsequences of components,
so the pheromone table has m dimensions (where m is the
number of components). Typically, ACO only associates
pheromone with the favorability of transitioning from one
component to another, which produces a two-dimensional
table. mDRACO also associates pheromone information in
a relative manner, as described in Sect. 2.4.2. These opti-
mizations work best when coupled with a branch-and-bound
heuristic for the path-selection process, as discussed in
Sect. 2.4.3. Our ACO implementation performs substantially
better with the mDRACO optimizations, reducing median
run time for the Costas-array problem at m = 16 by a factor
of over 300.

2 Algorithm implementation
2.1 Adaptation of ACO to CSPs

We apply ACO algorithms to constraint-satisfaction prob-
lems as described in Roli et al. (2001) by treating CSPs
as maximal-constraint-satisfaction problems, which are a
class of constraint-optimization problems. To solve the CSP
(V, D, C), we let each of the components (the vertices of the
graph G) represent the assignment of a single value from D
to a single variable in V. The constraints C are partitioned
into hard constraints §2 and soft constraints . §2 defines the
set of feasible states S visitable by ants, and w defines the
cost of these states, so that for s € S’, J, is the number of
violations of the constraints w in s.

Since ants seek the solution ¥’ that has minimal cost,
they seek to minimize the number of constraint violations. If
Jyr = 0 for some /', then ¥ contains no violations of the
constraints in £2 U = C and therefore represents a solution
to the original constraint-satisfaction problem (V, D, C). In
order to apply ACO to strongly constrained CSPs effectively,
C must be partitioned so that £2 is not so strongly constrained
that a state s € S not representing a solution v has || = 0;
if the construction of feasible paths by ants is intractable,
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then pheromone deposition does not occur and ACO cannot
exhibit its heuristic learning behavior.

2.2 Application to Costas arrays

We use an ACO algorithm called the MAX-MZIN Ant
System (MM AS) (Stiitzle and Hoos 2000) as a starting point
for our implementation, modeling the values ty;, n;, and Jg
after the standard ACO TSP solution (Dorigo and Di Caro
1999). In MMAS, all pheromone values ty; satisfy Tnin <
Tyi < Tmax fOr some constants Trin and Tmax. When searching
for Costas arrays of size m, we use {1, ..., m} for the set of
components, so that states (paths in G) represent sequences
of integers. The sole hard constraint in £2 is that no state s € S
contains the same component twice; the sole requirement in
P is that solutions ¥ must have length m. Any solution
constructed by the ants is therefore a Hamiltonian tour of G
and represents a permutation of the integers from 1 through
m.

The cost J; of a state s € S is the number of Costas-
array-property violations in the permutation it represents.
The heuristic value 7;y; is one divided by the additional cost
incurred by moving to i from s,

1
— Ji=J;>0
Ji — Js M

Ji—J;=0

Nsi =

Mmax

Here, nmax 1s a large constant. (In our implementation, we set
Nmax = 2,000,000,000.) When J; = J, no new constraint
violations are incurred by moving from J; to J;, and any such
state J; should be strongly preferred over one that introduces
new constraint violations.

We describe the computation of 75; and A;; in Sects. 2.3
(Eq. 3) and 2.4.1 (Eq. 4). Ps; is the probability of selecting i
from N if each element i of N has weight Ay;,

Asi
Pi= = @)
Zjej\/} Asj

2.3 Standard pheromone association

Traditionally in ACO TSP Solvers, the pheromone value t; is
associated with the edge in G from the last element of s to the
last element in i (Stiitzle and Hoos 2000), that is, pheromone
information represents the learned favorability of following
one component with another. When the ant system deposits
pheromone on a solution 1, it increments tg; by ﬁ for all
s, i such that the last element of i follows the last element of
siny andi € N.
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The ant-routing table Ay; for an ant in some state s deter-
mining the favorability of moving to state i is

0 i &N

() (nsi)P i € N 3

where « and 8 are constants that determine the relative weight
of pheromone and heuristics values, respectively, in the ant
decision-making process.

Pheromone evaporation occurs after each ant has com-
pleted one iteration. For all states s € 5, i € N, if the
pheromone value representing the learned favorability of
moving to i from s is ty; before evaporation, it becomes
rs’i = max{(l — p)tsi, Tmin} for a constant 0 < p < 1 after.

2.4 Optimizations in the mDRACO algorithm
2.4.1 Arbitrary-length pheromone association

We attempt to increase the value of pheromone information
by associating it with arbitrary-length sequences of compo-
nents. To this end, we represent the set of all pheromone
values deposited by ants as amap T : S—>R (implemented
in our program as a multiple-reader single-writer default-
value hash table). When our ant system deposits pheromone
on a solution v, it increments 7 (s) by ﬁ for all s such that
s is a contiguous subsequence of i of length greater than
1.If s = (ci, ces €y ck), then the value 7' (s) now repre-
sents the learned favorably of following an arbitrary-length
sequence of components (c;, ..., ¢j) with ¢¢. During evap-
oration, we let each map entry 7' (s) assume the new value
max{(l — p)T (s), Tmin}-

We now define the pheromone information associated with
moving toi from s as two components: 7y; (pheromone value)
and Ag; (trail length value). If 7g is the default map value? and
Jj is the longest non-empty suffix of i for which 7'(j) # 19,
then t;; = T'(j) and Ag; is the length of j. If there is no such
suffix, then t;; = 19 and A;; = 1.

We define the ant-routing table A;; for an ant in state s
determining the favorability of moving to state i:

0 i ¢ N

= 4
(i) (0s)P (Asi)? i € NG @

ST

3 In accordance with the standard MMAS al gorithm, we initialize the
default map value 7 to Tmax and let this value evaporate after each iter-
ation as though it were a map entry. At some point early in the search, 7
assumes a permanent value of 7j,i,. To keep map memory consumption
from growing without bound over the course of the program’s execu-
tion, we remove entries that, as a result of pheromone evaporation, map
to Tmin, Which should be positive.
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where «, B, and y are constants that determine the rela-
tive weight of pheromone, heuristic, and trail-length values,
respectively, in the ant decision-making process.

We expect that longer pheromone trails carry more mean-
ingful information, which is why we choose always to use
the value in 7' associated with the longest suffix of i when
determining t5;. However, the value mapped by T to a long
pheromone trail j is less than or equal to the value mapped
by T to all suffixes of j, since a greater number of paths
constructed by ants share shorter subsequences than longer
ones. To account for this imbalance, we add the (Ay; ) factor
in the ant-routing table entry.

2.4.2 Relative path storage

Because we expect two sequences for which the difference
between corresponding elements is constant (e.g., (3, 1, 2, 5)
and (4, 2, 3, 6)) to have related favorability in constructing
Costas arrays, we further modify the process of pheromone
association by using a canonical version of each state. If s is
a sequence of integers with first element sg, let the canonical
sequence of s z° be the sequence with the same length as s
such that if the ith element of s is s;, the ith element of z*
is z7 = s; — s0. Now, whenever looking up or modifying
the value that 7 maps to a sequence s, we use 7 (z*). The
result is that an ant considering the learned favorability of
(3, 1, 2, 5) pools information collected about all s such that
= z3129 = (0, -2, —1,2), including (4,2, 3, 6). We
do not expect this heuristic to improve mDRACO run time for
combinatorial problems in general, since the numeric values
assigned to domain elements are arbitrary for problems like
the TSP. However, we do expect this optimization to gener-
alize to other problems with costs based on relative positions
of domain values, such as the N-Queens Problem.

2.4.3 Quality threshold

Some ants may, during the path construction process, arrive
at a state s such that J; is high and s is still far from being a
solution (that is, s is short). Ants in such a position waste run
time and pheromone map queries in finishing the construction
of s, since the cost of any solution ¥ with s as a prefix is
necessarily at least J. To reduce resources wasted in this way,
we apply a branch-and-bound heuristic by setting a quality
threshold ¢ for the ants such that if v/ is the lowest-cost
solution found by the ant system and an ant is located at state
s with J; > Jy + 1, the ant dies without finishing the path
s and creates a new path when respawned.

3 Assessment

We implement the ant system described in the C++ lan-
guage using the pthread and latomic implementations of
STL headers <thread> and <atomic>. We conduct our
assessments by running this implementation on a Xeon Phi
7210 processor (Knight’s Landing) with 64 cores supporting
256 threads, provided by the University of Kentucky Cen-
ter for Computational Sciences. The machine runs CentOS
8. Throughout the experimentation process, we saturate the
logical processors of the machine, employing approximately
250 threads at a time.

3.1 Efficiency

A standard metric of parallel-program performance is effi-
ciency, a measure of the amount of parallel computational
resources effectively applied to the solution; as the number
of workers increases, the efficiency tends to decrease. The
definition below describes specifically how we computed the
values shown in Fig. 1.

Definition 3 (Efficiency) If a parallel ant system with a single
worker solves a problem with median time to first solution
Ty, and an execution of a parallel ant system with N workers
finds a (possibly different) first solution to that problem in
time T, then the speedup S and efficiency E of the N-worker
system for that execution are

= — ®)

The definitions we give differ slightly from the traditional
ones in sources such as (Cormen et al. 2009) on several points.
First, since the mDRACO program is stochastic and the time
to first solution varies across runs, we define speedup and
efficiency to be properties of a single execution of the ant
system rather than ones of the program as a whole. Second,
while traditional definitions compare the run time of a parallel
program running on N processors to that of its serialization,
we choose to use a parallel ant system with one worker (and
therefore two total processes) to determine 7y, because seri-
alizing our parallel ant system would require a change in the
methods of communication between workers and the queen.

The efficiency results shown in Fig. 1 show E > 0.5
for m > 14. E decreases monotonically as N increases.
The values of E > 1 are due to the stochastic nature of the
ant system; some runs of the algorithm are lucky, leading
to a quick discovery of a solution. The consistent value of
E ~ 0.6form > 14and N > 200 implies that the efficiency
is likely to remain greater than 0.5 for larger problem sizes m
and worker counts N. In our measure of efficiency, N is the
number of workers utilized by the program. Even the N = 1
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4.5

" m=8 —a—
m=12 —g—

m=13 —o— |
m=14
35 m=15 —@— -
m=16 —e—

50 100 150 200 250

Fig.1 Median E measured as a ratio of times to first solution (over 100
runs) for each number of workers N and problem size m. Error bars at
the first and third quartiles

case has two processors available to it, so we expect optimal
efficiency to be closer to 0.5 than to 1.

3.2 Optimized performance

To assess the quality of the three optimizations: arbitrary-
length pheromone association, relative path storage, and
the quality threshold ¥, we compare the median time-
to-first-solution over 100 runs of our implementation of
mDRACO with various combinations of these optimizations.
In all cases, the parameters o, B, ¥, Tmin, and Tmax are held
constant. All constants are set to experimentally determined
optimal values.

Figure 2 shows the median time-to-first-solution in sec-
onds for problem sizes 12 < m < 19, and Fig. 3 visualizes
these data over 12 < m < 16. Weaker combinations of
settings take too long to complete for data collection to be
reasonable; for example, out of a small sample of 2,0,NR
runs on the size-17 Costas-array problem, only one finished
within 50,000 seconds. For this reason, some table entries
are left empty.

Though each of the optimizations is fairly weak on its
own, the experimental results show that they are very pow-
erful when applied together, and their usefulness appears to
increase rapidly with problem size. Run-time differences are
generally negligible for m < 15, and the slightly poorer per-
formance of some of the optimized ACO variants is likely
a result of overhead that does not pay off on easier prob-
lem instances, where solutions can often be found without
much pheromone guidance. For m > 15, the differences in
run times between different settings of combinations become
pronounced. At m = 15, mDRACO (the rightmost column
of Fig. 2) finds solutions approximately 50 times faster than
our standard ACO implementation; at m = 16, mDRACO is
approximately 300 times faster. We do not have a reliable
estimate of the median time-to-first solution of standard ACO

@ Springer

m | 20NR  00NR 220NR 2,0,R 2,200R  0,20,R
12 0.11 0.11 0.11 0.11 0.11 0.11
13 0.11 0.11 0.11 0.11 0.11 0.11
14 0.13 0.15 0.13 0.20 0.12 0.21
15 | 26.75 168.60 0.52 15.55 0.66 0.57
16 | 91036  3628.63  789.08  472.17 8.45 2.92
17 — — — — 132.98 17.75
18 — — — — 9147.29  95.99
19 — — — — — 798.75

Fig. 2 Median time-to-first solution in seconds (over 100 runs) for
our implementation of mDRACO with various combinations of opti-
mizations enabled. The columns are labeled by triples A, 0, r. A = 2
indicates that pheromone is only associated with the transition from one
state to the next (the standard ACO behavior), while A = 0 indicates
that pheromone is associated with arbitrary-length sequences of compo-
nents (mDRACO behavior). 9 = 0 indicates that the branch-and-bound
heuristic is not used (standard ACO behavior), while ¢+ = 20 indicates a
quality threshold of 20 (mDRACO behavior). r = NR indicates that the
pheromone association is not relative (standard ACO behavior), while
r = R indicates that it is relative (mDRACO behavior). The rightmost
column contains the results for the full mDRACO algorithm

for m = 17 for the reasons described above; however, if we
assume that it is at least 50,000s, mDRACO is at least 3000
times faster at m = 17.

Interestingly, arbitrary-length pheromone association on
its own (the second column of Fig. 2) performs significantly
worse than our implementation of standard ACO. To ensure
that the good performance of mDRACO is not simply the
result of the combination of the other two optimizations, we
also conduct experiments using only relative path storage and
a v = 20 quality threshold (the fifth column from the left
in Fig. 2). This combination of optimizations is ~ 2.9 times
slower than mDRACO for m = 16, ~ 7.5 times slower for
m = 17,and ~95 times slower for m = 18. We speculate that
arbitrary-length pheromone association hurts ACO perfor-
mance on its own but significantly improves run times when
coupled with the other two optimizations because it makes
the process of performing map lookups and insertions much
more expensive, as every subsequence of the path generated
by an ant is inserted to the map when a path is constructed,
and every suffix must be checked when computing 7. This
overhead overwhelms any benefits that can be gained from
the additional information carried by pheromone when much
effort is expended on the fruitless paths pruned early by a
well-chosen 9.

4 Conclusion

We present a novel implementation of the ACO metaheuris-
tic, nDRACO, that finds solutions to Costas-array problem
for sizes m < 19 while maintaining high efficiency (£ >
0.5) even at large worker counts (N = 250) and reduces
median time-to-first solution by several orders of magnitude
forrelatively large problem sizes. We have applied mDRACO
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=2,9=0,NR —a—
=0,9=0,NR —g5—
2,9=20NR —6—
N=2,9=0,R

X
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1000 N=2,9=20R —m—
)=0,9=20R —8—

=
o
S}

10 ¢

Median time to first solution (s)

0.1 — . \
12 13 14 15 16

m

Fig. 3 Median time-to-first solution for our implementation of
mDRACO over 12 < m < 16, as in Fig. 2. The y-axis is logarith-
mic

to the unsolved m = 32 size of the Costas-array problem—
at the time of writing, the ant system has used over 10,000
days of CPU time and discovered a permutation of the inte-
gers from 1 to 32 with 17 Costas-array-property violations
(shown in “Appendix”).

The program as written is generally applicable to any
finite-domain CSP. We expect that the optimizations described
in Sect. 2.4 generalize to some other CSPs and constraint-
optimization problems. Specifically, we expect that arbitrary-
length pheromone association (Sect. 2.4.1) improves the
performance of ACO algorithms on combinatorial prob-
lems that can be solved with the typical TSP pheromone
association scheme, such as the TSP itself, graph-coloring
problems, and the N-Queens Problem. Relative path storage
(Sect. 2.4.2) likely generalizes to problems in which con-
straints or costs relate to relative positions of domain values,
such as the N-Queens Problem. Since the branch-and-bound
quality threshold @ (Sect. 2.4.3) can be used to reduce wasted
resources for any problem, we expect that it generalizes to
all ACO solvers.

Further investigation is necessary to determine exactly
which classes of combinatorial problems benefit from the
three optimizations introduced by mDRACO, and to what
extent. We also have not yet studied how these optimizations
behave when used simultaneously with other known ACO
variants, such as when they are coupled with local search
heuristics, pheromone diffusion (Deng et al. 2019), or nega-
tive pheromone feedback (Ye et al. 2017). We have observed
that the three optimizations introduced in this paper inter-
act with each other in unexpected ways, so studying their
interaction with other modifications may be an especially
interesting direction of future research.

The C++ source for our mDRACO program is available
at https://github.com/dvulakh/mDRACO.
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Appendix: Arrays discovered

After over 10,000 CPU-days on a Knight’s Landing com-
puter, our mDRACO program has found these approximate
solutions to the Costas-array problem with m = 32.

19 violations
8192520171013141626232283122464311130211529231185972227

18 violations
1412253013161726233520719109312182432827461292128221511

9152028178222912253230161811213731191423127244261325106
1416234269101918111732311527211231282481323029725520622

17 violations
2731231814315226296432252281024716175121120281302191913
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