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Abstract
The majority of water pipelines are subjected to serious deterioration and degradation challenges. This research examines

the application of optimized neural network models for estimating the condition of water pipelines in Shaker Al-Bahery,

Egypt. The proposed hybrid models are compared against the classical neural network, adaptive neuro-fuzzy inference

system, and group method of data handling using four evaluation metrics. These metrics are; Fraction of Prediction within

a Factor of Two (FACT2), Willmott’s index of agreement (WI), Root Mean Squared Error (RMSE), and Mean Bias Error

(MBE). The results show that the neural network trained using Particle Swarm Optimization (PSO) algorithm

(FACT2 = 0.93, WI = 0.96, RMSE = 0.09, and MBE = 0.05) outperforms other machine learning models. Furthermore,

three multi-objective swarm intelligence algorithms are applied to determine the near-optimum intervention strategies,

namely PSO salp swarm optimization, and grey wolf optimization. The performances of the aforementioned algorithms are

evaluated using Generalized Spread (GS), Spread (D), and Generational Distance (GD). The results yield that the PSO

algorithm (GS = 0.54, D = 0.82, and GD = 0.01) exhibits better results when compared to the other algorithms. The

obtained near-optimum solutions are ranked using a new additive ratio assessment and grey relational analysis decision-

making techniques. Finally, the overall ranking is obtained using a new approach based on the half-quadratic theory. This

aggregated ranking obtains a consensus index and a trust level of 0.97.
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1 Introduction

Water distribution networks are responsible for providing

water to consumers (Sophia et al. 2020). Water pipelines

are the primary components of water networks (Fontana

and Morais 2016). More than 16% of water pipes have

surpassed their useful lives, being subjected to serious

aging and deterioration challenges (Folkman 2018).

Degradation of water systems leads to frequent leakage and

failures, water supply discontinuance, impaired water

quality, and damage to the surrounding infrastructure (Han

et al. 2015; El-Abbasy et al. 2016; Zangenehmadar and

Moselhi 2016; Aşchilean and Giurca 2018). For example,

six billion gallons of treated water are lost every day due to

pipe leakage (ASCE 2017). Besides, the water main break

rates in the USA and Canada increased from 11 to 14

breaks/100 miles/year over the past six years (Folkman

2018).

The deteriorated water pipelines require enormous

investment (Mohamed and Zayed 2013). The American

Society of Civil Engineers infrastructure report card

(ASCE 2017) rated the performance of water networks a

fair grade of ‘‘D’’ (poor/at risk) on a scale of ‘‘A’’ (ex-

ceptional: fit for the future) to ‘‘F’’ (failing/critical: unfit for

purpose). The Canadian Infrastructure Report Card (CIRC

2019) stated that approximately 30% of water infrastruc-

ture is in very good condition, 40% is in good condition,
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and 25% is in fair, poor, or very poor condition. The

Environmental Protection Agency (EPA 2018) reported

that an investment of $472.60 billion would be needed over

the next 20 years to ensure the provision of safe drinking

water. Out of $472.60 billion, $312.6 billion is needed to

replace and maintain deteriorated water distribution and

transmission pipelines.

The above discussion highlights the deterioration prob-

lem of water infrastructure assets. This dilemma could be

solved by developing a deterioration model that forecasts

the future condition of water pipelines. Furthermore, this

model could be linked to a budget allocation model to

prioritize the maintenance and replacement plans for water

pipelines based on their condition and deterioration rates.

The proposed model provides infrastructure asset managers

and practitioners with an ensemble decision regarding the

optimum time and type of the required intervention

strategies. This leads to upgrading the asset performance,

increasing the customer service level, reducing the opera-

tion and maintenance costs, and improving the munici-

pality’s reputation (Aikman 2015; Elshaboury et al.

2021a).

2 Literature review

Machine learning models have been used extensively for

water systems modeling. For instance, Zangenehmadar and

Moselhi (2016) predicted the residual life of water pipeli-

nes by applying the Feed-Forward Neural Network (FFNN)

with the Levenberg–Marquardt algorithm. Several typolo-

gies of FFNN models (i.e., different number of hidden

neurons) were tested and compared using the coefficient of

determination (R2), Mean Absolute Error (MAE), Relative

Absolute Error (RAE), Root-Relative Square Error

(RRSE), and Mean Absolute Percentage Error (MAPE).

The results showed the robustness and accuracy of neural

network models in estimating the remaining useful life of

water pipelines. Tavakoli (2018) developed a model that

estimated the residual life of water pipelines using FFNN

and Adaptive Neural Fuzzy Inference System (ANFIS). It

was concluded that these models could be utilized in pre-

dicting the remaining useful life of water pipelines.

However, recent research studies showed that stand-

alone machine learning models do not yield accurate

results because of over-fitting, long training times, and

premature convergence. Besides, their performances are

significantly affected by their structure design and param-

eter selection (Zhou et al. 2019). That is why some studies

have applied evolutionary algorithms for optimizing

parameters in machine learning models. For example,

Meirelles et al. (2017) applied the FFNN model to estimate

the nodal pressure in a water network. The model was

integrated with a Particle Swarm Optimization (PSO)

algorithm to minimize the difference between the simu-

lated and forecasted pressure values. The proposed hybrid

strategy increased the calibration accuracy when compared

to the standard procedure. Yalçın et al. (2018) applied a

hybrid ANFIS model for detecting water leakage locations

in water distribution systems. The model comprised least-

squares and backpropagation learning algorithms. The

effectiveness of the proposed model was demonstrated by

comparing its results against those of the most popular

methods used in this field.

Several studies have been conducted to optimize main-

tenance and replacement for water infrastructure assets.

Surco et al. (2018) developed an optimization model to

rehabilitate and expand water distribution networks using

PSO. The model accounted for the change in the pipe’s

internal roughness, water velocities, and nodal pressures

using Epanet hydraulic simulator. The results showed the

efficiency of the proposed model for water network opti-

mization. Zhou (2018) optimized the rehabilitation of

water pipelines using a modified Non-dominated Sorting

Genetic Algorithm (NSGA-II). The different intervention

actions for pipelines comprised no action, relining, or full

replacement. The model aimed at minimizing life cycle

cost and burst number and maximizing hydraulic reliability

taking into consideration financial and hydraulic con-

straints. Elshaboury et al. (2020) optimized the rehabilita-

tion of water networks using multi-objective GA and PSO.

The decision variables incorporated no action, minor

repair, major repair, and full replacement. The main

objectives of the model were maximizing the network

condition and minimizing the total costs of intervention

actions. The results yielded a better performance of PSO in

terms of the Ratio of Non-dominated Individuals (RNI),

Generational Distance (GD), Spacing (S), Maximum Par-

eto Front Error (MPFE), and Spread (D).

Numerous efforts have been exerted to investigate the

application of Multi-Criteria Decision-Making (MCDM) in

rehabilitating water networks. El-Chanati et al. (2016)

evaluated the performance index of water networks using

four MCDM methods; Analytic Network Process (ANP),

Fuzzy ANP (FANP), Analytic Hierarchy Process (AHP),

and Fuzzy AHP (FAHP). The FANP method was found to

be the most accurate method because it accounted for the

uncertainties and interdependencies among the assessment

factors. Tscheikner-Gratl et al. (2017) compared five

MCDM techniques (i.e., AHP, Preference Ranking Orga-

nization Method for Enrichment Evaluations (PRO-

METHEE), Weighted Sum Model (WSM), Technique for

Order Preference by Similarity to Ideal Solution (TOPSIS),

and Elimination and Choice Expressing Reality (ELEC-

TRE)) for prioritizing water systems rehabilitation. These

techniques yielded different results and thus it was
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recommended to apply several methods to improve the

reliability of results. Elshaboury et al. (2020) employed

two MCDM techniques to rank the near-optimum inter-

vention solutions for water networks. These techniques are

Multi-Objective Optimization on the basis of Ratio Anal-

ysis (MOORA) and TOPSIS. The results showed that there

was a very strong relationship between the aforementioned

techniques using the Spearman correlation coefficient.

The main objective of this research is developing a

practical framework that prioritizes water distribution

pipelines maintenance and rehabilitation strategies. To

achieve this objective, the following sub-objectives are

carried out:

(1) Implementing a FFNN model trained using meta-

heuristic algorithms to estimate the condition of

water pipes.

(2) Utilizing the forecasted condition to determine the

near-optimum intervention actions using PSO, Salp

Swarm Optimization (SSO), and Grey Wolf Opti-

mization (GWO) algorithms.

(3) Ranking the maintenance and rehabilitation strate-

gies using a new Additive Ratio Assessment (ARAS)

and Grey Relational Analysis (GRA) techniques.

(4) Acquiring the aggregated ensemble ranking using an

approach based on the half-quadratic theory.

3 Machine learning algorithms

In this research, five machine learning algorithms are

applied to predict the condition of pipelines, which are the

ANFIS, Group Method of Data Handling (GMDH), clas-

sical FFNN, FFNN-GA, and FFNN-PSO. Each of these

algorithms is illustrated in detail as in the below sub-

sections.

3.1 Adaptive neuro-fuzzy inference system

ANFIS inherits the capabilities of neural networks and

fuzzy logic to provide powerful non-linear modeling of the

problem (Azad et al. 2019). The basic Sugeno ANFIS

structure comprises five layers. The first layer provides

membership grades of the crisp input nodes. The second

layer involves multiplying the membership functions to

obtain the output of fuzzy rules. The third layer normalizes

the strength of all rules. The fourth layer computes the

contribution of different rules towards the overall output.

The fifth layer defuzzifies the fuzzy results of different

rules into a crisp output (Tiwari et al. 2018). There exist

three ANFIS methods to generate the basic fuzzy inference

system namely grid partitioning, subtractive clustering, and

Fuzzy C-Means (FCM) clustering (Azad et al. 2019). In

this research, the ANFIS-FCM method is used because it

generates better performance compared to other methods.

3.2 Group method of data handling

GMDH is a self-organized approach that was developed for

solving complex nonlinear problems (Ivakhnenko 1971). It

is characterized by automatically determining the number

of layers and neurons in the hidden layers and optimum

topology. It is possible to consider all different combina-

tions of inputs. Then, using one of the available minimizing

techniques, polynomial coefficients are calculated (with

training data). The neurons with a higher external criterion

value (for testing data) are retained, whereas those with a

lower value are discarded. The network architecture and

mathematical prediction function are determined when a

stopping criterion is achieved. Otherwise, the process

continues and the next layer is created (Azimi et al. 2018).

3.3 Feed-forward neural networks

An Artificial Neural Network (ANN) is capable of mod-

eling the nonlinear and complex behavior of water net-

works (Lawrence 1994). It is typically composed of a large

number of neurons that are arranged in layer(s) and con-

nected through weights and biases (Zou et al. 2009). ANN

has two phases of learning and recalling (Sbarufatti et al.

2016). The learning phase trains the network to figure out a

relationship between input(s) and output(s). The recalling

phase predicts the output(s) from the input(s) based on the

trained network. As for the advantages of the ANN, it uses

the historical data to modify the network until the output

values reach the target ones. On the other side, the training

speed of ANN is slow when the network structure and

design are not precise (Golnaraghi et al. 2019).

3.4 Neural network model trained using
metaheuristic algorithms

The neural network is applied in this research to estimate

the future condition of water pipes given no intervention

action is applied. The utilized backpropagation learning

algorithm adjusts its weights and biases depending on the

differences between anticipated and target values. How-

ever, the initial values of these parameters largely impact

the network results (Devikanniga et al. 2019). Accordingly,

the neural network can be trained to determine the opti-

mum values of weights and biases. In this research, the GA

and PSO algorithms are used to train the FFNN model for

achieving better performance (Feng 2006). These algo-

rithms are regarded as one of the most popular and efficient

algorithms for training FFNN (Garg et al. 2014; Chiroma

et al. 2017). More details about the GA and PSO
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algorithms can be found in the literature (Holland 1975;

Eberhart and Kennedy 1995). Combining neural networks

with metaheuristic algorithms enhances their capabilities

for solving real problems while preventing overfitting or

local minima during training (Pater 2016). The flowchart of

the optimized FFNN model procedure is illustrated in

Fig. 1. The metaheuristic algorithms initialize the weights

and calculate their fitness functions to start training the

network. In this research, the network fitness is interpreted

by estimating the error as per Eq. 1. The optimization

process stops when the global best solution (i.e., minimum

error function) is achieved (Lazzús 2013).

MSE ¼
PND

i¼1 ycalc
i � yexp

i

� �2

ND
ð1Þ

where MSE refers to the mean squared error, ND refers to

the number of data points, and yi
calc and yi

exp refer to the

calculated and expected values, respectively.

Yes No

Yes

Start Prepare input 
and target data

Develop an initial 
FFNN model

Start
(GA)

Start
(PSO)

Initialize population

Selection

Crossover and mutation

End
(GA)

Simulate and test the 
FFNN 

No

Yes

Evaluate the 
model accuracy

Convergence

End

Record the results of 
hybrid models

Termination

End
(PSO)

Generate particle swarm

Compute fitness of each particle

Specify the best particle and its 
associated fitness function

Train FFNN using GA 
and PSO algorithms

Update velocity and position 
of each particle

No

Evaluate fitness of individuals

Termination

Fig. 1 Flowchart of a hybrid

FFNN model trained using

metaheuristic algorithms
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3.5 Performance metrics

Many metrics could be used to measure the performance of

machine learning algorithms (Mishra 2018). In this

research, Fraction of Prediction within a Factor of Two

(FACT2), Index of Agreement (WI), Root Mean Square

Error (RMSE), and Mean Bias Error (MBE) metrics are

applied to evaluate the algorithms. A brief description of

each metric is presented in the following sub-sections.

3.5.1 Fraction of prediction within a factor of two

FACT2 examines the degree of closeness between the

observed and modeled values as per Eq. 2. The closer this

value is to one, the better this model is performing (Sayegh

et al. 2014).

FACT2 ¼ 1

n� 1

Xn

i¼1

oi � oi
ro

� �
pi � pi
rp

� �

; 0:5� oi
pi

� 2

ð2Þ

where oi represents the observed value, pi represents the

predicted value, oi represents the mean observed value, pi
represents the mean predicted value, ro represents the

standard deviation of the observed values, and rp repre-

sents the standard deviation of the predicted values, and n

represents the number of observations.

3.5.2 Willmott’s index of agreement

WI is calculated by multiplying the ratio of mean square

error to potential error by the number of data points and

deducting one, as seen in Eq. 3. It shall be mentioned that a

higher WI value implies a good agreement between the

predicted and target values and vice versa (Elshaboury

et al. 2021b).

WI ¼ 1 �
Pn

i¼1 oi � pið Þ2

Pn
i¼1 pi � oj j þ oi � oj jð Þ2

" #

ð3Þ

3.5.3 Root mean squared error

RMSE calculates the distance/closeness between observed

and predicted data points, as per Eq. 4. The lower RMSE

value is associated with a higher prediction accuracy of the

model (Elshaboury and Marzouk 2020).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

oi � pið Þ2

s

ð4Þ

3.5.4 Mean bias error

MBE measures the average bias in the predicted values as

per Eq. 5. The lower value of this metric indicates a

stronger forecasting accuracy of the model (Sharu and Ab

Razak 2020).

MBE ¼ 1

n

Xn

i¼1

pi � oij j ð5Þ

4 Swarm intelligence algorithms

Swarm intelligence algorithms mimic the behavior of

plants, insects, and animals as they strive to survive. These

algorithms have attracted popularity in recent years

because of their self-learning capabilities, self-organiza-

tion, simplicity, flexibility, co-evolution, versatility, and

adaptability to external variations (Chakraborty and Kar

2017; Lim and Leong 2018). In this research, the PSO,

SSO, and GWO algorithms are utilized to determine the

near-optimum intervention strategies. Descriptions of the

SSO and GWO algorithms are provided in the following

sub-sections.

4.1 Salp swarm optimization

SSO is inspired by the swarming behavior of salps (Mir-

jalili et al. 2017). Salps belong to the family of Salpidae

that has a transparent body and tissues like jellyfishes

(Henschke et al. 2016). They live in deep oceans and

change positions by pumping water through their bodies.

They are organized in swarms called salp chains. The salp

chain comprises leaders and followers. The leaders are

found at the front of the chain and the other salps are called

followers. The target of the swarm is the sources of food

(Ibrahim et al. 2018).

4.2 Grey wolf optimization

GWO is inspired by the hunting process of grey wolves

(Panda and Das 2019). This unique algorithm follows a

hierarchical pack hunting behavior. The alphas are autho-

rized to decide the hunting time and resting place for the

whole group. The betas advise the leaders in their decisions

and maintain discipline for the group. The delta wolves

follow the orders of alphas and betas and dominate omegas.

The omegas follow the orders of all other dominant wolves

(Mirjalili et al. 2014). The group hunting behavior of grey

wolves includes three phases of tracking and chasing the

prey, encircling and harassing the target, and attacking the

prey (Jitkongchuen et al. 2016).
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4.3 Performance metrics

Many metrics could be employed to evaluate the perfor-

mance of evolutionary algorithms (Yu et al. 2018). In this

research, three measures are investigated to compare the

different swarm intelligence algorithms namely, General-

ized Spread (GS), Spread (D), and Generational Distance

(GD). It shall be noted that lower values of these metrics

indicate a better performance of the algorithm. A brief

description of each metric is presented in the following

sub-sections.

4.3.1 Generalized spread

The GS metric measures the distribution of the obtained

near-optimum solutions using Eq. 6 (Zhou et al. 2006).

D� A;Pð Þ ¼
PM

m¼1 d
P
m þ

P Aj j
i¼1 di � d
�
�

�
�

PM
m¼1 d

e
m þ Aj jd

ð6Þ

where di refers to the Euclidean distance between neigh-

boring solutions in the non-dominated front, d denotes the

average of these distances, and dm
P represents the distance

between the extreme solutions of true Pareto front (P) and

approximate Pareto front (A) with respect to the mth

objective function.

4.3.2 Spread

The delta indicator (D) evaluates the spread of the non-

dominated solutions as per Eq. 7 (Deb et al. 2002).

D ¼
df þ dl þ

PN�1
i¼1 di � d
�
�

�
�

df þ dl þ N � 1ð Þd
ð7Þ

where df and dl are the Euclidean distances between the

obtained non-dominated set’s extreme and boundary

solutions.

4.3.3 Generational distance

The GD metric examines the diversity and convergence of

the obtained solutions compared to the true Pareto front as

per Eq. 8 (Veldhuizen 1999).

GD ¼
Pn

i¼1 d
m
i

� �1=m

n
ð8Þ

where di is the Euclidean distance between a non-domi-

nated solution obtained by an algorithm and the closest

Pareto front solution.

5 Weights of criteria

The weights of criteria reflect their relative significance

from the decision maker’s perspective such that larger

weights indicate higher importance of criteria and vice

versa. In this research, an Indifference Threshold-based

Attribute Ratio Analysis (ITARA) method is applied to

compute the weights of criteria. The computation

methodology of this method is provided below (Hatefi

2019):

The indifference threshold value for each criterion is

computed based on the difference between the mean and

standard deviation of criteria (Mladineo et al. 2016). The

normalized indifference threshold value is then determined

using Eq. 9.

NITj ¼
ITjPm
i¼1 aij

ð9Þ

where ITj and NITj refer to the indifference threshold value

and the normalized indifference threshold value for the jth

criteria, respectively, m refers to the number of alterna-

tives, and aij refers to the measure of performance of the ith

alternative with respect to the jth attribute.

The normalized scores bij

� �
are sorted in ascending

order and the ordered distances between these scores cij

� �

are computed. The difference between cij and NITj is

computed using Eq. 10.

dij ¼
cij � NITj for cij [NITj

0 for cij �NITj
8i 2 M; 8j 2 N

�

ð10Þ

Finally, the weights of criteria are assigned using

Eqs. 11 and 12, respectively.

Vj ¼
Xm�1

i¼1

dpij

 !1=p

; 8j 2 N ð11Þ

wj ¼
VjPn
j¼1 VJ

ð12Þ

6 Multi-criteria decision-making techniques

In this research, ARAS and GRA decision-making tech-

niques are applied to rank the intervention strategies and

develop the most optimal budget allocation plan. Each of

these techniques is illustrated in the below sub-sections.

6.1 ARAS method

ARAS method compares the utility functions of each

alternative to the best alternative. The application steps of
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this method are proposed below (Zavadskas and Turskis

2010):

The normalized decision matrix for beneficial and non-

beneficial attributes is equated using Eqs. 13 and 14,

respectively.

rij ¼
xijPm
i¼1 xij

ð13Þ

rij ¼
1
xijPm
i¼1

1
xij

ð14Þ

where rij represents the normalized decision matrix and xij

represents the measure of performance of the ith alternative

with respect to the jth attribute.

The weighted normalized decision matrix is determined

using Eq. 15.

Yij ¼ rij � wj ð15Þ

where Yij represents the weighted normalized decision

matrix and wj represents the weight of each attribute.

The utility degree for each alternative is calculated using

Eq. 16. It shall be noted that the best alternative is asso-

ciated with the highest utility degree.

Ui ¼
Pn

J¼1 Yij

max :
Pn

J¼1 Yij

ð16Þ

where Ui represents the utility degree for each alternative.

6.2 Grey relational analysis

GRA method computes the grey relational grade which

describes the relationships among different alternatives.

This method comprises four steps as described below (Kuo

et al. 2008):

For beneficial and non-beneficial attributes, the nor-

malized decision matrix is calculated using Eqs. 17 and 18,

respectively.

yij ¼
xij � min xij

� �

max xij

� �
� min xij

� � ð17Þ

yij ¼
max xij

� �
� xij

max xij

� �
� min xij

� � ð18Þ

where yij represents the normalized decision matrix.

The reference alternative (yoj) is defined based on its

performance values. It is associated with performance

values closest to or equal to one and zero in the case of

beneficial and non-beneficial attributes, respectively.

The grey relational coefficient is determined between

the reference alternative and all comparable alternatives

using Eq. 19.

c y0j; yij

� �
¼ Dmin þ nDmax

Dij þ nDmax

ð19Þ

where cðy0j; yijÞ represents the grey relational coefficient

between y0j and yij, Dij ¼ jy0j � yijj, Dmin and Dmax are the

minimum and maximum values of Dij, respectively, and n
is the distinguishing coefficient and is taken generally as

0.5.

The grey relational grade which reflects the level of

correlation between the reference sequence and the com-

parability sequence is computed using Eq. 20. The best

alternative is the one with the highest relational grade

because it is most similar to the reference sequence.

r y0; yið Þ ¼
Xn

j¼1

wj � c y0j; yij

� �
ð20Þ

where rðy0; yiÞ represents the grey relational grade between

y0j and yij.

7 Aggregated ranking of alternatives

Decision-making techniques use different mechanisms and

yield distinct rankings. Therefore, it is essential to provide

an aggregated ranking to determine the optimal solution. In

this research, a new approach based on the half-quadratic

theory is adopted (Mohammadi and Rezaei 2020). The

ensemble ranking of MCDM methods is computed using

Eqs. 21–23, respectively.

am ¼ d Rm � R�
2

� �
ð21Þ

where am refers to the half-quadratic auxiliary variable, Rm

refers to the ranking of the mth MCDM method, m refers to

the number of MCDM methods, and R� refers to the final

aggregated ranking.

wm ¼ am=
X

j

aj ð22Þ

where wm refers to the weight of each MCDM method.

R� ¼
X

m

wm � Rm ð23Þ

The consensus index which reflects the level of agree-

ment among MCDM methods on the final ranking is

computed using Eq. 24.

C R�ð Þ ¼ 1

KM

XK

k¼1

XM

m¼1

N r R�
k � Rm

k

� �

N r 0ð Þ ð24Þ

where CðR�Þ refers to the consensus index of the final

ranking R�, K refers to the number of alternatives, and N r

refers to the probability density function of the Gaussian
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distribution whose standard deviation is r and mean is

zero.

Finally, the trust level which indicates the level at which

the ensemble ranking can be accredited is evaluated using

Eq. 25.

T R�ð Þ ¼ 1

K

XK

k¼1

XM

m¼1

wm �
N r R�

k � Rm
k

� �

N r 0ð Þ

� �

ð25Þ

where TðR�Þ represents the trust level of the ensemble

ranking R�.

8 Model development and implementation

The proposed flowchart to prioritize water pipeline reha-

bilitation is illustrated in Fig. 2. The framework is com-

posed of three major components namely, machine

learning, optimization, and decision-making. The machine

learning model involves: (a) predicting the condition

indices of pipelines using several models, (b) comparing

the results using evaluation metrics, and (c) verifying the

models. The optimization model comprises: (a) formulat-

ing the optimization problem, (b) conducting the opti-

mization modeling to calculate the near-optimum

solutions, and (c) utilizing the evaluation metrics to specify

the best algorithm. The decision-making model includes:

(a) structuring the decision-making problem, (b) evaluating

the weights of criteria, (c) developing the decision-making

models to rank the non-dominated solutions, and (d) ag-

gregating the ranked solutions and developing the bud-

get allocation plan.

Machine learning model

Define the contributing 
assessment factors

Perform the machine 
learning models

Compute the 
condition indices

Apply the
evaluation metrics

Select the best 
forecasting model

Start

Validate the results 
of the models

Optimization model

Conduct the 
optimization modeling

Utilize the 
evaluation metrics

Calculate the near-
optimum solutions

Identify the objective functions 
and decision variables

Specify the best
algorithm

Decision-making model

Formulate the goal, 
criteria and alternatives

Evaluate the 
weights of criteria

Develop the decision-
making models

Rank the non-
dominated solutions

Aggregate the 
ranked solutions

Propose the optimum 
rehabilitation plan

End

Fig. 2 Components of the

proposed framework
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8.1 Machine learning model

The machine learning models relate the pipe characteristics

such as length, age, diameter, and wall thickness to its

condition. After identifying the input and output variables,

the next step comprises implementing ANFIS, GMDH,

FFNN, FFNN-GA, and FFNN-PSO models. Approxi-

mately 70 and 30% of the data are used for training and

testing purposes, respectively. For ANFIS, the number of

clusters is set as 15 while the number of epochs and iter-

ations is adjusted to 200. The optimum values of initial step

size, step size decrease rate, and step size increase rate are

selected as 0.01, 0.9, and 1.1, respectively. For GMDH,

FFNN, and optimized FFNN, the number of hidden neu-

rons is assumed to be 10 to provide a fair comparison of the

models. Moreover, the Levenberg–Marquardt algorithm is

employed to implement neural networks because of its

strong performance in solving nonlinear problems (Zan-

genehmadar and Moselhi 2016). The code is written in

MATLAB R2019a to build the machine learning models.

The five models are developed using the training and

testing data to compare their predictive performances using

FACT-2, WI, RMSE, and MBE evaluation metrics. These

calculations are implemented in this research using

Microsoft Excel. The outcomes of the prediction models

are verified using the Taylor diagram which is developed

using Mathematica v12.0.

8.2 Optimization model

The optimization model incorporates two objective func-

tions which are; maximizing the condition of water

pipelines (Eq. 26) and minimizing the costs of intervention

strategies (Eq. 27).

CIP ¼
XN

j¼1

XZ

x¼1

CIPij ð26Þ

CP ¼
PN

j¼1

PZ
x¼1 CPij

1 þ rð Þt
ð27Þ

where CIPij represents the improved condition index of the

jth pipeline after applying an xth intervention strategy,Z

represents the number of applied strategies, N represents

the number of pipelines, CPij represents the cost of the xth

intervention strategy applied to the jth pipeline, r refers to

the discount rate, and t refers to the study period. In this

research, the discount rate is taken as 7% and the study

period is assumed to be three years.

The decision variables comprise the possible interven-

tion actions for pipelines namely full replacement, major

repair, minor repair, or no action. Minor and major repairs

are applied to restore sections of pipelines using

compression coupling and telescopic coupling, respec-

tively. The future condition of water pipelines before

adopting an intervention action is forecasted using a neural

network model coupled with a PSO algorithm. Meanwhile,

the improved condition of pipelines is estimated based on

the chosen intervention strategy, as shown in Table 1 (El-

Masoudi 2016).

The costs associated with the no-action, minor repair,

major repair, and full replacement are assumed to be 0, 20,

50, and 100% of the replacement costs, respectively (El-

Masoudi 2016). The replacement costs per unit length for

different sizes of unplasticized polyvinyl chloride (uPVC)

pipes are depicted in Table 2.

After formulating the optimization problem, the PSO,

SSO, and GWO algorithms are applied to determine the

near-optimum intervention strategies. For PSO, personal

and global learning coefficients are both equal to 2.

Besides, the mutation rate, inertia weight, and inertia

weight dumping rate are assumed to be 0.1, 1, and 0.99,

respectively (Elshaboury et al. 2020). For SSO, the values

of the random parameters lie in the interval of [0, 1]

(Mirjalili et al. 2017). For PSO and GWO, the number of

grids per dimension, grid inflation parameter, leader

selection parameter, and deletion selection parameter are

assumed to be 10, 0.1, 2, and 2, respectively (Lai et al.

2019). To provide a fair comparison of the optimization

algorithms, it is assumed that the population size, maxi-

mum repository size, and maximum number of iterations

are set to be 200, 100, and 100, respectively.

The implementation steps of these algorithms are sum-

marized as follows: (a) define the candidate solutions (i.e.,

pipelines) in the current population, (b) encode the solu-

tions whose length is 519 (i.e., 173 9 3) and can hold four

variables (i.e., intervention actions), (c) initialize the pop-

ulation and select the parameters, (d) compute the fitness

functions (i.e., maximizing condition and minimizing cost)

of each candidate solution, (e) forming a new population

from solutions with higher fitness values, (f) updating the

parameters of the algorithm till satisfying the objective

functions, and (g) terminating the algorithm when

Table 1 Improved condition after applying intervention actions

Original condition Intervention action

Minor repair Major repair Full replacement

Critical Moderate Good Excellent

Poor Moderate Good Excellent

Moderate Good Good Excellent

Good – – Excellent

Excellent – – –
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achieving the stopping criterion. The outcomes of these

algorithms are evaluated using the GS, delta, and GD

metrics. The code is written in MATLAB to perform the

multi-objective algorithms and evaluation metrics.

8.3 Decision-making model

The weights of condition and cost criteria are computed

using the ITARA method. The ARAS and GRA techniques

are then employed to rank the non-dominated solutions

obtained from the optimization model. These calculations

are implemented in this research using Microsoft Excel.

The different rankings obtained from the decision-making

techniques are aggregated using a half-quadratic-based

method. Finally, the consensus index and the trust level of

this ensemble ranking are evaluated. The aggregated

rankings are computed in the MATLAB environment.

9 Case study

A water distribution network in Shaker Al-Bahery, Egypt

has been selected as the application case study (see Fig. 3).

The collected data include factors such as length, material,

age, diameter, depth, and wall thickness. The network

consists of 173 pipelines with a total length of 10.3 km. All

the network pipes are made of uPVC and installed at a

depth of 1.3 m. They were installed in this residential area

at the age of 12 years. Their diameter range between 100

and 400 mm, and the corresponding wall thickness is

extracted from the manufacturer’s technical specifications.

10 Results and discussion

Four neural network models with one hidden layer and

different number of neurons are developed. In the hidden

layers of the FFNN1, FFNN2, FFNN3, and FFNN4 models,

there are 5, 10, 15, and 20 neurons, respectively. As

summarized in Table 3, the performance of the FFNN

models is assessed using four different evaluation metrics,

which are FACT-2, WI, RMSE, and MBE. In general, the

high values of FACT-2 and WI indicate better performance

for any model. On the other side, the low values of RMSE

and MBE reflect a good prediction accuracy of the model.

In comparison to other models, FFNN2 has the highest

FACT-2 and WI values of 0.87 and 0.93, respectively.

Besides, this model is associated with the minimum RMSE

(i.e., 0.12) and MBE (i.e., 0.06) values. Therefore, the

number of hidden neurons is set to 10 based on the results

of the evaluation metrics.

A summary of the observed and predicted condition

indices using the developed machine learning models is

illustrated in Fig. 4. The mean observed condition indices

is 5.97 while that of the models ranges between 3.65 and

5.98. Meanwhile, the standard deviation of the observed

indices is 0.24 while that of the prediction models lies

within a range of 0.22 and 0.29.

The forecasting results of the machine learning models

are evaluated as depicted in Table 4. The FFNN model

yields a FACT-2 value of 0.87 compared to 0.76 in ANFIS

and 0.73 in GMDH. As for the WI metric, FFNN has a

value of 0.93, higher than the reported value of 0.86 by

ANFIS and substantially higher than 0.17 reported by

GMDH. Finally, the neural network model exhibits better

performance than the other two models in terms of the

RMSE (0.12) and MBE metrics (0.06). This emphasizes

that there is a substantial improvement in the values of

metrics for the FFNN model compared to ANFIS and

GMDH models.

In an attempt to improve the performance of the con-

ventional neural network, it is trained using GA and PSO

algorithms. Most of the FFNN-PSO predictions (i.e., 93%)

lie within a factor of two of the observed values, whereas

FACT2 values for the rest of the models range from 87 to

91%. Based on the WI, the FFNN-PSO model with a WI

value of 0.96 outperforms the other models, exhibiting WI

values of less than 0.95. Meanwhile, the proposed model is

characterized by the lowest values of RMSE (0.09) and

MBE (0.05), outperforming the other models with values of

more than 0.10 and 0.06, respectively. It can be concluded

that incorporating the PSO algorithm into the classical

FFNN model enhances the model robustness for predicting

the pipe condition.

As shown in Fig. 5, the Taylor diagram illustrates that

the correlation coefficient values of the prediction models

lie in the range of 0.73–0.93. The GMDH model shows the

lowest correlation coefficient value (i.e., 0.73), while the

FFNN-PSO model has the highest correlation coefficient

value (i.e., 0.93). The standard deviation of the FFNN-PSO

model is 0.22, whereas the standard deviations of the other

models range between 0.22 and 0.29. Finally, in terms of

the root mean square error, the FFNN-PSO shows the

lowest RMSE value (i.e., 0.09). Therefore, it can be

Table 2 Cost data for uPVC pipes

Diameter (millimeters) Cost per unit length ($/meter)

100 7.44

150 11.06

200 15.58

300 21.68

400 31.02
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concluded that the FFNN-PSO model provides more con-

sistent forecasts in terms of the correlation coefficient,

standard deviation, and root mean square error.

Swarm intelligence algorithms yield a set of different

Pareto-optimal solutions. Therefore, the obtained solutions

are evaluated to assess the optimization algorithms. As

depicted in Table 5, the PSO algorithm is associated with

the lowest GS, D, and GD values. This emphasizes that the

PSO algorithm is more suitable for optimizing the reha-

bilitation of water distribution pipelines.

The obtained non-dominated intervention solutions are

ranked using ARAS and GRA techniques to rank the

optimal solutions. The criteria of MCDM techniques are

the improved condition of pipelines and costs of inter-

vention strategies. As shown in Table 6, the improved

Fig. 3 Layout of Shaker Al-Bahery water distribution network

Table 3 Comparison of performances of the neural network models

Performance measure Neural network model

FFNN1 FFNN2 FFNN3 FFNN4

FACT-2 0.82 0.87 0.81 0.84

WI 0.88 0.93 0.87 0.89

RMSE 0.18 0.12 0.18 0.17

MBE 0.13 0.06 0.13 0.12

1.500 2.500 3.500 4.500 5.500 6.500

Observed

ANFIS

GMDH

FFNN

FFNN-GA

FFNN-PSO

Condition Indices

Fig. 4 Comparison of the actual and predicted condition indices
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condition and total cost represent 27% and 73%, respec-

tively, using the ITARA method.

As shown in Table 7, each MCDM technique follows a

certain methodology and thus yields different rankings for

most of the solutions. However, both techniques assign the

solution [1,559,222 7.20] as the best-ranked solution. The

rankings obtained from the decision-making methods are

aggregated using a half-quadratic-based method. The

ensemble ranking obtains a consensus index and a trust

level of 0.97. This means that the rankings have a strong

degree of consensus.

11 Conclusion

Water distribution network pipelines are approaching the

end of their service life. Therefore, it is essential to predict

their condition and deterioration rates to perform the nec-

essary intervention plans at the right time and prevent

disastrous failures. It is imperative to establish a relation-

ship between the condition and the influencing parameters

Table 4 Comparison of

performances of the machine

learning models

Performance measure Machine learning model

ANFIS GMDH FFNN FFNN-GA FFNN-PSO

FACT-2 0.76 0.73 0.87 0.91 0.93

WI 0.86 0.17 0.93 0.95 0.96

RMSE 0.19 2.33 0.12 0.10 0.09

MBE 0.07 2.32 0.06 0.06 0.05

Fig. 5 Verification of different

prediction models using Taylor

diagram

Table 5 Evaluation of performances of the swarm intelligence

algorithms

Performance measure Swarm intelligence algorithm

PSO SSO GWO

GS 0.54 0.72 0.69

D 0.82 0.97 0.90

GD 0.01 0.24 0.02

Table 6 Weights of the criteria using the ITARA method

Index Cost of interventions Improved condition

vj 0.007 0.003

wj 0.730 0.270
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(i.e., length, age, diameter, and wall thickness). This

research forecasted the condition of water pipelines using

an Adaptive Neuro-Fuzzy Inference System (ANFIS),

Group Method of Data Handling (GMDH), Feed-Forward

Neural Network (FFNN), and a hybrid FFNN model

trained using Genetic Algorithms (GA) and Particle Swarm

Optimization (PSO). It was concluded that evolving FFNN

with PSO algorithm (FACT2 = 0.93, WI = 0.96,

RMSE = 0.09, and MBE = 0.05) enhanced the perfor-

mance of modeling water pipelines condition. It is advis-

able to explore the degree of condition improvement of the

different proposed intervention solutions. Therefore, the

PSO, Salp Swarm Optimization (SSO), and Grey Wolf

Optimization (GWO) were employed to obtain the non-

dominated solutions. The results yielded that the PSO

algorithm (GS = 0.54, D = 0.82, and GD = 0.01) exhibited

better results when compared to other algorithms. The

Pareto-front solutions of the optimization models were

assessed using a new Additive Ratio Assessment (ARAS)

and Grey Relational Analysis (GRA) decision-making

techniques. These techniques assigned the solution

[1,559,222–7.20] as the best-ranked solution. Since there

was a difference in some of the rankings obtained from

both techniques, these rankings were aggregated using a

new approach based on the half-quadratic theory. The

ensemble ranking obtained a consensus index and a trust

level of 0.97. This implied that the ensemble ranking could

be accredited due to the high degree of consensus among

the ranks. The developed framework was demonstrated

using a water distribution network in Shaker Al-Bahery,

Egypt. This research was expected to assist the water

municipality in allocating the available budget efficiently

and effectively as well as scheduling the needed interven-

tion strategies. This research could be extended in future by

considering and comparing the performance of known

neuro-fuzzy based methodologies (e.g., fuzzy relational

neural network) for estimating the condition of water

pipelines.
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