
Smoke Removal and Image Enhancement of
Laparoscopic Images by An Arti�cial Multi-
Exposure Image Fusion Method
Muhammad Adeel Azam 

University of Genoa: Universita degli Studi di Genova
Khan Bahadar Khan  (  kb.khattak@gmail.com )

Islamia University of Bahawalpur https://orcid.org/0000-0003-1409-7571
Eid Rehman 

Foundation University Islamabad
Sana Ullah Khan 

KUST: Kohat University of Science and Technology

Research Article

Keywords: Arti�cial multi-exposure fusion, Smoke removal, Laparoscopic Images, Image fusion and en-
hancement

Posted Date: October 26th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-975713/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Soft Computing on April 11th, 2022. See the
published version at https://doi.org/10.1007/s00500-022-06990-4.

https://doi.org/10.21203/rs.3.rs-975713/v1
mailto:kb.khattak@gmail.com
https://orcid.org/0000-0003-1409-7571
https://doi.org/10.21203/rs.3.rs-975713/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-022-06990-4


 

 
https://doi.org/10.3390/xxxxx  

Type of the Paper (Article) 1 

Smoke Removal and Image Enhancement of Laparoscopic Im- 2 

ages by an Artificial Multi-Exposure Image Fusion Method 3 

Muhammad Adeel Azam 1, Khan Bahadar Khan 2,*, Eid Rehman3 and Sana Ullah Khan4 4 

1 Department of Advanced Robotics, Istituto Italiano di Tecnologia, Via S. Quirico, 19d, 16163 Genova, Italy; 5 

adeel.azam@iit.it ,  6 
1 Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, 7 

Italy; adeel.azam@iit.it  8 
2 Department of Telecommunication Engineering, Faculty of Engineering, The Islamia University of Bahawal- 9 

pur, 63100, Pakistan; kb.khattak@gmail.com  10 
3 Department of Software Engineering, Foundation University, Rawalpindi Campus, Pakistan; 11 

eidrehmanktk@fui.edu.pk  12 
4 Institute Institute of Computing, Kohat University of Science and technology Kohat (KUST), KPK, Pakistan. 13 

sana.ullah@kust.edu.pk  14 

* Correspondence: kb.khattak@gmail.com ;  15 

Abstract: In laparoscopic surgery, image quality is often degraded by surgical smoke or by side 16 

effects of the illumination system, such as reflections, specularities, and non-uniform illumination. 17 

The degraded images complicate the work of the surgeons and may lead to errors in image-guided 18 

surgery. Existing enhancement algorithms mainly focus on enhancing global image contrast, over- 19 

looking local contrast. Here, we propose a new Patch Adaptive Structure Decomposition utilizing 20 

the Multi-Exposure Fusion (PASD-MEF) technique to enhance the local contrast of laparoscopic im- 21 

ages for better visualization. The set of under-exposure level images are obtained from a single input 22 

blurred image by using gamma correction. Spatial linear saturation is applied to enhance image 23 

contrast and to adjust the image saturation. The Multi-Exposure Fusion (MEF) is used on a series of 24 

multi-exposure images to obtain a single clear and smoke-free fused image. MEF is applied by using 25 

adaptive structure decomposition on all image patches. Image entropy based on the texture energy 26 

is used to calculate image energy strength. The texture entropy energy determined the patch size 27 

that is useful in the decomposition of image structure. The proposed method effectively eliminate 28 

smoke and enhance the degraded laparoscopic images. The qualitative results showed that the vis- 29 

ual quality of the resultant images is improved and smoke-free. Furthermore, the quantitative scores 30 

computed of the metrics: FADE, Blur, JNBM, and Edge Intensity are significantly improved as com- 31 

pared to other existing methods. 32 

Keywords: Artificial multi-exposure fusion; Smoke removal; Laparoscopic Images; Image fusion 33 

and enhancement;  34 

 35 

1. Introduction 36 

Laparoscopic imaging modalities play a significant role in navigation during opera- 37 

tion and treatment planning. Medical surgeons always focus on the quality of images that 38 

determine the best medical decision for the operating environment [1]. In laparoscopic 39 

surgery, a small size camera is injected into the human body through a small incision. All 40 

the internal body structural and functional information can be seen and monitored with 41 

the help of an LCD screen placed in the operation room [2]. The CO2 gas is inserted into 42 

the human abdominal area to expand the internal space so that surgical instruments can 43 

be easily operated on. The CO2 gas and dissection deformation of tissues produce smoke 44 

that causes the invisibility of organs [3]. The degradation and artifacts in laparoscopic im- 45 

ages produce also due to many other factors such as dynamic homogenous internal struc- 46 

ture, blood flow, dynamic illumination factor, optical instruments reflection, etc. [4]. The 47 
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smoke effect during laparoscopic can severely degrade the image quality and also its ef- 48 

fects on radiance information of image patches. The degraded and blurred images could 49 

reduce the visibility of the surgeon for diagnosis and also increase the probability of error 50 

during surgery. The smoke removal could reduce not only the surgery time but also im- 51 

portant for surgery planning and treatment. Therefore, an accurate smoke removal algo- 52 

rithm is required for better visualization of laparoscopic images [3-5].  53 

There are many clinical applications of laparoscopy images and it can help to diag- 54 

nose multiple diseases at a very early stage. The smoke removal method is considered as 55 

image de-hazing that existed in literature [6-7]. The image de-hazing algorithms are clas- 56 

sified into two groups: image restoration and image enhancement [8-9]. In the image res- 57 

toration category, the haze-free image is obtained by using atmospheric degradation 58 

methods utilizing prior knowledge of image depth information. The prior information of 59 

hazy image derived first then by applying physical degradation model to obtain haze-free 60 

images. He et al. [8] proposed Dark Channel Prior (DCP) technique that is based on the 61 

restoration domain. While in the image enhancement domain, there is no need of using 62 

an atmospheric physical model and prior estimation of depth information in images. In 63 

this method, the correlation algorithms are mostly used to enhance the local contrast of 64 

the images for better visualization [10]. In this category, some of the techniques are the 65 

Retinex algorithm [12], fusion-based [13], Histogram equalization [12-13], and wavelet- 66 

based algorithms [16].  In fusion-based methods, the resultant enhanced image is ob- 67 

tained by fusing input blurred images. However, the required detailed information at a 68 

high level of accuracy in smoke-free images is still a challenging task. Gamma correction 69 

is utilized to split single input blurry and smoky images into different multi-exposure 70 

images then the MEF technique is implemented to fuse these multi-exposure images. The 71 

image contrast and saturation are used as image fusion weights during the fusion process. 72 

MEF techniques are used for enhancing the visual quality of degraded images [17]. In the 73 

enhancement domain, existing smoke removal algorithms are used to enhance the satu- 74 

ration and global contrast of images while neglecting the local contrast information. Image 75 

visual quality is affected due to the missing of many local pixels during the calculation of 76 

global contrast. 77 

 In this article, we proposed a laparoscopic smoke removal method that removes the 78 

smoke effect and also enhanced the quality of the degraded images. The proposed method 79 

is based on the PASD-MEF technique. The MEF technique enhanced the local detail infor- 80 

mation of input laparoscopic images. A series of gamma correction is used to remove the 81 

blurry patches in the images and also effectively increase the local contrast of the images. 82 

Whereas, the Spatial Linear Saturation (SLS) is used to increase the color saturation of the 83 

laparoscopic images. Then, a set of images with under-exposure levels are formed. These 84 

under-exposure images now have high color saturation and enhanced contrast but low 85 

exposure levels. The proposed algorithm implemented a patch adaptive structure (PAS) 86 

technique that works on MEF. The advantage of using PAS and MEF is that it preserved 87 

the structure of laparoscopic images. The significant contribution of the proposed meth- 88 

odology is highlighted as follows: 89 

• Development of smoke removal self-fusion algorithm on smoky and blurry in- 90 

put images in a spatial domain. The smoke effect is removed with the help of contrast and 91 

saturation correction. SLS is implemented to increase the saturation contrast of images. 92 

• PASD algorithm is proposed for the spatial domain, MEF to enhance the visual 93 

quality of the degraded blur laparoscopic images. The adaptive selection of different 94 

patched size in images are obtained by using an implementation of block size and texture 95 

energy. Adaptive selection avoids the error of loss of information in both local structure 96 

and texture detail information of images during the smoke removal procedure. 97 

• The proposed algorithm PASD-MEF is verified both in a qualitative as well as 98 

quantitative manner. The article demonstrated that the proposed algorithm not only re- 99 

moves the smoke but also enhances the visual quality of the laparoscopic image for better 100 

visualization and diagnostic purposes. 101 
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• The proposed algorithm is compared with other state-of-the-art smoke re- 102 

moval methods and the proposed method showed significantly improved performance in 103 

terms of visual and statistical evaluation metrics. 104 

The article arrangement is as follows: In Sec. 2, related works associated with haze 105 

and de-smoke is presented while Sec. 3 describes the proposed methodology. In Sec. 4, 106 

the quantitative and qualitative results are encapsulated and the conclusion is drawn in 107 

Sec. 5. 108 

2. Related Works 109 

There are many techniques presented in the literature for de-smoke of laparoscopic 110 

image [3-5]. A novel Bayesian inference that consists of a probabilistic graphical technique 111 

is applied on laparoscopic images [3]. The model includes a prior model and is imple- 112 

mented on transmission map images. The transmission map is useful for color attenuation 113 

that is caused by smoke. Then, this work is extended in [4], to achieve smoke-free, noise- 114 

less, and remove the specular effect in images. There are many other methods in the liter- 115 

ature that are related to laparoscopic smoke removal. These techniques use the atmos- 116 

pheric scattering model and work relatively the same as the dehazing techniques in the 117 

literature. The atmospheric model depends on the depth of images or the transmission 118 

map [6], [16-17].  He at el. proposed a DCP technique that relies on statistical observation 119 

and implemented on outdoor hazy images [6], [16-17]. In this method, it is observed that 120 

mostly pixels having very low intensities values in at minimum single-color channel. In 121 

the DCP method, a prior estimation knowledge of image depth detail and transmission 122 

map is implemented. The density of the hazing scene acquired and high-quality non-hazy 123 

images are formed. This algorithm not effectively works on outdoor images that have a 124 

very high white radiance effect.  However, some other methods do not require estimation 125 

of transmission map or image depth information. Tan et al. [9] directly enhance the local 126 

detail of images without any use of a transmission map. In [13], a fusion-based method is 127 

proposed that relies on white balance phenomena to enhance the input images. A Lapla- 128 

cian pyramid representation technique is used for fusion purposes and this method works 129 

on per-pixel. The multi-scale fusion is implemented on hazy images and derived single 130 

resultant image. Most of the image smoke removal methods work as image restoration 131 

and on smoke removal. Koschmieder [20] proposed an atmospheric scattering scheme to 132 

solve the problem of degradation in images caused by smoke. This model is described in 133 

Eq.1. 134 𝐼 (𝑦) =  𝑡 (𝑦). 𝐽 (𝑦) +  𝐴. (1 − 𝑡 (𝑦)) (1) 

Where I(y) represent the degraded images while J(y) is the haze-free image. The t(y) 135 

denotes the transmission medium and represents the quantity of light that spreads toward 136 

the target. In the above equation, the A denotes global atmospheric light. The product of 137 

t (y).J (y) represents the scene radiance. The term 𝐴. (1 − 𝑡 (𝑦)) in Eq. 1 denote the air- 138 

light. Air light produced by smoke dispersion increases the intensity of the object, which 139 

is assumed to be the primary cause of the color shift of the scene. This term for air light, 140 

especially for thick smoke, would dominate the strength of the scene. By rearranging the 141 

above equation the haze-free image J(y) will be achieved. The haze-free image only is ob- 142 

tained when the value of A and t(y) are already achieved using apriori information and 143 

from the estimation solution. Eq.2 represents the rearranged form of equation (1). The 144 

common limitation J (x) can also be limited by implementing the maximum local contrast 145 

and saturation or distributing the specific color pixels in RGB space. 146 𝐽(𝑦) =  𝐼(𝑦) − 𝐴𝑡 (𝑦) +  𝐴  (2) 
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In this paper, we proposed a multi-exposure image fusion method for smoke re- 147 

moval, adjustment of saturation, and contrast of images. The Multi-exposure fusion tech- 148 

niques are also used in many image processing tasks where different sensors sequence of 149 

images fused to obtained resultant single image [15], [19-20]. The existence of image fusion 150 

methods discussed in the literature are based on sparse representation [21-23], guided 151 

filtering techniques [26], Multi-scale decomposition fusion techniques [25-27], patch struc- 152 

ture decomposition [30], and multi-exposure image fusion. However, MEF methods are 153 

not only used for image smoke removal but also image enhancement [10, 31]. Galdran 154 

introduced multi-exposure fusion based on Laplacian pyramid fusion (LPF) for haze re- 155 

moval [10], then, in the space domain, the haze removal is converted to increase image 156 

contrast and saturation effect. The LPF weight is used to manipulate image contrast and 157 

saturation that enhance the visual quality of images. The gamma correction and image 158 

enhancement work in spatial domain, the gamma correction method is widely used in 159 

literature for image enhancement [10]. Histogram Equalization is added to gamma cor- 160 

rection to increase the image contrast. Whereas traditional image enhancement methods 161 

are used for global contrast and saturation transformation of images. In the proposed 162 

methodology, the Adaptive Gamma Correction (AGC) technique is used to increase the 163 

transmission map t(x) that is used in Equation (1) by the Koschmieder model. For further 164 

improvement of AGC, we used Laplacian based solutions. Contrast adjustment solution 165 

integrated with AGC to remove the blurred effect in images. 166 

3. Proposed Methodology 167 

To avoid the estimation effect of atmospheric light and transmittance described in 168 

Equation (1), the contrast enhancement and saturation adjustment technique in the spatial 169 

domain is suggested to achieve smoke-free laparoscopic images. According to 170 

Koschmieder model the intensity range of input blurred images I(y) lies between values 171 

0 to 1. The following condition J(y) ≤ I (y) ∀ y needs to satisfy to obtain smoke-free image 172 

J(y). In this paper, we first make a set of under-exposed images U= {I1(y), I2(y), 173 

I3(y)…...Ik(y)} from the original smoke input image I(y). The under-exposed images al- 174 

ways reduce the intensity variation in images. The under-exposure image I(y) inset of 175 

multiple under-exposure images contain high contrast and saturation but skip small detail 176 

structure information. These under-exposure images now have low exposure levels. We 177 

implemented a MEF technique to fuse all the under-exposed set of images U= {I1(y), I2(y), 178 

I3(y)…...Ik(y)} into a single image to extract local detail information. The MEF technique 179 

fused different regions of images with good contrast and saturation level to obtain smoke- 180 

free single image J(y). The flowchart of the proposed methodology is shown in Fig.1.  181 

First, the set of multi-exposure images are obtained with the help of gamma correction. 182 

The linear adjustment associated with spatial saturation is also implemented on the image 183 

to increase the visual quality. Gamma correction is implemented for contrast level adjust- 184 

ment of images. The increase of the contrast of blurred areas in the images decreased the 185 

sharpness level of that area. To overcome this problem, we utilized a MEF technique that 186 

extracts those corresponding areas from multiple images and fused them into a single 187 

image with better contrast and saturation. For better fusion, it is important to maintain 188 

texture and color detail as same as the original image which is achieved by applying MEF 189 

with adaptive structure decomposition (ASD) of the image patch. In the proposed meth- 190 

odology, the texture information components of the image are obtained by using cartoon 191 

texture decomposition [32]. The image texture entropy is calculated from the gray differ- 192 

ence technique. The texture entropy value and image block size are treated in an image 193 

decomposition block. The overall image block is sub-divided into three independent com- 194 

ponents. Each component process individually to give the resultant fused smoke-free im- 195 

age. The proposed methodology is explained in the following sections. 196 

 197 

 198 
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 199 

Figure 1. Proposed methodology PASD-MEF framework. 200 

3.1. Gamma Correction and Contrast Adjustment 201 

 202 

The overall image intensity of degraded image I(y) is adjusted by using gamma cor- 203 

rection and modify the intensity of the image by a power function as shown in Equation 204 

(3). 205 𝐼(𝑦)  →   𝛽. 𝐼(𝑦)µ  (3) 

Where the term β and µ represent the positive constant. The visual differences are 206 

more prominent in the dark areas as compared to bright areas. The value of µ has chosen 207 

less than one µ < 1 for compressed bright intensities while it increases dark intensities in 208 

images for better visual detail. The value of µ > 1, more bright intensities are allotted in a 209 

more extensive range after transformation, and dark intensities are compressed for that 210 

value range. The contrast of the image region can be expressed in Equation (4). 211 𝐶(𝜔) =  𝐼𝑚𝑎𝑥𝜔 − 𝐼𝑚𝑖𝑛𝜔  (4) 

Where 𝐼𝑚𝑎𝑥𝜔 = max {I(y) | y ϵ ω} and 𝐼𝑚𝑖𝑛𝜔 = min {I(y) | y ϵ ω}. In Fig. 3(e) and 4(e), the 212 

image shows overexposure and there is contrast detail information missing in both im- 213 

ages. After applying the µ > 1 operation, the contrast detail of the image in Fig. 3(g) and 214 

4(g) increases. In our proposed algorithm, the adjustment of gamma correction is used to 215 

modify the local contrast detail of input images. Gamma correction also removes the 216 

blurred effect in images as shown in Fig. 2(h) and 3(h). In Figs. 2-3, different exposure 217 

level laparoscopic images are shown. The left side images are over-exposure images while 218 

the move toward the right side the exposure level of images decreases. The resultant fused 219 

MEF images are shown on the rightmost side of Figs. 2-3. 220 

 221 

 222 
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223 
Figure 2. Multi-exposure laparoscopic images of video 1 with smoke Level 3. (a) Over-exposed (b) 224 

Normal exposed image (c) under-exposed image (d) Resultant fused image obtained from images 225 

(a)-(c). (e) Zoom-in over-exposed image (f) Zoom-in of normally exposed image (g) Zoom-in un- 226 

der-exposed (h) Zoom-in of the fused image. 227 

                          228 

Figure 3. Multi-exposure laparoscopic images of video 10 with smoke Level 4. (a) Over-exposed 229 

(b) Normal exposed image (c) under-exposed image (d) Resultant fused image obtained from im- 230 

ages (a)-(c). (e) Zoom-in over-exposed image (f) Zoom-in of normally exposed image (g) Zoom-in 231 

under-exposed (h) Zoom-in of the fused image. 232 

3.2. Artificial Multi-Exposure Fusion 233 

After the contrast enhancement, the Spatial Linear Saturation (SLS) is implemented 234 

on multi-exposure laparoscopic images. The visual quality of images is improved by using 235 

the adjustment of local contrast and brightness of the images. The sequence of multi-ex- 236 

posure images U= {I1(y), I2(y), I3(y)…... Ik(y)} from input image I(y) is obtained with the 237 

help of gamma correction. For every image  𝑈𝑘𝑅(𝑦), 𝑈𝑘𝐺(𝑦), 𝑈𝑘𝐵(𝑦)} in the set of multi-ex- 238 

posure the minimum and maximum components value of three-channel R, G, and B can 239 

be manipulated by using Equation (5) and (6). When ∆ = (RGBmax – RGBmin)/255 > 0, 240 

then saturation of every pixel can be manipulated by using Equation (7). 241 RGBmax =  max (max (R, G), B) (5) RGBmin =  min (min (R, G), B) (6) 
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𝑆 = { ∆𝑣𝑎𝑙𝑢𝑒         𝐿 < 0.5∆2 − 𝑣𝑎𝑙𝑢𝑒     𝐿 ≥ 0.5  (7) 

 242 

 243 

The term value and L can be defined in Equation (8). When the saturation of every 244 

pixel value is computed then this operation is applied on each channel of image RGB de- 245 

scribed as in Equation (9). We have taken the adjustment range of saturation for an image 246 

as [0,100]. 247 𝑣𝑎𝑙𝑢𝑒 = 𝑅𝐺𝐵𝑚𝑎𝑥 +  𝑅𝐺𝐵𝑚𝑖𝑛255 ,      𝑊ℎ𝑒𝑟𝑒      𝐿 = 𝑣𝑎𝑙𝑢𝑒/2 (8) 

 248 𝑈𝐾′ (𝑦) = 𝑈𝑘(𝑦) + (𝑈𝑘(𝑦) − 𝐿 ∗ 255) ∗ 𝛽 (9) 

 249 

𝛽 = { 
 1(𝑆 − 1)        𝑝𝑒𝑟𝑐𝑒𝑛𝑡 + 𝑆 ≥ 11(−𝑝𝑒𝑟𝑐𝑒𝑛𝑡)                      𝑒𝑙𝑠𝑒 (10) 

The final image obtained after the saturation operation applied on each channel of 250 

the image is described in Equation (11). 251 𝑈𝐾′ (𝑦) = (𝑈𝑘𝑅′(𝑦), 𝑈𝑘𝐺′(𝑦), 𝑈𝑘𝐵′(𝑦)) (11) 

When the image saturation process is completed then MEF is applied to obtain the 252 

local detail information of the laparoscopic images. The proposed MEF scheme works on 253 

adaptive decomposition based on patch structure. The adaptive patch of an image deter- 254 

mines using image texture entropy and patch size. The resultant fuse image is obtained 255 

by combining decompose patch images.  The image cartoon decomposition is used for 256 

the analysis of structural information in an image [21] while texture components of the 257 

image give detailed information [25]. In the proposed work, the Vese Osher (VO) model 258 

is implemented based on variational image decomposition [25] [33] to the source images. 259 

The cartoon-texture decomposition determines by using Vese Osher (VO) model. 260 

3.3. Adaptive Patch Structure and Image Intensity  261 

When the texture component is determined, the gray difference technique is imple- 262 

mented to compute the image entropy value using texture features. Then adaptive path 263 

size selection of the image is selected. If pixel point is located at point (x, y) then a point 264 𝑝 = (∆𝑥, ∆𝑦) far away from pixel point is represented as(𝑥 + ∆𝑥, 𝑦 + ∆𝑦).  The gray 265 

scale based on different value can be calculated as in Equation (12). 266 𝑚∆(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) − 𝑚(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) (12) 

Where m(x, y) denoted gray scale value and  𝑚∆(𝑥, 𝑦) represent the difference in 267 

gray scale value. The entropy value of laparoscopic images can be determined by using 268 

Equation (13). 269 

𝐸 =  ∑𝑝(𝑖)𝑙𝑜𝑔2[𝑝(𝑖)]𝑛
𝑖=0  (13) 

For complete image texture, the values of entropies can be calculated in the form of 270 

set E= {E1, E2, E3……., Ek,}, where E1, E2…... Ek is the entropy value of each image. Then 271 
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final entropy value can be calculated by using the mean of all entropy values represented 272 

in Equation (14). 273 

𝐸 = 1𝐾 ∑𝐸𝑖𝑘
𝑖=0  (14) 

The adaptive patch size scheme preserved more detailed information during the fu- 274 

sion process. The optimal block size of each image can be calculated by using Equation 275 

(15). 276 

𝑊𝑠 = 𝑃𝑠 (0.1) 𝑥 (( 𝐸10)𝐸 − (− 𝐸10)−𝐸( 𝐸10)𝐸 + (− 𝐸10)−𝐸)+ 𝑃𝑠  (𝑒−𝐸  𝑥 (0.1) (15) 

And, 𝑊𝑠 is image patch size. The optimal block size can be achieved using the image 277 

entropy value.  E in the above equation represents the Entropy value of a given image, 278 

these parameters are set for calculated image patch size. When the optimal value of 𝑊𝑠  279 

achieved then set of multi-exposure images decompose into sub-image of Ws x Ws size 280 

blocks. Structure decomposition algorithm [17] is implemented on each patch size of the 281 

image that further divided into the following components: I) Ck, signal contrast strength 282 

II) signal structure strength Sk and III) mean intensity Ik. These three parameters have 283 

proceeded further to achieve the desired fused image patches 𝑋̂. To obtain an appropriate 284 

fused patch image we need three desired parameters that are 𝐶𝑘 ,̂ 𝑆𝑘 ,̂ 𝐼,̂ these parameters 285 

are explain below; 286 

 287 𝐶𝑘  ̂ = The desired contrast strength in the fused image was obtained by merging the 288 

highest contrast of all source sets of image patches with the same spatial position. 289 𝑆𝑘̂  = The desired signal structure fused block can be calculated by assigning 290 

weighted average value to image block contrast using input structure vector. 291 𝐼𝑘̂ = To obtained mean intensity components, the global and local mean intensity of 292 

the current source image is used as an input. 293 

 294 

When 𝐶𝑘 ,̂ 𝑆𝑘 , 𝐼𝑘̂    components are calculated then fused image patch 𝑋̂  obtained 295 

and new vector can be represented as shown in Eq. 16.  The proposed MEF gives smoke- 296 

free, well exposed, and high contrast images by artificially under-exposed/over-exposed 297 

images. The smoke in the image represented in Equation (1) always reduces the intensity 298 

level of the images. The proposed algorithm works only on under-exposed images. Fur- 299 

thermore, if the exposure value increased then gamma correction can adjust the contrast 300 

of images and increase the visual quality of blurred laparoscopic images. 301 𝑋̂ =  𝐶𝑘  ̂ . 𝑆𝑘 + 𝐼𝑘̂  (16) 

Multiple image patches of a fused image can be obtained by sliding the window, the 302 

pixels in covering patches are found the average value to give output. At that point, the 303 

fused image is formed by using Eq.17. 304 

𝐽(𝑥) =  ∑𝑥̂𝑖𝑛
𝑖=1  (17) 

4. Experimental Results 305 

In this section, the dataset details and the proposed methodology subjective/qualita- 306 

tive and objective/quantitative results compared with other state-of-the-art techniques 307 

such as Dark Channel Prior (DCP) [8], Multilayer Perceptron Method (MPM) [34], Color 308 

Attenuation Prior (CAP) [19] is presented. The proposed method is implemented on 309 
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MATLAB 2018a software where the hardware specification is Intel® Core i3-4010U CPU 310 

of clock speed 1.7GHz and RAM is 4GB.  311 

4.1. Dataset 312 

The dataset taken is a part of the ICIP LVQ Challenge dataset. That is a collection of 313 

a total of 800 distorted videos created using a set of 20 reference videos, each 10 seconds 314 

long [35], [36]. Obtain these videos from the Cholec80 dataset (http://camma.u- 315 

strasbg.fr/datasets). The whole dataset consists of ten category videos group such that 316 

smoke videos, blurry, white Gaussian noise videos, etc. All videos with a 16:9 aspect ratio 317 

have a resolution 512 by 288 and 25 fps frame rate. We collected videos from the smoke 318 

group comprising 80 videos arising from applying SMOKE as distortion to each reference 319 

video at 4 different stages. Then each video frame is extracted from 25 different smoke 320 

videos as shown in Fig. 4. The resolution of images to test the proposed algorithm is 512 321 

by 288. 322 

 323 

Figure 4. Sample dataset videos frames (a1~a4) frames of video 1 where a1 represent level1 smoke and smoke increase from left to 324 

right a4 represent dense smoke of level 4 (b1~b4) frames of video 5 (c1~c4) frames of video 10 (d1~d4) frames extracted from video 325 

15 while (e1~e4) frames of video 20. 326 
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4.1.1. Qualitative visual results 327 

The visual results of smoke images with level 3 smoke distortion are shown in Fig. 5 328 

while the smoke images with level 4 distortion are shown in Fig. 6. It is observed that the 329 

DCP method can remove the smoke effect but the contrast and saturation balance of im- 330 

ages reduces. In the CAP method, it is noticed that smoke is not well removed, and an 331 

unbalance natural color of images is also seen. While the MPM method, removes the 332 

smoke but local detail information of laparoscopic images is not visible. The proposed 333 

method not only removes the smoke from images but also enhanced the local contrast 334 

information of the images and the good saturation color are seen. 335 

4.1.1. Quantitative Evaluation 336 

In objective evaluation, we choose non-reference image quality metrics because ref- 337 

erence or any ground truth images are absent. The evaluation of the proposed method is 338 

performed by computing four metrics: FADE, JNBM, Blur, and Edge intensity. Fog Aware 339 

Density Evaluator (FADE) metric is used for analyzing smoke in the images [37-38]. The 340 

perceptual fog density in the laparoscopic images can be computed by computing the 341 

FADE metric. If the value of FADE is lower, then it means that fog density is lower, for 342 

better smoke removal its value should be lower. The JNBM non-reference metric is based 343 

on sharpness and works best for blurry images [39-40]. This metric evaluates the quantity 344 

level of visual sharpness in the images. The higher value indicated that images are highly 345 

sharp and best for perceptual view. Furthermore, an Edge intensity metric is imple- 346 

mented, this metric gives information about the edge intensities that are not visible in 347 

source images. The higher value represented good edge intensity [41]. The non-reference 348 

blur perceptual metric is used to analyze blurriness in the image. Crete et al. [42] proposed 349 

this metric for the first time in image processing. Tab. 1 shows all the statistical results 350 

computed by these four non-reference metrics. The proposed method shows a signifi- 351 

cantly improved result as compared to other state of art techniques. The bold values indi- 352 

cated better performance results. The graphical objective evaluation results of smoke level 353 

3 and level 4 images are shown in Figs. 5-6. The bar-plot result of FADE, JNBM, Blur, and 354 

Edge intensity metrics is shown in Figs.7-8. 355 

Table 1. Quantitative/objective evaluation results of the smoke-free images. 356 

Video 

ID 

Smoke 

frame 

Method FADE Blur JNBM Edge 

Intensity 

 

 

 

 

1 

 

 

 

 

Level-3 

DCP 0.334 0.257 3.3802 69.124 

CAP 0.443     0.261   3.3795 58.767    

MPM 0.271 0.253 3.4095 78.458 

Proposed 0.176 0.248 3.5073 79.536 

 

Level-4 

DCP 0.354 0.263 3.3161 66.767 

CAP 0.457     0.265   3.3736 57.458    

MPM 0.296 0.257 3.3960 75.598 

Proposed 0.189 0.253 3.4551 77.325 

    5 

 

 

Level-3 

DCP 0.337 0.252 3.0253 68.498 

CAP 0.468     0.255   3.1207 51.945    

MPM 0.369 0.252 3.1151 66.230 

Proposed 0.196 0.246 3.4417 62.743 

 

Level-4 

DCP 0.391 0.256 2.8429 65.644 

CAP 0.556     0.261   3.1690 49.168    

MPM 0.440 0.258 3.0726 62.196 
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Proposed 0.228 0.251 3.3052 59.926 

  10 

 

 

Level-3 

DCP 0.263 0.271 2.7363 86.330 

CAP 0.385     0.278   2.7743 63.755    

MPM 0.278 0.267 2.8444 83.162 

Proposed 0.145 0.265 2.8172 85.386 

 

Level-4 

DCP 0.276 0.274 2.8540 84.565 

CAP 0.402     0.281   2.8672 62.315    

MPM 0.308 0.272 2.9426 79.911 

Proposed 0.163 0.269 2.8681 81.597 

  15 

 

 

Level-3 

DCP 0.329 0.270 3.3597 55.406 

CAP 0.508     0.278   3.1900 46.009    

MPM 0.305 0.260 3.2100 66.943 

Proposed 0.197 0.251 3.3964 58.358 

 

Level-4 

DCP 0.347 0.282 3.1051 55.445 

CAP 0.558     0.291   2.9624 45.261    

MPM 0.356 0.276 2.9541 62.988 

Proposed 0.220 0.266 3.1330 57.523 

  20 

 

 

Level-3 

DCP 0.417 0.319 2.5731 38.031 

CAP 0.561     0.317   2.5305 37.504    

MPM 0.419 0.299 2.6118 47.585 

Proposed 0.188 0.288 2.7140 55.808 

 

Level-4 

DCP 0.450 0.309 2.5195 37.749 

CAP 0.624     0.304   2.4998 37.508    

MPM 0.474 0.288 2.4910 46.795 

Proposed 0.212 0.276 2.7138 55.012 

 357 

5. Conclusions 358 

The proposed method of PASD-MEF is based on multi-exposure image fusion. The 359 

MEF works on the adaptive structure decomposition technique. A sequence of under-ex- 360 

posed images is extracted from the input single smoke and burry image. The Gamma cor- 361 

rection is implemented to achieve a set of under-exposed images while the SLA scheme is 362 

applied for saturation adjustment. Adaptive structure decomposition (ASD) is used dur- 363 

ing the MEF procedure. The adaptive patch decomposition integrates all common regions 364 

from a series of images that have better contrast and saturation. Whereas MEF fused these 365 

sets of images into a single de-smoke image. The qualitative as well as quantitative results 366 

showed that the proposed method significantly improves the visual quality of images and 367 

also reduces the smoke from images. The main goal of this paper is to remove smoke and 368 

enhanced laparoscopic images. The improved quality of images is useful in image-guided 369 

surgery and also helpful for surgeons for better visibility during surgery.  370 

 371 
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 372 

Figure 5. Qualitative visual results of smoke level 3 laparoscopic images (a) Input smoke and blur laparoscopic images where (b) ~ 373 

(e) images are resultant smoke-free and enhanced images. (b) DCP [8] (c) CAP [19] (d) MPM [34] (e) Proposed method. 374 

 375 
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Figure 6. Qualitative visual results of smoke level 4 laparoscopic images (a) Input smoke and blur Laparoscopic images where (b) ~ 376 

(e) images are resultant smoke-free and enhanced images. (b) DCP [8] (c) CAP [19] (d) MPM [34] (e) Proposed method. 377 

 378 

       Figure 7. Graphical objective evaluation results of FADE and blur metric. 379 

 380 

Figure 8. Graphical objective evaluation result of JNBM and Edge intensity metric. 381 
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