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A preference structure in Multi-Attribute Decision Making – An algorithmic 

approach based on Hesitant Fuzzy Sets 

B.K. Mohanty* & Eshika Aggarwal 
Indian Institute of Management, Lucknow - 226 013, India.  

 

This paper introduces a new methodology for solving Multi-Attribute Decision Making (MADM) 
problems under hesitant fuzzy environment. The uncertainty in Hesitant Fuzzy Elements (HFE) are 
derived by means of entropy. The resulting uncertainty is subsequently used in HFE to derive a single 
representative value (RV) of alternatives in each attribute. Our work transforms the RVs into their 
linguistic counterparts and then formulates a methodology for pairwise comparison of the alternatives 
via their linguistically defines RVs. The Eigen vector corresponding to maximum Eigen value of the 
pairwise comparison matrix prioritize the alternatives in each attribute. The priority vectors of the 
alternatives are aggregated to derive the weights of the attributes using Quadratic programming. The 
weighted aggregation of the attribute values provides the ranking of the alternatives in MADM. An 
algorithm is written to validate the procedure developed. The proposed methodology is compared with 
similar existing methods and the advantages of our method are presented. The robustness of our 
methodology is demonstrated through sensitivity analysis. To highlight the procedure a car purchasing 
problem is illustrated.  
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1. Introduction 

Multiple Attribute Decision Making (MADM) based on Hesitant Fuzzy Sets (HFS) has attracted the 
attention of the decision-makers (DMs) and practitioners because of its wide range of applications in 
various fields of management (Chen & Hong, 2014; Gou, Xu, & Liao, 2017; Liao, Gou, Xu, Zeng, & 
Herrera, 2020; Sellak, Ouhbi, & Frikh, 2018). HFS is an extension of fuzzy sets where the membership 
functions of an element are characterized by multiple values. The present work introduces a new 
methodology for solving MADM based on HFS. The alternative assessment by DM usually fluctuates 
between several possible values when a clear and precise response of the alternative valuation is not 
provided. This is because the DM is hesitant and unable to provide a single numerical/linguistic 
assessment to an alternative. HFS is an appropriate tool to deal with these types of fluctuating situations 
(Chen & Hong, 2014; Gou, Xu, & Liao, 2017; Liao, Gou, Xu, Zeng, & Herrera, 2020; Sellak, Ouhbi, 
& Frikh, 2018; Torra, 2010; Wang J. , Wang, Zhang, & Chen, 2015). For example, while evaluating 
the “price” of a car, a buyer may confuse and swing his/her assessments as somewhat ok, reasonably 

well, satisfactory price, etc. In numeric terms, the level of fluctuations may be (0.4, 0.6, 0.8). These 
types of obscurities on the part of the buyer or the DM are mainly because of the lack of knowledge or 
indecisiveness for attribute “price”. Inspired by these challenging conditions in decision making, our 
work proposes a new methodology to appropriately select or rank the alternatives that are given as 
Hesitant Fuzzy Values (HFVs), satisfying all the criteria efficiently. In recent years some methods 
(Wang J.-Q. , Wang, Chen, Zhang, & Chen, 2014; Jibin Lan, 2017; Wang J. , Wang, Zhang, & Chen, 
2015; Chen & Hong, 2014) are provided for solving MADM problems based on HFS. Though the 
methods above provide light in dealing with MADM under HFS environment and obtain the desired 
solutions, there is still a shortfall in precisely ascertaining the inherent uncertainties in the HFS. Our 
proposed procedure attempts to address these deficits.  

The uniqueness of the proposed work is to identify and alleviate the uncertainties in hesitant fuzzy 
values that are attributed to the alternative assessments. Our work proposes to use entropy for the 
purpose. The Entropy (Kosko, 1986; Yager, 1995) is deeply connected with the ambiguous behaviour 
of the DM, especially when he/she is hesitant in prescribing any single value and tempted towards 
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multiple values in his/her alternative assessments. The proposed work determines the entropy prevalent 
in hesitant views of the DM. The entropies in each alternative over the attributes is subsequently 
integrated in the HFEs to obtain a single aggregated numeric value as RV. The numerically defined 
RVs are transformed into their linguistic counterparts as judging the alternatives in linguistic 
expressions is convenient and accepted in reality. The rationale behind the importance of linguistic 
expressions in decision-making is explained below.  

In real life decisions, the linguistic expressions are more favoured as they are similar to day-to-day 
language of human beings (Herrera & Martinez, 2000; Herrera, Herrera Viedma, & Martinez, 2000). 
Besides, in many situations the information about the alternatives cannot be assessed precisely in 
quantitative terms but in qualitative terms. For example, in a car purchasing problem, for an attribute 
"colour” or “comfort” a buyer may express his/her preferences more conveniently in linguistic 
valuations rather than in precise quantitative forms. In another instance, a buyer may conveniently 
express the car “price as very high” rather than a numerical term of “0.2” as low satisfaction. Therefore, 
it is desirable to assess the alternatives more on linguistic expressions as the single numeric value 
assessments may deviate from real world decisions and cause loss of information. Additionally, the 
linguistic expressions are more pertinent and substantially compatible with the real-world decisions. 

The other innovative idea of our work is to transform the RVs into their linguistic counterparts and to 
formulate a methodology for pairwise comparison of the alternatives via their RVs. The pairwise 
comparison of the alternatives lead to prioritization of the alternatives in each attribute.  

The comparison of linguistically defined RVs in each attribute form pairwise comparison matrices that 
are subsequently converted to Fuzzy Preference Relation (FPR) matrices. The details about the FPR are 
found in (Wang & Parkan, 2005). The Eigenvector method (Wang & Parkan, 2005) is used in fuzzy 
pairwise comparison matrices and modelled as a Linear Programming Problem (LPP). The solution to 
LPP provides the ranking of the alternatives as “priority vector”. In the light of the methodology in (Xu, 
Wang, Sun, & Yu, 2014), we used Quadratic Programming to aggregate the priority vectors in each 
attribute to obtain the final ranking of the alternatives in MADM problem.  

Some other works are available in the literature of MADM under Hesitant Fuzzy environment. The 
work given in (Wang J. , Wang, Zhang, & Chen, 2015) deals with the solution of Multi-Criteria 
Decision Making (MCDM) problems under Hesitant Fuzzy Linguistic Term Set (HFLTS). In the 
methodology an outranking approach is given to solve the MCDM problems. The outranking 
approaches given in (Sellak, Ouhbi, & Frikh, 2018) are combined with HFLTS to solve MCDM 
problems. The work in (Chen & Hong, 2014) deals with HFLTS in MCDM and uses the confidence 
measure for its solution. Distance and similarity measures of HFS are derived and used to solve MCDM 
problems in (Li, Zeng, & Li, 2015). In this paper, the authors have taken into account both the values 
of Hesitant Fuzzy Elements (HFEs) and their cardinalities to calculate the distance measure. The paper 
in (Liao, Wu, Liang, Xu, & Herrera, 2018) converts quantitative data into hesitant fuzzy linguistic terms 
and uses the ORESTE method for solving MCDM problems. HFLTS in the context of MCDM is 
discussed in detail in (Wei, Zhao, & Tang, 2014). In the work given in (Wei, Zhao, & Tang, 2014), the 
authors have discussed two aggregation operators: LWA and LOWA for solving MCDM problems. 
Prospect theory and PROMETHE are used for solving MCDM based on HFS (Peng, Wang, & Wu, 
2016). The correlation measures of HFLTS are applied for solving MCDM in (Liao, Gou, Xu, Zeng, & 
Herrera, 2020). Similarity and entropy measures along with an interval bound footprint for Hesitant 
Fuzzy Sets is given in MCDM framework in (Hu, Yang, Zhang, & Chen, 2018). In (Riera, Massanet, 
Herrera-Viedma, & Torrens, 2015), a fuzzy decision-making model based on discrete fuzzy numbers is 
proposed for solving MCDM problems. In (Qian, Wang, & Feng, 2013), HFS is transformed into 
intuitionistic fuzzy sets and subsequently used to develop a decision support system for MCDM 
problems.  Hesitant fuzzy linguistic Entropy and cross-entropy integrated with the queuing method is 
used to solve MCDM in (Gou, Xu, & Liao, 2017). Some other methods of HFS in MCDM are found in 



(Liao & Xu, 2016). In all the papers mentioned above, in some form or other, there are certain 
deficiencies mainly uncertainties in HFS and their integration in the decision process. Our paper 
addresses these deficiencies and attains to obtain a viable solution in MADM under hesitant fuzzy 
environment. 

1.1 Challenges and gaps 

1) To our knowledge, the determination uncertainties in HFE incorporating both the number 
of terms (cardinality) and degree of membership-values of elements have so far remained 
gap in the literature. For example: 
Take a HFE containing a single element (x (0.3, 0.4, 0.6, 0.8)). The uncertainty here not 
only depends on the number of elements in HFE (cardinality is 4) but also on the 
membership values of the elements in HFE. Therefore, it is necessary to include both 
cardinality and degree of membership values while aggregating the elements in HFE to a 
single value of ‘x’. The uncertainty determination and an aggregation operator 
identification for the valuation of HFE are two challenging tasks. 

2) The aggregated HFE as RV and its transformation to equivalent linguistic counterparts after 
integrating the inherent uncertainty is very rare in the literature. Therefore the process of 
linguistic transformation considering the above features is a motivating assignment.  

3) The prioritization of alternatives especially when they are assessed in HFEs and their 
aggregation across the attributes is central problem in MADM. Therefore, the identification 
of an aggregation operator for combining the attribute values of alternatives is an essential 
task in MADM. 
 

1.2 Motivations & Contributions 

The above mentioned three problems motivate us to take a MADM problem with alternatives 
assessed as HFEs in each attribute. The other motivations in our work are identification and 
incorporation of the inherent uncertainties in alternative assessments and to incorporate them 
in the solution process of MADM. 
1) In order to account the inherent uncertainty in HFE, the proposed work identifies entropy 

and applies it to aggregate the multiple membership values into a single RV.  
2) The RVs in numeric numbers are suitably transformed to their linguistic counterparts. The 

transformation process takes into account the non-matching of RV values to any of the pre-
defined basic linguistic terms, and suitably creates a linguistic term with appropriate 
semantics.  

3) The minimal weighted distance of the priority vectors as an aggregation operator is 
identified to aggregate the attribute values of the alternatives.  
 

1.3 Structure of the paper 

 
In section 2, we have given the preliminary concepts that are used in our paper. In section 3, 
we have explained the concept of entropy as uncertainty in HFS and its derivation. Further, in 
this section, we have incorporated the derived uncertainty and aggregated each element of HFE 
to obtain its RV. In section 4, we have explained the conversion of RVs that are in numeric 
terms into their linguistic counterparts. In section 5, we have formulated a Linear Programming 
Problem to derive the priority vectors of the alternatives. In section 6, Quadratic Programming 
is used to aggregate priority vectors over the attributes to obtain the final ranking of the 
alternatives for MADM. In section 7, we have written an algorithm to describe our 
methodology. A numerical example is illustrated in section 8 to highlight the procedure 
developed. In section 9, we have compared our work with other similar works. This section 
also covers the discussion about algorithm results and sensitivity analysis. Conclusion and the 
scope for future research are given in section 10. 

 
2. Preliminaries 



Hesitant Fuzzy Sets (Torra, 2010): Let X = {x1, x2… xn} be a set containing ‘n’ number of elements.  
Hs = {< xi, hs(xi)>, xi ε X} is called a Hesitant Fuzzy Set(HFS) and for each element xi (i=1, 2…, n), < 
xi, hs(xi)>,  is called a Hesitant Fuzzy Element (HFE). The hs(xi) is a set containing multiple 
membership values of  xi.  

Example 1: Take a set X = {x1, x2, x3}. The expression HFS = {< x1, hs(x1) >, < x2, hs(x2)>, < x3, 
hs(x3)>} with hs(x1) = {0.8, 0.7,0.4}, hs(x2) = {0.6, 0.2}, and hs(x3) = {0.9, 0.7} is a Hesitant Fuzzy Set 
and each  < xi, hs(xi)> (i=1,2,3) are HFEs.  

Fuzzy Entropy (Kosko, 1986): Let X = {xi, (xi)} be a fuzzy set with membership values as 

(xi)(i=1,2,…,n). The nearest distance of the element (xi, (xi)), dN(xi), from a non-fuzzy point is 
defined as follows:  

dN(xi) = {1 −  𝜇(𝑥𝑖)         𝜇(𝑥𝑖) ≥ 0.5 𝜇(𝑥𝑖) − 0          𝜇(𝑥𝑖) ≤ 0.5                                                  …                               (2.1) 

Similarly, we can have the farthest distance of (xi, (xi)), dF(xi) from a non-fuzzy point as:   

dF(xi) = { 𝜇(𝑥𝑖) − 0           𝜇(𝑥𝑖) ≥ 0.5 1 − 𝜇(𝑥𝑖)          𝜇(𝑥𝑖) ≤ 0.5                                          …                                      (2.2) 

The entropy, E(X) of fuzzy set X is defined as  

E(X) = 
∑ 𝑑𝑁(𝑥𝑖)𝑖∑ 𝑑𝐹(𝑥𝑖)𝑖                                                …                                                                   (2.3) 

Virtual Linguistic Term: Let S = {s0, s1…, sg} be a basic linguistic term set BLTS. We can define 

the semantics of a virtual linguistic term s3.4 (3.4 < g and s3.4 S) as a fuzzy number as shown below: 

(sL(3.4), sM(3.4), sR(3.4))  

Where L (3.4) = L (3) + (3.4 –3) *(M (3) – L (3)) 

R (3.4) = R (3) + (3.4 –3) *(M (3) – L (3))                                                    …       (2.4) 

M (3.4) ε [L(3.4), R(3.4)] with 𝜇𝑠3.4(𝑀(3.4)) = 1 

The fuzzy number (L (3.0), M (3.0), R (3.0)) represents the semantics of S3. 

3. Entropy in Hesitant Fuzzy Sets:  

Decision making, in general, is often under uncertain environment. Imperfect information or fuzziness 
in alternative assessments is many a times cited as entropy in the system. In essence, entropy measures 
the degree of uncertainty associated with HFS or fuzzy messages in HFEs. Following the methodology 
given in (Kosko, 1986), our paper proposes lp-distance (Hamming distance when p=1) between HFEs 
and its nearest non-fuzzy elements to identify the entropy in the structure. The measure of entropy is 
the ratio of nearest distance to the farthest distance of HFEs to their non-fuzzy points. The procedure is 
as given below: 

Take X = {x1, x2… xn} and a HFS Hs = {<xi, hs(xij)> | xi ε X}. Let the HFE <xi, hs(xij)>= (xi1, 
xi2…xiLi), Li is the cardinality of <xi, hs(xij)>. Considering the HFE <xi, hs(xij) > as fuzzy messages and 

taking ℎ𝑠 𝑎𝑛𝑑 ℎ𝑠 as nearest and farthest non-fuzzy messages from the HFE, we have the fuzzy 

entropy of <xi, hs(xij)> as: 

Rp(hs(xij)) =
𝑙𝑝(ℎ𝑠(𝑥𝑖𝑗),ℎ𝑠)𝑙𝑝(ℎ𝑠(𝑥𝑖𝑗),ℎ𝑠)                ...                                                                       (3.1) 



Where lp is the distance between HFE hs(xij) and ℎ𝑠 as:  

𝑙𝑝(ℎ𝑠(𝑥𝑖𝑗), ℎ𝑠)  =(∑ |(𝑥𝑖𝑗) − ℎ𝑠|𝑝)𝐿𝑖𝑗 1𝑝
     …                                                           (3.2)                      

Where Li is the cardinality of HFE <xi, hs(xij)>.  

Similarly, we can have lp-distance between HFE hs(xij) and ℎ𝑠as:  

𝑙𝑝 (ℎ𝑠(𝑥𝑖𝑗), ℎ𝑠)  =(∑ |(𝑥𝑖𝑗) − ℎ𝑠|𝑝)𝐿𝑖𝑗 1𝑝
 

The entropy Rp(hs(xij)) has the following properties: 

(1) Rp(hs(xij)) is strictly increasing in [0, 0.5] and strictly decreasing in [0.5, 1]. 
(2) Rp(hs(xij)) = 0 when hs(xij) is non-fuzzy. 
(3) Rp(hs(xij)) =1 when the measure of fuzziness in HFE hs(xij) is maximum. 

 
Our work interprets the entropy Rp(hs(xij)) as the measure of uncertainty or risk associated to  HFE <xi, 
hs(xij)>.  

To find the RV of <xi, hs(xij)>, it is necessary to identify an aggregation operator that not only aggregates 
the elements hs(xij) (j=1,2,…, Li) but also assimilates the entropy Rp(hs(xij) in the aggregation process. 
The procedure for deriving RVs is given below:  

If i is the risk-taking ability, or compensatory behaviour of the DM for the HFE, < xi, hs(xij)> = (𝑥𝑖1, 𝑥𝑖2 

,…,𝑥𝑖𝐿𝑖)>, we have, the entropy of the ith alternative (taking p=1) as:  

RVi (hs (xij)) = (1-i) (min𝑗 (𝑥𝑖𝑗)) + imax𝑗 (𝑥𝑖𝑗)                                …                     (3.3) 

Where (𝑥𝑖𝑗) represents the jth element of ith alternative in HFE < xi, hs(xij) >. 

The details about the compensatory aggregation operator are found in (Rao, Tiwari, & Mohanty, 1988; 
Zimmermann, 1978) 

In the above equation, if a DM is pessimistic (fully risk-averse person) i =0 and RVi =min𝑗 (𝑥𝑖𝑗). This 

indicates the DM is pessimistic or non-compensatory and prefer the minimum value of HFE as their 

decision. Similarly, in the case of an optimistic person we have i=1 and RVi =max𝑗 (𝑥𝑖𝑗)). However, in 

real situations, the decisions are neither fully compensatory (optimistic) nor non-compensatory 
(pessimistic) but compensatory depending on the mind-set of the DM. Our paper considers the risk-

taking ability i of the DM, for HFE hs (xij) as:  

i = 1- Rp (hs (xij))                                                 …                      (3.4) 

Equation (3.4) represents the certainty factor in HFE hs (xij). In other words, the risk-taking attitude or 
compensatory behaviour of the DM is nothing but the amount of safe bet involved in the HFE hs (xij).    

4. The linguistic equivalent of Hesitant Fuzzy Sets  

In our daily life, very often, precise or quantitative information cannot be stated conveniently. For 
example, the colour or comfort of a car may be more suitably stated in linguistic terms as good colour 
or excellent comfort level, etc. In MADM problems, alternative evaluations such as ‘reasonably good’, 
‘poor’, ‘excellent’ etc. are more conveniently expressed linguistically in comparison to their numerical 
counterparts. Therefore, it is desirable to use linguistic expressions in real-world decision-making 
problems to make it more genuine and analogous to human decision making. To express the alternative 



assessments in MADM in linguistic terms, our work uses ordered linguistic terms called Basic 
Linguistic Term Set (BLTS). The cardinality of the linguistic terms in BLTS is dependent upon the 
granularity of uncertainty involved. Our work uses fuzzy numbers to define the semantics of the 
linguistic terms in BLTS. 

The RVs of HFEs in equation (3.3) that comprise the DM’s risk outlooks are in numerical terms. The 
theory of fuzzy sets is used to transform the numerically defined RVs into their linguistic counterparts. 
Following the procedure given in (Herrera, Herrera Viedma, & Martinez, 2000), the alternatives are 
compared pairwise using their linguistically defined RVs to obtain the preference of an alternative over 
the other. The methodology is explained in the following steps: 

Step 1: Take the BLTS = {s0, s1… sg}, consisting of (g+1) basic linguistic terms. Assume their semantics 
as shown in Figure (1a). The graphical representations of the semantics are shown in Figure (1b).  

The semantics of BLTS: 

s0                      (Definitely Low)     (0.0, 0.0, 0.2) 
s1              (Very Low)             (0.0, 0.2, 0.35) 
s2              (Medium Low)       (0.2, 0.35, 0.50) 
s3              (Low)                      (0.35, 0.5, 0.55) 
s4              (Above low)            (0.5, 0.55, 0.65) 
s5              (High)                      (0.55, 0.65, 0.80) 
s6              (Medium High)       (0.65, 0.80, 0.95) 
s7              (Very High)             (0.80, 0.95, 1.0) 
s8              (Definitely High)     (0.95, 1.0, 1.0) 

 
Fig 1a: Basic Linguistic Term Set (BLTS) and its semantics in form of fuzzy number 
 

 
Fig 1b: Graphical representation of Basic Linguistic Term Set (BLTS) 

Step 2: Take (Aij) be the assessment of the ith alternative in the jth attribute in HFE. Using equations 
(3.1) and (3.3), derive the RVij = αij ε [0, 1].j  

Step 3: Derive the linguistic counterpart of αij as 𝑠∝𝑖𝑗using the following steps: 

Let st 𝑠∝𝑖𝑗 st+1, st, st+1  BLTS , t  ∝𝑖𝑗   t + 1, ∝𝑖𝑗  [0,g].  

Step 3.1: Use the procedure given in (Wang J. , Wang, Zhang, & Chen, 2015) to obtain 𝑠∝𝑖𝑗 
f:  𝑠𝑡→ 𝑡𝑔  (t=0,1,…,g)  we have 𝑓−1(𝑡𝑔) = 𝑓−1(∝𝑖𝑗)=𝑠∝𝑖𝑗                …                        (4.1) 

Step 3.2: If 𝑠∝𝑖𝑗 completely matches a linguistic term in BLTS i.e. 𝑠∝𝑖𝑗  BLTS, we got the 

linguistic equivalent of αij as 𝑠∝𝑖𝑗 otherwise go to next step. 

Step 3.3:  Let st ≤ 𝑠∝𝑖𝑗 ≤ st+1 , st , st+1   BLTS. Take the semantics of 𝑠∝𝑖𝑗 as triangular fuzzy 

number (𝑠∝𝑖𝑗𝐿  , 𝑠∝𝑖𝑗𝑀  , 𝑠∝𝑖𝑗𝑅). Thus, we have: 𝑠∝𝑖𝑗𝐿=  𝑠𝑡𝐿 + (∝𝑖𝑗 – t) * (𝑠𝑡𝑀– 𝑠𝑡𝐿)                                                        …                        (4.2) 



𝑠∝𝑖𝑗𝑅= Min [ {𝑠𝑡𝑅 + (∝𝑖𝑗 – t) * (𝑠𝑡𝑀 – 𝑠𝑡𝐿)},1]                                      …                        (4.3)      𝑠∝𝑖𝑗𝑀  is a point in the domain of fuzzy number 𝑠∝𝑖𝑗 with:  

𝑠∝𝑖𝑗(∝𝑖𝑗𝑀) = 1.                                                                             ...                          (4.4) 

 Step 4. Find the similarity degree of 𝑠∝𝑖𝑗 with each st  ε BLTS using equation (4.5) below: 𝐼𝑠𝑡(𝑠∝𝑖𝑗) = max𝑧𝜖𝑠∝𝑖𝑗[𝜇𝑠𝑡(𝑧)]          (t=0,1 … g)                 …          (4.5) 

Step 5. If 𝑠∝𝑖𝑗 and 𝑠∝𝑘𝑗 are the fuzzy numbers representing the linguistic equivalents of the RVs of ith 

and kth alternative in jth attribute, we have the degree of superiority of the ith alternative over the kth 
alternative in jth attribute as shown below 

                        sikj =  s( 𝑠∝𝑖𝑗𝑠∝𝑘𝑗) = 𝑀𝑎𝑥𝑝≥𝑞𝑀𝑖𝑛[𝐼𝑠𝑝(𝑠∝𝑖𝑗), 𝐼𝑠𝑞(𝑠∝𝑘𝑗)]      …           (4.6) 

                  i, k=1,2 …   m; j=1,2, …    n; p, q {0,1, …  g} sp, sq  BLTS,   sq  ≤  sp 

Step 6: Form the pairwise comparison matrix of the alternatives in jth attribute as shown below: 

Aj=(sikj)mxm=[ 𝑠11𝑗 ⋯ 𝑠1𝑚𝑗⋮ ⋱ ⋮𝑠𝑚1𝑗 ⋯ 𝑠𝑚𝑚𝑗]                                            …            (4.7) 

The pairwise comparison matrix in equation (4.7), is converted to a fuzzy preference relation matrix of 
the alternatives in the next section.  

5. Determination of the priority vector of alternatives 

In real-world situations, it is difficult to identify the prioritization amongst the alternatives especially 
when their evaluations are based on multiple attributes and assessed as HFVs. Several methods are 
available to elicit the “priority vector” of the alternatives from FPR.  They are the Eigenvector method 
(Wang & Parkan, 2005), normalizing rank aggregation method (Xu, Da, & Liu, 2009), logarithmic least 
square method (Crawford & Williams, 1985; Bozoki & Fulop, 2018), etc. To obtain the "priority vector" 
of the alternatives, first, it is necessary to transform the matrix in Equation (4.7) to a fuzzy preference 
relation matrix (Wang & Parkan, 2005). 

The pairwise comparison matrix, in equation (4.7) is reproduced in equation (5.1) below:  

Aj=(sikj)mxm=[ 𝑠11𝑗 ⋯ 𝑠1𝑚𝑗⋮ ⋱ ⋮𝑠𝑚1𝑗 ⋯ 𝑠𝑚𝑚𝑗]                                            …                                                   (5.1) 

In order to transform Aj into the fuzzy preference relation matrix, it is necessary that the matrix Aj to 
satisfy the following conditions:  

i) 0≤ srkj ≤ 1 
ii) srrj = 0.5                                                              …                                             (5.2) 
iii) srkj + skrj = 1 

 
To satisfy equation (5.2), the entries of the matrix srkj in Aj is transformed into prkj according to the 
equation (5.3) given below.  

𝑝𝑟𝑘𝑗 = { 𝑠𝑟𝑘𝑗𝑠𝑟𝑘𝑗+𝑠𝑘𝑟𝑗        𝑟 ≠ 𝑘0.5                 𝑟 = 𝑘                                            (5.3) 



Thus, we have obtained the fuzzy preference relation matrix as given below: 

Pj= (prkj)mxm =   [ 0.5 ⋯ 𝑝1𝑚𝑗⋮ ⋱ ⋮𝑝𝑚1𝑗 ⋯ 0.5 ]                          (5.4) 

Using the procedure given in (Wang & Parkan, 2005), if (w1, w2,…, wm) be the weight of the alternatives 

A1, A2,…,An with wi 0 (i=1,2,…m) and ∑ 𝑤𝑖𝑚𝑖=1  =1, in attribute j  (j= 1,2   … n) then we have  

                𝑃𝑗̅̅ ̅W = maxW                                    …                                                            (5.5) 

Where 𝑃𝑗̅̅ ̅  =  [∑ 𝑝1𝑖𝑚𝑖=2 ⋯ 𝑝1𝑚⋮ ⋱ ⋮𝑝𝑚1 ⋯ ∑ 𝑝𝑚𝑖𝑚−1𝑖=1 ] 

W = (w1, w2,…, wm)T is a m- weight vector corresponding to maximum Eigen value max = m-1. 

Expanding equation (5.5) we have  

[∑ 𝑝1𝑖𝑚𝑖=2 ⋯ 𝑝1𝑚⋮ ⋱ ⋮𝑝𝑚1 ⋯ ∑ 𝑝𝑚𝑖𝑚−1𝑖=1 ] [  
   
𝑤1𝑤2...𝑤𝑚]  

     = (m-1) [  
   
𝑤1𝑤2...𝑤𝑚]  

             …                (5.6) 

 
Accurate matching of equation (5.6) may not take place as the matrix entries contain some amount of 
subjectivity due to the linguistic comparison of alternatives. Therefore, introducing the error 
components, we have  
 

[∑ 𝑝1𝑖𝑚𝑖=2 ⋯ 𝑝1𝑚⋮ ⋱ ⋮𝑝𝑚1 ⋯ ∑ 𝑝𝑚𝑖𝑚−1𝑖=1 ] [  
   
𝑤1𝑤2...𝑤𝑚]  

     - (m-1) [  
   
𝑤1𝑤2...𝑤𝑚]  

    + e- - e+ = 0                             …       (5.7) 

  
Where e- = (e-

1, e-
2 … e-

m) and e+ = (e+
1, e+

2 …, e+
m) 

 
Equation (5.7) can be expressed as a Linear Programming Problem as shown below.  
 

Min   Z = { ∑ 𝑒𝑘−𝑚𝑘=1  + ∑ 𝑒𝑘+𝑚𝑘=1  } 

 
Subject to  

                𝑤1 ∑ 𝑝1𝑖 + 𝑤2𝑝12 +     …+  𝑤𝑚𝑝1𝑚 − (𝑚 − 1)𝑤1 + 𝑚𝑖=2  e-
1 – e+

1 = 0                  𝑤1𝑝21 + 𝑤2 ∑ 𝑝2𝑖 + …+  𝑤2𝑚𝑝2𝑚 − (𝑚 − 1)𝑤2 + 𝑚𝑖=1,𝑖≠2  e-
2 – e+

2 = 0 

                                                                                                                      … (5.8) 
                                                                ….  
                 𝑤1𝑝𝑚1 + 𝑤2𝑝𝑚2 +                …. +  ∑ 𝑝𝑚𝑖𝑚−1𝑖=1  - (m-1)𝑤𝑚 +    e-

m – e+
m = 0 

 

                   ∑ 𝑤𝑖 = 1𝑚𝑖=1  

 
The solution to the above LPP gives us the “priority vector” of the alternatives in the jth attribute.  Let 
the solution be  



 

                             Wj* = (𝑑1𝑗 , 𝑑2𝑗 ,          …    𝑑𝑚𝑗 ).                                    …     (5.9) 𝑑𝑖𝑗 represents the assessment of ith alternative in the jth attribute (i=1,2, …  m, j = 1,2 ….   n). 
 
Now the problem is how to aggregate the “priority vectors” across all the attributes to arrive at a final 
ranking of the alternatives in MADM. The next section deals with this problem.  

 

6. Decision function based on the distance aggregation method 

To rate an alternative, it is necessary to aggregate its values in each attribute using an aggregation 
operator. Several methods are available in the literature on aggregation operators. To name a few these 
include MIN operator (Zimmermann, 1978), compensatory operators (Rao, Tiwari, & Mohanty, 1988), 
Utility theory-based methods (Cohon, 2004), weighting methods (Cohon, 2004), OWA operators 
(Yager, 2004) , IOWA operators (Yager, 2003), etc.  In all these methods, the aggregation operators 
aggregate the attribute values and finally coincide with a single aggregation point, representing the 
aggregated value of the alternatives. Following the work in (Xu, Wang, Sun, & Yu, 2014), our work 
proposes a distance-based aggregation approach to minimize the distance between the weighted 
attribute values of the alternatives across the attributes to reach a consensus amongst the attributes. The 
point of consensus indicates the maximum agreement amongst the attributes. The procedure is described 
in the following steps: 

Step 1: Let (𝑑1𝑗, 𝑑2𝑗 ,          …    𝑑𝑚𝑗 )     is the priority vector of the alternatives (A1, A2… Am) for the jth 

attribute Cj (j=1, 2…n). In the matrix form, we have  𝐶1  …   𝐶𝑛 

                                                     W = 
𝐴1⋮𝐴𝑚 (𝑑11 ⋯ 𝑑1𝑛⋮ ⋱ ⋮𝑑𝑚1 ⋯ 𝑑𝑚𝑛 )                                                   (6.1)                            

Step 2: Assume j as the weight of the attribute Cj (j =1, 2 … n). The quadratic programming problem 

below determines the attribute weights j.  

              Min (𝜆1, 𝜆2  …   𝜆𝑛) = ∑ ∑ ∑ (𝜆𝑘𝑑𝑖𝑘 − 𝜆𝑙𝑑𝑖𝑙)2𝑚𝑖=1𝑛𝑙≠𝑘=1𝑛𝑘=1  

                s.t:  ∑ 𝜆𝑖𝑛𝑖=1  = 1 𝜆𝑖 ≥ 0 ∀ 𝑖                                                                                  …                                 (6.2) 

In the above, 𝜆𝑘𝑑𝑖𝑘 represents the weighted evaluation of the ith alternative in kth attribute.  

Step 3: Solve the quadratic programming in equation (6.2) and obtain the solution as (𝜆1∗ , 𝜆2∗   …  𝜆𝑛∗ ). 

The solution is global minimum as the Hessian matrix H{ (𝜆1, 𝜆2   …  𝜆𝑛)}  corresponding to the 

quadratic programming problem is positive definite (Xu, Wang, Sun, & Yu, 2014). This is because the 
alternatives taken in our paper do not have the uniform evaluation across the attributes i.e. there exists 
attributes Ck and Cl (k,l =1,2  … n) satisfying di

k ≠ di
l.  

Step 4: The weighted average of the alternative Ai (i=1, 2…m) gives the rating of the alternative Ai as 
shown in the equation below: 

R (𝐴𝑖) = 𝜆1∗𝑅𝑉𝑖1 + 𝜆2∗𝑅𝑉𝑖2 + ⋯+ 𝜆𝑛∗ 𝑅𝑉𝑖𝑛                   …                       (6.3) 

Step 5: As the values of R (𝐴𝑖) are in numerical terms representing the rating of Ai, the alternatives 
can be ranked according to their order of preference. 



7. HFS_Ranking() 

In this section, an algorithm HFS_Ranking() is written to explain the procedure developed. The 
algorithm takes a set of inputs such as m, n, qij (i=1,2,…m; j=1,2,…n) representing the number of 
alternatives, number of attributes, and cardinality of HFE of ith alternative in jth attribute as HFE. 
HFS_Ranking() outputs FPR. Subsequently, the FPR acts as an input to HFS_LINGO_LPP() and 

obtains the priority vectors Wj* = (𝑑1𝑗 , 𝑑2𝑗 ,          …    𝑑𝑚𝑗 ) j=1,2…,n as output as shown in Figure 2. 

Wj* (j=1,2,…,n) again becomes an input to HFS_LINGO_QPP()  that gives the final ranking of 
alternatives to MADM as output. 

  



 

Figure 2: Modules of algorithm HFS_Ranking()  

INITIAL INPUT

•Alternatives {P1,P2,…Pm}

•Attributes {A1,A2,…An}

•HFE {h1,h2,…,hq}

•Fij ← { Fij , <h1,h2,…,ℎ𝑘𝑖𝑗 >} where hk  [0,1]; k=1,2,…kij; kij=card(Fij)

Module 1

Entropy 

calculation

•Calculate dN(Fij) and dF(Fij)

•Entropy = 
(∑𝑘=1𝑘𝑖𝑗 |𝑑𝑁 ℎ𝑘,ℎ𝑠 |𝑝) ൗ1 𝑝
(∑𝑘=1𝑘𝑖𝑗 |𝑑𝐹 ℎ𝑘,ℎ𝑠 |𝑝) ൗ1 𝑝

Module 2

Representative 

Value

•Risk resilience    ij = (1- Eij)

•(RV)ij = (1-ij)*min(h1,h2,…, ℎ𝑘𝑖𝑗)+ ij*max(h1,h2,…, ℎ𝑘𝑖𝑗)

Module 3

Linguistic 

conversion 

of (RV)ij

•αij ← (RV)ij*g

•Set the linguistic counterpart of (RV)ij as 𝑠∝𝑖𝑗 (triangular fuzzy number)

Module 4

Similarity degree 

of Linguistic RV

•Similarity degree of Linguistic (RV)ij: 𝑠∝𝑖𝑗 𝐼𝑠𝑡(𝑠∝𝑖𝑗) = max𝑧𝜖𝑠∝𝑖𝑗 𝜇𝑠𝑡 𝑧

Module 5

Fuzzy Pairwise 

Preference 

Matrix 

•Pairwise Comparison Matrix sikj =  s( 𝑠∝𝑖𝑗𝑠∝𝑘𝑗) = 𝑀𝑎𝑥𝑝≥𝑞𝑀𝑖𝑛[𝐼𝑠𝑝(𝑠∝𝑖𝑗), 𝐼𝑠𝑞(𝑠∝𝑘𝑗)]

•Fuzzy Pairwise Comparison Matrix(FPR)

•Solve for W using Linear Programming 𝑃𝑗W = maxW

•Solution: Priority vector Wj* = 𝑑1𝑗 , 𝑑2𝑗, … 𝑑𝑚𝑗 ) j

• Solve Quadratic Programming  Solution: (𝜆1, 𝜆2 … 𝜆𝑛)

FINAL OUTPUT

•Ranking of ith alternative  R (𝐴𝑖) = 𝜆1𝑅𝑉𝑖1 + 𝜆2𝑅𝑉𝑖2 + ⋯+ 𝜆𝑛𝑅𝑉𝑖𝑛



 

The notations used in the HFS_Ranking() are given below: 

Notations: 
(h1,h2,…,hq) : HFVs. 
Fijk: HFVs for ith alternative and jth attribute 
I(hij)) : (ij); ij  N = {0,1,2,…} 
Eij: Entropy associated with the ith alternative and jth attribute. 
ij: Risk-taking ability of DM with the ith product in the jth attribute. 
(RV)ij : Aggregated Value of ith alternative and jth attribute 
g : Cardinality of Basic Linguistic Term Set 
BLTS: {s0,s1,s2,…,sg} 
st : (stL,stm,stR) Triangular Fuzzy Number, st  BLTS 

 

The algorithm HFS_Ranking() is shown below: 

HFS_Ranking()  

Input: Alternatives {P1,P2,…Pm}  Attributes {A1,A2,…An}  HFE {h1,h2,…,hq}  

Output: Ranking of the alternatives 

begin 

1. For i=0,1, 2, …., m-1;  j=0,1, 2, …, n-1; k=0,1,2,…q-1;  

begin 

2. Set Fij  ← { Fij , <h1,h2,…,ℎ𝑘𝑖𝑗 >} where hk  [0,1]; k=1,2,…kij; kij=card(Fij) 

//Entropy calculation – Module 1 

3. Set nearest distance of Fij, dN(Fij), from a non-fuzzy point, ℎ𝑠 

Case 1: hk > 0.5 set hk ← 1- hk 
Case 2: hk ≤ 0.5 set hk ← hk                 k=1,2,…kij  
                                       

4. Set farthest distance of Fij, dF(Fij), from a non-fuzzy point, ℎ𝑠 

Case 1: hk > 0.5 set hk ← hk 
Case 2: hk ≤ 0.5 set hk ← 1 - hk 

5. Set Entropy Eij = E(Fij)  ← 
(∑ |𝑑𝑁(ℎ𝑘,ℎ𝑠)|𝑝)𝑘𝑖𝑗𝑘=1 1 𝑝ൗ
(∑ |𝑑𝐹(ℎ𝑘,ℎ𝑠)|𝑝)𝑘𝑖𝑗𝑘=1 1 𝑝ൗ  

//Representative Value (RV) – Module 2 

6. Set Risk taking ability of ij ← (1- Eij)      

7. Set (RV)ij ← (1-ij)*min(h1,h2,…, ℎ𝑘𝑖𝑗) + ij*max(h1,h2,…, ℎ𝑘𝑖𝑗) 
//Linguistic conversion of (RV)ij – Module 3 

8. Set αij ← (RV)ij*g 

9. Set the linguistic counterpart of αij as 𝑠∝𝑖𝑗 (triangular fuzzy number) 

10. Set the semantic of 𝑠∝𝑖𝑗 → (𝑠∝𝑖𝑗𝐿  , 𝑠∝𝑖𝑗𝑀  , 𝑠∝𝑖𝑗𝑅) 

11. Set st 𝑠∝𝑖𝑗 st+1, st, st+1   BLTS, t  ∝𝑖𝑗  (t+1) 

 For i=0,1, 2, …., m-1; j=0,1, 2, …, n-1 

begin 

12. Set 𝑠∝𝑖𝑗𝐿←  𝑠𝑡𝐿 + (∝𝑖𝑗 – t) * (𝑠𝑡𝑀 − 𝑠𝑡𝐿) 

13. Set 𝑠∝𝑖𝑗𝑅← Min[{  𝑠𝑡𝑅 + (∝𝑖𝑗 – t) * (𝑠𝑡𝑀 − 𝑠𝑡𝐿) },1] 

14. Set 𝑠∝𝑖𝑗𝑀←  𝑠𝑡𝑀 + (∝𝑖𝑗 – t) /( (𝑠𝑡𝑅 − 𝑠𝑡𝑀)*100) 

End 

//Similarity degree of Linguistic RV – Module 4 



15. for t = 0,1,…,g 

begin 

16. if(𝑠∝𝑖𝑗𝐿>= 𝑠𝑡𝐿 && 𝑠∝𝑖𝑗𝐿<= 𝑠𝑡𝑀)  

a = ((1 - 0) / (𝑠𝑡𝑀 - 𝑠𝑡𝐿))*( 𝑠∝𝑖𝑗𝐿- 𝑠𝑡𝐿) + 0;  

17. else if(𝑠∝𝑖𝑗𝐿 >= 𝑠𝑡𝑀 && 𝑠∝𝑖𝑗𝐿 <= 𝑠𝑡𝑅) 

b = ((0 - 1) / (𝑠𝑡𝑅 - 𝑠𝑡𝑀))*( 𝑠∝𝑖𝑗𝐿- 𝑠𝑡𝑀) + 1; 

18. if(𝑠∝𝑖𝑗𝑀>= 𝑠𝑡𝐿 && 𝑠∝𝑖𝑗𝑀<= 𝑠𝑡𝑀)  

c = ((1 - 0) / (𝑠𝑡𝑀 - 𝑠𝑡𝐿))*( 𝑠∝𝑖𝑗𝑀- 𝑠𝑡𝐿) + 0;  

19. else if(𝑠∝𝑖𝑗𝑀 >= 𝑠𝑡𝑀 && 𝑠∝𝑖𝑗𝑀 <= 𝑠𝑡𝑅) 

d = ((0 - 1) / (𝑠𝑡𝑅 - 𝑠𝑡𝑀))*( 𝑠∝𝑖𝑗𝑀- 𝑠𝑡𝑀) + 1; 

20. if(𝑠∝𝑖𝑗𝑅>= 𝑠𝑡𝐿 && 𝑠∝𝑖𝑗𝑅<= 𝑠𝑡𝑀)  

e = ((1 - 0) / (𝑠𝑡𝑀 - 𝑠𝑡𝐿))*( 𝑠∝𝑖𝑗𝑅- 𝑠𝑡𝐿) + 0;  

21. else if(𝑠∝𝑖𝑗𝑅 >= 𝑠𝑡𝑀 && 𝑠∝𝑖𝑗𝑅 <= 𝑠𝑡𝑅) 

f = ((0 - 1) / (𝑠𝑡𝑅 - 𝑠𝑡𝑀))*( 𝑠∝𝑖𝑗𝑅- 𝑠𝑡𝑀) + 1; 

22. 𝐼𝑠𝑡(𝑠∝𝑖𝑗) ← max(a,b,c,d,e,f); 

end 

23. for i,r=0,1, 2, ….,m-1 

begin      

// Fuzzy Pairwise Preference Matrix – Module 5 
24. Set initial pwc(i,counter) = 0, counter=0 
25. for j=0,1,…,n-1  
26. for k=0,1,…,g 

begin 

27. pwci counter =   max 𝑝≥𝑞 𝑚𝑖𝑛(𝐼𝑠𝑝 (𝑠∝𝑖𝑗) , 𝐼𝑠𝑞 (𝑠∝𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑗))  

28. FPRi counter=
𝑝𝑤𝑐𝑖 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑝𝑤𝑐𝑖 𝑐𝑜𝑢𝑛𝑡𝑒𝑟+𝑝𝑤𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖 for i≠counter 

29. FPRii=∑ 𝑝𝑤𝑐𝑖 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑛𝑖=1,i≠j  

30. counter++ 

end 

//Set (𝑝𝑟𝑘𝑗 )𝑚𝑥𝑚*(𝑤𝑗)𝑚𝑥1– (m-1) * (𝑤𝑗)𝑚𝑥1  - (𝑒)𝑚𝑥1 = (0)𝑚𝑥1 

//Call HFS_LINGO_LPP() for LPP to minimize the vector (𝑒)𝑚𝑥1 

//Get solution Wj* = (𝑑1𝑗, 𝑑2𝑗 ,          …    𝑑𝑚𝑗 ) 

31. INPUT:  (𝑑1𝑗, 𝑑2𝑗 ,          …    𝑑𝑚𝑗 ) 

// Call HFS_LINGO_QPP() for QPP to minimize  

Min (𝜆1, 𝜆2  …   𝜆𝑛) = ∑ ∑ ∑ (𝜆𝑘𝑑𝑖𝑘 − 𝜆𝑙𝑑𝑖𝑙)2𝑚𝑖=1𝑛𝑙≠𝑘=1𝑛𝑘=1   

//Output: (𝜆1∗ , 𝜆2∗   …  𝜆𝑛∗ ) 

32. INPUT: (𝜆1∗ , 𝜆2∗   …  𝜆𝑛∗ ) 

33. For i=1,2,…,n 

34. R(𝐴𝑖) ← 𝜆1∗𝑅𝑉𝑖1 + 𝜆2∗𝑅𝑉𝑖2 + ⋯+ 𝜆𝑛∗ 𝑅𝑉𝑖𝑛 

 

Steps 1 & 2 of the algorithm take the alternative assessments in HFE in each attribute. Steps 3 & 4 
calculate the nearest and farthest distances of HFE from the non-fuzzy points. Step 5 derives the 
Entropy corresponding to HFE. Step 6 derives the certainty factor or risk resilience that is inherent in 
HFE. Step 7 aggregates elements in HFE to obtain RV. Steps 8-14 explain the conversion of RVijs to 

their linguistic counterparts 𝑠∝𝑖𝑗 .  Further, in this step, it is explained the representation of 𝑠∝𝑖𝑗 as 



fuzzy numbers with the semantics. Steps 15-22 derive the similarity degree of 𝑠∝𝑖𝑗 with each linguistic 

term st   BLTS. Steps 24-27 define the pairwise comparison of the alternatives showing the 

preference of one alternative over another. Steps 28-30 provide the FPR of the alternatives. Step 31 

takes the FPR as an input to HFS_LINGO_LPP() and obtains the priority vector (𝑑1𝑗, 𝑑2𝑗 , …    𝑑𝑚𝑗 ) of 

alternatives corresponding to jth attribute. The input of priority vectors to HFS_LINGO_QPP() 
provides the ranking of the alternatives as outputs in MADM as shown in Steps 32-34.    

 

8. Numerical Example: 

Take a Car purchasing problem. Let a buyer desires to have the attributes (1) Price, (2) Maintenance 
Cost, and (3) Mileage. Consider five models of alternative cars in the market. Each car is assessed on 
the attributes: Price, Maintenance Cost, and Mileage as HFEs shown in Table 1 below. We require to 
select the best car or to rank the available cars according to the buyer’s preferences. 

Table 1(Buyer’s rating of the product attributes in Hesitant Fuzzy Sets) 
Car Models Price Maintenance Cost Mileage 
P1 (0.6, 0.4, 0.1) (0.63, 0.2) (0.8, 0.73, 0.4) 
P2 (0.4, 0.1) (0.4, 0.2) (0.72, 0.4) 
P3 (1, 0.8, 0.6, 0.4, 0.1) (0.8, 0.63) (0.73) 
P4 (0.8,1) (0.63, 0.4, 0.2) (0.8, 0.73, 0.72, 0.4) 
P5 (0.4,0.6) (1, 0.8, 0.63, 0.2) (0.8, 0.73, 0.4) 

 

The entropy as uncertainty in the buyer’s assessments is derived for each car using equation (3.1) and 
taking p=1 as the hamming distance. For example, take the car P1 and its attribute value in “price” (0.6, 
0.4, 0.1). The entropy corresponding to P1 in the “price” can be calculated as: 

R1 (P1) = 
|1−0.6|+|0.4−0|+|0.1−0||0.6−0|+|1−0.4|+|1−0.1| = 0.428                             …                                (7.1) 

According to equation (3.1), the numerator of equation (7.1) represents the distance of HFE (0.6, 0.4, 
0.1) from the nearest non-fuzzy point and similarly, the denominator is the distance of the HFE (0.6, 
0.4, 0.1) from the farthest non-fuzzy point. In the same way, we have calculated the entropies of every 
car in all other attributes as shown in Table 2.  

 
Table 2(Entropy associated with HFEs) 

Car Models Price Maintenance Cost Mileage 
P1 0.428 0.398 0.408 
P2 0.333 0.428 0.515 
P3 0.282 0.398 0.369 
P4 0.111 0.478 0.404 
P5 0.666 0.238 0.408 

 

Using the Equations (3.3) and (3.4), we have RVijs (i=1, 2, 3, 4, 5; j=1, 2, 3) of each car. For example, 
taking the car P1 and the HFE “price” (0.6, 0.4, 0.1), we have the aggregation value as: 

(1-) Min (0.6,0.4,0.1) +  Max(0.6,04,0.1) =  0.386.                                             …          (7.2) 

where   = 1- R1 (P1) = 1-0.428 =0.572 (from equation (3.4)).  

Similarly, for other cars, we have the RVijs as shown in the first part of the entries in Table 3. The 
second part indicates the linguistic counterparts of RVijs.  

Take car model P1 and the attribute “price”. Using equation (4.1), we have (t/g) = 0.386. From the BLTS 

and its semantics as shown in Figure 1, we have g= 8. Thus we have st= 3.088  3.1.  This implies the 

linguistic equivalent of 0.386 is s3.1. Similarly, we can have other RVijs and their linguistic counterparts 
as shown in Table 3.   



Table 3(Aggregated HFEs as product value) 
Car Models Price Maintenance Cost Mileage 
P1 (0.386, s3.1) (0.458, s3.6) (0.639, s5.1) 
P2 (0.299, s2.4) (0.314, s2.5) (0.552, s4.4) 
P3 (0.746, s5.9) (0.732, s5.9) (0.730, s5.8) 
P4 (0.978, s7.9) (0.424, s3.4) (0.640, s5.1) 
P5 (0.466, s3.7) (0.809, s6.5) (0.637, s5.1) 

 

Using Equations (4.2), (4.3), & (4.4), the semantics of the linguistic terms as fuzzy numbers are 
shown in Table 4. For example, the linguistic term s3.1 lies between s3 and s4. Thus, we have  

s3.1L = s3L + (3.1 -3)*( s3M - s3L) = 0.35+ 0.1*(0.5 – 0.35) = 0.365 
s3.1R = s3R + (3.1 -3)*( s3M - s3L) = 0.55+ 0.1*(0.5 – 0.35) = 0.565         
                                                                                             
From the BLTS in Figure 3, we have µ3.1(0.51) = 1. Thus we have s3.1M = 0.51.    …  (7.3) 
 
 

 
Fig: 3- Semantics for Virtual Linguistic Term S3.1 

 
The semantics for other linguistic terms are calculated similarly and they are shown in Table 4. 

Table 4(Semantics of the linguistic terms of the cars) 

  C1 C2 C3 

P1 s3.1(0.365, 0.51, 0.565) s3.6 (0.44, 0.53, 0.64) s5.1 (0.56, 0.66, 0.81) 
P2 s2.4 (0.26, 0.41, 0.56) s2.5 (0.28, 0.43, 0.58) s4.4 (0.52, 0.58, 0.67) 
P3 s6.0 (0.65, 0.8, 0.95) s5.9 (0.64, 0.79, 0.89) s5.8 (0.63, 0.76, 0.88) 

P4 s8.0 (0.95, 1, 1) s3.4 (0.41, 0.51, 0.61) s5.1 (0.56, 0.66, 0.81) 
P5 s3.7 (0.455, 0.54, 0.655) S6.5 (0.73, 0.88, 1) s5.1 (0.56, 0.66, 0.81) 

 

The similarity degrees of RVijs (equation 4.5) with the linguistic terms in BLTS in the attributes Price, 
Maintenance Cost, and Mileage are respectively shown in Tables 5,6, & 7. 

Table 5(Similarity of RV values with the terms in BLTS for the attribute ‘Price’) 
Price  s0 s1 s2 s3 s4 s5 s6 s7 s8 
P1  0 0 0.9 0.7 0.83 0.17 0 0 0 
P2  0 0.65 0.67 0.33 0.83 0.17 0 0 0 
P3  0 0 0 0 0 1 1 1 0 
P4  0 0 0 0 0 0 0 1 1 
P5  0 0 0.35 0.65 0.6 1 0 0 0 

 
Table 6(Similarity of RV values with the terms in BLTS for the attribute ‘Maintenance Cost’) 

Maintenance 
Cost 

s0 s1 s2 s3 s4 s5 s6 s7 s8 

P1 0 0 0.3 0.7 0.53 0.85 0.15 0 0 
P2 0 0.5 0.5 0.77 0.77 0.23 0 0 0 
P3 0 0 0 0 0 0.9 0.35 0.65 0 
P4 0 0 0.67 0.7 0.55 0.45 0 0 0 
P5 0 0 0 0 0 0.5 0.5 0.5 1 

 

 

 



Table 7(Similarity of RV values with the terms in BLTS for the attribute ‘Mileage’) 
Mileage s0 s1 s2 s3 s4 s5 s6 s7 s8 
P1 0 0 0 0 0.83 0.9 0.92 0.08 0 
P2 0 0 0 0.4 0.77 0.84 0.16 0 0 
P3 0 0 0 0 0 0.85 0.85 0.5 0 
P4 0 0 0 0 0.83 0.9 0.92 0.08 0 
P5 0 0 0 0 0.83 0.9 0.92 0.08 0 

 

Using equation (4.6) & (4.7), we have the pairwise preference matrix of the cars in each attribute and 
they are shown in Tables 8, 9, &10. 

Table 8(Pairwise comparison of Cars for the attribute ‘Price’) 
Price P1 P2 P3 P4 P5 
P1 - 0.83 0.17 0 0.65 
P2 0.83 - 0.17 0 0.65 
P3 0.9 0.83 - 1 1 
P4 0.9 0.83 1 - 1 
P5 0.9 0.83 1 0 - 

 
Table 9(Pairwise comparison of Cars for the attribute ‘Maintenance Cost’) 

Maintenance P1 P2 P3 P4 P5 
P1 - 0.77 0.85 0.7 0.5 
P2 0.7 - 0.23 0.7 0.23 
P3 0.85 0.7 - 0.45 0.45 
P4 0.7 0.7 0.7 - 0.5 
P5 0.85 0.77 0.9 0.7 - 

 
Table 10(Pairwise comparison of Cars for the attribute ‘Mileage’) 

Mileage P1 P2 P3 P4 P5 
P1 - 0.84 0.85 0.92 0.92 
P2 0.84 - 0.84 0.84 0.84 
P3 0.85 0.84 - 0.85 0.85 
P4 0.92 0.84 0.85 - 0.92 
P5 0.92 0.84 0.85 0.92 - 

 

Using Equations (5.3),(5.4) and (5.5)  we have transformed the above pairwise comparison matrices 
into their corresponding fuzzy preference relation matrices in each attribute. They are shown in Tables 
11, 12, & 13. 

Table 11(Fuzzy Preference Relation of Cars for the attribute ‘Price’) 
Price P1 P2 P3 P4 P5 
P1 1.09 0. 5 0.17 0 0.42 
P2 0.5 1.11 0.17 0 0.65 
P3 0.83 0.83 2.66 0.5 0.5 
P4 1 1 0.5 3.5 1 
P5 0.58 0.56 0.5 0 1.64 

 
Table 12(Fuzzy Preference Relation of Cars for the attribute ‘Maintenance Cost’) 

Maintenance P1 P2 P3 P4 P5 
P1 1.89 0.52 0.5 0.5 0.37 
P2 0.48 1.46 0.25 0.5 0.23 
P3 0.5 0.75 2.08 0.5 0.33 
P4 0.5 0.5 0.5 1.89 0.39 
P5 0.63 0.77 0.67 0.61 2.68 

 
Table 13(Fuzzy Preference Relation of Cars for the attribute ‘Mileage’) 

Mileage P1 P2 P3 P4 P5 
P1 2 0.5 0.5 0.5 0.5 
P2 0.5 2 0.5 0.5 0.5 
P3 0.5 0.5 2 0.5 0.5 
P4 0.5 0.5 0.5 2 0.5 
P5 0.5 0.5 0.5 0.5 2 

 



Using equations (5.7) and (5.8), we have calculated the “priority vector" for the attribute “Price”  (𝑑1𝑝𝑟𝑖𝑐𝑒 , 𝑑2𝑝𝑟𝑖𝑐𝑒 , 𝑑3𝑝𝑟𝑖𝑐𝑒 , 𝑑4𝑝𝑟𝑖𝑐𝑒 , 𝑑5𝑝𝑟𝑖𝑐𝑒) of the cars using the linear programming approach.   

Minimize Z =  ∑ 𝑒𝑗− + 5𝑗=1 ∑ 𝑒𝑗+ 5𝑗=1  

Subject to: 

-2.91𝑑1𝑝𝑟𝑖𝑐𝑒
+ 0.45𝑑2𝑝𝑟𝑖𝑐𝑒

+ 0.17𝑑3𝑝𝑟𝑖𝑐𝑒
+ 0𝑑4𝑝𝑟𝑖𝑐𝑒

+ 0.42𝑑5𝑝𝑟𝑖𝑐𝑒
 +𝑒1− -𝑒1+ =0 

0.55𝑑1𝑝𝑟𝑖𝑐𝑒 − 2.89𝑑2𝑝𝑟𝑖𝑐𝑒
+ 0.17𝑑3𝑝𝑟𝑖𝑐𝑒

+ 0𝑑4𝑝𝑟𝑖𝑐𝑒
+ 0.65𝑑5𝑝𝑟𝑖𝑐𝑒

 +𝑒2− -𝑒2+ =0 

0.83𝑑1𝑝𝑟𝑖𝑐𝑒
+ 0.83𝑑2𝑝𝑟𝑖𝑐𝑒

- 1.34𝑑3𝑝𝑟𝑖𝑐𝑒
+ 0. 5𝑑4𝑝𝑟𝑖𝑐𝑒

+ 0.5𝑑5𝑝𝑟𝑖𝑐𝑒
 +𝑒3− -𝑒3+ =0                                                                             𝑑1𝑝𝑟𝑖𝑐𝑒

+ 𝑑2𝑝𝑟𝑖𝑐𝑒
+ 0.5𝑑3𝑝𝑟𝑖𝑐𝑒

- 0.5𝑑4𝑝𝑟𝑖𝑐𝑒
+ 𝑑5𝑝𝑟𝑖𝑐𝑒

 +𝑒4− -𝑒4+ =0 

0.58𝑑1𝑝𝑟𝑖𝑐𝑒
+ 0.56𝑑2𝑝𝑟𝑖𝑐𝑒

+ 0.5𝑑3𝑝𝑟𝑖𝑐𝑒
+ 0𝑑4𝑝𝑟𝑖𝑐𝑒 − 2.36𝑑5𝑝𝑟𝑖𝑐𝑒

 +𝑒5− -𝑒5+ =0 𝑑1𝑝𝑟𝑖𝑐𝑒 + 𝑑2𝑝𝑟𝑖𝑐𝑒 + 𝑑3𝑝𝑟𝑖𝑐𝑒 + 𝑑4𝑝𝑟𝑖𝑐𝑒 + 𝑑5𝑝𝑟𝑖𝑐𝑒
= 1 

The solution is  (𝑑1𝑝𝑟𝑖𝑐𝑒 , 𝑑2𝑝𝑟𝑖𝑐𝑒 , 𝑑3𝑝𝑟𝑖𝑐𝑒 , 𝑑4𝑝𝑟𝑖𝑐𝑒 , 𝑑5𝑝𝑟𝑖𝑐𝑒) =  ( 0.032, 0.034, 0.284, 0.574,0.076)  …(7.5)                               

Similarly, we used linear programming for the attributes “Maintenance Cost” and “Mileage” to obtain 
the “priority vectors” as shown below:    (𝑑1𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑑2𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑑3𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑑4𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑑5𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)  =  

                            (0.175, 0.118, 0.195,0.178,0.334)                                                          …    (7.6) (𝑑1𝑚𝑖𝑙𝑒𝑎𝑔𝑒 , 𝑑2𝑚𝑖𝑙𝑒𝑎𝑔𝑒 , 𝑑3𝑚𝑖𝑙𝑒𝑎𝑔𝑒 , 𝑑4𝑚𝑖𝑙𝑒𝑎𝑔𝑒 , 𝑑5𝑚𝑖𝑙𝑒𝑎𝑔𝑒)  =  

                            (0.2, 0.2, 0.2,0.2,0.2)                                                                              ...    (7.7) 

The priority vectors are shown in Table 14:  

Table 14: (Priority vectors for the attributes) 

 Price Maintenance Cost Mileage 
P1 0.032 0.175 0.2 
P2 0.034 0.118 0.2 
P3 0.284 0.195 0.2 
P4 0.574 0.178 0.2 
P5 0.076 0.334 0.2 

   

Now using equation (6.2) quadratic programming is applied to aggregate the “priority vectors” over 

the attributes to determine the final ranking of the cars for MADM. Taking 1, 2 and 3 as the 
weights of the attributes price, maintenance cost, and mileage, we have  

Min (𝜆1, 𝜆2  …   𝜆𝑛) =  0.836𝜆12 + 0.452𝜆22 + 0.4𝜆32 -0.385 𝜆 1 𝜆 2 -0.399 𝜆 1 𝜆 3 -0.4 𝜆 2 𝜆 3 

St:      𝜆 1+ 𝜆 2 + 𝜆 3 = 1 

We have the solution as (𝜆1∗ , 𝜆2∗ , 𝜆3∗ ) = (0.230, 0.368,0.402) 

The Hessian Matrix corresponding to the function (𝜆1, 𝜆2  …   𝜆𝑛) is 

2 [ 0.836 −0.192 −0.2−0.192 0.451 −0.199−0.2 −0.199 0.4 ] 



The matrix is positive definite. This clarifies the function is a convex function and hence, the 
solution obtained is a global minimum. 

Now using equation (6.3) we have the rating of the cars as follows:  

R(P1) = 0.230* 0.386 + 0.368*0.458 +0.402*0.639 = 0.514 
Similarly, we have 
R(P2) = 0.406, R(P3) = 0.734, R(P4) = 0.638 and R(P5) = 0.661 
 
From the ratings, we have the preference ranking of the cars: 

P3 >P5 >P4>P1>P2.  
 
In the above ranking, the Car model P3 is selected as best choice. This is reasonable as from the Table 
3, the product has comparatively high linguistic value, more RV (confidence) and less uncertainty in 
the “mileage attribute” that is derived as most important as per the buyer’s preference. In the similar 
way, the Car model P2 is chosen as a last choice as RV is relatively less and the degree of uncertainty 
is somewhat high in the attribute mileage. From the results, the methodology is coherent and one can 
observe that the product ranking through our proposed procedure not only depends on their RV or 
linguistic values across the attributes but also on the importance attached to the attributes.  
 

9. Results and Discussions 

The algorithm HFS_Ranking() is experimented using synthetic data sets of attributes consisting of 
different sets of alternatives to verify the validity of the algorithm. The experimental results obtained 
are satisfactory as far as time complexity is concerned. We have also compared our work with other 
similar types of works in this section. 

 

9.1 Experiments with synthetic data sets 

The algorithm HFS_Ranking(), proposed in our paper, is written and implemented using 
‘C++’. To begin with, HFS_Ranking() takes the input (m , n, qij) (i=1,2,…,m; j=1,2,…,n) 
representing m number of alternatives, n number of attributes, and qij cardinality of HFEs 
(ith alternative in the jth attribute). Our algorithm takes 3 to 15 number of attributes and 10 
sets of alternatives of different sizes corresponding to each attribute. The size of the 
alternatives varies from 10 to 100 in the attributes. In each case, the Average Run Time (in 
seconds) is shown in Figure 4. From the figure, it is found that the Average Run Time curve 
is almost flattened tending to roughly linear and the trajectory does not increase 
exponentially even with the large data sets. At the bottom of the curve in Fig. 4, we have 
shown the relevant data. The pairwise FPR (of alternatives) obtained as an output 
subsequently becomes an input to HFS_LINGO_LPP(). The output to HFS_LINGO_LPP() 
is the “priority vectors” of the alternatives corresponding to each attribute. This is shown 
after statement 30 in the algorithm HFS_Ranking(). Further, making the priority vectors as 
an input to HFS_LINGO_QPP(), the final alternative rankings of MADM are obtained.  
 



 
Fig 4: Average Run Time of algorithm HFS_Ranking() 

 

9.2 Sensitivity analysis 

The sensitivity analysis is applied in the numerical example given in section 8 by changing p values in 𝑙𝑝 – distances (equation 3.2.). The results are summarized in Table 15. The evaluation results in 

product ranking are identical for various p values in the 𝑙𝑝 metric.  

 
Table 15: Sensitivity analysis in 𝑙𝑝 - distance measures 

p P1 P2 P3 P4 P5 Ranking 

1 0.514 0.406 0.734 0.638 0.661 P3>P5>P4>P1>P2             

2 0.506 0.403 0.723 0.634 0.646 P3>P5>P4>P1>P2             

4 0.498 0.399 0.713 0.624 0.632 P3>P5>P4>P1>P2             

5 0.490 0.394 0.701 0.615 0.617 P3>P5>P4>P1>P2             

8 0.491 0.395 0.707 0.617 0.618 P3>P5>P4>P1>P2             

 
In the second case, we changed some product attribute values from initial data (Table 1) and the 
changed input table is shown in Table 16. The changed data are in italics. 
 
                       Table 16: Input data under changed attribute values  

Car Models Price Maintenance Cost Mileage 
P1 (0.66, 0.44, 0.11) (0.63, 0.2) (0.8, 0.73, 0.4) 
P2 (0.4, 0.1) (0.4, 0.2) (0.864, 0.48) 
P3 (1, 0.8, 0.6, 0.4, 0.1) (1, 0.819) (0.73) 
P4 (0.8,1) (0.63, 0.4, 0.2) (0.96, 0.876, 0.864, 0.48) 
P5 (0.4,0.6) (1, 0.88, 0.693, 0.22) (0.8, 0.73, 0.4) 

 
Solving the problem after taking the data from Table 16, we have obtained the product rankings for 
various p values in the 𝑙𝑝 metric and are shown in Table 17. 

 
Table 17: Sensitivity analysis in 𝑙𝑝 - distance measures with changed input data 

p P1 P2 P3 P4 P5 Ranking 

1 0.528 0.443 0.664 0.637 0.761 P5>P3>P4>P1>P2             

2 0.523 0.429 0.634 0.607 0.754 P5>P3>P4>P1>P2             

4 0.517 0.423 0.663 0.631 0.751 P5>P3>P4>P1>P2             

5 0.512 0.418 0.667 0.627 0.764 P5>P3>P4>P1>P2             

8 0.508 0.418 0.659 0.628 0.758 P5>P3>P4>P1>P2             

  
From the sensitivity analysis results in Tables 15 & 17, the product rankings are identical in each case, 
verifying that our methodology is robust and independent of the distance measures on buyer’s varying 
input data. 

 

9.3 Comparison with other works 

To exhibit our method’s suitability and rationality, we compare the proposed procedure with other 
similar works (Yang & Hussain, 2019; Alcantud, Calle, & Torrecillas, 2016; Chen & Hong, 2014; 
Wang J. , Wang, Zhang, & Chen, 2015) in the subsections 9.3.1, 9.3.2, & 9.3.3. 

 



9.3.1) Comparison with (Yang & Hussain, 2019) and (Alcantud, Calle, & Torrecillas, 2016) 

Our procedure is compared with the methodologies given in (Yang & Hussain, 2019) and (Alcantud, 

Calle, & Torrecillas, 2016). Certain shortcomings in these works are identified and required 
improvements are made in our method. Using the methodologies of (Yang & Hussain, 2019; Alcantud, 
Calle, & Torrecillas, 2016) and taking the buyer’s data from Table 1, the product rating and ranking are 
obtained in Table 18. Graphically, the ranking and rating are shown in Figures 5 & 6.  

Table 18: Comparison of rating & ranking of proposed method with other methods 

 Proposed 

Method 

Yang et. al's 

method 

Alcantud et. 

al's method 

Ranking in all 

three 

methods 

Product 1 0.514 0.471 0.036 2 

Product 2 0.416 0.4 0 5 

Product 3 0.734 0.625 0.382 1 

Product 4 0.638 0.493 0.257 3 

Product 5 0.661 0.546 0.323 4 

 

 
Fig 5: Comparison of Product Rating of proposed method with other works 

 

 
Fig 6: Comparison of Product Rating of proposed method with other works 

 

From Table 18, the product ranking of the proposed method is identical with the rankings obtained in 
the works (Yang & Hussain, 2019) and (Alcantud, Calle, & Torrecillas, 2016). However, there are 
variations in product ratings. The variations may be attributed to certain new aspects that we have 
undertaken in our work, and they are listed below.  

 (i) In (Yang & Hussain, 2019), the alternative having least distance from the ideal point or the longest 
distance from the anti-ideal is taken as the best alternative. The procedure has used Hausdorff distances 
due to its advantages in computational complexity and rationality. However, the disadvantage is the 
ignorance of cardinalities of HFEs that are vital for uncertainty dimension, an essential component for 
distance measurement. For example, using Hausdorff  measure , the distances of two HFEs from the 
ideal point are d((0.6,0.4,0.1),1) =0.9 and d((0.9,0.7,0.6,0.4,0.1),1)=0.9.  Logically, the HFE with less 
uncertainty should be closer to the ideal point than the HFE with the more degree of uncertainty. With 
this argument, the distance relation should have been d((0.6,0.4,0.1),1) < d ((0.9,0.7,0.6,0.4,0.1),1), as 
the degree uncertainty in former HFE is lower than the degree of uncertainty of the later.  As both the 
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HFEs are equidistance from the ideal point, it is somewhat inconsistent to assume that two products 
(represented as HFE) with different degrees of uncertainty will preserve the same preference ranking in 
product evaluation. Our paper considers the cardinality in HFE and removes this gap by articulating 
and incorporating the uncertainty using entropy. (ii) The criteria weight calculation is somewhat 
subjective. This is because the work considers only minimum and maximum elements of HFE for 
weight calculation. Our work removes this subjectivity by objectively deriving the weights to the 
attributes.  

 
In (Alcantud, Calle, & Torrecillas, 2016) an innovative methodology is worked out to rank             
HFS. The methodology takes different scoring procedures of HFEs to rank the alternatives. Based on 

the score values of HFEs, a matrix C= (𝑐𝑖𝑗)𝑘𝑥𝑞 is derived; k and q respectively represent the number of 

alternatives (options) and number of attributes (characteristics). The Eigen vector corresponding to 
maximum Eigen value of the matrix C gives the rating and ranking of the products. The matrix entries 𝑐𝑖𝑗 , i ≠ j is the number of attributes m for which 𝑡𝑖𝑚 - 𝑡𝑗𝑚 > 0. 𝑡𝑖𝑚 represents the score of the ith 

alternative in mth attribute. Thus, we have 𝑐𝑖𝑗 = ∑ 𝑦𝑚𝑞𝑚=1  .  Where ym is a binary variable, ym =1 when (𝑡𝑖𝑚 − 𝑡𝑗𝑚 > 0)  and ym=0 otherwise.   The shortcoming is: 

(1) While comparing alternatives pairwise, attribute additions are done even if they are in 
different dimensions.  

(2) If 𝑡𝑖𝑚 − 𝑡𝑗𝑚 > 0, it is counted as an added attribute even if the difference is as small 

as say, 0.001(i.e. 𝑡𝑖𝑚 − 𝑡𝑗𝑚 = 0.001). 

Our paper eliminates the above mentioned issues by considering the alternatives’ ratings and 
deriving attribute weights to address dimensionality. 

In the subsections 9.3.2 and 9.3.3, we have compared our method with works given in (Chen & Hong, 
2014) and (Wang J. , Wang, Zhang, & Chen, 2015). We proceed to perform only theoretical 
comparisons. The comparison with respect to numerical results cannot be made as in both the cases the 
input data is in HFLTS whereas in proposed work, the input data is in numerical HFS. 

9.3.2) Comparison with the work given in (Chen & Hong, 2014) 
In the work given in (Chen & Hong, 2014), the authors have shown a new procedure for solving 
MCDM problems that are based on HFLTS. The alternatives in each attribute are assessed as 
hesitant fuzzy linguistic terms and are represented as trapezoidal/ triangular fuzzy numbers. 
The solution process in the paper takes into account all the HFEs of the alternatives that are 
involved in the assessment and merges them into a single trapezoidal fuzzy number. In the 
paper, the alternatives are assessed as hesitant fuzzy linguistic values such as: [Very Low (0, 
0.17, 0.33), Low (0.17, 0.33, .5), Medium (0.33, 0.5, 0.67)]. To aggregate these linguistic 
values, the fuzzy numbers (intervals) of VL, L, and M are merged and the final value is written 
as a fuzzy interval, VLM (0, 0.17, 0.5, 0.67). Though the merging procedure gives a good result 
in the solution of MCDM, the aggregation process has some shortcomings. They are: - 

i) Merging fuzzy numbers may not represent the true aggregation, as the aggregated fuzzy interval 
VLM ranges from 0 to 0.67 with full membership in the interval [0.17, 0.5] as shown in the 
paper. It may be noted that in none of the arguments of VLM, that is VL, L and M the full 
membership values is prevailed in the range [0.17, 0.5].   

ii) The uncertainty inherent in HFE is not counted while deriving the aggregation.   
iii) The level of confidence is defined in the paper as -cut subjectively. The subjectivity of the 

DM may create some amount of biasness to obtain the alternative rankings in MADM. 
iv) Another deficiency in the paper is the ranking of the alternatives based on either pessimistic or 

optimistic nature of the decision-maker. However, rarely, the DMs are either pessimistic or 
optimistic but often remain in between.  
 

 



Our paper removes the above limitations and arrive at a viable solution in the following way: - 

i) The aggregation procedure of HFEs is designed in our paper in such a way that it not only 
accounts for all the members of the HFEs but also aggregates to RVs that represent the original 
HFE assessment. 

ii) The implicitly defined uncertainty in the HFEs is properly explicated in our work by using 
entropy. 

iii) Our work replaces the subjectivity by objectively deriving the level of confidence as a certainty 
factor before arriving at the final ranking of the alternatives in MADM. 

iv) Our paper takes this aspect of DM’s behavioural attitude by deriving the weights of the 
attributes and arrives at all types of solutions inclusive of optimistic and pessimistic. 
 

9.3.3) Comparison with (Wang J. , Wang, Zhang, & Chen, 2015) 
In the work given in (Wang J. , Wang, Zhang, & Chen, 2015), outranking approach for solving 
MCDM problems based on HFLTS is given. This procedure uses directional Hausdorff 
distance, Dhdh between two HFLTS to determine the dominance of one alternative over the 
other.  

i) According to the procedure given, the Dhdh is derived as shown below: 

Dhdh(𝐻𝑠1, 𝐻𝑠2) = { 1|𝐻𝑠1| ∑ min𝑠𝑗𝜖𝐻𝑠2{max{0, 𝑓(𝑠𝑖) − 𝑓(𝑠𝑗)}}     𝑖𝑓 ℎ𝑠+1  ≠  ℎ𝑠+2𝑠𝑖𝜖𝐻𝑠11|𝐻𝑠2| ∑ min𝑠𝑖𝜖𝐻𝑠1{max{0, 𝑓(𝑠𝑖) − 𝑓(𝑠𝑗)}}            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑠𝑗𝜖𝐻𝑠2  

In the above distance measure, to have the minimum value of the Dhdh(𝐻𝑠1,  𝐻𝑠2), we need to have a 

maximum value of 𝑓(𝑠𝑗) when ℎ𝑠+1  ≠  ℎ𝑠+2  and the minimum value of 𝑓(𝑠𝑖) when the condition ℎ𝑠+1  ≠  ℎ𝑠+2  is not satisfied. This results in the participation of one single linguistic term of HFLTS 

in either 𝐻𝑠1 or 𝐻𝑠2, resulting in the non-involvement of other terms in HFLTS. This is inconsistent 
as all other members of HFLTS are not accounted for. 

ii) In the expression, the Hausdorff distance Dhdh(𝐻𝑠1,  𝐻𝑠2) represents the preference level of 
one alternative over another. The level of preference increases when the cardinality of 𝐻𝑠1 
(𝑜𝑟 𝐻𝑠2) is higher and it decreases when the cardinality is lesser. However, the higher level 
of cardinality leads to more uncertainty in HFS. This shows alternatives with higher 
preference have more uncertainty leading to an inconsistency in calculating the preferences 
in the decision-making system.  

Our work removes these deficiencies as explained below: 
i) The first shortcoming is addressed by accounting all the terms in HFEs and explicating the 

implicitly defined uncertainty in HFE using the concepts of Entropy. 
ii) Our work removes the second gap by aggregating and counting all the members of the HFEs 

corresponding to the alternatives after deriving and integrating the inherent uncertainties in 
HFEs. 

 

10. Conclusion 
The work in this paper provides a novel procedure for solving MADM problems under hesitant fuzzy 
environment. The contribution of the paper is mainly to evaluate the alternatives that are assessed as 
HFEs by accounting the prevalent uncertainties. This is done by deriving the entropy in attribute values 
corresponding to the alternatives. The linguistic counterparts of aggregated alternative values (RVs) in 
each attribute is used to construct FPR matrix. The Eigenvector corresponding to maximum Eigen value 
of FPR prioritize the alternatives in each attribute as priority vectors. Further, the proposed method 
minimizes the weighted distance amongst the priority vectors to derive the weights of the attributes. 
The method derives the ranking of the alternatives in MADM through the weighted aggregation of 
attribute values. We should point out here that the proposed methodology presents some advantage in 
compare to other models, as in our work, the final ranking of the alternatives takes into account the 



multiple factors such as prevalent uncertainty due to hesitancy, linguistic interpretation of the 
alternatives, and prioritization of the alternatives as per the DM’s choice. Our work uses FPR to 
represent the pairwise preference amongst the alternatives. However, some other preference relations 
depending on the prevailing situation may be more relevant. Finding the pairwise preference relation 
may be the scope for further research. The proposed work uses the distance aggregation approach to 
aggregate the priority vectors. Other aggregation operator based on the hesitant mind-set of the 
decision-maker possibly be more suitable for aggregation.  
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