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Abstract 

Clustering algorithms have been successfully applied to identify co-expressed gene groups from gene 

expression data. Missing values often occur in gene expression data, which presents a challenge for gene 

clustering. When partitioning incomplete gene expression data into co-expressed gene groups, missing 

value imputation and clustering are generally performed as two separate processes. These two-stage 

methods are likely to result in unsuitable imputation values for clustering task and unsatisfying clustering 

performance. This paper proposes a multi-objective joint optimization framework for clustering incomplete 

gene expression data that addresses this problem. The proposed framework can impute the missing 

expression values under the guidance of clustering, and therefore realize the synergistic improvement of 

imputation and clustering. In addition, gene expression similarity and gene semantic similarity extracted 

from the Gene Ontology are combined, as the form of functional neighbor interval for each missing 

expression value, to provide reasonable constraints for the joint optimization framework. Experiments on 

several benchmark data sets confirm the effectiveness of the proposed framework. 
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1  Introduction 

The recent development of biological experiments has generated vast amounts of gene expression data. 

Thus, extracting the intrinsic patterns from the enormous number of genes has become a significant 

challenge. Clustering, as an essential unsupervised data mining method, is often applied to analyze gene 

expression data. One of the major tasks in gene expression data clustering is to identify co-expression gene 

groups, which can provide a useful basis for the further investigation of gene function and gene regulation 

in the field of functional genomics (Chen et al. 2019; Giri and Sara 2020; Maulik et al. 2009; Sara et al. 

2013; Stegmayer et al. 2012). 

Biological experiments inevitably generate data with missing values in acquiring gene expression data, 

which adversely affects the clustering analysis (Moorthy et al. 2014; Yu et al. 2017). A straightforward way 

is to discard the genes with missing components and perform clustering on the remained complete matrix. 

The discarded genes cannot be partitioned for further analysis and would cause information loss. For this 

reason, various imputation strategies have been proposed for incomplete microarray data. The typical 

approaches are to use the global or local information from within the expression data to fill up the missing 

values (Acurna and Rodriguez 2004; Buuren and Oudshoorn 2011; Kim et al. 2005; de Souto et al. 2015; 

Oba et al. 2003; Troyanskaya et al. 2001; Yu et al. 2017). Besides, the prior biological knowledge, like 

Gene Ontology (GO) (Ashburner et al. 2000) has been applied to the imputation of missing expression 

values (Tuikkala et al. 2006), and the use of domain knowledge is beneficial to improve the imputation 

accuracy beyond the purely data-driven approaches (Moorthy et al. 2014). When identifying co-expressed 
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genes from incomplete gene expression data, imputation approaches often act as an important preprocessing 

step. Then clustering techniques can be applied to the recovered gene expression data (de Souto et al. 2015; 

Kim et al. 2005; Moorthy et al. 2014; Sara et al. 2013; Yu et al. 2017). These two-stage methods are quite 

popular and simple to implement. However, missing value imputation and gene clustering are inherently 

related, as both tasks use the correlation information within the data. These two-stage methods prevent the 

collaborative optimization of the two learning processes, thus may lead to imputation values that are 

unsuitable for clustering and unsatisfying clustering performance. 

In this paper, we focus on the problem of clustering incomplete gene expression data. To address the 

drawbacks of the two-stage methods, we propose a novel clustering method called MOC-FNI (multi-

objective clustering algorithm based on functional neighbor interval) to integrate the imputation and gene 

clustering tasks into one joint optimization framework. In MOC-FNI, functional neighbor intervals for 

missing expression values are constructed based on the combination of gene expression similarity and GO 

semantic similarity, which act as interval constraints in the joint optimization. The contributions of the 

proposed method can be summarized as follows: 

(1)  The proposed functional neighbor intervals can introduce multi-source information, including gene 

expression information and GO semantic information, which are beneficial to provide reasonable 

constraints to guide the optimization process. 

(2) MOC-FNI can realize synergistic improvement of imputation and clustering in the framework of 

nondominated sorting GA-II (NSGA-II) (Deb et al. 2002).  Therefore, with the constraints of functional 

neighbor intervals, MOC-FNI can obtain imputations guided by both multi-source information and cluster 

validity, as well as gene clusters based on meaningful and reasonable imputations. 

The rest of this paper is organized as follows. Section 2 gives a brief review of related works on the 

imputation and multi-objective clustering of gene expression data. Section 3 presents the proposed MOC-

FNI method. Experiments on several bench-mark data sets are shown in Section 4. Conclusions are 

summarized in the last section. 

 

2  Related works 

Microarray data often contain missing values. The leading causes include hybridization failures, artifacts 

on the microarray, image noise and corruption, etc (Song et al. 2014; Tuikkala et al. 2006; Yu et al. 2017). 

Owing to the economic and experimental limitations, it is not always practical to repeat the experiments. 

Thus, many efforts have been devoted to exploring the missing value imputation, which makes it possible 

to realize a reliable analysis of incomplete gene expression data. 

In most cases, the missing values in incomplete gene expression data were imputed based on the global 

or local statistical information of gene expression data. A simple and commonly used method was the mean 

imputation (MEANimpute) (Acurna and Rodriguez 2004), where each missing value was filled in with the 

average of the corresponding attribute values of all genes with complete expression values. Considering the 

similarity between neighboring genes, Troyanskaya et al. (2001) applied the k-nearest neighbors rule to the 

imputation problem. In the KNNimpute method (Troyanskaya et al. 2001), for each target gene with 

missing components, k complete neighboring genes were first found and the missing value was filled in 

with the weighted average of the corresponding attribute values of these genes. In the singular value 

decomposition (SVD) imputation (SVDimpute) (Troyanskaya et al. 2001), the SVD was employed to obtain 

a set of mutually orthogonal expression patterns, called eigengenes. Then, several most significant 

eigengenes were selected and their linear combination were used to reconstruct the missing values. It was 

claimed that KNNimpute was superior to SVDimpute in accuracy and robustness (Troyanskaya et al. 2001). 

Bayesian principal component analysis (BPCA) (de Souto et al. 2015; Oba et al. 2003) was another widely 
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used global imputation method, which involved principal component regression to estimate the missing 

part in the expression vector, Bayesian estimation and expectation-maximization like repetitive algorithm 

to estimate the posterior distributions for the model parameter. For the data with a global covariance 

structure, BPCA always outperformed KNNimpute and SVDimpute methods (Oba et al. 2003; de Souto et 

al. 2015; Yu et al. 2017). Besides, local least squares imputation (LLSimpute) (Kim et al. 2005) introduced 

a multiple linear regression model to impute each missing value based on neighboring genes. Based on 

LLSimpute, Yu et al. (2017) considered the different importance of the target gene’s neighbors, and 

proposed an iterative locally auto-weighted least squares method. Another notable approach was the 

multivariate imputation by chained equations (MICE) (Buuren and  Oudshoorn 2011), whose aim was to 

produce multiple imputations and integrate these results to fill in the missing values.  

In recent years, knowledge-assisted methods had gradually become a research hotspot in gene analysis. 

Gene Ontology (GO) (Ashburner et al. 2000)  is one of the most widely used publicly available knowledge 

bases, which describes biological annotations in the form of directed acyclic graphs. GO contains three 

dynamic sub-ontologies, and consists of a set of terms related to biological process (BP), cellular component 

(CC), and molecular function (MF) along with relations between terms. For the imputation problem of gene 

expression data, a popular way to apply GO annotation information was to calculate the semantic similarity 

of GO terms and that of genes. Tuikkala et al. (2006) proposed to integrate GO annotations into the KNN 

imputation algorithm (GOimpute). The experimental results verify the positive effect of GO in improving 

imputation accuracy.  

Once the missing values are imputed, machine learning techniques, including clustering, can be applied 

to analyze the complete data sets. In recent works, multi-objective optimization (Deb et al. 2002)  had been 

employed to deal with the gene clustering problem and exhibited better performance than single-objective 

clustering methods (Bandyopadhyay et al. 2007; Faceli et al. 2009; Giri and Sara 2020; Maulik et al. 2009; 

Mukhopadhyay et al. 2013; Sara et al. 2013; Sara et al. 2018). A multi-objective optimization problem can 

be formulated as (Deb et al. 2002): 

 min 𝐹(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙), ⋯ , 𝑓𝐾(𝒙))                                                                  (1) 

where 𝐾  is the number of objective functions, vector 𝒙  is an element in the decision space, and 𝑓1(𝒙), 𝑓2(𝒙), ⋯ , 𝑓𝐾(𝒙) are 𝐾  objectives to be minimized. Unlike simple-objective optimization, multi-

objective optimization generally yields a set of optimal solutions, called Pareto optimal set (PS). 

Bandyopadhyay et al. (2007) developed a multi-objective clustering algorithm by adopting a variable string 

length genetic scheme to obtain the number of clusters automatically. Faceli et al. (2009) integrated cluster 

ensemble and multi-objective clustering for gene expression data with the help of specially designed initial 

population and crossover schemes. Maulik et al. (2009) proposed a supervised learning method that 

combined Pareto optimal clusters to identify co-expressed genes. The approach selected the genes that were 

always clustered together by most of the Pareto optimal solutions to form the training set and classified the 

remaining genes using a support vector machine. For the case that clusters satisfied the point symmetry 

property, Sara et al. (2013) proposed a multi-objective clustering method, which optimized fuzzy 

symmetry-based and separation-based cluster validity indices simultaneously. Considering the adaptive 

selection of cluster validity indices, Mukhopadhyay et al. (2013) proposed an interactive multi-objective 

clustering approach that simultaneously found the patterns of gene expression data and the best set of 

validity measures. By using a link-based clustering ensemble technique, Sara et al. (2018) proposed two 

multi-objective symmetry-based clustering methods. To involve GO-based biological knowledge during 

the clustering process, Giri et al. (2020) proposed a multi-view multi-objective clustering approach, which 

treated the GO-based and expression-based similarities of genes as complementary views. All these 

methods focused on the clustering analysis of complete gene expression data, in which non-dominated 
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sorting GA-II (NSGA-II) (Deb et al. 2002) was one of the most prominent multi-objective optimization 

frameworks applied to gene clustering.  

When identifying co-expressed genes from incomplete gene expression data, the aforementioned 

methods were often designed for a two-stage scheme. In this scheme, the imputation was first implemented 

as a preprocessing step and clustering techniques were consequently applied to the recovered gene 

expression data (Kim et al. 2005; Sara et al. 2013; de Souto et al. 2015; Yu et al. 2017). These two-stage 

methods were quite popular for their simplicity and easy implementation. However, the literature has 

pointed out that these two-stage methods hinder the collaborative improvement of the two learning 

processes and thus affect the clustering performance (Liu et al. 2020). Besides, existing imputation methods 

generally filled in each missing value separately and ignored the overall impact of imputation values on 

data analysis, such as clustering. Therefore, our goal in this paper is to develop a multi-objective joint 

optimization framework for clustering incomplete gene expression data, with a view to improving 

imputation and clustering accuracy synergistically. In addition, biological knowledge is integrated into our 

framework. 

 

3  Proposed MOC-FNI for incomplete gene expression data 

To identify the co-expressed gene groups from incomplete gene expression data, we propose a novel 

clustering method, called multi-objective clustering algorithm based on the functional neighbor interval 

(MOC-FNI). In MOC-FNI, the imputation of missing expression values and clustering are optimized 

synergistically in the framework of NSGA-II. To provide reasonable constraints for the optimization, 

functional neighbor intervals are constructed for the missing expression values based on the combination 

of gene expression similarity and GO semantic similarity. Our method makes full use of multi-source 

information, including gene expression information and GO semantic information. The proposed multi-

objective joint optimization can promote the synergistic improvement of imputation and clustering. Thus, 

MOC-FNI can obtain imputation values guided by both multi-source information and cluster validity, as 

well as clusters based on meaningful and reasonable imputation results.   

 

3.1 Determination of functional neighbor intervals 

Let �̃� = [�̃�𝑖𝑗]𝑁×𝑀 denote an incomplete data matrix with  𝑁 genes and 𝑀 samples, in which the vector �̃�𝑖(𝑖 = 1,2, … , 𝑁) denotes expression level of the ith gene in 𝑀 experiments. Let 𝑮 = [𝑔𝑖𝑗]𝑁×𝑀 denote the 

corresponding recovered complete data matrix. For the target gene �̃�𝑏(1 ≤ 𝑏 ≤ 𝑁) which retains at least 

one, but not all, missing component, the functional neighbor interval [𝑔𝑏𝑗− , 𝑔𝑏𝑗+ ]  of its missing �̃�𝑏𝑗(1 ≤ 𝑗 ≤ 𝑀) can be determined by the combination of GO semantic similarity and expression-based 

similarity. 

    For a set of genes to be analyzed, each gene can be annotated with several GO terms. Thus, the functional 

similarity between genes can be deduced based on the term similarity. In MOC-FNI, an aggregate 

information content (AIC) (Song et al. 2014) based approach is adopted to measure the semantic similarity 

of GO terms. 

For the given GO terms 𝑡1 and 𝑡2,  the AIC semantic similarity is defined as follows (Song et al. 2014): 𝑠𝑖𝑚𝐺𝑂(𝑡1, 𝑡2) = ∑ 2×𝑆𝑊(𝑡)𝑡∈𝑇𝑡1∩𝑇𝑡2𝑆𝑉(𝑡1)+𝑆𝑉(𝑡2)                                                (2) 

where 



5 

 

𝑆𝑊(𝑡) = 11+𝑒− 1𝐼𝐶(𝑡)                                                                                      (3) 

𝑆𝑉(𝑡) = ∑ 𝑆𝑊(𝑡′)𝑡′∈𝑇𝑡                                                                                  (4) 

with 𝑇𝑡 being the set of ancestors of term 𝑡 including 𝑡 itself in the GO graph. 𝑝(𝑡) is the probability of 𝑡 

occurring in the GO database and 𝐼𝐶(𝑡) = − log 𝑝(𝑡) reflects the information content of 𝑡. Therefore, based 

on the knowledge represented by 1 𝐼𝐶(𝑡)⁄ , 𝑆𝑊(𝑡) measures the semantic weight and 𝑆𝑉(𝑡) is the semantic 

value of GO term 𝑡 by adding the semantic weights of all its ancestors. 

When deducing the functional similarity between genes from the term similarities, the AVE method 

(Azuaje et al. 2005) is one of the most widely used schemes. The AVE method adopts the average inter-set 

similarity between terms that annotate the gens to measure the gene semantic similarity. Given a pair of 

genes 𝒈𝑎 and 𝒈𝑏(𝑎, 𝑏 = 1,2, … , 𝑁), let a𝑛𝑛(𝒈𝑎), a𝑛𝑛(𝒈𝑏) be the sets of GO terms that annotate the two 

genes respectively. Then the semantic similarity of 𝒈𝑎 and 𝒈𝑏 can be determined by: 

      𝑠𝑖𝑚𝑎𝑣𝑒(𝒈𝑎, 𝒈𝑏) = 1|𝑎𝑛𝑛(𝒈𝑎)||𝑎𝑛𝑛(𝒈𝑏)| ∑ 𝑠𝑖𝑚𝐺𝑂(𝑡1, 𝑡2)𝑡1∈𝑎𝑛𝑛(𝒈𝑎)𝑡2∈𝑎𝑛𝑛(𝒈𝑏)                         (5) 

where |a𝑛𝑛(𝒈𝑎)|, |a𝑛𝑛(𝒈𝑏)| are the cardinalities of a𝑛𝑛(𝒈𝑎), a𝑛𝑛(𝒈𝑏), respectively. Note that Eq.(5) 

extracts the semantic similarity based on gene annotations available from GO. Therefore, there is no need 

to consider the incompleteness of gene expression data. 

For the incomplete expression data set �̃� = [�̃�𝑖𝑗]𝑁×𝑀, partial distance (Hathaway and Bezdek 2001; Li 

et al. 2013) can be used to extract the expression-based dissimilarity of �̃�𝑎 and �̃�𝑏(𝑎, 𝑏 = 1,2, … , 𝑁): 

                 𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑟(�̃�𝑎 , �̃�𝑏) = √ 𝑀∑ 𝐼𝑗𝑀𝑗=1 ∑ (�̃�𝑎𝑗 − �̃�𝑏𝑗)2𝐼𝑗𝑀𝑗=1                                            (6) 

where 

               𝐼𝑗 = {1, if both �̃�𝑎𝑗 and �̃�𝑏𝑗 are nonmissing 0, otherwise                                                                                               (7) 

In MOC-FNI, we take into account both the semantic-based and expression-based dissimilarity, the 

combined distance is defined as (Tuikkala et al. 2006): 

      𝑑𝑖𝑠𝑡𝑐𝑜𝑚𝑏(�̃�𝑎, �̃�𝑏) = (1 − 𝑠𝑖𝑚𝑎𝑣𝑒(𝒈𝑎, 𝒈𝑏))𝜃𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑟(�̃�𝑎 , �̃�𝑏)                     (8) 

where the positive weight parameter 𝜃 > 0 balances the contribution of two dissimilarities.  

In this paper, we consider the case that gene expression values are missing completely at random 

(MCAR). For each target gene �̃�𝑏 with missing values, the combined distance (8) is applied to guide the 

selection of functional neighbors. Then, the functional neighbor interval of its missing value �̃�𝑏𝑗 can be 

determined. Specifically, we search for q functional neighbors of �̃�𝑏 with non-missing feature j, where 𝑔𝑏𝑗−  

and 𝑔𝑏𝑗+  are the minimum and maximum of the neighbors’ jth expression values, respectively. Therefore, �̃�𝑏𝑗 can get its functional neighbor interval as [𝑔𝑏𝑗− , 𝑔𝑏𝑗+ ]. 
 

3.2 Objective functions 

MOC-FNI is a multi-objective joint optimization method, where the imputation and clustering results are 

optimized simultaneously in the framework of NSGA-II. In multi-objective clustering problems, the 

objective functions should conflict with each other and represent different aspects of clustering performance. 
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The cluster validity indices 𝐽𝑚  (Bezdek 1981) and 𝑋𝐵  (Xie and Beni 1991) measure the intra-cluster 

compactness and inter-cluster separation respectively. These two indices are commonly used as objective 

functions and have achieved satisfying clustering performance in various multi-objective clustering 

algorithms (Bandyopadhyay et al. 2007; Maulik et al. 2009; Mukhopadhyay et al. 2013). MOC-FNI 

simultaneously optimize these objectives, which are formulated as follows (Bezdek 1981; Xie and Beni 

1991): 

          𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘𝑚‖𝒈𝑘 − 𝒗𝑖‖22𝐶𝑖=1𝑁𝑘=1                                                                     (9) 

                     𝑋𝐵 = ∑ ∑ 𝑢𝑖𝑘2 ‖𝒈𝑘−𝒗𝑖‖22𝐶𝑖=1𝑁𝑘=1  𝑁×min  𝑖≠𝑗 ‖𝒗𝒊−𝒗𝒋‖22                                                                     (10) 

where 

     𝑢𝑖𝑘 = [∑  (‖𝒈𝑘−𝒗𝑖‖22‖𝒈𝑘−𝒗𝑡‖22) 1𝑚−1𝐶𝑡=1 ]−1
                                                                   (11) 

represents the degree of 𝒈𝑘  in the ith cluster with 𝑢𝑖𝑘 ∈ [0,1](∀𝑖, 𝑘)  and ∑ 𝑢𝑖𝑘𝐶𝑖=1 = 1(∀𝑘) . 𝒈𝑘 =[𝑔1𝑘 , 𝑔2𝑘, … , 𝑔𝑀𝑘]T is a gene expression vector in the recovered complete data matrix 𝑮. 𝐶 is the total 

number of clusters. 𝑣𝑖 ∈ ℝ𝑀  is the ith cluster prototype. The parameter 𝑚 ∈ (1, ∞)  influences the 

fuzziness of the partition. ‖. ‖2 stands for the Euclidean norm. Lower values of  𝐽𝑚 and 𝑋𝐵 imply better 

compactness and separation of the yielded clusters. 

 

3.3 Chromosome encoding and population initialization 

   To optimize the imputation and clustering results simultaneously, a mixed chromosome encoding strategy 

is adopted in MOC-FNI. Each chromosome includes the cluster prototypes and the imputation values of 

missing expression values.  

Let 𝑬 be the population and 𝐹 be the population size. For an incomplete gene expression data set �̃� =[�̃�𝑖𝑗]𝑁×𝑀 with ℎ missing values, we first sort and renumber the ℎ functional neighbor intervals of missing 

expression values by their appearance order in �̃�. Specifically, for each missing value �̃�𝑏𝑗, its functional 

neighbor interval [𝑔𝑏𝑗− , 𝑔𝑏𝑗+ ] is renumbered and represented as [𝑒𝑜−, 𝑒𝑜+](1 ≤ 𝑜 ≤ ℎ) with 𝑜 being the order 

of �̃�𝑏𝑗  in all of the missing expression values in �̃�. Taking the 𝐶  cluster prototypes into account, each 

chromosome has 𝐶 × 𝑀 + ℎ  components. Figure 1 shows the mixed chromosome encoding strategy. For 

each chromosome 𝑬𝑓(𝑙)  with 1 ≤ 𝑓 ≤ 𝐹  at generation 𝑙 , let the cluster prototype part (with 𝐶 × 𝑀 

components) be 𝑬𝑓(𝑐𝑙𝑢)(𝑙) = [𝑣11,𝑓 , … , 𝑣1𝑀,𝑓 , … , 𝑣𝐶1,𝑓 , … , 𝑣𝐶𝑀,𝑓] , and the imputation part (with ℎ 

components) be 𝑬𝑓(𝑖𝑚𝑝)(𝑙) = [𝑒1,𝑓, 𝑒2,𝑓 , … , 𝑒ℎ,𝑓], where [𝑣𝑖1,𝑓 , … , 𝑣𝑖𝑀,𝑓](1 ≤ 𝑖 ≤ 𝐶) denotes the ith cluster 

prototype, and 𝑒𝑜,𝑓(1 ≤ 𝑜 ≤ ℎ)  denotes the 𝑜 th imputation value that satisfies the interval constraint [𝑒𝑜−, 𝑒𝑜+]. 
 

 

Fig. 1  The mixed chromosome encoding strategy used in MOC-FNI 
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In MOC-FNI, the two parts of each chromosome are initialized separately. For the 𝑓th chromosome 𝑬𝑓(1) , each component in the initial imputation part 𝑬𝑓(𝑖𝑚𝑝)(1)  can be randomly generated in the 

corresponding functional neighbor interval. For the initial prototype part 𝑬𝑓(𝑐𝑙𝑢)(1), we adopt the clustering 

by fast search and find of density peaks (DPC) (Rodriguez and Laio 2014) on the basis of recovered 𝑮 

imputed by 𝑬𝑓(𝑖𝑚𝑝)(1). Then, select 𝐶 genes with higher local density and having large distance from other 

density maxima points as the initial prototypes. The DPC algorithm, which has been proven to be effective 

in analyzing gene expression data (Mehmood et al. 2017), can identify reliable prototypes. The functional 

neighbor intervals can provide reasonable constraint on the imputation values. These advantages will 

contribute to improve the convergence speed and optimization ability of genetic search involved in the 

NSGA-II framework. 

 

3.4 Genetic Operations 

In the genetic process of MOC-FNI, we use the roulette wheel for implementing the selection scheme. As 

NSGA-II prefers solutions with lower non-domination rank (Deb et al. 2002), a lower-rank chromosome 

should be selected with a higher probability. Thus, for each chromosome 𝑬𝑓(𝑙)  with rank 𝑓𝑟𝑎𝑛𝑘 , we 

calculate its selection probability by the following rank-based evaluation function (Zhou and Zhu 2018): 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑬𝑓(𝑙)) = 𝛼(1 − 𝛼)𝑓𝑟𝑎𝑛𝑘−1                                                            (12) 

where 𝛼 ∈ [0,1] is a parameter that controls the selective pressure.  

Because the imputation values of missing expression values should evolve within the corresponding 

functional neighbor intervals, a crossover operator based on competition and optimal selection (Ren and 

San 2007) is adopted. For the parent chromosomes 𝑬𝑓1(𝑙) and 𝑬𝑓2(𝑙) with 1 ≤ 𝑓1, 𝑓2 ≤ 𝐹 at generation 𝑙, 
four offspring are first generated as follows (Ren and San 2007): 𝒐𝒇𝒇𝒔𝒑1 = 𝑬𝑓1(𝑙)+𝑬𝑓2(𝑙) 2                                                                                 (13) 

  𝒐𝒇𝒇𝒔𝒑2 = (𝒆𝑚𝑎𝑥+𝒆𝑚𝑖𝑛)(1−𝛽)+(𝑬𝑓1(𝑙)+𝑬𝑓2(𝑙))𝛽 2                                       (14) 

   𝒐𝒇𝒇𝒔𝒑3 = 𝒆𝑚𝑎𝑥(1 − 𝛽) + 𝑚𝑎𝑥 (𝑬𝑓1(𝑙), 𝑬𝑓2(𝑙)) 𝛽                                      (15) 

        𝒐𝒇𝒇𝒔𝒑4 = 𝒆𝑚𝑖𝑛(1 − 𝛽) + 𝑚𝑖𝑛 (𝑬𝑓1(𝑙), 𝑬𝑓2(𝑙)) 𝛽                                           (16) 

where crossover factor 𝛽 ∈ [0,1] denotes the weight determined by users. Both 𝒆𝑚𝑎𝑥 and 𝒆𝑚𝑖𝑛 have 𝐶 ×𝑀 + ℎ  components, 𝒆𝑚𝑎𝑥 = [1,1, … ,1, 𝑒1+, 𝑒2+, … , 𝑒ℎ+], 𝒆𝑚𝑖𝑛 = [0,0, … ,0, 𝑒1−, 𝑒2−, … , 𝑒ℎ−], where 1 and 0 

are the maximum and minimum values of the 𝐶 × 𝑀 prototype components (all expression values have 

been max-min normalized into [0, 1] beforehand). Vectors 𝑚𝑎𝑥 (𝑬𝑓1(𝑙), 𝑬𝑓2(𝑙)) and 𝑚𝑖𝑛 (𝑬𝑓1(𝑙), 𝑬𝑓2(𝑙)) 

are formed by the maximum and minimum of corresponding components in 𝑬𝑓1(𝑙) and 𝑬𝑓2(𝑙), respectively. 

Note that the imputation values and prototype components may spread all over the functional neighbor 

intervals and [0, 1] , respectively. The above crossover operator can generate superior offspring than 

arithmetic crossover or heuristic crossover (Li et al. 2013; Ren and San 2007). Then, from the two parent 

chromosomes and four offspring, two chromosomes with lower rank values and lesser crowding distances 

can be chosen to substitute the parent chromosomes. 
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In the mutation process, we adopt the classic uniform mutation scheme. As all expression values have 

been normalized and the evolution of imputation values should satisfy the interval constraints, each 

component of the prototype part and the imputation part of a chromosome is replaced by a random value in [0,1] and the corresponding functional neighbor interval respectively, with a small probability 𝑃𝑚.  

 

3.5 The procedure of the proposed method 

For an incomplete gene expression data set �̃� = [�̃�𝑖𝑗]𝑁×𝑀  with ℎ missing values, the procedure of the 

proposed MOC-FNI can be described as follows: 

Step 1: For each missing expression value �̃�𝑏𝑗(1 ≤ 𝑏 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀), find 𝑞 functional neighbors of 

the target gene �̃�𝑏 with non-missing feature 𝑗 using Equation (8), then determine the functional neighbor 

interval [𝑔𝑏𝑗− , 𝑔𝑏𝑗+ ] . Renumber the functional neighbor intervals by their appearance order and get [𝑒𝑜−, 𝑒𝑜+] (𝑜 = 1,2, … , ℎ). 

Step 2: Set the genetic population size 𝐹, maximal number of generations 𝐿max, selection factor 𝛼 ∈[0,1], crossover factor 𝛽 ∈ [0,1], mutation probability 𝑃𝑚 , fuzzification parameter 𝑚 ∈ (1, ∞), and the 

number of clusters 𝐶 . Initialize the genetic population 𝑬𝑓(1) (𝑓 = 1,2, … , 𝐹)  based on the functional 

neighbor intervals and DPC algorithm. 

Step 3: When the genetic generation index is 𝑙 (𝑙 = 1,2, … , 𝐿max) , for each chromosome 𝑬𝑓(𝑙) (1 ≤ 𝑓 ≤ 𝐹), recover �̃� by using 𝑬𝑓(𝑖𝑚𝑝)(𝑙) and yield complete data set 𝑮. Decode cluster prototypes from 𝑬𝑓(𝑐𝑙𝑢)(𝑙) and calculate memberships and indices 𝐽𝑚, 𝑋𝐵 using Equations (9), (10), and (11) on 𝑮. Calculate 

the non-domination rank and crowding distance of 𝑬𝑓(𝑙). 

Step 4: Perform roulette wheel selection, the crossover based on competition and optimal selection, and 

uniform mutation.  

Step 5: Combine the parent and offspring population, select the best 𝐹 solutions for the next iteration 

with respect to non-domination rank and crowding distance. 

Step 6: If genetic generation index 𝑙 = 𝐿max, stop and get the set of Pareto optimal solutions 𝑃𝑠; otherwise 

set 𝑙 = 𝑙 + 1 and return to Step 3. 

 

3.6 Selection of the final solution 

After running the proposed MOC-FNI, a set of Pareto optimal solutions 𝑃𝑠 will be achieved, from which 

the final imputation results and clustering partition can be extracted. We employ the projection similarity 

validity index (𝑃𝑆𝑉𝐼𝑛𝑑𝑒𝑥) (Xia et al. 2013; Zhou and Zhu 2018) to extract the best solution from 𝑃𝑠:  

              𝑃𝑆𝑉𝐼𝑛𝑑𝑒𝑥 = ∑ ∑ ∑ 𝑆𝑃𝐷𝑖𝑠(𝒈𝑎 , 𝒈𝑏)𝑛𝑖𝑏=1,𝑏≤𝑎𝑛𝑖𝑎=1𝐶𝑖=1                                            (17) 

where 

    𝑆𝑃𝐷𝑖𝑠(𝒈𝑎 , 𝒈𝑏) = ∑ log(|𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑎𝑗 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑏𝑗| + 1.0)𝑀𝑗=1                           (18) 𝐶  and 𝑀 are the numbers of clusters and attributes, respectively. 𝑮 = [𝑔𝑖𝑗]𝑁×𝑀  is the complete matrix 

imputed by the imputation part of solutions in 𝑃𝑠. 𝑛𝑖 (1 ≤ 𝑖 ≤ 𝐶) denotes the number of genes of the 𝑖th 

cluster. 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑎𝑗  is the projection coordinates of expression value 𝑔𝑎𝑗  that represents the projected 

interval of gene 𝒈𝑎 on the 𝑗th dimension. If 𝒈𝑎 and 𝒈𝑏 belong to the same cluster, they should have the 

same or quite similar projection coordinates on the 𝑀 dimensions. That is, 𝑆𝑃𝐷𝑖𝑠(𝒈𝑎 , 𝒈𝑏) should results 

in a small value. Therefore, we can select the solution with the smallest 𝑃𝑆𝑉𝐼𝑛𝑑𝑒𝑥 value to get final 

imputation results and cluster partition. 
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4  Experimental results  

4.1 Data sets 

We apply MOC-FNI to the following four benchmark data sets to prove its performance. 

Arabidopsis Thaliana: This data set consists of 138 Arabidopsis Thaliana genes. Each gene has 8 

expression values that correspond to 8 time points. The number of clusters  𝐶𝐴𝑟𝑎𝑏𝑖𝑑𝑜𝑝𝑠𝑖𝑠 = 4. To measure 

the gene semantic similarity, these genes are mapped to GO terms in the three sub-ontologies (BP, MF and 

CC) of GO. For the Arabidopsis Thaliana data set, the number of GO terms is 2189, with 1365 terms under 

biological process, 597 terms under molecular function, and 227 terms under the cellular component. 

Yeast Cell cycle_384: This data set contains the expression levels of 384 genes involved in yeast cell 

cycle regulation at 17 time points. These data are related with five phases of cell cycle. Thus, the number 

of clusters  𝐶𝑌𝑒𝑎𝑠𝑡_384 = 5. The genes in Yeast Cell cycle_384 also mapped to GO terms in BP, MF, and 

CC. Consequently, the number of GO terms is 4380, with 2872 terms under biological process, 962 terms 

under molecular function, and 546 terms under the cellular component.  

Yeast Cell cycle_237: This data set consists of 237 genes, whose functions fall into four categories in the 

MIPS database, i.e. 𝐶𝑌𝑒𝑎𝑠𝑡_237 = 4. For Yeast Cell cycle_237 data set, the number of GO terms is 3204, 

with 2139 terms under biological process, 637 terms under molecular function, and 428 terms under cellular 

component. 

Human Fibroblasts Serum: This data set contains the expression levels of 517 human genes. The data set 

has 13 dimensions and  𝐶𝑆𝑒𝑟𝑢𝑚 = 6. For this data set, the number of GO terms is 8469, with 5284 terms 

under biological process, 2026 terms under molecular function, and 1159 terms under cellular component. 

To simulate MCAR, we randomly discard a specified percentage of components in the original data set 𝑮(𝑜𝑟𝑖) = [𝑔𝑖𝑗(𝑜𝑟𝑖)]𝑁×𝑀 and generate the incomplete data set �̃� = [�̃�𝑖𝑗]𝑁×𝑀. 

 

4.2 Evaluation criteria 

To evaluate the imputation performance of MOC-FNI, we use normalized root mean square error (NRMSE) 

(Cheng et al. 2012): 

𝑁𝑅𝑀𝑆𝐸 = √ 1ℎ ∑ (𝑒𝑜(𝑜𝑟𝑖)−�̂�𝑜)2ℎ𝑜=11ℎ−1 ∑ (𝑒𝑜(𝑜𝑟𝑖)−�̅�)2ℎ𝑜=1                                                           (19) 

where ℎ is the number of missing values in  �̃�, �̂�𝑜(1 ≤ 𝑜 ≤ ℎ) is the imputation value of the 𝑜th missing 

value, 𝑒𝑜(𝑜𝑟𝑖)
 is its original (true) expression value in 𝑮(𝑜𝑟𝑖), and �̅� is the average of all missing values. 

NRMSE is the most commonly used evaluation criterion that measure the imputation accuracy. A smaller 

NRMSE indicates a better imputation result. 

    An internal cluster validity measure, called Silhouette index, is utilized to evaluate the clustering 

performance. Let 𝑎(𝑖) be the average distance between gene 𝒈𝑖 and other genes in the same cluster, 𝑏(𝑖) 

be the minimum average distance between gene 𝒈𝑖 and genes in other clusters. Then, the silhouette width 

of 𝒈𝑖 is defined as (Rousseeuw 1987): 𝑆(𝑖) = 𝑏(𝑖)−𝑎(𝑖) max{𝑎(𝑖),𝑏(𝑖)} , 1 ≤ 𝑖 ≤ 𝑁                                                            (20) 

It can be seen that, for each gene 𝒈𝑖,  𝑆(𝑖) ∈ [−1,1]. The Silhouette index of the gene expression matrix is 

computed as the average value of the Silhouette width of all genes. A large Silhouette index indicates a 

good clustering result. 
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4.3 Experiments setting-up 

We compare MOC-FNI with several popular and promising imputation methods, including MEANimpute 

(Acurna and Rodriguez 2004), KNNimpute (Troyanskaya et al 2001), BPCA (Oba et al. 2003; de Souto et 

al. 2015), MICE (Buuren and  Oudshoorn 2011), LLSimpute (Kim et al. 2005), and GOimpute (Tuikkala 

et al. 2006). Then, the same NSGA-II framework as that in MOC-FNI is employed to perform clustering 

on these recovered gene expression matrices. These two-stage clustering methods are termed as 

MEANimpute+NSGAII, KNNimpute+NSGAII, BPCA+NSGAII, MICE+NSGAII, LLSimpute+NSGAII, 

and GOimpute+NSGAII, respectively. For each of the two-stage methods, as the imputation has been 

implemented in the preprocess, the chromosomes only encode cluster prototypes (with 𝐶 × 𝑀 components). 

Set population size 𝐹 = 80 , maximal number of generations 𝐿max = 60 , selection factor 𝛼 = 0.3 , 

crossover factor 𝛽 = 0.3, mutation probability 𝑃𝑚 = 0.1, fuzzification parameter 𝑚 = 2, the number of 

functional neighbors 𝑞 = 10 for MOC-FNI. Motivated by GOimpute (Tuikkala et al. 2006), the parameter 𝜃 in Equation (8) is selected adaptively. First, we randomly designate 5% of non-missing expression values 

as missing artificially from the data set to be imputed. For the optimal 𝜃, we search from 0.4 to 2.0 with 

grid 0.1 with respect to the minimum NRMSE. The optimal values for the four data sets are  𝜃𝐴𝑟𝑎𝑏𝑖𝑑𝑜𝑝𝑠𝑖𝑠 =0.9 , 𝜃𝑌𝑒𝑎𝑠𝑡_384 = 1.4 , 𝜃𝑌𝑒𝑎𝑠𝑡_237 = 1.1 , 𝜃𝑆𝑒𝑟𝑢𝑚 = 1.2 , respectively. The parameters of the compared 

methods are set according to the optimal parameters suggested in the original papers. Various missing rates 

are randomly generated in the original matrices: 1%, 5%, 10%, 15%, 20% and 30%, respectively. We 

present the average results obtained over 10 trials with the same incomplete data set in each trial for each 

approach.  

 

4.4 Comparison of imputation performance 

Figure 2 shows the average NRMSE values of MOC-FNI on four data sets at different missing rates in 

comparison to other six methods.  

 

 
(a) Arabidopsis Thaliana                                             (b) Yeast Cell cycle_384 



11 

 

 
(c) Yeast Cell cycle_237                                                           (d) Serum 

Fig. 2 Average NRMSE values of seven methods at different missing rates for four data sets 

 
From Figure 2, we observe an obvious trend that NRMSE values increase along with the missing rates 

for all imputation methods on all data sets. We also observe that MOC-FNI and GOimpute always achieved 

the first two smallest NRMSE values, suggesting that GO information improves the imputation accuracy. 

Taking the Yeast Cell cycle_384 data set as an example, compared to the MEANimpute, KNNimpute, 

BPCA, MICE and LLSimpute without using GO information, the MOC-FNI reduces the NRMSE values 

by 26.1%, 23.5%, 25.1%, 21.7%, and 17.0% at 1% missing rate, respectively. These percentages, along 

with the increase of missing rates, reduce to 7.5% - 10.5% at 30% missing rate. The results show that the 

proposed MOC-FNI dominates to other methods in imputation accuracy for various missing rates. 

 

4.5 Comparison of clustering results 

Tables 1, 2, 3 and 4 show the average Silhouette index values obtained by MOC-FNI and six two-stage 

methods on four data sets. The optimal solutions in each column are highlighted in bold and the suboptimal 

solutions are underlined. To give a visual comparison, we sort the average Silhouette index values in each 

column in descending order and obtain the sort index. Figure 3 gives the average sort index of the seven 

methods, and a smaller average sort index indicates a better clustering result. 

 

Table 1. Average Silhouette index values of different algorithms on Arabidopsis Thaliana 

Algorithm Missing rate 

1% 5% 10% 15% 20% 30% 

MEANimpute+NSGAII 0.3880 0.3656 0.3597 0.3591 0.3272 0.2886 

KNNimpute+NSGAII 0.3885 0.3785 0.3608 0.3468 0.3227 0.2928 

BPCA+NSGAII 0.3974 0.3791 0.3702 0.3594 0.3252 0.3094 

MICE+NSGAII 0.3855 0.3549 0.3691 0.3579 0.3290 0.2873 

LLSimpute+NSGAII 0.3922 0.3901 0.3596 0.3515 0.3264 0.3016 

GOimpute+NSGAII 0.3989 0.3962 0.3688 0.3652 0.3303 0.3063 

MOC-FNI 0.4039 0.4008 0.3954 0.3808 0.3416 0.3075 
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Table 2. Average Silhouette index values of different algorithms on Yeast Cell cycle_384 

Algorithm Missing rate 

1% 5% 10% 15% 20% 30% 

MEANimpute+NSGAII 0.3868 0.3566 0.3613 0.3285 0.3105 0.3004 

KNNimpute+NSGAII 0.3910 0.3736 0.3712 0.3576 0.3241 0.3165 

BPCA+NSGAII 0.4026 0.3865 0.3688 0.3472 0.3153 0.3177 

MICE+NSGAII 0.3850 0.3715 0.3553 0.3302 0.3138 0.3023 

LLSimpute+NSGAII 0.4045 0.3879 0.3837 0.3581 0.3288 0.3148 

GOimpute+NSGAII 0.4065 0.3956 0.3882 0.3567 0.3460 0.3287 

MOC-FNI 0.4235 0.4092 0.3953 0.3730 0.3709 0.3549 

 

Table 3. Average Silhouette index values of different algorithms on Yeast Cell cycle_237 

Algorithm Missing rate 

1% 5% 10% 15% 20% 30% 

MEANimpute+NSGAII 0.3930 0.3779 0.3562 0.3237 0.2935 0.2907 

KNNimpute+NSGAII 0.3908 0.3690 0.3556 0.3266 0.3028 0.2945 

BPCA+NSGAII 0.3849 0.3700 0.3657 0.3163 0.3266 0.3100 

MICE+NSGAII 0.3874 0.3922 0.3624 0.3265 0.2976 0.2992 

LLSimpute+NSGAII 0.3867 0.3815 0.3744 0.3321 0.3249 0.3115 

GOimpute+NSGAII 0.3914 0.3857 0.3781 0.3388 0.3300 0.3115 

MOC-FNI 0.3971 0.3932 0.3846 0.3687 0.3479 0.3281 

 

Table 4. Average Silhouette index values of different algorithms on Serum 

Algorithm Missing rate 

1% 5% 10% 15% 20% 30% 

MEANimpute+NSGAII 0.3977 0.3866 0.3792 0.3396 0.3303 0.3221 

KNNimpute+NSGAII 0.3875 0.3922 0.3632 0.3450 0.3254 0.3157 

BPCA+NSGAII 0.4066 0.3953 0.3842 0.3658 0.3492 0.3232 

MICE+NSGAII 0.4001 0.3901 0.3800 0.3497 0.3351 0.3197 

LLSimpute+NSGAII 0.4003 0.3931 0.3890 0.3615 0.3389 0.3328 

GOimpute+NSGAII 0.4053 0.4069 0.3990 0.3656 0.3536 0.3375 

MOC-FNI 0.4196 0.4106 0.4052 0.3980 0.3680 0.3575 

 

 
Fig. 3  Average sort index of seven methods at different missing rates for four data sets 
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From Tables 1, 2, 3 and 4, we observe that the Silhouette index values decline along with the missing 

rates on the overall trend. Compared to the two-stage methods, the proposed MOC-FNI is always the 

outperformer expect for the 30% case of incomplete Arabidopsis Thaliana data sets as a suboptimal solution. 

GOimpute+NSGAII can get the second largest Silhouettes index values in most cases. Meanwhile, the 

results shown in Figure 3 conform to the imputation accuracy shown in Figure 2, which illustrate the 

positive impact of high imputation accuracy on clustering. These experimental results validate the mutual 

promotion between imputation and clustering and the rationality of joint optimization. 

Figures 4 shows the Eisen plots and cluster profiles on the four data sets, respectively. Taking the Yeast 

Cell cycle_384 data set as an example, we find that the 5 clusters generated by MOC-FNI are very 

prominent as shown in the Eisen plot (Yeast Cell cycle_384 (a)), the cluster profiles (Yeast Cell cycle_384 

(b)) indicate that the expression profiles of genes in each cluster are quite similar. Similar observations can 

also be obtained from the other data sets. 

 

            
Arabidopsis Thaliana (a)  Arabidopsis Thaliana (b)              Yeast Cell cycle_384 (a)        Yeast Cell cycle_384 (b) 

 (with 1% missing values)                                                      (with 5% missing values) 

 

              
Yeast Cell cycle_237 (a)   Yeast Cell cycle_237 (b)                     Serum (a)                           Serum (b) 

(with 10% missing values)                                                            (with 20% missing values) 

 

Fig. 4  Data sets clustered using the proposed MOC-FNI. (a) Eisen plot. (b) Cluster profiles 
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4.6 Biological significance 

To test the functional enrichment of gene clusters obtained by MOC-FNI and the compared two-stage 

methods, we also perform biological relevance test with the help of GOTermFinder tool (https://www. 

yeastgenome.org/goTermFinder). The network analysis tool can find the significant shared GO terms that 

describe the genes in each cluster from a GO sub-ontologies (BP, CC, MF) and provide the corresponding 

p-values based on the hypergeometric distribution. The closer the obtained p-value is to 0, the more 

biologically significant the clustering result.  

Taking the 5% case of incomplete Yeast Cell cycle_237 data set as an example, the biological 

significance test is conducted at the 1% significance level. We focus on the three most significant GO terms 

(with the first three smallest p-values) for each of the 4 clusters obtained by different methods. Figure 5 

shows the plot of the average p-values. To illustrate the difference significantly, the p-values are negative 

log-transformed and the clusters are sorted in descending order according to the transformed values. Table 

5 reports the three most significant GO terms and the corresponding p-values in each cluster obtained by 

MOC-FNI. 

 

 
Fig. 5  Plot of the average p-values of the three most significant GO terms for each of the 4 clusters obtained by 

different algorithms 

 

Table 5. The three most significant GO terms and the corresponding p-values for each of the 4 clusters obtained by 

MOC-FNI 

Cluster Significant GO term(GO ID)  p-value 

Cluster1 structural constituent of ribosome(GO:0003735) 1.00e-171 

 ribosomal subunit(GO:0044391) 2.70e-169 

 ribosome(GO:0005840) 2.22e-163 

Cluster2 DNA replication(GO:0006260) 7.80e-51 

 DNA-dependent DNA replication(GO:0006261) 1.97e-48 

 DNA metabolic process(GO:0006259) 3.56e-36 

Cluster3 spindle pole body(GO:0005816) 9.50e-24 

 microtubule organizing center(GO:0005815) 5.35e-23 

 microtubule cytoskeleton(GO:0015630) 1.09e-21 

Cluster4 sulfate assimilation(GO:0000103) 7.11e-11 

 cellular amino acid metabolic process(GO:0006520) 9.92e-11 

 toxin biosynthetic process(GO:0009403) 1.30e-08 

https://www/
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    From Figure 5, it is clear that MOC-FNI can always get the smallest average p-values in the 4 clusters. 

All the p-values of the significant GO terms listed in Table 5 are far less than 0.01. The above results 

indicate that the gene clusters obtained by MOC-FNI possess more biological significance.  

 

5  Conclusion 

This paper focused on the imputation and cluster tasks of incomplete gene expression data and presented a 

multi-objective clustering algorithm guided by biological information. In the proposed multi-objective joint 

optimization framework, we impute all the missing expression values as a whole rather than separately to 

serve the clustering task and realize the synergistic optimization of imputation and clustering. Besides, the 

GO annotation information integrated in our framework helps to provide reasonable constraints for the 

optimization process. Experimental results indicate that MOC-FNI outperforms the compared methods in 

terms of imputation, clustering accuracy, and biological significance. As an interesting future scope of work, 

we will introduce semantic similarity to the clustering process to further improve the clustering performance 

of incomplete gene expression data. 
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