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Abstract: Khatter (Soft Computing 24 (2020) 16847-16867) pointed out that although 

several approaches are proposed in the literature to solve single-valued neutrosophic linear 

programming problems (SVNLPPS) (linear programming problems in which all the 

parameters except decision variables are either represented by single-valued triangular 

neutrosophic numbers (SVTNNS) or single-valued trapezoidal neutrosophic numbers 

(SVTrNNS)). However, all the methods for comparing single-valued neutrosophic numbers 

(SVNNS), used in existing approaches, are independent from the attitude of the decision 

maker towards the risk. To fill this gap, Khatter (2020), firstly, proposed a method for 

comparing two SVNNS by considering the attitude of the decision maker towards the risk. 

Then, using the proposed comparing method, Khatter (2020) proposed an approach to solve 

SVNLPPS. In this paper, it is pointed out that a mathematical incorrect result is considered in 

Khatter’s approach. Hence, it is inappropriate to use Khatter’s approach. Also, it is pointed 

out that some mathematical incorrect results are considered in other existing approaches for 

solving SVNLPPS. Hence, it is inappropriate to use other existing approaches for solving 

SVNLPPS. Furthermore, to resolve the inappropriateness of Khatter’s approach and other 

existing approaches, a new approach (named as Mehar approach) is proposed to solve 

SVNLPPS. Finally, correct optimal solution of some existing SVNLPPS is obtained by the 

proposed Mehar approach.  

Keywords: SVNLPPS, SVTNNS, SVTrNNS.  

1. Introduction 

In the last few years, several approaches are proposed in the literature to solve 

mathematical programming problems under neutrosophic environment (Smarandache 1998). 

In this section, some recently proposed approaches are discussed in a brief manner.  

Hussian et al. (2017) proposed an approach to solve single-valued triangular neutrosophic 

linear programming problems (SVTNLPPS). In Hussian et al.’s approach (2017), firstly, a 
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single-valued triangular neutrosophic linear programming problem (SVTNLPP) is 

transformed into its equivalent crisp multi-objective linear programming problem 

(CrMOLPP). Then, the obtained CrMOLPP is transformed into its equivalent crisp linear 

programming problem (CrLPP). Finally, it is assumed that an optimal solution of the 

transformed CrLPP also represents an optimal solution of SVTNLPP. 

Hussian et al. (2018) proposed an approach to solve single-valued triangular neutrosophic 

linear fractional programming problems (SVTNLFPPS). In Hussian et al.’s approach (2018), 

firstly, a single-valued triangular neutrosophic linear fractional programming problem 

(SVTNLFPP) is transformed into its equivalent crisp multi-objective linear fractional 

programming problem (CrMOLFPP). Then, the obtained CrMOLFPP is transformed into its 

equivalent CrMOLPP. After that, the obtained CrMOLPP is transformed into its equivalent 

CrLPP. Finally, it is assumed that an optimal solution of the transformed CrLPP also 

represents an optimal solution of SVTNLFPP. 

Abdel-Basset et al. (2019a), firstly, proposed a method for comparing two SVTrNNS. 

Then, using the proposed comparing method, Abdel-Basset et al. (2019a) proposed an 

approach to solve single-valued trapezoidal neutrosophic linear programming problems 

(SVTrNLPPS). In Abdel-Basset et al.’s approach (2019a), firstly, a single-valued trapezoidal 

neutrosophic linear programming problem (SVTrNLPP) is transformed into its equivalent 

CrLPP. Finally, it is assumed that an optimal solution of the transformed CrLPP also 

represents an optimal solution of SVTrNLPP.       

Singh et al. (2019) pointed out that some mathematical incorrect results are considered in 

Abdel-Basset et al.’s approach (2019a). Hence, it is inappropriate to use Abdel-Basset et al.’s 

approach (2019a) in its present form. Singh et al. (2019) also suggested some modifications 

to resolve the inappropriateness of Abdel-Basset et al.’s approach (2019a).  

Abdel-Basset et al. (2019b) proposed an approach to solve SVTNLFPPS. In Abdel-Basset 

et al.’s approach (2019b), firstly, a SVTNLFPP is transformed into its equivalent 

CrMOLFPP. Then, the obtained CrMOLFPP is transformed into its equivalent CrMOLPP. 

After that, the obtained CrMOLPP is transformed into its equivalent CrLPP. Finally, it is 

assumed that an optimal solution of the transformed CrLPP also represents an optimal 

solution of SVTNLFPP. 

Nafei and Nasseri (2019), firstly, proposed a method for comparing two SVTNNS. Then, 

using the proposed comparing method, Nafei and Nasseri (2019) proposed an approach to 

solve single-valued triangular neutrosophic integer programming problems (SVTNIPPS). In 

Nafei and Nasseri’s approach (2019), firstly, a single-valued triangular neutrosophic integer 



programming problem (SVTNIPP) is transformed into its equivalent crisp integer 

programming problem (CrIPP). Finally, it is assumed that an optimal solution of the 

transformed CrIPP also represents an optimal solution of SVTNIPP.    

Das and Dash (2020) pointed out that it is inappropriate to use Hussian et al.’s approach 

(2017) for solving SVTNLPPS. Das and Dash (2020) also suggested to use Nafei and 

Nasseri’s approach (2019) for solving SVTNLPPS.    

Das and Edalatpanah (2020) pointed out that a mathematical incorrect result is considered 

in Nafei and Nasseri’s approach (2019). Hence, it is inappropriate to use Nafei and Nasseri’s 

approach (2019). Das and Edalatpanah (2020) also proposed an approach to solve 

SVTNIPPS. In Das and Edalatpanah’s approach (2020), firstly, a SVTNIPP is transformed 

into its equivalent CrIPP. Finally, it is assumed that an optimal solution of the transformed 

CrIPP also represents an optimal solution of SVTNIPP. 

Khatter (2020) pointed out that although several approaches are proposed in the literature 

to solve SVNLPPS. However, all the methods for comparing SVNNS, used in existing 

approaches, are independent from the attitude of the decision maker towards the risk. To fill 

this gap, Khatter (2020), firstly, proposed a method for comparing two SVNNS by 

considering the attitude of the decision maker towards the risk. Then, using the proposed 

comparing method, Khatter (2020) proposed an approach to solve SVNLPPS. In Khatter’s 

approach (2020), a SVNLPP is transformed into its equivalent CrLPP. Finally, it is assumed 

that an optimal solution of the transformed CrLPP also represents an optimal solution of 

SVNLPP.  

Badr et al. (2020), firstly, proposed a method for comparing two SVTrNNS. Then, using 

the proposed comparing method, Badr et al. (2020) generalized the crisp two-phase simplex 

algorithm for solving SVTrNLPPS. 

Das et al. (2020) proposed an approach to solve SVTNLFPPS. In this approach, firstly, a 

SVTNLFPP is split into its equivalent two neutrosophic linear programming problems. Then, 

the obtained neutrosophic linear programming problems are transformed into their equivalent 

crisp linear programming problems (CrLPPS). Finally, it is assumed that both optimal 

solutions of the transformed CrLPPS also represents an optimal solution of SVTNLFPP. 

Abdelfattah (2021) proposed an approach to solve SVTNLPPS. In Abdelfattah’s approach 

(2021), firstly, a SVTNLPP is split into two CrLPPS. Then, the obtained CrLPPS are solved 

independently. Finally, it is assumed that both optimal solutions of the transformed CrLPPS 

also represents an optimal solution of SVTNLPP.   



Kar et al. (2021) proposed a simplex algorithm for solving SVTNLPPS, Badr et al. (2021) 

proposed a simplex algorithm for solving SVTrNLPPS and Rabie et al. (2021) proposed a 

two-phase simplex algorithm for solving SVTrNLPPS. 

Das et al. (2021) proposed an approach to solve SVTrNLPPS. In this approach, firstly, a 

SVTrNLPP is transformed into its equivalent CrMOLPP. Then, using a lexicographic 

approach, the transformed CrMOLPP is solved. Finally, it is assumed that an efficient 

solution of the transformed CrMOLPP also represents an optimal solution of SVTrNLPP. 

ElHadidi et al. (2021a), firstly, proposed a method for comparing two SVTrNNS. Then, 

using the proposed comparing method, ElHadidi et al. (2021a) proposed an approach to solve 

SVTrNLPPS. In ElHadidi et al.’s approach (2021a), firstly, a SVTrNLPP is transformed into 

its equivalent CrLPP. Finally, it is assumed that an optimal solution of the transformed 

CrLPP also represents an optimal solution of SVTrNLPP. 

ElHadidi et al. (2021b) proposed an approach to solve single-valued trapezoidal 

neutrosophic linear fractional programming problems (SVTrNLFPPS). In ElHadidi et al.’s 

approach (2021b), firstly, a single-valued trapezoidal neutrosophic linear fractional 

programming problem (SVTrNLFPP) is transformed into its equivalent CrMOLFPP. Then, 

the obtained CrMOLFPP is transformed into its equivalent CrMOLPP. After that, the 

obtained CrMOLPP is transformed into its equivalent CrLPP. Finally, it is assumed that an 

optimal solution of the transformed CrLPP also represents an optimal solution of 

SVTrNLFPP. 

Das and Edalatpanah (2022) proposed an approach to solve SVTNLFPPS. In Das and 

Edalatpanah’s approach (2022), firstly, a SVTNLFPP is transformed into its equivalent crisp 

linear fractional programming problem. Then, the obtained crisp linear fractional 

programming problem is transformed into its equivalent CrLPP. Finally, it is assumed that an 

optimal solution of the transformed CrLPP also represents an optimal solution of 

SVTNLFPP. 

In this paper, it is shown that some mathematical incorrect results are considered in all 

existing approaches for solving mathematical programming problems under neutrosophic 

environment. Hence, it is inappropriate to use existing approaches for solving mathematical 

programming problems under neutrosophic environment. Also, a new approach (named as 

Mehar approach) is proposed to solve SVNLPPS.   

This paper is organized as follows. In Section 2, some basic concepts related to 

neutrosophic set theory are reviewed. In Section 3, it is pointed out that it is inappropriate to 

use existing approaches for solving mathematical programming problems under neutrosophic 



environment. In Section 4, a new approach (named as Mehar approach) is proposed to solve 

SVNLPPS. In Section 5, correct optimal solution of some existing SVNLPPS are obtained by 

the proposed Mehar approach. Section 6 concludes the paper. 

2. Preliminaries   

 In this section, some basic definitions are reviewed. 

Definition 1 (Wang et al. 2010) Let 𝑋 be a universal set. Then, the set �̃� ={⟨𝑥, 𝑇�̃�(𝑥), 𝐼�̃�(𝑥), 𝐹�̃�(𝑥)⟩: 𝑥 ∈ 𝑋}, defined over the universal set 𝑋, is said to be a single-

valued neutrosophic set, where 𝑇�̃�: 𝑋 → [0,1], 𝐼�̃�: 𝑋 → [0,1] and 𝐹�̃�: 𝑋 → [0,1] represents the 

truth, indeterminacy and falsity membership functions respectively. Also, 0 ≤ 𝑇�̃�(𝑥) +𝐼�̃�(𝑥) + 𝐹�̃�(𝑥) ≤ 3 ∀𝑥 ∈ �̃�. 

Definition 2 (Deli and Subas 2014) A single-valued neutrosophic set �̃� =(𝑎�̃�1, 𝑎�̃�2, 𝑎�̃�3; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�), where 0 ≤ 𝑤�̃� ≤ 1,0 ≤ 𝑢�̃� ≤ 1, ,0 ≤ 𝑦�̃� ≤ 1,0 ≤ 𝑤�̃� + 𝑢�̃� + 𝑦�̃� ≤ 3, 
is said to be single-valued triangular neutrosophic number (SVTNN) if its membership 

functions are defined as 

𝑇�̃�(𝑥) =
{   
   𝑤�̃� ( 𝑥−𝑎�̃�1𝑎�̃�2−𝑎�̃�1) ,         𝑎�̃�1 ≤ 𝑥 < 𝑎�̃�2,𝑤�̃�,                                    𝑥 = 𝑎�̃�2,𝑤�̃� ( 𝑎�̃�3−𝑥𝑎�̃�3−𝑎�̃�2) ,       𝑎�̃�2 < 𝑥 ≤ 𝑎�̃�3,0,                                otherwise

  

𝐼�̃�(𝑥) =
{   
   𝑎�̃�2−𝑥+𝑢�̃�(𝑥−𝑎�̃�1)𝑎�̃�2−𝑎�̃�1 ,          𝑎�̃�1 ≤ 𝑥 < 𝑎�̃�2,𝑢�̃�,                                           𝑥 = 𝑎�̃�2,𝑥−𝑎�̃�2+𝑢�̃�(𝑎�̃�3−𝑥)𝑎�̃�3−𝑎�̃�2 ,       𝑎�̃�2 < 𝑥 ≤ 𝑎�̃�3,1,                                        otherwise

  

𝐹�̃�(𝑥) =
{   
   𝑎�̃�2−𝑥+𝑦�̃�(𝑥−𝑎�̃�1)𝑎�̃�2−𝑎�̃�1 ,              𝑎�̃�1 ≤ 𝑥 < 𝑎�̃�2,𝑦�̃�,                                               𝑥 = 𝑎�̃�2,𝑥−𝑎�̃�2+𝑦�̃�(𝑎�̃�3−𝑥)𝑎�̃�3−𝑎�̃�2 ,          𝑎�̃�2 < 𝑥 ≤ 𝑎�̃�3,1,                                           otherwise

  

Definition 3 (Deli and Subas 2014) A single-valued neutrosophic set �̃� =(𝑎�̃�1, 𝑎�̃�2, 𝑎�̃�3, 𝑎�̃�4; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�), where 0 ≤ 𝑤�̃� ≤ 1,0 ≤ 𝑢�̃� ≤ 1, ,0 ≤ 𝑦�̃� ≤ 1,0 ≤ 𝑤�̃� + 𝑢�̃� +𝑦�̃� ≤ 3, is said to be single-valued trapezoidal neutrosophic number (SVTrNN) if its 

membership functions are defined as 



𝑇�̃�(𝑥) =
{   
   𝑤�̃� ( 𝑥−𝑎�̃�1𝑎�̃�2−𝑎�̃�1) ,         𝑎�̃�1 ≤ 𝑥 < 𝑎�̃�2,𝑤�̃�,                         𝑎�̃�2 ≤ 𝑥 ≤ 𝑎�̃�3,𝑤�̃� ( 𝑎�̃�4−𝑥𝑎�̃�4−𝑎�̃�3) ,       𝑎�̃�3 < 𝑥 ≤ 𝑎�̃�4,0,                                otherwise

  

𝐼�̃�(𝑥) =
{   
   𝑎�̃�2−𝑥+𝑢�̃�(𝑥−𝑎�̃�1)𝑎�̃�2−𝑎�̃�1 ,          𝑎�̃�1 ≤ 𝑥 < 𝑎�̃�2,𝑢�̃�,                                𝑎�̃�2 ≤ 𝑥 ≤ 𝑎�̃�3,𝑥−𝑎�̃�3+𝑢�̃�(𝑎�̃�4−𝑥)𝑎�̃�4−𝑎�̃�3 ,       𝑎�̃�3 < 𝑥 ≤ 𝑎�̃�4,1,                                        otherwise

  

𝐹�̃�(𝑥) =
{   
   𝑎�̃�2−𝑥+𝑦�̃�(𝑥−𝑎�̃�1)𝑎�̃�2−𝑎�̃�1 ,              𝑎�̃�1 ≤ 𝑥 < 𝑎�̃�2,𝑦�̃�,                                   𝑎�̃�2 ≤  𝑥 ≤ 𝑎�̃�3,𝑥−𝑎�̃�3+𝑦�̃�(𝑎�̃�4−𝑥)𝑎�̃�4−𝑎�̃�3 ,          𝑎�̃�3 < 𝑥 ≤ 𝑎�̃�4,1,                                           otherwise

  

Definition 4 (Deli and Subas 2014) Let �̃�1 = (𝑎�̃�11 , 𝑎�̃�12 , 𝑎�̃�13 ; 𝑤�̃�1 , 𝑢�̃�1 , 𝑦�̃�1) and �̃�2 =(𝑎�̃�21 , 𝑎�̃�22 , 𝑎�̃�23 ; 𝑤�̃�2 , 𝑢�̃�2 , 𝑦�̃�2) be two SVTNNS. Then, �̃�1⊕ �̃�2 = (𝑎�̃�11 + 𝑎�̃�21 , 𝑎�̃�12 + 𝑎�̃�22 , 𝑎�̃�13+ 𝑎�̃�23 ; min(𝑤�̃�1 , 𝑤�̃�2) , max(𝑢�̃�1 , 𝑢�̃�2) ,max(𝑦�̃�1 , 𝑦�̃�2)) 
Definition 5 (Deli and Subas 2014) Let �̃�1 = (𝑎�̃�11 , 𝑎�̃�12 , 𝑎�̃�13 , 𝑎�̃�14 ; 𝑤�̃�1 , 𝑢�̃�1 , 𝑦�̃�1) and �̃�2 =(𝑎�̃�21 , 𝑎�̃�22 , 𝑎�̃�23 , 𝑎�̃�14 ; 𝑤�̃�2 , 𝑢�̃�2 , 𝑦�̃�2) be two SVTrNNS. Then, �̃�1⊕ �̃�2 = (𝑎�̃�11 + 𝑎�̃�21 , 𝑎�̃�12 + 𝑎�̃�22 , 𝑎�̃�13 + 𝑎�̃�23 , 𝑎�̃�14+ 𝑎�̃�24 ; min(𝑤�̃�1 , 𝑤�̃�2) , max(𝑢�̃�1 , 𝑢�̃�2) ,max(𝑦�̃�1 , 𝑦�̃�2)) 
Definition 6 (Basumatary and Said 2020) Let �̃� = (𝑎�̃�1, 𝑎�̃�2, 𝑎�̃�3; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�) be a SVTNN and 𝑘 be a real number. Then,  𝑘�̃� = {(𝑘𝑎�̃�1, 𝑘𝑎�̃�2, 𝑘𝑎�̃�3; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�), if   𝑘 ≥ 0;(𝑘𝑎�̃�3, 𝑘𝑎�̃�2, 𝑘𝑎�̃�1; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�), if    𝑘 < 0.  
Definition 7 (Basumatary and Said 2020) Let �̃� = (𝑎�̃�1, 𝑎�̃�2, 𝑎�̃�3, 𝑎�̃�4; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�) be a SVTrNN 

and 𝑘 be a real number. Then,  𝑘�̃� = {(𝑘𝑎�̃�1, 𝑘𝑎�̃�2, 𝑘𝑎�̃�3, 𝑘𝑎�̃�4; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�), if   𝑘 ≥ 0;(𝑘𝑎�̃�4, 𝑘𝑎�̃�3, 𝑘𝑎�̃�2, 𝑘𝑎�̃�1; 𝑤�̃�, 𝑢�̃�, 𝑦�̃�), if    𝑘 < 0.  



Definition 8 (Khatter 2020) Let �̃�1 = (𝑎�̃�11 , 𝑎�̃�12 , 𝑎�̃�13 ; 𝑤�̃�1 , 𝑢�̃�1 , 𝑦�̃�1) and �̃�2 =(𝑎�̃�21 , 𝑎�̃�22 , 𝑎�̃�23 ; 𝑤�̃�2 , 𝑢�̃�2 , 𝑦�̃�2) be two SVTNNS. Then, 

(i) �̃�1 ≺ �̃�2  if 𝑉(�̃�1) < 𝑉(�̃�2),   
(ii) �̃�1 ≻ �̃�2  if 𝑉(�̃�1) > 𝑉(�̃�2),  
(iii) �̃�1 ≈ �̃�2  if 𝑉(�̃�1) = 𝑉(�̃�2).  

where,  

(a) 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖36 )𝑤�̃�𝑖2 + (1 −
𝜆)([2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖2 ]6 +
[2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]; 𝑖 = 1,2.    

(b) 𝜆 reflects the attitude of the decision maker towards the risk. 

(c) 𝜆 ∈ [0, 0.5) indicates that the expert is risk taker and gives preference to uncertainty. 

(d) 𝜆 = 0.5 indicates that the expert is neutral about deciding the parameters of 

SVTNLPP problem.  

(e) 𝜆 ∈ (0.5, 1] indicates that the expert is risk aversive about deciding the parameters of 

SVTNLPP problem and gives preference to certainty.  

Definition 9 (Khatter 2020) Let �̃�1 = (𝑎�̃�11 , 𝑎�̃�12 , 𝑎�̃�13 , 𝑎�̃�14 ; 𝑤�̃�1 , 𝑢�̃�1 , 𝑦�̃�1) and �̃�2 =(𝑎�̃�21 , 𝑎�̃�22 , 𝑎�̃�23 , 𝑎�̃�24 ; 𝑤�̃�2 , 𝑢�̃�2 , 𝑦�̃�2) be two SVTrNNS. Then, 

(i) �̃�1 ≺ �̃�2  if 𝑉(�̃�1) < 𝑉(�̃�2),   
(ii) �̃�1 ≻ �̃�2  if 𝑉(�̃�1) > 𝑉(�̃�2),  
(iii) �̃�1 ≈ �̃�2  if 𝑉(�̃�1) = 𝑉(�̃�2).  

where,  𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖46 )𝑤�̃�𝑖2 + (1 −
𝜆)([(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖2 ]6 +
[(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]; 𝑖 = 1,2. 

 



3. Inappropriateness of existing approaches 

In this section,   

(i) A mathematical incorrect result, considered in Singh et al.’s approach (2019) and 

Khatter’s approach (2020), is pointed out. It can be easily verified that the same 

mathematical incorrect result is also considered in the existing approaches (Bera and 

Mahapatra 2019, Emam et al. 2019, Badr et al. 2020, Nafei et al. 2020, Basumatary 

and Said 2020, Das and Dash 2020, Das and Edalatpanah 2020, Stephen and Helen 

2020, Badr et al. 2021, Rabie et al. 2021, SN and Ulaganathan 2021, ElHadidi et al. 

2021a, Wang et al. 2021, Das and Edalatpanah 2022). 

(ii) A mathematical incorrect result, considered in Abdelfattah’s approach (2021), is 

pointed out. It can be easily verified that the same mathematical incorrect result is 

also considered in the existing approach (Das et al. 2020).  

(iii) A mathematical incorrect result, considered in Das et al.’s approach (2021), is pointed 

out. It can be easily verified that the same mathematical incorrect result is also 

considered in the existing approaches (Hussian et al. 2018, Abdel-Basset et al. 2019b, 

ElHadidi et al. 2021b). 

(iv) A mathematical incorrect result, considered in Kar et al.’s approach (2021), is pointed 

out. 

3.1 Inappropriateness of Singh et al.’s approach  
In Singh et al.’s approach (2019), firstly, the SVTrNLPP (𝑃1) is transformed into the 

CrLPP (𝑃2). Then, the CrLPP (𝑃2) is transformed into the CrLPP (𝑃3). After that, the CrLPP 

(𝑃3) is transformed into the CrLPP (𝑃4). Finally, it is assumed that an optimal solution of the 

CrLPP (𝑃4) also represents an optimal solution of the SVTrNLPP (𝑃1).  

SVTrNLPP (𝑷𝟏) Maximize/Minimize (∑ (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) 𝑥𝑗𝑛𝑗=1 )  

Subject to ∑ (𝑎�̃�𝑖𝑗1 , 𝑎�̃�𝑖𝑗2 , 𝑎�̃�𝑖𝑗3 , 𝑎�̃�𝑖𝑗4 ; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗) 𝑥𝑗𝑛𝑗=1 (≼,≈,≽) (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖 =1,2, … ,𝑚,  𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛, 

where, 

(i) 𝑚: number of constraints. 

(ii) 𝑛: number of variables. 



(iii) (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) is a SVTrNN for each 𝑗 = 1,2, … , 𝑛. 

(iv) (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) is a SVTrNN for each 𝑖 = 1,2, … ,𝑚. 

(v) (𝑎�̃�𝑖𝑗1 , 𝑎�̃�𝑖𝑗2 , 𝑎�̃�𝑖𝑗3 , 𝑎�̃�𝑖𝑗4 ; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗) is a SVTrNN for each  𝑖 = 1,2, … ,𝑚; 𝑗 =1,2, … , 𝑛. 

CrLPP (𝑷𝟐)  Maximize/Minimize (𝑅 (∑ (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) 𝑥𝑗𝑛𝑗=1 ))  

Subject to 

𝑅(∑(𝑎�̃�𝑖𝑗1 , 𝑎�̃�𝑖𝑗2 , 𝑎�̃�𝑖𝑗3 , 𝑎�̃�𝑖𝑗4 ; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗) 𝑥𝑗𝑛
𝑗=1 )(≤,=,≥) 𝑅 (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖= 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛, 

where,  

(i) 𝑅(�̃�) = (𝑎�̃�1+2(𝑎�̃�2+𝑎�̃�3)+𝑎�̃�42 ) + (𝑤�̃� − 𝑢�̃� − 𝑦�̃�), if the problem is of maximization. 

(ii) 𝑅(�̃�) = (𝑎�̃�1−3(𝑎�̃�2+𝑎�̃�3)+𝑎�̃�42 ) + (𝑤�̃� − 𝑢�̃� − 𝑦�̃�), if the problem is of minimization. 

CrLPP (𝑷𝟑)  Maximize/Minimize (∑ 𝑅𝑛𝑗=1 (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) 𝑥𝑗 − ∑ 𝑤𝑐̃𝑗𝑥𝑗𝑛𝑗=1 + ∑ 𝑢𝑐̃𝑗𝑥𝑗𝑛𝑗=1 +∑ 𝑦𝑐̃𝑗𝑥𝑗𝑛𝑗=1 + min1≤𝑗≤𝑛 (𝑤𝑐̃𝑗𝑥𝑗) − max1≤𝑗≤𝑛 (𝑢𝑐̃𝑗𝑥𝑗) − max1≤𝑗≤𝑛 (𝑦𝑐̃𝑗𝑥𝑗))  

Subject to 

Constraints of the CrLPP (𝑃2). 

CrLPP (𝑷𝟒)  Maximize/Minimize (∑ 𝑅𝑛𝑗=1 (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) 𝑥𝑗 − ∑ 𝑤𝑐̃𝑗𝑥𝑗𝑛𝑗=1 + ∑ 𝑢𝑐̃𝑗𝑥𝑗𝑛𝑗=1 +∑ 𝑦𝑐̃𝑗𝑥𝑗𝑛𝑗=1 + min1≤𝑗≤𝑛 (𝑤𝑐̃𝑗𝑥𝑗) − max1≤𝑗≤𝑛 (𝑢𝑐̃𝑗𝑥𝑗) − max1≤𝑗≤𝑛 (𝑦𝑐̃𝑗𝑥𝑗))  

Subject to 

∑(𝑅 (𝑎�̃�𝑖𝑗1 , 𝑎�̃�𝑖𝑗2 , 𝑎�̃�𝑖𝑗3 , 𝑎�̃�𝑖𝑗4 ; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗) 𝑥𝑗)𝑛
𝑗=1 (≤,=,≥) 𝑅 (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖= 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛. 



It is pertinent to mention that Singh et al. (2019) have used the relation 𝑅(�̃�1⊕ �̃�2) =𝑅(�̃�1) + 𝑅(�̃�2) to transform the CrLPP (𝑃3) into the CrLPP (𝑃4). While, the following 

example clearly indicates that 𝑅(�̃�1⊕ �̃�2) ≠ 𝑅(�̃�1) + 𝑅(�̃�2) i.e., the CrLPP (𝑃4) is not 

equivalent to the CrLPP (𝑃3). Hence, it is inappropriate to use Singh et al.’s approach (2020). 

Let �̃�1 = (10,20,30,40; 0.8,0.5,0.3) and �̃�2 = (30,50,70,90; 0.7,0.3,0.2) be two 

SVTrNNS. Then, using Definition 5, discussed in Section 2, �̃�1⊕ �̃�2 = (10 + 30,20 + 50,30 + 70,40 + 90;min(0.8,0.7) ,max(0.5,0.3),max(0.3,0.2))= (40,70,100,130; 0.7,0.5,0.3) 
Therefore, using the existing expression (Abdel-Basset et al. 2019a), 𝑅(�̃�𝑖) = (𝑎�̃�𝑖1 +2(𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )+𝑎�̃�𝑖42 ) + (𝑤�̃�𝑖 − 𝑢�̃�𝑖 − 𝑦�̃�𝑖), 𝑅(�̃�1⊕ �̃�2) = 𝑅(40,70,100,130; 0.7,0.5,0.3) = 254.9.                                                      (1) 𝑅(�̃�1) = 𝑅(10,20,30,40; 0.8,0.5,0.3) = 75.  𝑅(�̃�2) = 𝑅(30,50,70,90; 0.7,0.3,0.2) = 180.2.  

Hence, 𝑅(�̃�1) + 𝑅(�̃�2) = 255.2.                                                                                                        (2) 

It is obvious from (1) and (2) that 𝑅(�̃�1⊕ �̃�2) ≠ 𝑅(�̃�1) + 𝑅(�̃�2). 
3.2 Inappropriateness of Khatter’s approach  

In Khatter’s approach (2019), firstly, the SVTrNLPP (𝑃1) is transformed into the CrLPP 

(𝑃5). Then, the CrLPP (𝑃5) is transformed into the CrLPP (𝑃6). Finally, it is assumed that an 

optimal solution of the CrLPP (𝑃6) also represent an optimal solution of the SVTrNLPP (𝑃1).  

CrLPP (𝑷𝟓)  Maximize/Minimize (𝑉 (∑ (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) 𝑥𝑗𝑛𝑗=1 ))  

Subject to 

𝑉(∑(𝑎�̃�𝑖𝑗1 , 𝑎�̃�𝑖𝑗2 , 𝑎�̃�𝑖𝑗3 , 𝑎�̃�𝑖𝑗4 ; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗) 𝑥𝑗𝑛
𝑗=1 )(≤,=,≥) 𝑉 (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖= 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛, 

where, 



 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖46 )𝑤�̃�𝑖2 + (1 −
𝜆)([(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖2 ]6 +
[(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]. 

CrLPP (𝑷𝟔)  Maximize/Minimize (∑ 𝑉𝑛𝑗=1 (𝑐𝑐̃𝑗1 , 𝑐𝑐̃𝑗2 , 𝑐𝑐̃𝑗3 , 𝑐𝑐̃𝑗4 ; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗) 𝑥𝑗)  

Subject to 

∑(𝑉 (𝑎�̃�𝑖𝑗1 , 𝑎�̃�𝑖𝑗2 , 𝑎�̃�𝑖𝑗3 , 𝑎�̃�𝑖𝑗4 ; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗) 𝑥𝑗)𝑛
𝑗=1 (≤,=,≥) 𝑉 (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖= 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛.  

It is pertinent to mention that Khatter (2020) has used the relation 𝑉(�̃�1⊕ �̃�2) =𝑉(�̃�1) + 𝑉(�̃�2) to transform the CrLPP (𝑃5) into the CrLPP (𝑃6). While, the following 

example clearly indicates that 𝑉(�̃�1⊕ �̃�2) ≠ 𝑉(�̃�1) + 𝑉(�̃�2) i.e., the CrLPP (𝑃6) is not 

equivalent to the CrLPP (𝑃5). Hence, it is inappropriate to use Khatter’s approach (2020). 

Let �̃�1 = (30,40,50,70; 0.7,0.4,0.3) and �̃�2 = (40,50,60,70; 0.6,0.5,0.2) be two 

SVTrNNS. Then, using Definition 5, discussed in Section 2, �̃�1⊕ �̃�2 = (30 + 40,40 + 50,50 + 60,70 + 70;min(0.7,0.6) ,max(0.4,0.5),max(0.3,0.2))= (70,90,110,140; 0.6,0.5,0.3). 
Therefore, using the existing expression (Khatter 2020), 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖46 )𝑤�̃�𝑖2 + (1 −
𝜆)([(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖2 ]6 +
[(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1],  
𝑉(�̃�1⊕ �̃�2) = 𝑉(70,90,110,140; 0.6,0.5,0.3) = 36.6𝜆 + (1 − 𝜆)(77.08 + 93.68)  = 170.76 − 134.16𝜆.                                                                                                            (3) 𝑉(�̃�1) = 𝑉(30,40,50,70; 0.7,0.4,0.3) = 22.87𝜆 + (1 − 𝜆)(40.2 + 43.63)  



= 83.83 − 60.96𝜆.  𝑉(�̃�2) = 𝑉(40,50,60,70; 0.6,0.5,0.2) = 19.8𝜆 + (1 − 𝜆)(41.25 + 52.8) = 94.05 − 74.25𝜆  

Hence, 𝑉(�̃�1) + 𝑉(�̃�2) = 177.88 − 135.21𝜆.                                                                                   (4) 

It is obvious from (3) and (4) that 𝑉(�̃�1⊕ �̃�2) ≠ 𝑉(�̃�1) + 𝑉(�̃�2). 
3.3 Inappropriateness of Abdelfattah’s approach 

Abdelfattah (2021) claimed that on solving the SVTNLPP (𝑃7), the results presented in 

Table 1, are obtained.  

SVTNLPP (𝑷𝟕) Maximize((30,40,50; 0.7,0.4,0.3)𝑥1⊕ (40,50,60; 0.6,0.5,0.2)𝑥2)  
Subject to  (0.5,1,3; 0.6,0.4,0.1)𝑥1⊕ (0,2,6; 0.6,0.4,0.1)𝑥2 ≼ (20,40,60; 0.4,0.3,0.5),  (1,4,12; 0.4,0.3,0.2)𝑥1⊕ (1,3,10; 0.7,0.4,0.3)𝑥2 ≼ (100,120,140; 0.7,0.4,0.3),  𝑥1, 𝑥2 ≥ 0.  

Table 1 Optimal solutions and optimal values (Abdelfattah 2021) (𝛼, 𝛽, 𝛾) 𝑥1(𝛼,𝛽,𝛾)𝐵∗
 𝑥2(𝛼,𝛽,𝛾)𝐵∗

 𝑥1(𝛼,𝛽,𝛾)𝑊∗
 𝑥2(𝛼,𝛽,𝛾)𝑊∗

 𝑍(𝛼,𝛽,𝛾)𝐵∗
 𝑍(𝛼,𝛽,𝛾)𝑊∗

 (0,0.5,0.5) 33.64 19.48 12.53 2.24 2523 554.62 (0,1,1) 0 140 6.67 0 8400 200 (0.4,0.5,0.5) 28.43 12.79 16.46 3.68 1874 793.07 (0.4,1,1) 0 106.31 9.36 0 6201 294.29 (0.2,0.8,0.7) 0 77.07 11.42 0.37 4334 398.46 

  

It is pertinent to mention that as in the problem (𝑃7), 𝑥1 and 𝑥2 are considered as non-

negative real numbers. So, the obtained optimal values of 𝑥1 and 𝑥2 should be same for all 

values of 𝛼, 𝛽, 𝛾. While, it is obvious from Table 1 that the values of 𝑥1 and 𝑥2 are different 

for different values of 𝛼, 𝛽, 𝛾. This clearly indicates that 𝑥1 and 𝑥2, obtained by Abdelfattah’s 

approach (2021), are not non-negative real numbers. Hence, it is inappropriate to use 

Abdelfattah’s approach (2021). 

3.4 Inappropriateness of Das et al.’s approach   
It is pertinent to mention that in one of the steps of Das et al.’s approach (2021), the scalar  

multiplication 𝜆�̃� = (𝜆𝑎�̃�1, 𝜆𝑎�̃�2, 𝜆𝑎�̃�3, 𝜆𝑎�̃�4; 𝜆𝑤�̃�, 𝜆𝑢�̃�, 𝜆𝑦�̃�), 𝜆 > 0, is used to transform the 

SVTrNLPP (𝑃1) into the SVTrNLPP (𝑃8).  



SVTrNLPP (𝑷𝟖)  Maximize/Minimize (∑ (𝑐𝑐̃𝑗1 𝑥𝑗 , 𝑐𝑐̃𝑗2 𝑥𝑗 , 𝑐𝑐̃𝑗3 𝑥𝑗 , 𝑐𝑐̃𝑗4 𝑥𝑗; 𝑤𝑐̃𝑗𝑥𝑗 , 𝑢𝑐̃𝑗𝑥𝑗 , 𝑦𝑐̃𝑗𝑥𝑗)𝑛𝑗=1 )  

Subject to 

∑(𝑎�̃�𝑖𝑗1 𝑥𝑗 , 𝑎�̃�𝑖𝑗2 𝑥𝑗 , 𝑎�̃�𝑖𝑗3 𝑥𝑗 , 𝑎�̃�𝑖𝑗4 𝑥𝑗; 𝑤�̃�𝑖𝑗𝑥𝑗 , 𝑢�̃�𝑖𝑗𝑥𝑗 , 𝑦�̃�𝑖𝑗𝑥𝑗)𝑛
𝑗=1 (≼,≈,

≽) (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖 = 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛.   

However, this scalar multiplication is not valid as the following clearly indicates that the 

number (𝜆𝑎�̃�1, 𝜆𝑎�̃�2, 𝜆𝑎�̃�3, 𝜆𝑎�̃�4; 𝜆𝑤�̃�, 𝜆𝑢�̃�, 𝜆𝑦�̃�) is not a SVTrNN. Hence, it is inappropriate to 

use Das et al.’s approach (2021). 

According to Definition 4, the number (𝜆𝑎�̃�1, 𝜆𝑎�̃�2, 𝜆𝑎�̃�3, 𝜆𝑎�̃�4; 𝜆𝑤�̃�, 𝜆𝑢�̃�, 𝜆𝑦�̃�) will be a 

SVTrNN if  

(i) 𝜆𝑎�̃�1 ≤ 𝜆𝑎�̃�2 ≤ 𝜆𝑎�̃�3 ≤ 𝜆𝑎�̃�4  

(ii) 0 ≤ 𝜆𝑤�̃� ≤ 1,0 ≤ 𝜆𝑢�̃� ≤ 1,0 ≤ 𝜆𝑦�̃� ≤ 1 

(iii) 0 ≤ 𝜆𝑤�̃� + 𝜆𝑢�̃� + 𝜆𝑦�̃� ≤ 3 

While, 

(i) 0 ≤ 𝑤�̃� ≤ 1,0 ≤ 𝑢�̃� ≤ 1,0 ≤ 𝑦�̃� ≤ 1 ⇒ 0 ≤ 𝜆𝑤�̃� ≤ 𝜆, 0 ≤ 𝜆𝑢�̃� ≤ 𝜆, 0 ≤ 𝜆𝑦�̃� ≤𝜆 i.e., the necessary condition 0 ≤ 𝜆𝑤�̃� ≤ 1,0 ≤ 𝜆𝑢�̃� ≤ 1,0 ≤ 𝜆𝑦�̃� ≤ 1 is not 

satisfying. 

(ii) 0 ≤ 𝑤�̃� + 𝑢�̃� + 𝑦�̃� ≤ 3 ⇒ 0 ≤ 𝜆𝑤�̃� + 𝜆𝑢�̃� + 𝜆𝑦�̃� ≤ 3𝜆 i.e., the necessary 

condition 0 ≤ 𝜆𝑤�̃� + 𝜆𝑢�̃� + 𝜆𝑦�̃� ≤ 3 is not satisfying.    

3.5 Inappropriateness of Kar et al.’s approach  
It pertinent to mention that in one of the steps of Kar et al.’s approach (2021), it is 

assumed that if �̃�1 = (𝑎�̃�11 , 𝑎�̃�12 , 𝑎�̃�13 ; 𝑎�̃�14 , 𝑎�̃�15 , 𝑎�̃�16 ; 𝑎�̃�17 , 𝑎�̃�18 , 𝑎�̃�19 ) and �̃�2 =(𝑎�̃�21 , 𝑎�̃�22 , 𝑎�̃�23 ; 𝑎�̃�24 , 𝑎�̃�25 , 𝑎�̃�26 ; 𝑎�̃�27 , 𝑎�̃�28 , 𝑎�̃�29 ) are two SVTNNS. Then, 
�̃�1�̃�2 =(𝑎�̃�11𝑎�̃�21 , 𝑎�̃�12𝑎�̃�22 , 𝑎�̃�13𝑎�̃�23 ; 𝑎�̃�14𝑎�̃�24 , 𝑎�̃�15𝑎�̃�25 , 𝑎�̃�16𝑎�̃�26 ; 𝑎�̃�17𝑎�̃�27 , 𝑎�̃�18𝑎�̃�28 , 𝑎�̃�19𝑎�̃�29 ) will also be a SVTNN. While, the following 

clearly indicates that (𝑎�̃�11𝑎�̃�21 , 𝑎�̃�12𝑎�̃�22 , 𝑎�̃�13𝑎�̃�23 ; 𝑎�̃�14𝑎�̃�24 , 𝑎�̃�15𝑎�̃�25 , 𝑎�̃�16𝑎�̃�26 ; 𝑎�̃�17𝑎�̃�27 , 𝑎�̃�18𝑎�̃�28 , 𝑎�̃�19𝑎�̃�29 ) will not necessarily be a 

SVTNN. Hence, it is inappropriate to use Kar et al.’s approach (2021).  



Let �̃�1 = (1,2,5; 6,7,8; 9,10,11) and �̃�2 = (2,3,4; 8,9,10; 11,12,13) be two SVTNNS. 

Then, 
�̃�1�̃�2 = (12 , 23 , 54 ; 68 , 79 , 810 ; 911 , 1012 , 1113) = (0.5,0.67,1.25; 0.75,0.78,0.8; 0.81,0.83,0.85) is 

not a SVTNN as the necessary condition 
𝑎�̃�11𝑎�̃�21 ≤ 𝑎�̃�12𝑎�̃�22 ≤ 𝑎�̃�13𝑎�̃�23 ≤ 𝑎�̃�14𝑎�̃�24 ≤ 𝑎�̃�15𝑎�̃�25 ≤ 𝑎�̃�16𝑎�̃�26 ≤ 𝑎�̃�17𝑎�̃�27 ≤ 𝑎�̃�18𝑎�̃�28 ≤

𝑎�̃�19𝑎�̃�29  is not satisfying.   

Remark 1: It can be easily verified that the shortcoming, pointed out by Singh et al. (2019) 

in Abdel-Basset et al.’s approach (2019a), also occurs in the existing approaches (Emam et 

al. 2020, Lachhwani 2021). Hence, it is inappropriate to use the existing approaches (Emam 

et al. 2020, Lachhwani 2021). 

4. Proposed Mehar approach  

In this section, a new approach (named as Mehar approach) is proposed to solve the 

SVTrNLPP (𝑃1). The proposed Mehar approach can also be used to solve SVTNLPPS.  

Step 1: Using Definition 7, discussed in Section 2, transform the SVTrNLPP (𝑃1) into its 

equivalent SVTrNLPP (𝑃9). 
SVTrNLPP (𝑷𝟗) Maximize/Minimize (∑ (𝑐𝑐̃𝑗1 𝑥𝑗 , 𝑐𝑐̃𝑗2 𝑥𝑗 , 𝑐𝑐̃𝑗3 𝑥𝑗 , 𝑐𝑐̃𝑗4 𝑥𝑗; 𝑤𝑐̃𝑗 , 𝑢𝑐̃𝑗 , 𝑦𝑐̃𝑗)𝑛𝑗=1 )  

Subject to 

∑(𝑎�̃�𝑖𝑗1 𝑥𝑗 , 𝑎�̃�𝑖𝑗2 𝑥𝑗 , 𝑎�̃�𝑖𝑗3 𝑥𝑗 , 𝑎�̃�𝑖𝑗4 𝑥𝑗; 𝑤�̃�𝑖𝑗 , 𝑢�̃�𝑖𝑗 , 𝑦�̃�𝑖𝑗)𝑛
𝑗=1 (≼,≈,≽) (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖= 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛.  
Step 2: Using Definition 5, discussed in Section 2, transform the SVTrNLPP (𝑃9) into its 

equivalent SVTrNLPP (𝑃10). 

SVTrNLPP (𝑷𝟏𝟎) Maximize/Minimize (∑ 𝑐𝑐̃𝑗1 𝑥𝑗𝑛𝑗=1 , ∑ 𝑐𝑐̃𝑗2 𝑥𝑗𝑛𝑗=1 , ∑ 𝑐𝑐̃𝑗3 𝑥𝑗𝑛𝑗=1 , ∑ 𝑐𝑐̃𝑗4 𝑥𝑗𝑛𝑗=1 ; min1≤𝑗≤𝑛 (𝑤𝑐̃𝑗) , max1≤𝑗≤𝑛 (𝑢𝑐̃𝑗) , max1≤𝑗≤𝑛 (𝑦𝑐̃𝑗))  

Subject to 

(∑𝑎�̃�𝑖𝑗1 𝑥𝑗𝑛
𝑗=1 ,∑𝑎�̃�𝑖𝑗2 𝑥𝑗𝑛

𝑗=1 ,∑𝑎�̃�𝑖𝑗3 𝑥𝑗𝑛
𝑗=1 ,∑𝑎�̃�𝑖𝑗4 𝑥𝑗𝑛

𝑗=1 ; min1≤𝑖≤𝑚1≤𝑗≤𝑛 (𝑤�̃�𝑖𝑗) , max1≤𝑖≤𝑚1≤𝑗≤𝑛 (𝑢�̃�𝑖𝑗) , max1≤𝑖≤𝑚1≤𝑗≤𝑛 (𝑦�̃�𝑖𝑗)) (≼,≈,≽) (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖 = 1,2, … ,𝑚, 



𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛.  
Step 3: Using Definition 9, discussed in Section 2, transform the SVTrNLPP (𝑃10) into its 

equivalent CrLPP (𝑃11). 

CrLPP (𝑷𝟏𝟏) Maximize/Minimize (𝑉 (∑ 𝑐𝑐̃𝑗1 𝑥𝑗𝑛𝑗=1 , ∑ 𝑐𝑐̃𝑗2 𝑥𝑗𝑛𝑗=1 , ∑ 𝑐𝑐̃𝑗3 𝑥𝑗𝑛𝑗=1 , ∑ 𝑐𝑐̃𝑗4 𝑥𝑗𝑛𝑗=1 ; min1≤𝑗≤𝑛 (𝑤𝑐̃𝑗) , max1≤𝑗≤𝑛 (𝑢𝑐̃𝑗) , max1≤𝑗≤𝑛 (𝑦𝑐̃𝑗)))  

Subject to 

𝑉(∑𝑎�̃�𝑖𝑗1 𝑥𝑗𝑛
𝑗=1 ,∑𝑎�̃�𝑖𝑗2 𝑥𝑗𝑛

𝑗=1 ,∑𝑎�̃�𝑖𝑗3 𝑥𝑗𝑛
𝑗=1 ,∑𝑎�̃�𝑖𝑗4 𝑥𝑗𝑛

𝑗=1 ; min1≤𝑖≤𝑚1≤𝑗≤𝑛 (𝑤�̃�𝑖𝑗) , max1≤𝑖≤𝑚1≤𝑗≤𝑛 (𝑢�̃�𝑖𝑗) , max1≤𝑖≤𝑚1≤𝑗≤𝑛 (𝑦�̃�𝑖𝑗)) (≤,=,≥) 𝑉 (𝑏�̃�𝑖1 , 𝑏�̃�𝑖2 , 𝑏�̃�𝑖3 , 𝑏�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖) ;  𝑖 = 1,2, … ,𝑚, 𝑥𝑗 ≥ 0;   𝑗 = 1,2, … , 𝑛, 

where, 

 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖46 )𝑤�̃�𝑖2 + (1 −
𝜆)([(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖2 ]6 +
[(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]. 
Step 4: Find an optimal solution of the CrLPP (𝑃11) for some values of 𝜆 ∈ [0,1]. The 

obtained optimal solution also represents an optimal solution of the SVTrNLPP (𝑃1). 

5. Correct optimal solution of some existing SVNLPPS  

In this section, the correct optimal solution of some existing SVNLPPS is obtained by the 

proposed Mehar approach.  

5.1 Correct optimal solution of some existing SVTNLPPS  

Hussian et al. (2017) as well as Khatter (2020) have considered the following real-life 

problem to illustrate their proposed approach.  

A Pottery Company, run by a Native American tribal council, desires to find the number 

of bowls and mugs to be produced each day in order to maximize the profit by considering 

(i) The data presented in Table 2. 

(ii) The data presented in Table 3. 

(iii) The data presented in Table 4. 



However, as some mathematical incorrect results are considered in Hussian et al.’s 

approach (2017) as well as in Khatter’s approach (2020). So, the existing optimal solution 

(Hussian et al. 2017, Khatter 2020) is not correct. In this section, a correct optimal solution of 

this real-life problem is obtained by the proposed Mehar approach.   

Table 2: Resource requirements of two products 

Product Resource requirements 

Labour (Hr./unit) Clay (Lb./unit) Profit($/unit) 

Bowl (0.5,1,3; 0.6,0.4,0.1) (1,4,12; 0.4,0.3,0.2) (30,40,50; 0.7,0.4,0.3) 
Mug (0,2,6; 0.6,0.4,0.1) (1,3,10; 0.7,0.4,0.3) (40,50,60; 0.6,0.5,0.2) 
 Total available hr of 

labour =(20,40,60; 0.4,0.3,0.5) 
Total available pounds of 

clay =(100,120,140; 0.7,0.4,0.3) 
 

 

Table 3: Resource requirements of two products 

Product Resource requirements 

Labour (Hr./unit) Clay (Lb./unit) Profit($/unit) 

Bowl (3.5,4,4.1; 0.75,0.5,0.25) (0,1,2; 0.15,0.5,0) (4,5,6; 0.5,0.8,0.3) 
Mug (2.5,3,3.2; 0.2,0.8,0.4) (2.8,3,3.2; 0.75,0.5,0.25) (2.5,3,3.2; 0.6,0.4,0) 
 Total available hr of 

labour =(11,12,13; 0.2,0.6,0.5) 
Total available pounds of 

clay =(5.5,6,7.5; 0.8,0.6,0.4) 
 

 

Table 4: Resource requirements of two products 

Product Resource requirements 

Skilled Labour 

(Hr./unit) 

Unskilled Labour 

(Hr./unit) 

Clay (Lb./unit) Profit($/unit) 

Bowl 15 24 21 (19,25,33; 0.8,0.1,0.4) 
Mug 30 6 14 (44,48,54; 0.75,0.25,0) 
 Total available hr 

of skilled labour = 45000 

Total available hr 

of unskilled labour = 24000 

Total available 

pounds of clay = 28000 

 

 



5.1.1 First illustrative example 

If the data, presented in Table 2, is considered. Then, to find an optimal solution of the 

real-life problem is equivalent to find an optimal solution of the SVTNLPP (𝑃12).  

SVTNLPP (𝑷𝟏𝟐) Maximize((30,40,50; 0.7,0.4,0.3)𝑥1⊕ (40,50,60; 0.6,0.5,0.2)𝑥2)  
Subject to  (0.5,1,3; 0.6,0.4,0.1)𝑥1⊕ (0,2,6; 0.6,0.4,0.1)𝑥2 ≼ (20,40,60; 0.4,0.3,0.5),  (1,4,12; 0.4,0.3,0.2)𝑥1⊕ (1,3,10; 0.7,0.4,0.3)𝑥2 ≼ (100,120,140; 0.7,0.4,0.3),  𝑥1, 𝑥2 ≥ 0.  

Using the proposed Mehar approach, an optimal solution of the SVTNLPP (𝑃12) can be 

obtained as follows: 

Step 1: Using Step 1 of the proposed Mehar approach, the SVTNLPP (𝑃12) can be 

transformed into its equivalent SVTNLPP (𝑃13). 

SVTNLPP (𝑷𝟏𝟑) Maximize((30𝑥1, 40𝑥1, 50𝑥1; 0.7,0.4,0.3) ⊕ (40𝑥2, 50𝑥2, 60𝑥2; 0.6,0.5,0.2))  
Subject to  (0.5𝑥1, 1𝑥1, 3𝑥1; 0.6,0.4,0.1) ⊕ (0𝑥2, 2𝑥2, 6𝑥2; 0.6,0.4,0.1) ≼ (20,40,60; 0.4,0.3,0.5),  (1𝑥1, 4𝑥1, 12𝑥1; 0.4,0.3,0.2) ⊕ (1𝑥2, 3𝑥2, 10𝑥2; 0.7,0.4,0.3) ≼ (100,120,140; 0.7,0.4,0.3),  𝑥1, 𝑥2 ≥ 0.  
Step 2: Using Step 2 of the proposed Mehar approach, the SVTNLPP (𝑃13) can be 

transformed into its equivalent SVTNLPP (𝑃14). 

SVTNLPP (𝑷𝟏𝟒) Maximize(30𝑥1 + 40𝑥2, 40𝑥1 + 50𝑥2, 50𝑥1+ 60𝑥2; min(0.7,0.6),max(0.4,0.5) ,max(0.3,0.2)) 
Subject to  (0.5𝑥1 + 0𝑥2, 1𝑥1 + 2𝑥2, 3𝑥1 + 6𝑥2; min(0.6,0.6),max(0.4,0.4) ,max(0.1,0.1))≼ (20,40,60; 0.4,0.3,0.5), (1𝑥1 + 1𝑥2, 4𝑥1 + 3𝑥2, 12𝑥1 + 10𝑥2; min(0.4,0.7),max(0.3,0.4) ,max(0.2,0.3))≼ (100,120,140; 0.7,0.4,0.3), 𝑥1, 𝑥2 ≥ 0.  
Step 3: Using Step 3 of the proposed Mehar approach, the SVTNLPP (𝑃14) can be 

transformed into its equivalent CrLPP (𝑃15). 



CrLPP (𝑷𝟏𝟓) Maximize(𝑉(30𝑥1 + 40𝑥2, 40𝑥1 + 50𝑥2, 50𝑥1 + 60𝑥2; 0.6,0.5,0.3))  
Subject to  𝑉(0.5𝑥1 + 0𝑥2, 1𝑥1 + 2𝑥2, 3𝑥1 + 6𝑥2; 0.6,0.4,0.1) ≤ 𝑉(20,40,60; 0.4,0.3,0.5),  𝑉(1𝑥1 + 1𝑥2, 4𝑥1 + 3𝑥2, 12𝑥1 + 10𝑥2; 0.4,0.4,0.3) ≤ 𝑉(100,120,140; 0.7,0.4,0.3),  𝑥1, 𝑥2 ≥ 0, 

where, 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖36 )𝑤�̃�𝑖2 + (1 −
𝜆)([2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖2 ]6 +
[2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1].  
Step 4: The obtained optimal solution of the CrLPP (𝑃15) for some values of 𝜆 ∈ [0,1] are 

shown in Table 5. It is pertinent to mention that according to Step 4 of the proposed Mehar 

approach, the obtained optimal solution also represents an optimal solution of the SVTNLPP 

(𝑃12). 

Table 5 Correct optimal solution for different values of 𝝀  𝜆 Optimal solution 𝑥1 𝑥2 0 19.55 3.02 0.1 20.60 2.32 0.2 21.89 1.47 0.3 23.49 0.41 0.4 23.87 0 0.5 23.41 0 0.6 22.79 0 0.7 21.92 0 0.8 20.63 0 0.9 18.48 0 1 14.22 0 
 

5.1.2 Second illustrative example  

If the data, presented in Table 3, is considered. Then, to find an optimal solution of 

the real-life problem is equivalent to find an optimal solution of the SVTNLPP (𝑃16).  

SVTNLPP (𝑷𝟏𝟔) Maximize((4,5,6; 0.5,0.8,0.3)𝑥1⊕ (2.5,3,3.2; 0.6,0.4,0)𝑥2)  



Subject to  (3.5,4,4.1; 0.75,0.5,0.25)𝑥1⊕ (2.5,3,3.2; 0.2,0.8,0.4)𝑥2 ≼ (11,12,13; 0.2,0.6,0.5),  (0,1,2; 0.15,0.5,0)𝑥1⊕ (2.8,3,3.2; 0.75,0.5,0.25)𝑥2 ≼ (5.5,6,7.5; 0.8,0.6,0.4),  𝑥1, 𝑥2 ≥ 0.  

Using the proposed Mehar approach, an optimal solution of the SVTNLPP (𝑃16) can 

be obtained as follows: 

Step 1: Using Step 1 of the proposed Mehar approach, the SVTNLPP (𝑃16) can be 

transformed into its equivalent SVTNLPP (𝑃17). 

SVTNLPP (𝑷𝟏𝟕) Maximize((4𝑥1, 5𝑥1, 6𝑥1; 0.5,0.8,0.3) ⊕ (2.5𝑥2, 3𝑥2, 3.2𝑥2; 0.6,0.4,0))  
Subject to  (3.5𝑥1, 4𝑥1, 4.1𝑥1; 0.75,0.5,0.25)⊕ (2.5𝑥2, 3𝑥2, 3.2𝑥2; 0.2,0.8,0.4)≼ (11,12,13; 0.2,0.6,0.5), (0𝑥1, 1𝑥1, 2𝑥1; 0.15,0.5,0) ⊕ (2.8𝑥2, 3𝑥2, 3.2𝑥2; 0.75,0.5,0.25) ≼ (5.5,6,7.5; 0.8,0.6,0.4),  𝑥1, 𝑥2 ≥ 0.   
Step 2: Using Step 2 of the proposed Mehar approach, the SVTNLPP (𝑃17) can be 

transformed into its equivalent SVTNLPP (𝑃18). 

SVTNLPP (𝑷𝟏𝟖) Maximize(4𝑥1 + 2.5𝑥2, 5𝑥1 + 3𝑥2, 6𝑥1 + 3.2𝑥2; min(0.5,0.6),max(0.8,0.4) ,max(0.3,0))  
Subject to  (3.5𝑥1 + 2.5𝑥2, 4𝑥1 + 3𝑥2, 4.1𝑥1 + 3.2𝑥2; min(0.75,0.2),max(0.5,0.8) ,max(0.25,0.4))≼ (11,12,13; 0.2,0.6,0.5), (2.8𝑥2, 𝑥1 + 3𝑥2, 2𝑥1 + 3.2𝑥2; min(0.15,0.75),max(0.5,0.5) ,max(0,0.25))≼ (5.5,6,7.5; 0.8,0.6,0.4), 𝑥1, 𝑥2 ≥ 0.  
Step 3: Using Step 3 of the proposed Mehar approach, the SVTNLPP (𝑃18) can be 

transformed into its equivalent CrLPP (𝑃19). 
CrLPP (𝑷𝟏𝟗) Maximize(𝑉(4𝑥1 + 2.5𝑥2, 5𝑥1 + 3𝑥2, 6𝑥1 + 3.2𝑥2; 0.5,0.8,0.3))  
Subject to  𝑉(3.5𝑥1 + 2.5𝑥2, 4𝑥1 + 3𝑥2, 4.1𝑥1 + 3.2𝑥2; 0.2,0.8,0.4) ≤ 𝑉(11,12,13; 0.2,0.6,0.5),  𝑉(2.8𝑥2, 𝑥1 + 3𝑥2, 2𝑥1 + 3.2𝑥2; 0.15,0.5,0.25) ≤ 𝑉(5.5,6,7.5; 0.8,0.6,0.4),  



𝑥1, 𝑥2 ≥ 0, 

where, 

 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖36 )𝑤�̃�𝑖2 + (1 −
𝜆)([2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖2 ]6 +
[2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]. 
Step 4: The obtained optimal solution of the CrLPP (𝑃19) for some values of 𝜆 ∈ [0,1] are 

shown in Table 6. It is pertinent to mention that according to Step 4 of the proposed Mehar 

approach, the obtained optimal solution also represents an optimal solution of the SVTNLPP 

(𝑃16). 

Table 6 Correct optimal solution for different values of 𝝀  𝜆 Optimal solution 𝑥1 𝑥2 0 3.574 0 0.1 3.572 0 0.2 3.570 0 0.3 3.567 0 0.4 3.563 0 0.5 3.557 0 0.6 3.549 0 0.7 3.536 0 0.8 3.512 0 0.9 3.452 0 1 3.051 0 
 

5.1.3 Third illustrative example 

If the data, presented in Table 4, is considered. Then, to find an optimal solution of 

the real-life problem is equivalent to find an optimal solution of the SVTNLPP (𝑃20).  

SVTNLPP (𝑷𝟐𝟎) Maximize((19,25,33; 0.8,0.1,0.4)𝑥1⊕ (44,48,54; 0.75,0.25,0)𝑥2)  
Subject to 15𝑥1 + 30𝑥2 ≤ 45000,  24𝑥1 + 6𝑥2 ≤ 24000,  21𝑥1 + 14𝑥2 ≤ 28000,  



𝑥1, 𝑥2 ≥ 0. 

Using the proposed Mehar approach, an optimal solution of the SVTNLPP (𝑃20) can 

be obtained as follows: 

Step 1: Using Step 1 of the proposed Mehar approach, the SVTNLPP (𝑃20) can be 

transformed into its equivalent SVTNLPP (𝑃21). 

SVTNLPP (𝑷𝟐𝟏) Maximize((19𝑥1, 25𝑥1, 33𝑥1; 0.8,0.1,0.4) ⊕ (44𝑥2, 48𝑥2, 54𝑥2; 0.75,0.25,0))  
Subject to  

Constraints of the problem (𝑃20). 

Step 2: Using Step 2 of the proposed Mehar approach, the SVTNLPP (𝑃21) can be 

transformed into its equivalent SVTNLPP (𝑃22). 

SVTNLPP (𝑷𝟐𝟐) Maximize(19𝑥1 + 44𝑥2, 25𝑥1 + 48𝑥2, 33𝑥1+ 54𝑥2; min(0.8,0.75),max(0.1,0.25) ,max(0.4,0)) 
Subject to  

Constraints of the problem (𝑃20). 

Step 3: Using Step 3 of the proposed Mehar approach, the SVTNLPP (𝑃22) can be 

transformed into its equivalent CrLPP (𝑃23). 

CrLPP (𝑷𝟐𝟑) Maximize(𝑉(19𝑥1 + 44𝑥2, 25𝑥1 + 48𝑥2, 33𝑥1 + 54𝑥2; 0.75,0.25,0.4))  
Subject to   

Constraints of the problem (𝑃20) 

where, 𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖36 )𝑤�̃�𝑖2 + (1 −
𝜆)([2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑢�̃�𝑖2 ]6 +
[2(𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )−(𝑎�̃�𝑖1 −2𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +4𝑎�̃�𝑖2 +𝑎�̃�𝑖3 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]. 
Step 4: The obtained optimal solution of the CrLPP (𝑃23) for some values of 𝜆 ∈ [0,1] are 

shown in Table 7. It is pertinent to mention that according to Step 4 of the proposed Mehar 

approach, the obtained optimal solution also represents an optimal solution of the SVTNLPP 

(𝑃20). 



Table 7 Correct optimal solution for different values of 𝝀  𝜆 Optimal solution 𝑥1 𝑥2 0 500 1250 0.1 500 1250 0.2 500 1250 0.3 500 1250 0.4 500 1250 0.5 500 1250 0.6 500 1250 0.7 500 1250 0.8 500 1250 0.9 500 1250 1 500 1250 

 

5.2 Correct optimal solution of an existing SVTrNLPP  

Das et al. (2021) have considered the following real-life problem to illustrate their 

proposed approach.  

An electric cable maker desires to find the number of cable 1 and cable 2 to be produced 

each day in order to maximize the profit by considering the data presented in Table 8. 

Table 8: Resource requirements of two cables 

 Resource requirements 

Metal (meter) Plastic (meter) Profit 

Cable 1 (2,4,6,8; 0.6,0.1,0.3) (4,7,10,13; 0.7,0.4,0.2) (1,3,4,7; 0.8,0.2,0.4) 
Cable 2 (3,5,9,12; 0.7,0.2,0.1) (3,6,9,14; 0.8,0.5,0.3) (4,6,8,10; 0.9,0.3,0.5) 
 Total available meters of 

metal =(10,15,20,25; 0.6,0,0.5) 
Total available meters of 

plastic =(10,20,25,30; 0.9,0.45,0.3) 
 

 

However, as some mathematical incorrect results are considered in Das et al.’s 

approach (2021). So, the existing optimal solution (Das et al. 2021) is not correct. In this 

section, a correct optimal solution of this real-life problem is obtained by the proposed Mehar 

approach.  

If the data, presented in Table 8, is considered. Then, to find an optimal solution of the 

real-life problem is equivalent to find an optimal solution of the SVTrNLPP (𝑃24).  

SVTrNLPP (𝑷𝟐𝟒) Maximize((1,3,4,7; 0.8,0.2,0.4)𝑥1⊕ (4,6,8,10; 0.9,0.3,0.5)𝑥2)  



Subject to  (2,4,6,8; 0.6,0.1,0.3)𝑥1⊕ (3,5,9,12; 0.7,0.2,0.1)𝑥2 ≼ (10,15,20,25; 0.6,0,0.5),  (4,7,10,13; 0.7,0.4,0.2)𝑥1⊕ (3,6,9,14; 0.8,0.5,0.3)𝑥2 ≼ (10,20,25,30; 0.9,0.45,0.3),  𝑥1, 𝑥2 ≥ 0.  

Using the proposed Mehar approach, an optimal solution of the SVTrNLPP (𝑃24) can 

be obtained as follows: 

Step 1: Using Step 1 of the proposed Mehar approach, the SVTrNLPP (𝑃24) can be 

transformed into its equivalent SVTrNLPP (𝑃25). 

SVTrNLPP (𝑷𝟐𝟓) Maximize((𝑥1, 3𝑥1, 4𝑥1, 7𝑥1; 0.8,0.2,0.4) ⊕ (4𝑥2, 6𝑥2, 8𝑥2, 10𝑥2; 0.9,0.3,0.5))  
Subject to  (2𝑥1, 4𝑥1, 6𝑥1, 8𝑥1; 0.6,0.1,0.3) ⊕ (3𝑥2, 5𝑥2, 9𝑥2, 12𝑥2; 0.7,0.2,0.1)≼ (10,15,20,25; 0.6,0,0.5), (4𝑥1, 7𝑥1, 10𝑥1, 13𝑥1; 0.7,0.4,0.2) ⊕ (3𝑥2, 6𝑥2, 9𝑥2, 14𝑥2; 0.8,0.5,0.3)≼ (10,20,25,30; 0.9,0.45,0.3), 𝑥1, 𝑥2 ≥ 0.  
Step 2: Using Step 2 of the proposed Mehar approach, the SVTrNLPP (𝑃25) can be 

transformed into its equivalent SVTrNLPP (𝑃26). 

SVTrNLPP (𝑷𝟐𝟔) Maximize(𝑥1 + 4𝑥2, 3𝑥1 + 6𝑥2, 4𝑥1 + 8𝑥2, 7𝑥1+ 10𝑥2; min(0.8,0.9),max(0.2,0.3) ,max(0.4,0.5)) 
Subject to  (2𝑥1 + 3𝑥2, 4𝑥1 + 5𝑥2, 6𝑥1 + 9𝑥2, 8𝑥1 + 12𝑥2; min(0.6,0.7),max(0.1,0.2) ,max(0.3,0.1))≼ (10,15,20,25; 0.6,0,0.5), (4𝑥1 + 3𝑥2, 7𝑥1 + 6𝑥2, 10𝑥1 + 9𝑥2, 13𝑥1+ 14𝑥2; min(0.7,0.8),max(0.4,0.5) ,max(0.2,0.3))≼ (10,20,25,30; 0.9,0.45,0.3), 𝑥1, 𝑥2 ≥ 0.  
Step 3: Using Step 3 of the proposed Mehar approach, the SVTrNLPP (𝑃26) can be 

transformed into its equivalent CrLPP (𝑃27). 

CrLPP (𝑷𝟐𝟕) Maximize(𝑉(𝑥1 + 4𝑥2, 3𝑥1 + 6𝑥2, 4𝑥1 + 8𝑥2, 7𝑥1 + 10𝑥2; 0.8,0.3,0.5))  
Subject to  



𝑉(2𝑥1 + 3𝑥2, 4𝑥1 + 5𝑥2, 6𝑥1 + 9𝑥2, 8𝑥1 + 12𝑥2; 0.6,0.2,0.3) ≤ 𝑉(10,15,20,25; 0.6,0,0.5),  𝑉(4𝑥1 + 3𝑥2, 7𝑥1 + 6𝑥2, 10𝑥1 + 9𝑥2, 13𝑥1 + 14𝑥2; 0.7,0.5,0.3)≤ 𝑉(10,20,25,30; 0.9,0.45,0.3), 𝑥1, 𝑥2 ≥ 0, 

where,  𝑉(�̃�𝑖) = 𝜆 (𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖46 )𝑤�̃�𝑖2 + (1 −
𝜆)([(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑢�̃�𝑖2 ]6 +
[(2𝑎�̃�𝑖1 +𝑎�̃�𝑖2 +𝑎�̃�𝑖3 +2𝑎�̃�𝑖4 )−(𝑎�̃�𝑖1 −𝑎�̃�𝑖2 −𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖−(𝑎�̃�𝑖1 +2𝑎�̃�𝑖2 +2𝑎�̃�𝑖3 +𝑎�̃�𝑖4 )𝑦�̃�𝑖2 ]6 ) , 𝜆 ∈ [0,1]. 
Step 4: The obtained optimal solution of the CrLPP (𝑃27) for some values of 𝜆 ∈ [0,1] are 

shown in Table 9. It is pertinent to mention that according to Step 4 of the proposed Mehar 

approach, the obtained optimal solution also represents an optimal solution of the SVTrNLPP 

(𝑃24). 

Table 9 Correct optimal solution for different values of 𝝀  𝜆 Optimal solution 𝑥1 𝑥2 0 0 2.243 0.1 0 2.248 0.2 0 2.252 0.3 0 2.258 0.4 0 2.266 0.5 0 2.275 0.6 0 2.287 0.7 0 2.304 0.8 0 2.329 0.9 0 2.368 1 0 2.442 

 

6. Conclusions and future work 

It is shown that some mathematical incorrect results are considered in all existing 

approaches for solving mathematical programming problems under neutrosophic 

environment. Hence, it is inappropriate to use any existing approach to solve mathematical 

programming problems under neutrosophic environment. Also, a new approach (named as 

Mehar approach) is proposed to solve SVNLPPS. Furthermore, correct optimal solutions of 



some existing real-life problems under neutrosophic environment (Hussian et al. 2017, 

Khatter 2020, Das et al. 2021) are obtained by the proposed Mehar approach.  

The following work may be considered as a future work.  

(i) The proposed Mehar approach may be extended for solving SVTNLFPPS (Hussian 

et al. 2018, Abdel-Basset et al. 2019b, Das et al. 2020, Das and Edalatpanah 2022) 

and SVTrNLFPPS (ElHadidi et al. 2021b). 

(ii) It can be easily verified that the relation 𝑆(�̃�1⊗ �̃�2) = 𝑆(�̃�1) × 𝑆(�̃�2) is 

considered in Khalifa and Kumar’s approach (2020) for solving single-valued 

trapezoidal fully neutrosophic linear programming problems (linear programming 

problems in which all the parameters including decision variables are represented 

by SVTrNNS),  

where, 

(a) �̃�𝑖 = (𝑎�̃�𝑖1 , 𝑎�̃�𝑖2 , 𝑎�̃�𝑖3 , 𝑎�̃�𝑖4 ; 𝑤�̃�𝑖 , 𝑢�̃�𝑖 , 𝑦�̃�𝑖); 𝑖 = 1,2 is a non-negative SVTrNN i.e., 𝑎�̃�𝑖1 ≥ 0. 

(b) �̃�1⊗ �̃�2 =(𝑎�̃�11 𝑎�̃�21 , 𝑎�̃�12 𝑎�̃�22 , 𝑎�̃�13 𝑎�̃�23 , 𝑎�̃�14 𝑎�̃�24 ;min(𝑤�̃�1 , 𝑤�̃�2) ,max(𝑢�̃�1 , 𝑢�̃�2) , max(𝑦�̃�1 , 𝑦�̃�2)). 
(c) 𝑆(�̃�𝑖) = 116 (𝑎�̃�𝑖1 + 𝑎�̃�𝑖2 + 𝑎�̃�𝑖3 + 𝑎�̃�𝑖4 ) (𝑤�̃�𝑖 + (1 − 𝑢�̃�𝑖) + (1 − 𝑦�̃�𝑖)) ; 𝑖 =1,2. 

While, the following example clearly indicates that 𝑆(�̃�1⊗ �̃�2) ≠𝑆(�̃�1) × 𝑆(�̃�2).  
Let �̃�1 = (1,3,4,5; 0.1,0.8,0.1) and �̃�2 = (3,4,6,7; 0.1,0.8,0.9) be two 

SVTrNNS. Then,  �̃�1⊗ �̃�2 = (3,12,24,35;min(0.1,0.1) ,max(0.8,0.8),max(0.1,0.9))= (3,12,24,35; 0.1,0.8,0.9). 
Therefore, using the existing expression (Khalifa and Kumar 2020),  𝑆(�̃�𝑖) = 116 (𝑎�̃�𝑖1 + 𝑎�̃�𝑖2 + 𝑎�̃�𝑖3 + 𝑎�̃�𝑖4 ) (𝑤�̃�𝑖 + (1 − 𝑢�̃�𝑖) + (1 − 𝑦�̃�𝑖)), 𝑆(�̃�1⊗ �̃�2) = 𝑆(3,12,24,35; 0.1,0.8,0.9)  = 116 (3 + 12 + 24 + 35)(0.1 + (1 − 0.8) + (1 − 0.9)) = 1.85                        (5)                                                  𝑆(�̃�1) = 𝑆(1,3,4,5; 0.1,0.8,0.1)  = 116 (1 + 3 + 4 + 5)(0.1 + (1 − 0.8) + (1 − 0.1)) = 0.975  



𝑆(�̃�2) = 𝑆(3,4,6,7; 0.1,0.8,0.9)  = 116 (3 + 4 + 6 + 7)(0.1 + (1 − 0.8) + (1 − 0.9)) = 0.5  

Hence, 𝑆(�̃�1) × 𝑆(�̃�2) = 0.975 × 0.5 = 0.4875                                                             (6) 

It is obvious from (5) and (6) that 𝑆(�̃�1⊗ �̃�2) ≠ 𝑆(�̃�1) × 𝑆(�̃�2). 
Hence, it is inappropriate to use Khalifa and Kumar’s approach (2020). In 

future, the proposed Mehar approach may be extended for solving single-valued 

trapezoidal fully neutrosophic linear programming problems (Khalifa and Kumar 

2020).  

(iii) It is pertinent to mention that the shortcoming pointed out in Khalifa and Kumar’s 

approach (2020) also occurs in the existing approaches (Bera and Mahapatra 

2020a, Bera and Mahapatra 2020b) for solving SVTrNLPPS with single-valued 

trapezoidal neutrosophic decision variables. Hence, it is inappropriate to use the 

existing approaches (Bera and Mahapatra 2020a, Bera and Mahapatra 2020b). In 

future, the proposed Mehar approach may be extended for solving SVTrNLPPS 

with single-valued trapezoidal neutrosophic decision variables (Bera and 

Mahapatra 2020a, Bera and Mahapatra 2020b).  
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