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Abstract

In this paper, we introduced the concept of derivation on equality algebra E by using the notions
of inner and outer derivations. Then we investigated some properties of (inner, outer) derivation and
we introduced some suitable conditions that they help us to define a derivation on E. We introduced
kernel and fixed point sets of derivation on E and prove that under which condition they are filters of
E. Finally we prove that the equivalence relations on (E, , 1) coincide with the equivalence relations
on E with derivation d .

(2010) MSC: 03G25, 06B10, 06B99.
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1 Introduction

Derivations are important topic to the theory of near ring and it is studied in [28, 19]. In [17] the
authors applied the notions of near ring to BCI-algebras. Then other researchers started a new field of
studying on the generalizations of derivations and application to many logical algebras. For instance,
they introduced the concept of left-right (right-left) f -derivations, left derivations of BCI/BCK/BCC-
algebras, (regular) (α, β)-derivations and (f, g)-derivations of BCI-algebras, then they investigated some
fundamental properties of them and studied the relation among them (See [34, 3, 4, 13, 26, 25, 29, 6]).

An equality algebra, is introduced by Jenei in [15] and it continued in [10, 11, 14, 16, 32]. In the last
years many mathematician studied on equality algebra and investigate this algebra in different topics. For
example Zebardast et al. [33] studied the relation among equality algebra with other logical algebras, and
in [11] they studied different kinds of filters in equality algebra and investigated the quotient structure
that is made by them. Kologani and et al. in [1] introduced &-equality algebra and proved that it can
be an EQ-algebra and in [2] they introduced right left mapping on equality and in this paper by using
some properties of these mapping we introduce the notions of inner and outer derivations on equality
algebra and some properties are investigated and we introduce the conditions that they help us to define
a derivation on equality algebras. We introduce kernel and fixed point sets of derivation on E and prove
that under what condition they are filters of E. Finally, we prove that the equivalence relations on
(E, , 1) coincide with the equivalence relations on E with derivation d .

1* Corresponding author.
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2 Preliminaries

In this section, we recollect some definitions and results which will be used in the next sections.

Definition 2.1. [15] An algebraic structure (E,∧,∼, 1) is called an equality algebra if for any r, s, t ∈ E,
it satisfies the following conditions.
(E1) (E,∧, 1) is a commutative idempotent integral monoid,
(E2) The operation “∼” is commutative,
(E3) r ∼ r = 1,
(E4) r ∼ 1 = r,
(E5) If r ≤ s ≤ t, then r ∼ t ≤ s ∼ t and r ∼ t ≤ r ∼ s,
(E6) r ∼ s ≤ (r ∧ t) ∼ (s ∧ t),
(E7) r ∼ s ≤ (r ∼ t) ∼ (s ∼ t),
where r ≤ s if and only if r ∧ s = r. The equality algebra (E,∧,∼, 1) is simply denoted by E for short.

In an equality algebra (E,∧,∼, 1), we define two operations “ ” and “↔” on E as follows:

r  s := r ∼ (r ∧ s) and r ↔ s := (r  s) ∧ (s r).

Proposition 2.2. [15] Let (E, ∧, ∼, 1) be an equality algebra. Then, for all r, s, t ∈ E, the following

assertions are valid:

(i) r  s = 1 if and only if r ≤ s,
(ii) r  (s t) = s (r  t),
(iii) 1 r = r, r  1 = 1, r  r = 1,
(iv) r ≤ s t if and only if s ≤ r  t,
(v) r ≤ s r,
(vi) r ≤ (r  s) s,
(vii) r  s ≤ (s t) (r  t),
(viii) If s ≤ r, then r ↔ s = r  s = r ∼ s,
(ix) r ∼ s ≤ r ↔ s ≤ r  s,
(x) If r ≤ s, then s t ≤ r  t and t r ≤ t s,
(xi) ((r  s) s) s = r  s.

An equality algebra E is said to be bounded if there exists an element 0 ∈ E such that 0 ≤ r for all
r ∈ E. In a bounded equality algebra E, we define the negation “¬” on E by ¬r = r  0 = r ∼ 0 for all
r ∈ E.

A subset F of E is called a filter of E (see [16]) if for any r, s ∈ E, it satisfies the following conditions:
(F1) If r ∈ F such that r ≤ s, then s ∈ F .
(F2) If r ∈ F and r ∼ s ∈ F , then s ∈ F .

Denote by F(E) the set of all filters of E.

Lemma 2.3. [14] Let E be an equality algebra. A subset F of E is a filter of E if and only if 1 ∈ F and

for any r, s ∈ F , if r ∈ F and r  s ∈ F , then s ∈ F .

Definition 2.4. [33] An equality algebra (E,∧,∼, 1) is said to be commutative if for any r, s ∈ E,
(r  s) s = (s r) r.

Definition 2.5. [2] An equality algebra E is called a positive implicative equality algebra if for any
r, s, t ∈ E, r  (s t) = (r  s) (r  t).

Let E and Y be equality algebras. A mapping f : E → Y is called a  -homomorphism if for any
r, s ∈ E, f(r  s) = f(r) f(s).

Definition 2.6. [1] Given an equality algebra (E,∧,∼, 1) and r, s ∈ E, we define

E(r, s) := {m ∈ E | r ≤ s m}. (2.1)
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Clearly, 1, r and s are contained in E(r, s).

Definition 2.7. [1] An equality algebra (E,∧,∼, 1) is called an ⊙-equality algebra if for all r, s ∈ E, the
set E(r, s) has the least element which is denoted by r ⊙ s.

Proposition 2.8. [1] If E = (E,∧,∼, 1) is an ⊙-equality algebra, then for any r, s ∈ E, the following

statements hold:

(i) r ⊙ s = s⊙ r,
(ii) (r ⊙ s)⊙ t = r ⊙ (s⊙ t),
(iii) If r ≤ s, then r ⊙ t ≤ s⊙ t.

Lemma 2.9. [1] Let E = (E,∧,∼, 1) be an equality algebra in which there exists a binary operation “⊙”

such that for any r, s, t ∈ E, r  (s t) = (r ⊙ s) t. Then E = (E,∧,∼, 1) is an ⊙-equality algebra.

Note. From now on, we denote E as an equality algebra, unless otherwise specified.

3 Derivations of equality algebra

In this section, we define inner (outer) derivation on equality algebra and some related properties are
investigated. We introduce kernel and fixed point sets of derivation on E and prove that under which
condition they are filters of E. Also, we prove that any derivation is a modal on an equality algebra as a
BE-algebra.

Notation. For any r, s ∈ X, we consider [r; s2] = (r  s) s.

Definition 3.1. A self mapping d : E → E is called an

(1) inner derivation on X if for any r, s ∈ E;

d(r  s) = [r  d(s); (d(r) s)2]. (3.1)

(2) outer derivation on X if for r, s ∈ E;

d(r  s) = [d(r) s; (r  d(s))2]. (3.2)

(3) derivation on E if d is an inner and outer derivation on E.

The sets of all outer derivations, inner derivations and derivations on E is denoted by OD(E), ID(E)
and D(E), respectively.

Example 3.2. (i) Obviously, d := idE ∈ D(E).
(ii) Let E = {0,m, n, 1} be a chain such that 0 ≤ m ≤ n ≤ 1. Define the operation ∼ on E as follows:

∼ 0 m n 1
0 1 0 0 0
m 0 1 m m
n 0 m 1 n
1 0 m n 1

Then E = (E,∧,∼, 1) is a bounded equality algebra, and the implication ( ) is given by,

 0 m n 1
0 1 1 1 1
m 0 1 1 1
n 0 m 1 1
1 0 m n 1
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− Define the map d : E → E such that d(0) = 0 and d(m) = d(n) = d(1) = 1. Then d ∈ D(E).
− Define d(0) = 0, d(n) = n and d(m) = d(1) = 1, then d ∈ OD(E) which is not an inner derivation on
E because

n = d(n) = d(1 n) ̸= [(1 d(n)) (d(n) 1)] (d(n) 1) = 1.

− Define d(0) = 0, d(m) = n and d(n) = d(1) = 1, then d ∈ ID(E) which is not an outer derivation on
E because

n = d(m) = d(n m) ̸= [(d(n) m) (n d(m))] (n d(m)) = 1.

Remark 3.3. Let E be a commutative equality algebra. Then every outer derivation on E is an inner
derivation on E and vice versa. Suppose d is an outer derivation on E. Then for any r, s ∈ E, we have

d(r  s) = [d(r) s; (r  d(s))2]

= [(d(r) s) (r  d(s))] (r  d(s))

= [(r  d(s)) (d(r) s)] (d(r) s)

= [r  d(s); (d(r) s)2].

Proposition 3.4. Let d ∈ OD(E), then for any r, s ∈ E, the following statements hold:

(i) d(1) = 1,

(ii) d(r) = (r  d(r)) d(r),

(iii) r ≤ d(r),

(iv) d(r  d(r)) = 1,

(v) If E is a bounded equality algebra and d(0) = 0, then d(¬r) = ¬r, where ¬r = r  0.

Proof. (i) For any r ∈ E, since d ∈ OD(E), then

d(1) = d(r  1) = [d(r) 1; (r  d(1))2] = [(d(r) 1) (r  d(1))] (r  d(1))

= (r  d(1)) (r  d(1)) = 1.

(ii) For any r ∈ E, since d ∈ OD(E), by (i) we have

d(r) = d(1 r) = [d(1) r; (1 d(r))2] = [r; d(r)2] = (r  d(r)) d(r).

(iii) For any r ∈ E, we show that r  d(r) = 1. By Proposition 2.2(ii) and (ii),

r  d(r) = r  ((r  d(r)) d(r)) = (r  d(r)) (r  d(r)) = 1,

and so r ≤ d(r).
(iv) Let r ∈ E. Since d ∈ OD(E), we have

d(r  d(r)) = ((d(r) d(r)) (r  d(d(r)))) (r  d(d(r))) = (r  d(d(r))) (r  d(d(r))) = 1.

By (iii) and Proposition 2.2(xi), the proof of (v) is clear.

Proposition 3.5. Let d ∈ ID(E), then for any r, s ∈ E, the following statements hold:

(i) d(1) = 1,

(ii) d(r) = (d(r) r) r,
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(iii) r ≤ d(r),

(iv) If r ≤ s, then r ≤ d(s),

(v) d(r  d(r)) = 1,

(vi) If E is a bounded equality algebra, then d(0) = ¬¬(d(0)).

Proof. (i) For any r ∈ E, since d ∈ ID(E), then

d(1) = d(r  1) = [r  d(1); (d(r) 1)2] = [(r  d(1)) (d(r) 1)] (d(r) 1) = 1.

(ii) For any r ∈ E, since d ∈ ID(E), then by (i) we have

d(r) = d(1 r) = [1 d(r); (d(1) r)2] = [d(r); r2] = (d(r) r) r.

(iii) For any r ∈ E, we show that r  d(r) = 1. By Proposition 2.2(ii) and (ii),

r  d(r) = r  ((d(r) r) r) = (d(r) r) (r  r) = 1,

and so r ≤ d(r).
(iv) Let r, s ∈ E such that r ≤ s. Since d ∈ ID(E), we get

r  d(s) = r  ((d(s) s) s) = (d(s) s) (r  s),

since r  s = 1, we have r ≤ d(s).
(v) Since d ∈ ID(E), by (iii) and (i), the proof is clear.
By (ii) the proof of (v) is clear.

Remark 3.6. (i) Let d ∈ D(E). Then d(1) = 1 if and only if r ≤ d(r), for any r ∈ E.
(ii) Let d ∈ D(E). Then for any r, s ∈ E, clearly s ≤ d(r  s).

Proposition 3.7. Let d ∈ OD(E). Then for any r, s ∈ E, d(r  s) = r  d(s).

Proof. Let d ∈ OD(E) and r, s ∈ E. Then by definition, we have d(r  s) = [(d(r)  s)  (r  
d(s))] (r  d(s)). By Proposition 3.4(iii), we have r ≤ d(r) and s ≤ d(s). By Proposition 2.2(x), we
have d(r)  s ≤ r  s and r  s ≤ r  d(s), then d(r)  s ≤ r  d(s). Thus (d(r)  s)  (r  
d(s)) = 1, and so

d(r  s) = [(d(r) s) (r  d(s))] (r  d(s)) = 1 (r  d(s)) = r  d(s).

Hence, d(r  s) = r  d(s).

In the next example we show that the converse of Proposition 3.7 does not hold, in general.

Example 3.8. Let E be the equality algebra as in Example 3.2(ii). Define a self mapping d : E → E
such that d(0) = 0, d(1) = 1 and d(m) = d(n) = n. Then for any r, s ∈ E, d(r  s) = r  d(s), but
d /∈ OD(E). Because

n = d(m) = d(n m) ̸= [(d(n) m) (n d(m))] (n d(m)) = [(n m) (n n)] (n n) = 1.

Proposition 3.9. Let d be a self mapping on E. Then d ∈ OD(E) if and only if for any r, s ∈ E,

d(r  s) = r  d(s) and r ≤ d(r).

Proof. Let d be a self mapping on E and let d be in OD(E). By Propositions 3.7 and 3.4(iii), the proof
is clear.
Conversely, since for any r ∈ E, r ≤ d(r), by Proposition 2.2(x), we have d(r)  s ≤ d(r)  d(s) and
d(r) d(s) ≤ r  d(s). Thus d(r) s ≤ r  d(s). Hence

d(r  s) = r  d(s) = 1 (r  d(s)) = [(d(r) s) (r  d(s))] (r  d(s)).

Therefore, d ∈ OD(E).
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Remark 3.10. By Proposition 3.7, if d ∈ OD(E) such that for any r, s ∈ E, r ≤ s, then 1 = d(1) =
d(r  s) = r  d(s), and so r ≤ d(s).

Proposition 3.11. Let d ∈ OD(E). Then for any r, s ∈ E, the following statements hold:

(i) d(¬r) = r  d(0),
(ii) d(0) ≤ d(¬r),
(iii) If d(0) = 0, then d(¬r) = ¬r,
(iv) dn(r  s) = r  dn(s), for any n ∈ N,
(v) d(r) d(s) ≤ d(r  s),
(vi) d(r) s ≤ r  d(s).

Proof. The proof is straightforward.

Proposition 3.12. Let d1, d2 ∈ OD(E). Then d1 ◦ d2 ∈ OD(E).

Proof. Since d1, d2 ∈ OD(E), for any r ∈ E, r ≤ d1(r) and r ≤ d2(r). Then by Remark 3.10, since
r ≤ d2(r) and d1 ∈ OD(E), r ≤ d1(d2(r)) = (d1 ◦ d2)(r). By Proposition 3.7, for any r, s ∈ E, we have
d1(r  s) = r  d1(s) and d2(r  s) = r  d2(s). Thus

(d1 ◦ d2)(r  s) = d1(d2(r  s)) = d1(r  d2(s)) = r  d1(d2(s)) = r  (d1 ◦ d2)(s).

Therefore, by Proposition 3.9, d1 ◦ d2 ∈ OD(E).

Proposition 3.13. Let E be a commutative equality algebra and d1, d2 ∈ OD(E) such that d1(0) =
d2(0) = 0 and d1 ◦ d2 = 0. Then d1 = 0 or d2 = 0.

Proof. By Proposition 3.12, d1 ◦ d2 ∈ OD(E). Suppose d2(r) ̸= 0 for any r ∈ E − {0}. Since E is
commutative, d1(0) = d2(0) = 0 and d1 ◦ d2 = 0, by Remark 3.10, we have

d1(r) = d1(1 r)

= d1((0 r) r)

= d1([(d1(d2(r))) r] r)

= d1([r  (d1(d2(r)))
︸ ︷︷ ︸

1

] (d1(d2(r)))) by commutativity

= d1(d1(d2(r)))

= d1(0)

= 0.

Then d1 = 0. Similarly, we can prove that d2 = 0.

Remark 3.14. Clearly, the set of all outer derivations on E with ◦ operation, i.e., (OD(E), ◦, idE) is a
semigroup.

Proposition 3.15. Let m ∈ E. Define dm : E → E is a self mapping on E such that for any r ∈ E,

dm(r) = m r, then dm ∈ OD(E).

Proof. Let r, s,m ∈ E. By Proposition 2.2(v), r ≤ m r, and by Proposition 2.2(x),

(m r) s ≤ r  s ≤ m (r  s) = r  (m s).

Then by Propositon 3.7, we have

dm(r  s) = m (r  s) = r  (m s) = 1 [r  (m s)]

= [((m r) s) (r  (m s))] (r  (m s))

= [(dm(r) s) (r  dm(s))] (r  dm(s)).

Therefore, dm ∈ OD(E).
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Proposition 3.16. Let E be a positive implicative equality algebra and m ∈ E. Define dm : E → E is a

self mapping on E such that for any r ∈ E, dm(r) = m r. Then the following statements hold:

(i) dm ∈ OD(E).
(ii) dm is an order preserving map.

(iii) dm is an  -endomorphism on E.

(iv) dm is an idempotent map.

(v) d0(r) = 1 and d1(r) = r.

Proof. (i) By Proposition 3.15, the proof is clear.
(ii) Let r, s ∈ E such that r ≤ s. Then by Proposition 2.2(x), m  r ≤ m  s, and so dm(r) ≤ dm(s).
Hence, dm is an order preserving map.
(iii) Let r, s ∈ E. Since E is a positive implicative equality algebra, we have

dm(r  s) = m (r  s) = (m r) (m s) = dm(r) dm(s).

Hence, dm(r  s) = dm(r) dm(s).
(iv) Let r ∈ E. Then

dm(dm(r)) = dm(m r) = m (m r) = (m m) (m r) = m r = dm(r).

(v) The proof is clear.

Theorem 3.17. Let E be a positive implicative ⊙-equality algebra. Then (dE , ◦, d1) is a commutative

semigroup, where dE = {dm | dm ∈ OD(E) and m ∈ E}.

Proof. Since E is a positive implicative equality algebra, by Proposition 3.16(i), for any m ∈ E, dm ∈
OD(E). Let m,n ∈ E such that dm, dn ∈ dE . Since E is an ⊙-equality algebra, by Lemma 2.9, for any
r ∈ E,

dm ◦ dn(r) = dm(n r) = m (n r) = (m⊙ n) r = dm⊙n(r).

Since m ⊙ n ∈ E, by Proposition 3.16(i), obviously, dm⊙n ∈ dE , and so (dE , ◦) is closed. Moreover, by
Proposition 2.8(i) and (ii), it is easy to see that (dE , ◦) is commutative and associative. Also, dm◦d1(r) =
m (1 r) = m r = dm(r), for any r,m ∈ E. Hence, d1 is an identity element of (dE , ◦). Therefore,
(dE , ◦, d1) is a commutative semigroup.

Proposition 3.18. Mapping ξ : (E, ) → (dE , ◦) which is defined by ξ(r) = dr, for any r ∈ E, is

one-to-one.

Proof. Let r, s ∈ E such that ξ(r) = ξ(s) if and only if dr = ds if and only if for any m ∈ E, dr(m) =
ds(m), and so r  m = s  m. If r = m, then 1 = r  r = s  r. Thus s ≤ r. If s = m, then
r  s = s s and so r  s = 1. Thus r ≤ s. Hence r = s. Therefore, ξ is one-to-one.

By routine calculation, clearly, ξ is not an  -endomorphism. In the next proposition we investigate
that under what condition ξ is an  -endomorphism.

Proposition 3.19. Let E be an equality algebra such that for any r, s, t ∈ E,

(r  s) t = (r  t) (s t).

Then the mapping ξ : (E, ) → (dE , ◦) which is defined by ξ(r) = dr, for any r ∈ E, is a one-to-one

 -endomorphism.

Proof. Let r, s, t ∈ E. Then by assumption we have

ξ(r  s)(t) = dr s(t) = (r  s) t = (r  t) (s t) = dr(t) ds(t) = (ξ(r) ξ(s))(t).

Thus ξ is an  -endomorphism and by Proposition 3.18 , ξ is one-to-one.
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Definition 3.20. [9] A BE-algebra is an algebra (A, , 1) of the type (2, 0) such that for all r, s, t ∈ A
the following axioms are fulfilled:
(BE1) r  r = 1,
(BE2) r  1 = 1,
(BE3) 1 r = r,
(BE4) r  (s t) = s (r  t).

Definition 3.21. [12] Let A be a BE-algebra. A mapping f : A → A is called a modal operator on A if
for all r, s ∈ A, it satisfies the following conditions:
(M1) r ≤ f(r),
(M2) f(f(r)) = f(r),
(M3) f(r  s) ≤ f(r) f(s).
The pair (A, f) is called a modal BE-algebra.

Corollary 3.22. Let E be a positive implicative equality algebra and m ∈ E. If dm : E → E is a self

mapping defined in Proposition 3.16, then dm is a modal operator on E as a BE-algebra.

Proof. By Proposition 2.2(ii) and (iii), it is clear that (E, , 1) is a BE-algebra. Then by Proposition
3.4(iii), we have r ≤ d(r) and so (M1) holds. Also, by Proposition 3.16(iv) and (iii), since E is a positive
implicative equality algebra, (M2) and (M3) hold. Therefore, by Definition 3.21, dm is a modal operator
on E as a BE-algebra.

Let d : E → E be a self mapping on E. Define ker(d) = {r ∈ E | d(r) = 1}. If d ∈ D(E), then by
Propositions 3.4(i), d(1) = 1, and so ker(d) ̸= ∅.

Example 3.23. Let E be the equality algebra as Example 3.2(ii). Define a self mapping d on E by
d(0) = 0 and d(m) = d(n) = d(1) = 1. Obviously, d ∈ D(E) such that ker(d) = {m,n, 1}.

Proposition 3.24. Let d ∈ D(E). Then the following statements hold:

(i) ker(d) is closed under the operation  .

(ii) d is an idempotent map on ker(d).
(iii) d is an order preserving map on ker(d).
(iv) If r ∈ ker(d), then for any s ∈ E, s r ∈ ker(d).

Proof. The proof is straightforward.

Theorem 3.25. Let E be an equality algebra such that for any r, s, t ∈ E, (r  s)  t = (s  t)  
(r  t). Suppose dm : E → E, for m ∈ E is a self mapping on E such that dm(r) = (r  m)  m.

Then the following statemants hold:

(i) dm is an order preserving map.

(ii) dm ∈ OD(E).
(iii) dm is a  -endomorphism on E.

(iv) d is idempotent.

(v) ker(dm) ∈ F(E).

Proof. (i) Let r, s ∈ E such that r ≤ s. By twice using of Proposition 2.2(x), we have d(r) = (r  m) 
m ≤ (s m) m = d(s). Hence, dm is an order preserving map.
(ii) Let r, s ∈ E. Then by Proposition 2.2(vi), r ≤ (r  m)  m and s ≤ (s  m)  m. Thus by
Proposition 2.2(x), ((r  m)  m)  s ≤ ((r  m)  m)  ((s  m)  m) and ((r  m)  m)  
((s  m)  m) ≤ r  ((s  m)  m) and so ((r  m)  m)  s ≤ r  ((s  m)  m). Then by
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assumption and Proposition 2.2(xi), we get

d(r  s) = ((r  s) m) m = [(s m) (r  m)] m

= ((r  m) m) ((s m) m) = (s m) (((r  m) m) m)

= (s m) (r  m) = r  ((s m) m)

= 1 (r  ((s m) m))

= [(((r  m) m) s) (r  ((s m) m))] (r  ((s m) m))

= [(d(r) s) (r  d(s))] (r  d(s)).

Therefore, d ∈ OD(E).
(iii) Let r, s ∈ E. Since by (ii), d ∈ OD(E), by Proposition 3.7, d(r  s) = r  d(s). Then by
Proposition 2.2(xi) we have

d(r) d(s) = ((r  m) m) ((s m) m) = (s m) (((r  m) m) m) = (s m) (r  m)

= r  ((s m) m) = r  d(s) = d(r  s).

Hence d is an  -endomorphism on E.
(iv) Let r ∈ E. Then by Proposition 2.2(xi),

d(r) = (r  m) m = [((r  m) m) m] m = (d(r) m) m = d(d(r)).

Therefore, d is idempotent.
(v) Let r, s ∈ E such that r, r  s ∈ ker(dm). Then by Proposition 2.2(ii), (xi), (vi) and (x), we have

(s m) m = 1 [(s m) m]

= [((r  s) m) m] [(s m) m]

= (s m) [(((r  s) m) m) m]

= (s m) [(r  s) m]

= (r  s) [(s m) m]

= (r  s) [1 ((s m) m)]

= (r  s) [((r  m) m) ((s m) m)]

= (r  s) [(s m) (((r  m) m) m)]

= (r  s) [(s m) (r  m)]

= (r  s) [r  ((s m) m)]

= 1

Hence dm(s) = (s m) m = 1, and so s ∈ ker(dm). Therefore, ker(dm) ∈ F(E).

Corollary 3.26. Let E be an equality algebra such that for any r, s ∈ E, ¬(r  s) = ¬s  ¬r and

d : E → E be a self mapping on E such that d(r) = ¬¬r. Then the following statemants hold:

(i) d is an order preserving map.

(ii) d ∈ OD(E).
(iii) d is an  -endomorphism on E.

(iv) d is idempotent.

(v) ker d ∈ F(E).

Proof. It is enough to let m = 0 in Theorem 3.25.

Example 3.27. Let E be the equality algebra as in Example 3.2(ii). Routine calculations show that for
any m,n ∈ E, ¬(m n) = ¬n ¬m.
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Theorem 3.28. Let d : E → E be a self mapping on E such that d(1) = 1 and for any r ∈ E − {1},
d(r) = m where m ∈ E. Then d ∈ D(E) if and only if m = 1.

Proof. Let m = 1. Then for any r ∈ E, d(r) = 1 and so d is a fixed map equal 1. Thus d ∈ D(E).
Conversly, suppose m ̸= 1, d ∈ D(E) and r, s ∈ E − {1} such that r ̸= s. By Definition 3.1, d is an

inner and an outer derivation on E. Thus by Proposition 3.7, we have

d(r  s) = [(r  d(s)) (d(r) s)] (d(r) s) and d(r  s) = r  d(s).

By definition of inner derivation, we have

m = d(r  s) = [(r  d(s)) (d(r) s)] (d(r) s) = [(r  m) (m s)] (m s).

If r = m, then

m = [(r  m) (m s)] (m s) = [(m m) (m s)] (m s) = (m s) (m s) = 1,

which is a contradiction. If s = m, then

m = [(r  m) (m s)] (m s) = [(r  m) (m m)] (m m) = (r  m) 1 = 1,

which is a contradiction. Now, suppose d ∈ OD(E). Then if r = m we have

m = d(r  s) = r  d(s) = r  m = m m = 1,

which is a contradiction. Hence, in both cases we have a contradiction. Therefore, if m ̸= 1, then
d /∈ D(E).

Corollary 3.29. Let E be a commutative equality algebra and d : E  E be a derivation on E such that

d(1) = 1 and for any r ∈ E − {1}, d(r) = m, where m ∈ E. Then r ≤ m or r  m = m.

Proof. Since E is a commutative equality algebra, by Remark 3.3, an outer and inner derivations on E are
same. So we discuss about outer derivation on E. Then by Proposition 3.7 we have d(r  s) = r  d(s).
Since d ∈ OD(E), if r ≤ s, then 1 = d(r  s) = r  d(s) = r  m, and so r ≤ m. If r and s are
incomprable, then m = d(r  s) = r  d(s) = r  m.

Proposition 3.30. Let d ∈ D(E). If r ∈ E is a co-atom of E, then d(r) is a co-atom of E.

Proof. Let d ∈ D(E) and r be a co-atom of E. Clearly, r < 1 and for any s ∈ E such that r ≤ s < 1
implies r = s. Suppose d(r) ̸= 1. By Proposition 3.4(iii), r ≤ d(r) < 1. Since r is co-atom, we get
r = d(r). Hence d(r) is a co-atom of E.

Proposition 3.31. Let d ∈ D(E) and F ∈ F(E). Then d(F ) ⊆ F .

Proof. Let d ∈ D(E) and s ∈ d(F ). Then there exists r ∈ F such that d(r) = s. By Proposition 3.4(iii),
r ≤ d(r) = s. Since F ∈ F(E) and r ∈ F , we have s ∈ F , and so d(F ) ⊆ F .

In the next example we show that the converse of above proposition is not true.

Example 3.32. Let E be equality algebra as in Example 3.2(ii), where d(1) = d(m) = 1, d(n) = n and
d(0) = 0. Suppose F = {m, 1}. Obviously, d(F ) ⊆ F but F /∈ F(E) because m ≤ n and m ∈ F but
n /∈ F .

Let d : E → E be a self mapping on E. Define Fixd(E) = {r ∈ E | d(r) = r}. If d ∈ D(E), then by
Propositions 3.4(i) and 3.5, d(1) = 1, and so Fixd(E) ̸= ∅.

Example 3.33. Let E be the equality algebra as Example 3.2(ii). Define a self mapping d on E by
d(0) = 0 and d(m) = d(n) = d(1) = 1. Clearly, d ∈ D(E) such that Fixd(E) = {0, 1}.
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Proposition 3.34. Let d ∈ D(E). Then the following statements hold:

(i) Fixd(E) is closed under the operation  .

(ii) d is an idempotent map on Fixd(E).
(iii) d is an order preserving map on Fixd(E).
(iv) Fixd(E) ∩ ker(d) = {1}.
(v) If d is an idempotent derivation on E, then Im(d) = Fixd(E).

Proof. (i) Let r, s ∈ Fixd(E). Then d(r) = r and d(s) = s. Since d ∈ D(E), we get d is an inner and
outer derivations on E. Suppose d ∈ OD(E). Then by Proposition 3.7, d(r  s) = r  d(s) = r  s
and so r  s ∈ Fixd(E). Now, let d ∈ ID(E). Since r, s ∈ Fixd(E), we have

d(r  s) = [(r  d(s)) (d(r) s)] (d(r) s) = [(r  s)) (r  s)] (r  s) = r  s.

Hence, r  s ∈ Fixd(E). Therefore, Fixd(E) is closed under the operation  .
(ii) Let r ∈ Fixd(E). Then d(r) = r and so d(d(r)) = d(r) = r. Hence d(d(r)) = d(r), and so d is an
idempotent map on Fixd(E).
(iii) The proof is clear.
(iv) Let r ∈ Fixd(E) ∩ ker(d). Then 1 = d(r) = r, and so r = 1.
(v) Let d be an idempotent derivation on E and r ∈ E. If r ∈ Fixd(E), then d(r) = r, and so r ∈ Im(d).
Hence, Fixd(E) ⊆ Im(d). Now, suppose s ∈ Im(d). Then there exists r ∈ E such that d(r) = s. Since
d is an idempotent derivation on E, we get d(s) = d(d(r)) = d(r) = s, and so s ∈ Fixd(E). Hence
Im(d) ⊆ Fixd(E). Therefore, Fixd(E) = Im(d)

Corollary 3.35. Let d ∈ D(E). Then ⟨(Fixd(E), , 1), d⟩ is a modal BE-algebra.

Proposition 3.36. Let d1, d2 ∈ OD(E) such that d1 ◦ d2 = 1. Then Fixd2
(E) ⊆ ker(d1).

Proof. Let r ∈ Fixd2
(E). Then d2(r) = r. Since d1 ∈ OD(E), by Proposition 3.7 we have

d1(r) = d1(1 r) = d1(1 d2(r)) = 1 d1(d2(r)) = 1.

Hence, r ∈ ker(d1), and so Fixd2
(E) ⊆ ker(d1).

Proposition 3.37. Let d1 and d2 be two order preserving derivations on E. Then d1 = d2 if and only

if Fixd1
(E) = Fixd2

(E).

Proof. Let d1, d2 ∈ D(E) such that d1 and d2 be order preserving maps such that d1 = d2. Suppose
r ∈ Fixd1

(E). Then d1(r) = r. Since d1 = d2, we get d2(r) = r and so r ∈ Fixd2
(E). Hence, Fixd1

(E) ⊆
Fixd2

(E). By the similar way, we can prove that Fixd2
(E) ⊆ Fixd1

(E), and so Fixd1
(E) = Fixd2

(E).
Conversely, by Proposition 3.34, we get d1 and d2 are idempotent maps on Fixd1

(E) and Fixd2
(E),

respectively. Then d1(d1(r)) = d1(r), and so d1(r) ∈ Fixd1
(E). Since Fixd1

(E) = Fixd2
(E), we have

d1(r) ∈ Fixd2
(E). Thus, d2(d1(r)) = d1(r). Also, by Proposition 3.4(iii), for any r ∈ E, r ≤ d1(r). Since

d1 and d2 are order preserving derivations on E, we get d2(r) ≤ d2(d1(r)) = d1(r). Hence, for any r ∈ E,
d2(r) ≤ d1(r). By the similar way, we can prove that d1(r) ≤ d2(r). Therefore, d1 = d2.

Corollary 3.38. Let d1 and d2 be two idempotent derivations on E. If Im(d1) = Im(d2), then for any

u ∈ Im(di), where i = 1, 2, d1 = d2.

Proof. By Propositions 3.34(v) and 3.37, the proof is clear.

Proposition 3.39. Let d ∈ D(E). Then d is one to one if and only if d is an identity map if and only

if ker(d) = {1}.
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Proof. Let d be one to one. Since d ∈ D(E), we get d is an outer and inner derivations on E. From
d ∈ OD(E), for any r ∈ E we have d(d(r) r) = d(r) d(r) = 1 = d(1), and so d(r) r = 1. Then
by Proposition 3.4(ii), d(r) ≤ r ≤ d(r). Hence d(r) = r. Moreover, since d ∈ ID(E), we have

d(d(r) r) = [(d(r) d(r)) (d2(r) r)] (d2(r) r) = 1 = d(1).

Then by Proposition 3.4(ii), d(r) ≤ r ≤ d(r), and so d(r) = r. Therefore, in both cases, d is an identity.
Obviously, d is an identity, then ker(d) = {1}.
Now, suppose ker(d) = {1}. Let d(r) = d(s), for any r, s ∈ E. Then d(r)  d(s) = 1. Since

d ∈ OD(E), by Proposition 3.11(v), 1 = d(r)  d(s) ≤ d(r  s), we have d(r  s) = 1 and so
r  s ∈ ker(d). Thus r  s = 1. Hence, r ≤ s. By the similar way, we can see that s ≤ r and so r = s.
Therefore, d is one to one.

Corollary 3.40. Let d ∈ D(E). Then the following statements hold:

(i) If d is one to one, then d is onto derivation on E.

(ii) If d is an idempotent onto derivation on E, then d is one to one.

Proof. (i) Let d ∈ D(E) such that d be one to one. By Proposition 3.39, d is an identity derivation on
E. Then d is idempotent and Fixd(E) = E. By Proposition 3.34(v), Im(d) = Fixd(E) = E. Hence, d is
onto derivation on E.
(ii) Let d be an idempotent onto derivation on E and r ∈ ker(d). Then d(r) = 1. Since r ∈ E = Im(d),
there exists m ∈ E such that d(m) = r. By idempotency of d , we have r = d(m) = d(d(m)) = d(r) = 1,
and so r = 1. Hence, ker(d) = {1}. Therefore, by Proposition 3.39, d is one to one.

In the following example we show that for any equality algebra E, Fixd(E) and ker(d) may not be a
filter of E.

Example 3.41. (i) Let d : E → E be an identity map. Clearly, Fixd(E) = E and ker(d) = {1}. In this
case Fixd(E) and ker(d) are filters of E.
(ii) Let E be the equality algebra as Example 3.2(ii). Define a self mapping d on E by d(0) = 0 and
d(m) = d(n) = d(1) = 1. Obviously, d ∈ D(E) such that Fixd(E) = {0, 1} /∈ F(E) and ker(d) =
{m,n, 1} ∈ F(E).
(iii) Let E be the equality algebra as Example 3.2(ii). Define a self mapping d on E by d(0) = 0, d(n) = n
and d(m) = d(1) = 1. Then by routine calculation, d ∈ OD(E) such that Fixd(E) = {0, n, 1} /∈ F(E)
and ker(d) = {m, 1} /∈ F(E) because m ≤ n and m ∈ ker(d) but n /∈ ker(d).

In the following proposition we investigate that under which condition, ker(d) ∈ F(E).

Proposition 3.42. Let d : E → E be a self mapping on E. Then the following statements hold:

(i) If d is an  -endomorphism on E, then ker(d) ∈ F(E).
(ii) If d ∈ OD(E), order preserving map and idempotent, then ker(d) ∈ F(E).
(iii) If for any r, s ∈ E, d(r  s) ≤ d(r) d(s), then ker(d) ∈ F(E).

Proof. (i) Since d is an  -endomorphism on E, we get d(1) = 1 and so 1 ∈ ker(d). Suppose r, r  s ∈
ker(d), for r, s ∈ E. Then d(r) = d(r  s) = 1. Thus

1 = d(r  s) = d(r) d(s) = 1 d(s) = d(s).

Hence d(s) = 1 and so s ∈ ker(d). Therefore, ker(d) ∈ F(E).
(ii) Let d be an order preserving map, idempotent outer derivation on E. Then d(1) = 1 and so 1 ∈ ker(d).
Suppose r, r  s ∈ ker(d), for r, s ∈ E. Then d(r) = d(r  s) = 1. Thus 1 = d(r  s) = r  d(s),
and so r ≤ d(s). Since d is an order preserving map and idempotent map, we get d(r) ≤ d(d(s)) = d(s).
Since r ∈ ker(d) and 1 = d(r) ≤ d(s), we have d(s) = 1 and so s ∈ ker(d). Therefore, ker(d) ∈ F(E).
(iii) By (i) and Proposition 3.11(v), the proof is clear.
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Example 3.43. Let E be the equality algebra as in Example 3.2(ii) and d : E → E be a self mapping
on E such that d(1) = d(m) = 1, d(n) = m and d(0) = 0. Then d ∈ OD(E). Clearly m ≤ n but
1 = d(m) � d(n) = m, we get d is not an order preserving map. Also, m = d(n) ̸= d(d(n)) = d(m) = 1,
so d is not an idempotent derivation. Hence we can see that ker(d) /∈ F(E).

Proposition 3.44. Let E be a commutative equality algebra. If d is an idempotent derivation on E,

then ker(d) ∈ F(E).

Proof. Since d ∈ D(E), by Proposition 3.4(i), d(1) = 1 and so 1 ∈ ker(d). Let r, s ∈ E such that
r, r  s ∈ ker(d). Then d(r) = d(r  s) = 1. Since d ∈ D(E), 1 = d(r  s) = r  d(s), and so
r ≤ d(s). Moreover, from E is a commutative equality algebra, we have d(s) = 1 d(s) = (r  d(s)) 
d(s) = (d(s) r) r. Since r ∈ ker(d) and d is idempotent, we have

d(s) = d(d(s)) = d((d(s) r) r) = (d(s) r) d(r) = (d(s) r) 1 = 1.

Hence, d(s) = 1 and so s ∈ ker(d). Therefore, ker(d) ∈ F(E).

Proposition 3.45. Let E be an equality algebra in which every pair of elements is comparable. If

d ∈ D(E), then ker(d) is a sub-algebra of E.

Proof. Let r, s ∈ ker(d) such that r ≤ s. Then r∧ s = r and so d(r∧ s) = d(r) = 1. Thus r∧ s ∈ ker(d).
Moreover, we have r ∼ s = s r by Proposition 2.2(viii). Then

d(r ∼ s) = d(s r) = s d(r) = s 1 = 1,

and
d(r ∼ s) = d(s r) = [(s d(r)) (d(s) r)] (d(s) r) = r  r = 1,

and so r ∼ s ∈ ker(d). Therefore, ker(d) is a sub-algebra of E.

In the following proposition, we investigate that under which condition Fixd(E) ∈ F(E).

Proposition 3.46. Let F ∈ F(E) such that for any r, s ∈ E, if r, s /∈ F , then r ≤ s or s ≤ r. Then

there exists a derivation on E such as d such that Fixd(E) = F and so Fixd(E) ∈ F(E).

Proof. Let F ∈ F(E). Define a self mapping d : E → E such that for any r ∈ F , d(r) = r and for any
r /∈ F , d(r) = 1. Clearly, Fixd(E) = F and so Fixd(E) ∈ F(E). It is enough to prove that d ∈ D(E).
For this we have to prove that d is an inner and outer derivation on E. At first we show that d ∈ OD(E).
For this, we have four cases:
Case 1. Suppose r, s ∈ F . Then d(r) = r and d(s) = s. Since F ∈ F(E) and s ≤ r  s, we have
r  s ∈ F . Then

d(r  s) = r  s = 1 (r  s) = [(r  s) (r  s)] (r  s)

= [(d(r) s) (r  d(s))] (r  d(s)).

Case 2. Suppose r /∈ F and s ∈ F . Then d(r) = 1 and d(s) = s. Since F ∈ F(E) and s ≤ r  s, we
have r  s ∈ F . Then

d(r  s) = r  s = 1 (r  s) = [(1 s) (r  s)] (r  s)

= [(d(r) s) (r  d(s))] (r  d(s)).

Case 3. Suppose r ∈ F and s /∈ F . Then r  s /∈ F . Because, if r  s ∈ F , since r ∈ F and F ∈ F(E),
we have s ∈ F , which is a contradiction. So r  s /∈ F . Since d(r) = r and d(s) = 1, we have

d(r  s) = 1 = (r  s) 1 = [(r  s) (r  1)] (r  1)

= [(d(r) s) (r  d(s))] (r  d(s)).
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Case 4. Suppose r, s /∈ F . Then d(r) = d(s) = 1 and by assumption r ≤ s. Thus

d(r  s) = 1 = 1 1 = [(1 s) (r  1)] (r  1) = [(d(r) s) (r  d(s))] (r  d(s)).

Hence d ∈ OD(E). By the similar way we can prove that d ∈ ID(E). Therefore, d ∈ D(E).

Obviously, the condition ”if r, s /∈ F , then r ≤ s or s ≤ r” in Proposition 3.46 is necessary. Because if
r  s ∈ F , then d(r  s) = r  s but [(d(r) s) (r  d(s))] (r  d(s)) = 1, and so r  s = 1.
Hence r ≤ s.

In the following example we show that there exists a filter of an equality algebra which satisfiying to
the condition ”if r, s /∈ F , then r ≤ s or s ≤ r”.

Example 3.47. Let E be the equality algebra as in Example 3.2(ii). Suppose F = {n, 1}. Obviously,
F ∈ F(E) and for r, s /∈ F , r ≤ s or s ≤ r.

Lemma 3.48. Let F ∈ F(E). For any r, s ∈ E, define the relation θF on E as follows:

rθF s ⇐⇒ r  s ∈ F and s r ∈ F.

Then θF is an equivalence relation on E.

Proof. Clearly, θF is reflexive and symetric relation. Suppose r, s, t ∈ E such that rθF s and sθF t. Then
r  s ∈ F , s r ∈ F , s t ∈ F and t s ∈ F . By Proposition 2.2(vii), we have

r  s ≤ (s t) (r  t) and t s ≤ (s r) (t r).

Since F ∈ F(E), r  s ∈ F and t s ∈ F , we get (s t) (r  t) ∈ F and (s r) (t r) ∈ F .
Moreover, from F ∈ F(E), s  t ∈ F and s  r ∈ F , we have r  t ∈ F and t  r ∈ F , and so rθF t.
Therefore, θF is an equivalence relation on E.

Theorem 3.49. Let d ∈ D(E) such that d(r  s) ≤ d(r) d(s), for any r, s ∈ E. Then the equivalence

relations on (E, , 1) coincide with the equivalence relations on E with derivation d.

Proof. Let F ∈ F(E) and r, s ∈ E such that rθF s. By Lemma 3.48, we get θF is an equivalence relation
on E. Then by definition of θF we have r  s, s  r ∈ F . By Proposition 3.4(ii), r  s ≤ d(r  s)
and s  r ≤ d(s  r). Since F ∈ F(E), we have d(r  s), d(s  r) ∈ F . By assumption, d(r  
s) ≤ d(r)  d(s) and d(s  r) ≤ d(s)  d(r). Thus d(r)  d(s) ∈ F and d(s)  d(r) ∈ F . Hence
d(r)θF d(s).

4 Conclusion

In this paper, the notions of inner and outer derivations on equality algebra are introduced and some
properties are investigated. Moreover, the notions of kernel and fixed point sets of derivation on E and
proved that under which condition they are filters of E. Finally, coincidence of the equivalence relations
on (E, , 1) with the equivalence relations on E with derivation d is studied.
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