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Abstract The paper investigates a new hybrid synchronization called modified hy-

brid synchronization (MHS) via the active control technique. Using the active con-

trol technique, stable controllers which enable the realization of the coexistence of

complete synchronization, anti-synchronization and project synchronization in four

identical fractional order chaotic systems were derived. Numerical simulations were

presented to confirm the effectiveness of the analytical technique.
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1 Introduction

A chaotic system is one whose motion is sensitive to initial conditions [31]. Since

different initial conditions lead to different trajectories for the same dynamical sys-

tem, it is expected that the trajectories cannot coincide. The possibility of two chaotic

systems with different trajectories to follow the same trajectory by the introduction of

a control function, as proposed by [29], has been an interesting research area for sci-

entists in nonlinear dynamics. This is partly due to the applicability in different fields

such as communication technology, security, neuroscience, atmospheric physics and

electronics.

There are several methods for the synchronization of chaotic systems. These

methods include active control, Open Plus Closed Loop (OPCL), backstepping, feed-

back control, adaptive control, sliding mode and others. A comparison of perfor-

mance of a modified active control method and backstepping control on synchroniza-

tion of integer order system has been investigated [23]. The active control method

was found “to be simpler with more stable synchronization time and hence more

suitable for practical implementation”. The active control method was also found to

have the best stability and convergence when compared with the direct method and

OPCL method for fractional order systems [21].

Generally, complete synchronization between a drive system yi and response sys-

tem xi is said to occur if limt→+∞ ||yi−xi||= 0 and anti-synchronization if limt→+∞ ||yi+
xi|| = 0. If the error term is such that limt→+∞ ||yi −αxi||= 0, where α is a positive

integer, we have projective synchronization. According to [32], δ synchronization

is defined by the error given as limt→+∞ ||yi ± xi|| ≤ δ , where δ has small value.

Other forms of synchronization include phase synchronization, anticipated synchro-

nization, lag synchronization etc. The possibility of one or more of these synchro-

nization scheme in a single synchronization has not been explored.

Different synchronization methods and techniques have been used to study syn-

chronization between two similar integer order systems [26], two dissimilar inte-

ger order systems of same dimension [20,8], two similar or dissimilar systems with

different dimensions [27,28,22], three or more integer order system (compound,

combination-combination synchronization) [25,24,19], discrete systems [14,12,18],

fractional order system of similar dimension [16], fractional order synchronization

of different dimension [2,11], circuit implementation of synchronization [1] and syn-

chronization between integer order and fractional order systems [3].

The study of chaotic systems has evolved over time from integer order dynamical

systems to cover partial differential equations, time delayed differential equations,

fractional order differential equations and even time series data. The prevalence of

integer order system was the lack of solution methods for fractional differential equa-

tions [6] and its inherent complexity [9]. The Grünwald-Letnikov definition of frac-

tional order systems, the fractional order derivative of order α can be written as [30]

Dα
t f (t) = lim

h→0

1

hα

∞

∑
j=0

(−1) j

(

α
j

)

f (t − jh) (1)
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where the binomial coefficients can be written in terms of the Gamma function as

(

α
j

)

=
Γ (α + 1)

Γ ( j+ 1)Γ (α − j+ 1)

The Riemann-Liouville definition of fractional derivative is given as

D−α
t f (t) =

1

Γ (n−α)

dn

dtn

∫ t

a

f (τ)

(t − τ)α+1
dτ (2)

The Caputo fractiional derivatives can be written as

Dα
t f (t) =

1

Γ (n−α)

∫ t

a

f (n)(τ)

(t − τ)α−n+1
dτ, n− 1 < α < n (3)

Fractional order systems have been found as a useful model in many engineering,

physical and biological systems.

In this present work, we aim to investigate the possibility of coexistence of dif-

ferent synchronization scheme in the synchronization of four chaotic systems (two

drives and two response systems). Specifically, we aim to implement synchroniza-

tion, anti-synchronization and projective synchronization on different dimensions in

a fractional order combination synchronization using the method of active control.

We believe, if implemented, it will will enhance faster, robust and more secure in-

formation transmission. To the best of our knowledge, this has not been reported in

literature.

2 System Description

The integer order Chen system was introduced by [4] as

ẋ = a(y− x)

ẏ = (c− a)x+ cy− xz

ż =−bz+ xy

(4)

The fractional order chaotic Chen system was introduced by [13] as

Dα x1 = σ(x2 − x1)

Dα x2 = (c− a)x1 − x1x3 + cx2

Dα x3 = x1x2 − bx3

(5)

The system was found to be chaotic when (a,b,c) = (35,3,28) and 0.7 ≤ α ≤ 0.9.

However, by varying parameter a rather than parameter c as in [13], the system was

found to be chaotic in the region 0.1≤α ≤ 0.1 [17]. The phase space of the fractional

order Chen system is shown in figure 1. Various successful attempts have been made

at synchronization of the integer, hyperchaotic, and fractional order Chen system [10,

15,7,5].



4 Kayode S Ojo et al.

3 Design and implementation of synchronization scheme

The co-existence of different synchronization scheme within commensurate frac-

tional order Chen system will be studied. Suitable controllers are designed (Section

3.1) and numerical simulations presented in Section 3.2 to verify the proposed con-

trollers. [2]

3.1 Design of controllers

Let the two drive system be defined as

Dp1x1 = σ(x2 − x1)

Dp2x2 = (c− a)x1 − x1x3 + cx2

Dp3x3 = x1x2 − bx3

(6)

and

Dq1y1 = σ(y2 − y1)

Dq2y2 = (c− a)y1 − y1y3 + cy2

Dq3y3 = y1y2 − by3

(7)

Defining the two response systems as

Dr1z1 = σ(z2 − z1)+ u1

Dr2z2 = (c− a)z1 − z1z3 + cz2 + u2

Dr3z3 = z1z2 − bz3 + u3

(8)

and

Ds1w1 = σ(w2 −w1)+ u4

Ds2w2 = (c− a)w1 −w1w3 + cw2 + u5

Ds3w3 = w1w2 − bw3 + u6

(9)

where the six active control functions u1, u2, u3, u4, u5, u6 introduced in equations 8

and 9 are control functions to be determined.

We define the error states e1, e2 e3 as

e1 = (x1 + y1)− (z1 +w1)

e2 = (x2 + y2)+ (z2 +w2)

e3 = (x3 + y3)−α(z3 +w3)

(10)

Substituting the drive systems (equations 6 and 7) and response systems (equations

8 and 9) into equation 10 and assuming a commensurate system, the error system is

obtained as
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Dµe1 =−[ae1 + ae2− 2a(x2 + y2)+ u1+ u4]

Dµe2 = (a+ c)e1 + ce2 + 2c(z1 +w1)− 2a(x1+ y1)− x1x3 − y1y3 − z1z3 −w1w3 + u2 + u5

Dµe3 =−[be3 − x1x2 − y1y2 +αz1z2 +αw1w2 +αu3 +αu6

(11)

Active control inputs ui(i = 1,2,3,4,5,6) are then defined as

u1 + u4 =−[V1 + 2a(x2+ y2)

u2 + u5 =V2 − 2c(z1 +w1)+ 2a(x1+ y1)+ x1x3 + y1y3 + z1z3 +w1w3

u3 + u6 =
1

α
[−V3 + x1x2 + y1y2 −αz1z2 −αw1w2]

(12)

where the functions Vi are to be obtained. Substituting equation 12 into equation 11

yields

Dµe1 =−ae1 − ae2 +V1

Dµe2 = (a+ c)e1 + ce2 +V2

Dµe3 =−be3 +V3

(13)

The synchronization error system (equation 13) is a linear system with active control

inputs Vi. We design an appropriate feedback control which stabilizes the system so

that ei(i = 1,2,3)→ 0 as t → ∞, which implies that synchronization is achieved with

the proposed feedback control. There are many possible choices for the control inputs

Vi, for simplicity, we chose




V1

V2

V3



=C





e1

e2

e3



 (14)

where C is a 3× 3 constant matrix. In order to make the closed loop system stable,

matrix C should be selected in such a way that the feedback system has eigenvalues

λi that satisfies the equation

|arg(λi)|> 0.5πα, i = 1,2, . . . . (15)

where λ is the eigenvalue, I is an identity matrix and A is the coeffcient of the error

state. There are varieties of choices for choosing matrix C. Matrix C is chosen as

C =





(c−λ ) a 0

−(a+ c) −(c+λ ) 0

0 0 (b−λ )



 (16)

Using equation 16 in 14, we obtain our control function as

u1 + u4 =−V1 + 2a(x2+ y2)

u2 + u5 =V2 − 2c(z1 +w1)+ 2a(x1+ y1)+ x1x3 + y1y3 + z1z3 +w1w3

u3 + u6 =
1

α
[−V3 + x1x2 + y1y2 −αz1z2 −αw1w2]

(17)
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Based on the controllers obtained, two unique cases can be observed.

The control system can be defined as

u1 =
1

2
[−V1 + 2a(x2+ y2)]

u2 =
1

2
[V2 − 2c(z1 +w1)+ 2a(x1+ y1)+ x1x3 + y1y3 + z1z3 +w1w3]

u3 =
1

2α
[−V3 + x1x2 + y1y2 −αz1z2 −αw1w2]

u4 = u1

u5 = u2

u6 = u3

(18)

It can also be defined as The control system can be defined as

u1 =−V1 + 2a(x2+ y2)

u2 =V2 − 2c(z1 +w1)+ 2a(x1+ y1)+ x1x3 + y1y3 + z1z3 +w1w3

u3 =
1

α
[−V3 + x1x2 + y1y2 −αz1z2 −αw1w2]

u4 = 0

u5 = 0

u6 = 0

(19)

3.2 Numerical simulation of Results

To verify the effectiveness of the synchronization scheme proposed in section 3.1

using the method of active control, we used the initial conditions xi(−10,0.001,37),
yi(37,−5,0), wi(−5,0.5,25) and zi(10,−5,15). The order of the system was taken

as 0.95. A time step of 0.005 was used. In the case of projective synchronization,

the scaling parameter was taken to be 5. The parameters of the system are taken

as (a,b,c) = (35,3,28). According to [30], the general numerical solution of the

fractional differential equation

aD
q
t y(t) = f (y(t), t) (20)

can be expressed as

y(tk) = f (y(tk), tk)h
q −

k

∑
j=v

c
(q)
j y(tt− j) (21)

where c
(q)
i is given as

c
(q)
0 = 1

c
(q)
j =

(

1−
1+ q

j
c

q
j−1

)

(22)
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The results for the two cases considered are shown in figures 2 and 3. From the

results presented, the drives and responses were found to achieve synchronization

as indicated by the convergence of the error terms to zero. The effectiveness of the

proposed scheme is hereby confirmed.

4 Conclusion

In this paper, a new synchronization scheme is proposed and implemented. The mod-

ified hybrid synchronization that allows for the coexistence of different synchroniza-

tion schemes was implemented in a compound synchronization of fractional order

Chen system. In particular, the controllers consists of complete synchronization, anti-

synchronization, and projective synchronization. We believe that this type of synchro-

nization will offer better security and more robust. There is the need to investigate the

performance of this type of synchronization using different synchronization schemes.

Furthermore, it will be productive to study the behaviour of this scheme under dif-

ferent types and strength of noise. Practical implementation of this scheme is also

proposed.
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Fig. 1 Phase space of the system.
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Fig. 2 Synchronization obtained from the realization of case 1.
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