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Fuzzy membership function dependent switched control for nonlinear

systems with memory sampled-data information

B. Visakamoorthia, K. Subramanianb, P. Muthukumara1.

a Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University),

Gandhigram - 624 302, Tamil Nadu, India.

bSchool of IT Information and Control Engineering, Kunsan National University, 558,

Daehak-ro, Gunsan-si, Jeollabuk-do, 54150, Republic of Korea.

Abstract: In this paper, a fuzzy memory-based coupling sampled-data control (SDC)

is designed for nonlinear systems through the switched approach. Compared with

the usual SDC scheme, by employing the Bernoulli sequence, a more general coupling

switched SDC that involving the signal transmission delay is designed. The Lyapunov-

Krasovskii Functional (LKF) is presented with the available characteristics of the

membership function, and a coupling sampling pattern, for the T-S fuzzy systems.

Based on LKF, together with time derivative information of membership function,

and the generalized N -order free-matrix-based inequality, the suitable conditions are

obtained in terms of linear matrix inequalities (LMIs) for guaranteeing the asymptotic

stability and stabilization of the concerned system. Then the desired fuzzy coupling

SDC gain is attained from the solvable LMIs. In the end, two examples are given to

validate the derived theoretical results.

Keywords: T-S fuzzy systems; Lyapunov-Krasovskii functional; memory sampled-data control;

Linear matrix inequality; generalized N -order free-matrix-based inequality.

1. Introduction

The analysis and synthesis of nonlinear dynamical systems have gradually become the focus of

attention due to extensive applications in physics, engineering communities, and so on [1,2]. In real life,

stability analysis and control design for nonlinear dynamical systems are quite difficult. Recently, the

T-S fuzzy model has been dealt with the intrinsic nonlinear systems because the T-S fuzzy model can

1Corresponding Author; Email: pmuthukumargri@gmail.com, Phone: 91-451-2452371, Fax: 91-451-2454466.
visakamoorthi8596@gmail.com (B. Visakamoorthi), subramaniangri@gmail.com (K. Subramanian).



2 B. Visakamoorthi, K. Subramanian and P. Muthukumar

depict the considered nonlinear systems as a weighted sum of some linear subsystems. From this idea,

the stabilization for T-S fuzzy systems has been established in [3–7]. Moreover, the various nonlinear

dynamical systems such as Rossler’s system [2], Chua’s circuit [8], mass-spring system [9], have been

formulated as T-S fuzzy systems to study the stabilization problem. To tackle the stabilization issue of

T-S fuzzy systems, several control techniques have been designed in literature, for example, adaptive

control [10], impulsive control [11], mixed H∞ passive control [12], SDC [13], and so on.

With the rapid development of communication technology and digital networks, SDC becomes an

attractive field of research in the control system. The main scope of the SDC is updating the control

signal information only at the sampling instants, not for the whole time interval, which reduces the

communication bandwidth [14]. Also, the SDC has many advantages when compared with continuous-

time controllers, such as efficiency, maintenance with low cost, and simple installation. According

to these applications, the SDC has been utilized to investigate the various problems in T-S fuzzy

systems [14–18]. For instance, the dissipativity and extended dissipativity for T-S fuzzy systems have

been investigated via SDC in [19] and [20], respectively. Moreover, the asymptotic stabilization of

T-S fuzzy-based chaotic systems has been studied via the SDC scheme in [21].

Further, the updating signal successfully transmitted from sampler to the controller and to the

zero-order-hold (ZOH), the control signal may experience the constant transmission delay at any time

instant tk, which leads to the necessity of the memory-based SDC [22]. According to this viewpoint,

the memory-based SDC has been designed for the stabilization of T-S fuzzy systems in [22,23]. Also,

the dissipativity of T-S fuzzy systems has been analyzed via memory SDC in [24]. Very recently, the

stabilization problem has been studied via memory SDC for T-S fuzzy time-delay system. From the

above literature, memory SDC has improved the stability performance of the proposed systems with

less conservative results. Inspired from the above, the memory-based coupling SDC which combines

both the traditional SDC and memory-based SDC with the help of the Bernoulli sequence, is designed

to improve the asymptotic stability of T-S fuzzy systems in the present study.

Meanwhile, when investigating the stabilization of T-S fuzzy systems under SDC scheme, the

less conservative results through the choosing of proper sampling interval is significant. Since, the

maximum sampling interval gives some superiorities, like lower communication channel occupation,

less signal transmission, and less actuation of the controller. Hence, several methods have been

established in the literature [25–28] to get the less conservatism via largest upper bounds (LUB)
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of sampling interval which ensures the stabilization of T-S fuzzy systems. In particular, a looped-

functional has been introduced in [29], which relax the positivity condition of LKF and also obtained

the less conservative results. Nowadays, a new two-sided looped-functional has been employed to

improve the stability condition from the information of the whole sampling interval and greatly enlarge

the maximum sampling intervals [30, 31].

Moreover, in fuzzy systems, membership functions play a crucial role to analyze the stability of

systems and acquire the less conservatism. So, the time derivative of fuzzy membership function

dependent LKFs has been employed for the stability analysis of T-S fuzzy systems in [32]. For

example, the stability problem has been studied for T-S fuzzy systems via membership function

dependent LKF in [33]. Furthermore, when compared with usual control method [13], switched

control approach for T-S fuzzy systems diminish the number of LMIs and attain maximum sampling

interval, which has been studied in [33,34]. Although a lot of attempts had made on the investigation

of T-S fuzzy systems stability, when the memory-based coupling switched SDC information is taken

into account, the stability of fuzzy systems has been drawn very little research, which motivates us to

carry on the current research. Hence, this paper aims to propose SDC strategy for T-S fuzzy systems

together with the coupling sampling pattern, membership function dependent LKF, and applying the

switching topology. Through this, we attempt to ensure better performance for T-S fuzzy systems

when compared to the existing works with the complete information about the time derivative of

chosen membership function.

Inspired from the above, the stabilization of T-S fuzzy systems is investigated in this paper via

memory-based coupling SDC. The main contributions of the paper lie in the following aspects:

(1) Different from the conventional SDC and memory-based SDC scheme [13, 14, 23, 24] a more

general memory-based coupling SDC is designed by Bernoulli sequence for the T-S fuzzy

systems.

(2) Unlike from the LKF [14,19,21,26], the membership function dependent LKF, which including

the available information of the coupling sampling pattern, signal transmission delay, and full

state information from t to tk and t to tk+1 is constructed in the present study.

(3) By utilizing the generalized N -order free-matrix-based inequality, the stabilization criteria are

derived with the aid of time derivative of membership function via switched approach for the

considered systems in the form of LMIs.
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(4) To show the effectiveness of designed control method, the derived stabilization conditions are

compared with existing works [13, 14, 28], and the designed controller achieves the LUB of

sampling interval with less conservative results.

The paper has the following structure: Section 2 devotes the formulation of T-S fuzzy system. In

Section 3, the memory-based coupling SDC is designed for T-S fuzzy system. Two examples are

considered in Section 4. Conclusions are drawn in Section 5.

Notations: Rn×m and Rndenote n×m real matrix and the n-dimensional Euclidean space, respec-

tively. The matrix U > 0 (< 0) denotes a positive (negative) definite. E{·} indicates the mathematical

expectation operator. Sym{A} = A + AT . I and 0 represent the identity and zero matrix with ap-

propriate dimensions, respectively. diag{· · · } is a block diagonal matrix.

2. Preliminaries and System Description

2.1. T-S Fuzzy System Formulation: Let us consider the nonlinear systems as follows:

ẋ(t) = h(x(t), u(t)), (1)

where x(t) ∈ Rn and u(t) ∈ Rm represent the state and control input vector, respectively. h(x(t), u(t))

denotes a known nonlinear function which satisfies h(0, 0) = 0. Then, based on the T-S fuzzy modeling

approach, nonlinear system (1) can be represented by a series of IF-THEN rules:

Rule i: IF w1(t) is θ
i
1, w2(t) is θ

i
2, · · · , wp(t) is θ

i
p, THEN,

ẋ(t) = Aix(t) +Biu(t), i ∈ ∆ = {1, 2, · · · , r}, (2)

where Ai ∈ Rn×n and Bi ∈ Rn×m are constant matrices; w1(t), w2(t), · · · , wp(t) are the premise

variables; θi1, θ
i
2, · · · , θip denote the fuzzy sets.

By utilizing product inference, singleton fuzzifier and center average defuzzifier, the whole T-S

fuzzy system (2) can be inferred as

ẋ(t) =

r∑

i=1

δi(w(t))
[
Aix(t) +Biu(t)

]
, (3)

where w(t) = [w1(t), w2(t), · · · , wp(t)]
T , δi(w(t)) is the normalized membership function satisfying

δi(w(t)) =

p∏

g=1

θi
g(wg(t))

r∑

i=1

p∏

g=1

θi
g(wg(t))

≥ 0, and
r∑

i=1

δi(w(t)) = 1 and θig(wg(t)) is the grade of membership of wg(t)

in θig.
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2.2. Design of Memory-based Coupling SDC Strategy. In this subsection, the memory-based

coupling SDC is designed for the system (3). For this, the control input signal is assumed to be

generated by utilizing a ZOH function with 0 = t0 < t1 < · · · < tk < · · · , lim
k→∞

tk = +∞.

Rule j: IF w1(t) is θ
j
1, w2(t) is θ

j
2, · · · , wp(t) is θ

j
p, THEN,

u(t) = β(t)Kjx(tk − τ) + (1− β(t))Ljx(tk), t ∈ [tk, tk+1), j ∈ ∆

where Kj and Lj are the control gain matrices and τ is constant signal transmission delay. Now, define

d(t) = t−tk with ḋ(t) = 1 for t 6= tk and which satisfies 0 < d(t) ≤ dk = tk+1−tk ≤ d̄, d̄ is the maximum

sampling interval. Here β(t) is the Bernoulli stochastic variable coupling the conventional SDC and

memory-based SDC with Pr{β(t) = 1} = E{β(t)} = β and Pr{β(t) = 0} = 1−E{β(t)} = 1−β where

β ∈ [0, 1]. Then, the overall memory-based coupling SDC is represented as

u(t) =

r∑

j=1

δj(w(tk))
[
β(t)Kjx(tk − τ) + (1− β(t))Ljx(tk)

]
, t ∈ [tk, tk+1). (4)

Based on the control input (4) and system (3), we get the fuzzy system as follows:

ẋ(t) =
r∑

i=1

r∑

j=1

δi(w(t))δj(w(tk))
[
Aix(t) +Bi

(
β(t)Kjx(tk − τ) + (1− β(t))Ljx(tk)

)]
. (5)

Remark 1. In the existing literature, the conventional SDC and memory-based SDC have been

separately designed for T-S fuzzy systems. Distinct from this, the above-said controllers are cou-

pled by the Bernoulli sequence in this present study. From the memory-based coupling SDC (4),

when the stochastic variable β(t) = 0, the designed control technique (4) reduces to the conven-

tional SDC input u(t) =
r∑

j=1

δj(w(tk))Ljx(tk), which has been widely established for T-S fuzzy sys-

tems in [13, 14]. Meantime, if β(t) = 1, then the designed controller becomes a memory-based SDC

u(t) =
r∑

j=1

δj(w(tk))Kjx(tk − τ), which also has significantly designed for T-S fuzzy systems, recently

(see, [23,24]). From the above, the employed control technique for T-S fuzzy systems is more general

than the works of [13,14,23,24].

2.3. Switching Approach for Designing Control: Let us consider

Ṗδ =
r∑

i=1

δ̇i(w(t))Pi =
r−1∑

j=1

δ̇j(w(t))(Pj − Pr), Q̇δ =
r∑

i=1

δ̇i(w(t))Qi =
r−1∑

j=1

δ̇j(w(t))(Qj −Qr),

Ṙδ =

r∑

i=1

δ̇i(w(t))Ri =

r−1∑

j=1

δ̇j(w(t))(Rj −Rr), Ṡδ =

r∑

i=1

δ̇i(w(t))Si =

r−1∑

j=1

δ̇j(w(t))(Sj − Sr),
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U̇δ =
r∑

i=1

δ̇i(w(t))Ui =
r−1∑

j=1

δ̇j(w(t))(Uj − Ur), Ẇδ =

r∑

i=1

δ̇i(w(t))Wi =

r−1∑

j=1

δ̇j(w(t))(Wj −Wr),

where Pi, Si, Ui, Qi, Ri, Wi are matrix variables to be obtained; and δ̇i(w(t)) will be positive or

negative which dependence upon of time. In order to ensure Ṗδ ≤ 0, Q̇δ ≤ 0, Ṡδ ≤ 0, U̇δ ≤ 0, Ṙδ ≤ 0

and Ẇδ ≤ 0, the following switching idea is utilized:





IF δ̇j(w(t)) < 0, THEN Pj − Pr > 0, Qj −Qr > 0, Rj −Rr > 0, Wj −Wr > 0,

Uj − Ur > 0, Sj − Sr > 0.

IF δ̇j(w(t)) ≥ 0, THEN Pj − Pr ≤ 0, Qj −Qr ≤ 0, Rj −Rr ≤ 0, Wj −Wr ≤ 0,

Uj − Ur ≤ 0, Sj − Sr ≤ 0.

(6)

From (6), there are 2r−1 possible cases exist. Define µ ∈ χ = {1, 2, · · · , 2r−1}, then, equation (6) can

be expressed as

IF Aµ, THEN Bµ (7)

where Aµ and Bµ represent the sets that contains the possible permutations of δ̇(w(t)) for µ ∈ χ and

all the possible constraints of Pi, Qi, Ri, Wi, Ui, Si for µ ∈ χ, respectively. Based on the above, we

get the following lemma as in [33].

Lemma 1. Consider the system (3) with fuzzy membership function δi(w(t)). For the symmetric

matrices Pi > 0, Ui > 0, Si > 0, Qi, Ri, and any matrix Wi, where i ∈ ∆. If the switching rules (7)

holds, then we have

Ṗδ ≤ 0, Q̇δ ≤ 0, Ṡδ ≤ 0, U̇δ ≤ 0, Ṙδ ≤ 0, Ẇδ ≤ 0.

Now, from the Lemma 1 for different Aµ and Bµ, we will design the corresponding coupling memory-

based sampled-data switched control as follows:

uµ = β(t)Kµ, δx(tk−τ)+(1−β(t))Lµ, δx(tk), whereKµ,δ =
r∑

j=1

δj(w(tk))Kµ,j , Lµ,δ =
r∑

j=1

δj(w(tk))Lµ,j .

The final memory-based coupling sampled-data switched control (4) is expressed as

u(t) =





u1 = β(t)K1,δx(tk − τ) + (1− β(t))L1,δx(tk)

u2 = β(t)K2,δx(tk − τ) + (1− β(t))L2,δx(tk)

...

u2r−1 = β(t)K2r−1,δx(tk − τ) + (1− β(t))L2r−1,δx(tk).

(8)
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Sampler

x(t)

Switching rule

u2r−1=β(t)K2r−1,δx(tk − τ)

+(1− β(t))L2r−1,δx(tk)

x(tk)

ZOH

u
(t
)

u2 = β(t)K2,δx(tk − τ)

+(1− β(t))L2,δx(tk)

u1 = β(t)K1,δx(tk − τ)

+(1− β(t))L1,δx(tk)

T-S fuzzy
systems

Figure 1. Block diagram of memory-based coupling sampled-data switched control
system.

Meanwhile, the block diagram of the T-S fuzzy systems with memory-based coupling sampled-data

switched control is presented in Figure 1. Hence, the closed-loop system with the control input (8) is

given as follows:

ẋ(t) =

r∑

i=1

r∑

j=1

δi(w(t))δj(w(tk))
[
Aix(t) +Bi

(
β(t)Kµ,jx(tk − τ) + (1− β(t))Lµ,jx(tk)

)]
. (9)

Lemma 2. [Generalized N -order free-matrix-based inequality [35]] For scalars c and d (d > c), a

vector Nג ∈ Rm (N ≥ 0), the matrix U > 0 ∈ Rn×n, any matrix J = [JT
0 , JT

1 , · · · , JT
N ]T and a vector

valued differentiable function x : [c, d] → Rn such that

−
d∫

c

ẋT (s)Uẋ(s)ds ≤ (d− c)גTNJTR−1
N JגN + Sym

{
φT
lN (t)JTΠlNφlN (t)

}
, (10)
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holds. Here, ΠlN = ΓlNΩlN , (l = 1, 2), RN = diag{U, 3U, · · · , (2N + 1)U},

Γ1N =




I 0 · · · 0

I (−1)1



1

1






1 + 1

1


 I · · · 0

...
...

...
...

I (−1)1



N

1






N + 1

1


 I · · · (−1)N



N

N






N +N

N


 I




,

Γ2N =diag
{
(−1)0I, (−1)1I, · · · , (−1)NI

}
Γ1N ,

Ω1N =




I −I 0 0 · · · 0

0 −I I 0 · · · 0

0 −I 0 2I · · · 0

...
...

...
...

...
...

0 −I 0 0 · · · NI




,Ω2N =




I −I 0 0 · · · 0

I 0 −I 0 · · · 0

I 0 0 −2I · · · 0

...
...

...
...

...
...

I 0 0 0 · · · −NI




,

φ1N (t) =
[
xT (b), xT (a), ρT1 (t), ρ

T
2 (t), · · · , ρTN (t)

]T
, φ2N (t) =

[
xT (b), xT (a), σT

1 (t), σ
T
2 (t), · · · , σT

N (t)
]T

with ρq(t) =
1

(d−c)q

d∫
c

(d− s)q−1x(s)ds and σq(t) =
1

(d−c)q

d∫
c

(s− c)q−1x(s)ds, (q = 1, 2, · · · , N).

3. Main Results

The stability and stabilization problem of system (9) are analyzed in this section by the memory-

based coupling sampled-data switched control. To maintain the representation simplify the following

notations are utilized:

ϑα(t) =
1

(t−tk)α

t∫
tk

(t− s)α−1x(s)ds, γα(t) =
1

(tk+1−t)α

tk+1∫
t

(s− t)α−1x(s)ds for α = 1, 2, · · · , N.

ϑ(t) =
[
ϑT
1 (t), ϑ

T
2 (t), · · · , ϑT

N (t)
]T

, γ(t) =
[
γT
1 (t), γ

T
2 (t), · · · , γT

N (t)
]T

,

es =
[
0n×(s−1)n, I, 0n×(2N+7−s)n

]
, s = 1, 2, · · · , 2N + 7,

ηT (t) =
[
xT (t) xT (t− τ) ẋT (t) ẋT (t− τ) xT (tk) x

T (tk+1) xT (tk − τ) ϑT (t) γT (t)
]
.

3.1. Stability Analysis. The following theorem is proposed to achieve the asymptotic stability of

T-S fuzzy system (9).
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Theorem 1. For given gain matrices Kµ,j , Lµ,j , the scalars d̄ > 0, τ , β, and integer N ≥ 0, system

(9) is globally asymptotically stable for dk ∈ (0, d̄], if there exists Pi > 0, Si > 0, Ui > 0, X > 0, Y > 0,

symmetric matrices Qi, Ri and appropriate dimensional matrices Wi, Zι(ι = 1, 2, 3), JzN (z = 1, 2)

such that

Ṙδ ≤ 0, (11)

Ṗδ ≤ 0, Q̇δ ≤ 0, Ṡδ ≤ 0, U̇δ ≤ 0, Ẇδ ≤ 0, (12)




Ξ(dk,0)

√
dkΛ

T
2NJT

2N

∗ −YN


 < 0, (13)




Ξ(dk,dk)

√
dkΛ

T
1NJT

1N

∗ −XN


 < 0, (14)

hold, where

Ξ(dk,d(t)) =Sym
{
eT1 Pie3

}
− (e1 − e5)

TQi(e1 − e5) + Sym
{
(dk − d(t))(e1 − e5)

TQie3

}

+ τeT1 Sie1 − τeT2 Sie2 − d(t)




e5

e6

e7




T

Ri




e5

e6

e7



+ Sym

{
d(t)eT3 Wi



e5

e6



}

+ (dk − d(t))




e5

e6

e7




T

Ri




e5

e6

e7



− eT4 Uie4 + eT3 Uie3 + Sym

{
ΛT
1NJT

1NΠ1NΛ1N

}

+ Sym
{
ΛT
2NJT

2NΠ2NΛ2N

}
+ Sym

{
(e1 − e6)

TWi



e5

e6



}
+ (dk − d(t))eT3 Xe3

+ d(t)eT3 Y e3 + Sym
{
Υ(−e3 +Aie1 + βBiKµ,je7 + (1− β)BiLµ,je5)

}
,

Λ1N =
[
eT1 , e

T
5 , e

T
8 , e

T
9 , · · · , eTN+7

]T
, Λ2N =

[
eT6 , e

T
1 , e

T
N+8, e

T
N+9, · · · , eT2N+7

]T
,

XN =diag
{
X, 3X, · · · , (2N + 1)X

}
, YN = diag

{
Y, 3Y, · · · , (2N + 1)Y

}
,

Υ =eT1 Z
T
1 + eT3 Z

T
2 + eT7 Z

T
3 .
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Proof Let us choose the following LKF:

V (t) =

6∑

l=1

Vl(t), t ∈ [tk, tk+1) (15)

where

V1(t) =

r∑

i=1

δi(w(t))x
T (t)Pix(t)

V2(t) =(dk−d(t))
r∑

i=1

δi(w(t))[x(t)− x(tk)]
TQi[x(t)− x(tk)]

V3(t) =2d(t)

r∑

i=1

δi(w(t))[x(t)− x(tk+1)]
TWi




x(tk)

x(tk+1)




V4(t) =(dk − d(t))d(t)

r∑

i=1

δi(w(t))




x(tk)

x(tk+1)

x(tk − τ)




T

Ri




x(tk)

x(tk+1)

x(tk − τ)




V5(t) =τ

r∑

i=1

δi(w(t))

t∫

t−τ

xT (s)Six(s)ds+

r∑

i=1

δi(w(t))

t∫

t−τ

ẋT (s)Uiẋ(s)ds

V6(t) =(dk−d(t))

t∫

tk

ẋT (s)Xẋ(s)ds−d(t)

tk+1∫

t

ẋT (s)Y ẋ(s)ds.

The time derivative of (15) is written as

V̇1(t) =2xT (t)Pδẋ(t) + xT (t)Ṗδx(t) (16)

V̇2(t) =− (x(t)− x(tk))
TQδ(x(t)− x(tk)) + 2(dk − d(t))(x(t)− x(tk))

TQδẋ(t)

+ (dk − d(t))(x(t)− x(tk))
T Q̇δ(x(t)− x(tk)) (17)

V̇3(t) =2[x(t)− x(tk+1)]
TWδ




x(tk)

x(tk+1)


+ 2d(t)ẋT (t)Wδ




x(tk)

x(tk+1)




+ 2d(t)[x(t)− x(tk+1)]
T Ẇδ




x(tk)

x(tk+1)


 (18)
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V̇4(t) =− d(t)




x(tk)

x(tk+1)

x(tk − τ)




T

Rδ




x(tk)

x(tk+1)

x(tk − τ)



+ (dk − d(t))




x(tk)

x(tk+1)

x(tk − τ)




T

Rδ




x(tk)

x(tk+1)

x(tk − τ)




+ (dk − d(t))d(t)




x(tk)

x(tk+1)

x(tk − τ)




T

Ṙδ




x(tk)

x(tk+1)

x(tk − τ)




(19)

V̇5(t) =τ [xT (t)Sδx(t)− xT (t− τ)Sδx(t− τ)] + ẋT (t)Uδẋ(t)− ẋT (t− τ)Uδẋ(t− τ)

+ τ

t∫

t−τ

xT (s)Ṡδx(s)ds+

t∫

t−τ

ẋT (s)U̇δẋ(s)ds (20)

V̇6(t) =(dk − d(t))ẋT (t)Xẋ(t) + d(t)ẋT (t)Y ẋ(t)−
t∫

tk

ẋT (s)Xẋ(s)ds−
tk+1∫

t

ẋT (s)Y ẋ(s)ds. (21)

Applying the Lemma 2 for the integral terms of (21), we get

−
t∫

tk

ẋT (s)Xẋ(s)ds ≤ ηT (t)
[
Sym

{
ΛT
1NJT

1NΠ1NΛ1N

}
+ d(t)ΛT

1NJT
1NX−1

N J1NΛ1N

]
η(t) (22)

−
tk+1∫

t

ẋT (s)Y ẋ(s)ds ≤ ηT (t)
[
Sym

{
ΛT
2NJT

2NΠ2NΛ2N

}
+ (dk − d(t))ΛT

2NJT
2NY −1

N J2NΛ2N

]
η(t). (23)

Now, for any appropriate dimensional matrices Z1, Z2, Z3, we have the following equation:

2

r∑

i=1

r∑

j=1

δi(w(t))δj(w(tk))ξ(t)
[
− ẋ(t) +Aix(t) + β(t)BiKµ, jx(tk − τ) + (1− β(t))BiLµ, jx(tk)

]
= 0,

(24)

with ξ(t) = xT (t)ZT
1 + ẋT (t)ZT

2 + xT (tk − τ)ZT
3 .

Combining (16)-(24) and taking expectations, we get

E{V̇ (t)} ≤
r∑

i=1

r∑

j=1

δi(w(t))δj(w(tk))η
T (t)Ξ̄(dk,d(t))η(t)

=
r∑

i=1

r∑

j=1

δi(w(t))δj(w(tk))η
T (t)

[
dk − d(t)

dk
Ξ̄(dk,0) +

d(t)

dk
Ξ̄(dk,dk)

]
η(t), (25)
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where Ξ̄(dk,d(t)) = Ξ(dk,d(t))+(dk−d(t))ΛT
2NJT

2NY −1
N J2NΛ2N+d(t)ΛT

1NJT
1NX−1

N J1NΛ1N , here Ξ̄(dk,d(t))

is a convex combination of Ξ̄(dk,0) and Ξ̄(dk,dk). Then Ξ̄(dk,d(t)) < 0 if and only if (13)-(14) hold. ✷

3.2. Controller Design. In this subsection, we will analyze the stabilization of system (9) via

memory-based coupling SDC by the results in Theorem 1.

Theorem 2. For given scalars τ , β, d̄ > 0, λk(k = 1, 2) and nonnegative integer N , the system (9)

is globally asymptotically stable under the memory-based coupling sampled-data switched control (8)

for dk ∈ (0, d̄], if there exists P̃i > 0, S̃i > 0, Ũi > 0, X̃ > 0, Ỹ > 0, symmetric matrices Q̃i, R̃i, any

nonsingular matrix Z and any appropriate dimensional matrices W̃i, J̃zN (z = 1, 2), Gµ,j, Hµ,j such

that the following inequalities are satisfied

˙̃
Rδ ≤ 0, (26)

˙̃
P δ ≤ 0,

˙̃
Qδ ≤ 0,

˙̃
Sδ ≤ 0,

˙̃
U δ ≤ 0,

˙̃
W δ ≤ 0, (27)




Ξ̃(dk,0)

√
dkΛ

T
2N J̃T

2N

∗ −ỸN


 < 0, (28)




Ξ̃(dk,dk)

√
dkΛ

T
1N J̃T

1N

∗ −X̃N


 < 0, (29)

where

Ξ̃(dk,d(t)) =Sym
{
eT1 P̃ie3

}
− (e1 − e5)

T Q̃i(e1 − e5) + Sym
{
(dk − d(t))(e1 − e5)

T Q̃ie3

}

+ τeT1 S̃ie1 − τeT2 S̃ie2 + d(t)eT3 Ỹ e3 − d(t)




e5

e6

e7




T

R̃i




e5

e6

e7



+ Sym

{
d(t)eT3 W̃i



e5

e6



}

+ (dk − d(t))




e5

e6

e7




T

R̃i




e5

e6

e7



− eT4 Ũie4 + eT3 Ũie3 + Sym

{
ΛT
1N J̃T

1NΠ1NΛ1N

}

+ (dk − d(t))eT3 X̃e3 + Sym
{
ΛT
2N J̃T

2NΠ2NΛ2N

}
+ Sym

{
(e1 − e6)

T W̃i



e5

e6



}
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+ Sym
{
Υ̃(−Ze3 +AiZe1 + βBiGµ,je7 + (1− β)BiHµ,je5)

}
,

Λ1N =
[
eT1 , e

T
5 , e

T
8 , e

T
9 , · · · , eTN+7

]T
, Λ2N =

[
eT6 , e

T
1 , e

T
N+8, e

T
N+9, · · · , eT2N+7

]T
,

X̃N =diag
{
X̃, 3X̃, · · · , (2N + 1)X̃

}
, ỸN = diag

{
Ỹ , 3Ỹ , · · · , (2N + 1)Ỹ

}
,

Υ̃ =eT1 + λ1e
T
3 + λ2e

T
7 .

Moreover, the gain matrices are obtained by Kµ,j = Gµ,jZ
−1, and Lµ,j = Hµ,jZ

−1.

Proof Define Z1 = Z−1, Z2 = λ1Z
−1, Z3 = λ2Z

−1, P̃i = ZTPiZ, Gµ,j = Kµ,jZ, Hµ,j = Lµ,jZ,

S̃i = ZTSiZ, Ũi = ZTUiZ, X̃ = ZTXZ, Ỹ = ZTY Z, Q̃i = ZTQiZ, W̃i = ZTWidiag{Z, Z},

J̃1N = ZTJ1NZ, J̃2N = ZTJ2NZ, R̃i = diag{ZT , ZT , ZT }Ridiag{Z, Z, Z}. Pre and post multi-

ply (11) by diag{ZT , ZT , ZT } and its transpose, we get (26). The inequality (12) is pre and post

multiplied by ZT and Z respectively, we have (27). The inequalities (13) and (14) are pre and post

multiplied by diag{ZT , ZT , · · · , ZT

︸ ︷︷ ︸
2N+7 times

} and its transpose respectively, we obtain (28) and (29). ✷

Remark 2. In the existing studies, the novel integral inequalities have been utilized to obtain the

less conservatism for stabilization of T-S fuzzy systems, such as Jensen’s inequality [17], Wirtinger’s

inequality [14, 23], second-order Bessel inequality [30]. Different from those studies, the generalized

N -order free-matrix-based inequality is handle the stabilization problem of T-S fuzzy systems in the

present study, which has some inequalities as particular cases. For example, substituting N = 0 in

(10), it can be reduced to Jensen’s inequality which has been utilized for T-S fuzzy systems in [17].

Similarly, when N = 1, the inequality becomes Wirtinger’s inequality as in [14, 23]. Moreover, the

second-order Bessel inequality (N = 2) has been examined in [30]. Thus, the proposed method utilizes

the generalized N -order free-matrix-based inequality which is more general than the aforesaid previous

studies.

Remark 3. It should be pointed out that the purpose of the following corollary is to affirm the

advantage of the proposed method under conventional SDC input, that is, the stochastic variable β(t)

vanishes in (4)

u(t) =

r∑

j=1

δj(w(tk))Ljx(tk). (30)
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Hence, the corresponding closed-loop system (9) is presented as follows:

ẋ(t) =
r∑

i=1

r∑

j=1

δi(w(t))δj(w(tk))
[
Aix(t) +BiLµ,jx(tk)

]
, tk ≤ t < tk+1. (31)

Also, the LKF can be constructed from (15) without the constant signal transmission delay and the

stochastic variable as follows:

V (t) =

5∑

l=1

Vl(t), t ∈ [tk, tk+1) (32)

where

V1(t) =
r∑

i=1

δi(w(t))x
T (t)Pix(t)

V2(t) =(dk − d(t))

r∑

i=1

δi(w(t))[x(t)− x(tk)]
TQi[x(t)− x(tk)]

V3(t) =2d(t)

r∑

i=1

δi(w(t))[x(t)− x(tk+1)]
TWi




x(tk)

x(tk+1)




V4(t) =(dk − d(t))d(t)
r∑

i=1

δi(w(t))




x(tk)

x(tk+1)




T

Ri




x(tk)

x(tk+1)




V5(t) =(dk − d(t))

t∫

tk

ẋT (s)Xẋ(s)ds− d(t)

tk+1∫

t

ẋT (s)Y ẋ(s)ds.

3.3. Stabilization of T-S Fuzzy Systems under Conventional SDC:. In this subsection, we

derive the adequate conditions to assure the stabilization of T-S fuzzy systems under conventional

SDC scheme which is a special case of previous subsection.

Corollary 1. For given scalars λ, d̄ > 0, and nonnegative integer N , system (31) is globally asymp-

totically stable by SDC (30), if there exists P̃i > 0, X̃ > 0, Ỹ > 0, Q̃i = Q̃T
i , R̃i = R̃T

i , nonsingular

matrix Z, and appropriate dimensional matrices W̃i, J̃zN (z = 1, 2), Hµ,j such that

˙̃
P δ ≤ 0,

˙̃
Qδ ≤ 0,

˙̃
Rδ ≤ 0,

˙̃
W δ ≤ 0, (33)




Ξ̃(dk,0)

√
dkΛ

T
2N J̃T

2N

∗ −ỸN


 < 0, (34)
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


Ξ̃(dk,dk)

√
dkΛ

T
1N J̃T

1N

∗ −X̃N


 < 0, (35)

hold for dk ∈ (0, d̄]. Here,

Ξ̃(dk,d(t)) =Sym
{
eT1 P̃ie2

}
− (e1 − e3)

T Q̃i(e1 − e3) + Sym
{
(dk − d(t))(e1 − e3)

T Q̃ie2

}

+ d(t)eT3 Ỹ e3 − d(t)



e3

e4




T

R̃i



e3

e4


+ (dk − d(t))



e3

e4




T

R̃i



e3

e4




+ (dk − d(t))eT3 X̃e3 + Sym
{
ΛT
1N J̃T

1NΠ1NΛ1N

}
+ Sym

{
ΛT
2N J̃T

2NΠ2NΛ2N

}

+ Sym
{
d(t)eT2 W̃i



e3

e4



}
+ Sym

{
(e1 − e4)

T W̃i



e3

e4



}

+ Sym
{
Υ̃(−Ze2 +AiZe1 +BiHµ,je3)

}
,

Λ1N =
[
eT1 , e

T
3 , e

T
5 , e

T
6 , · · · , eTN+4

]T
, Λ2N =

[
eT4 , e

T
1 , e

T
N+5, e

T
N+6, · · · , eT2N+4

]T
,

Υ̃ =eT1 + λeT2 , es =
[
0n×(s−1)n, I, 0n×(2N+4−s)n

]
, s = 1, 2, · · · , 2N + 4

X̃N =diag
{
X̃, 3X̃, · · · , (2N + 1)X̃

}
, ỸN = diag

{
Ỹ , 3Ỹ , · · · , (2N + 1)Ỹ

}
.

The control gain matrices are calculated by Lµ,j = Hµ,jZ
−1.

Proof With a similar procedure as Theorem (1) and (2), the proof can be derived. ✷

4. Numerical Examples

This section presents the superiority of derived theoretical results by using two numerical examples.

Example 1. The dynamics of Lorenz system described as follows [14]:





ẋ1(t) = a(x2(t)− x1(t))

ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t) + u1(t)

ẋ3(t) = x1(t)x2(t)− bx3(t) + u2(t)

(36)

where x1(t), x2(t), x3(t) are the state variables with x1(t) ∈ [−d, d] and a = 10, d = 25 b = 8/3, and

c = 28, are known constants. The Lorenz system (36) can be reformulated as T-S fuzzy model (9)
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with

A1 =




−a a 0

c −1 −d

0 d −b



, A2 =




−a a 0

c −1 d

0 −d −b



, B1 = B2 =




0 0

1 0

0 1



,

The membership functions are chosen as δ1(x1(t)) = (1/2)(1+(x1(t)/d)) and δ2(x1(t)) = 1−δ1(x1(t)).

Then, the trajectories of Lorenz system without control input is plotted in Figure 2 and we conclude

that it is unstable. So, we have to find the effective controller to stabilize the system (36). Choosing

Figure 2. State trajectories of system (36) without control input.

τ = 0.02, β = 0.5, λ1 = λ2 = 1 and from the switching rule (6), solving the LMIs (26)-(29) for the

constraints B1 : {P̃1 > P̃2, S̃1 > S̃2, Q̃1 > Q̃2, R̃1 > R̃2, Ũ1 > Ũ2, W̃1 > W̃2}, we obtain the control

gain matrices with the LUB of sampling interval d̄ = 0.0152 as follows:

K1,1 =




1.1050 −25.2813 −31.1077

−0.7818 26.0039 −8.7913


 , K1,2 =




0.7630 −20.9267 −27.3992

−0.6785 22.2514 −7.8551


 ,

L1,1 =



−50.5547 −141.0197 −154.8959

−4.4431 141.6054 −42.4118


 , L1,2 =



−50.1370 −134.4566 −144.7487

−3.9263 129.4616 −41.5925


 .

Similarly, for the same parameter values, we obtain the LUB of sampling interval d̄ = 0.0102 under

the constraints B2 : {P̃1 ≤ P̃2, S̃1 ≤ S̃2, Q̃1 ≤ Q̃2, R̃1 ≤ R̃2, Ũ1 ≤ Ũ2, W̃1 ≤ W̃2}. In addition, the
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Figure 3. State responses of system (36).

control gains are calculated as follows

K2,1 =



0.6197 −16.2857 19.8346

0.8852 −21.5683 −15.2000


 , K2,2 =



0.7282 −17.2508 18.5655

1.0978 −27.6317 −16.9513


 ,

L2,1 =



−50.6868 −85.8608 115.4872

7.4194 −162.1230 −119.0891


 , L2,2 =



−50.1046 −96.6959 110.1537

7.4990 −175.8157 −119.1089


 .

0 1 2 3 4
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x 10
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δ̇ 1
(x

1(
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)

Figure 4. The evolution of δ̇1(x1(t)).
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Figure 5. The trajectory of u(t) in Example 1.

Hence, the final LUB of sampling interval is obtained as d̄ = 0.0102. Moreover, the state trajectories

of the closed-loop system are displayed in Figure 3, which is asymptotically stable by the designed

control scheme (8). Figure 4 and 5 respectively, present the evolution of δ̇1(x1(t)) and the stabilizing

controller. From Figure 4, we observe that the obtained control gain matrices are switched between

the constraints B1 and B2 based on δ̇1(x1(t)) < 0 and δ̇1(x1(t)) ≥ 0, respectively.

According to the structure of conventional SDC in (30), by using the same aforesaid parameter

values in Corollary 1, the LUB of sampling interval is calculated as d̄ = 0.1090 and d̄ = 0.1140

for system (36) based on the constraints B1 : {P̃1 > P̃2, R̃1 > R̃2, W̃1 > W̃2, Q̃1 > Q̃2}, and

B2 : {P̃1 ≤ P̃2, R̃1 ≤ R̃2, W̃1 ≤ W̃2, Q̃1 ≤ Q̃2}, respectively. It is clear that d̄ = 0.1090 is the

final LUB of sampling interval for (36) by the conventional SDC (30). To show the superiority of the

obtained results, the comparison of LUB of sampling interval by different methods with Corollary 1 is

tabulated in Table 1.

Table 1. LUB of sampling interval d̄ in Example 1

Method [28] [13] [14] Corollary 1
d̄ 0.0016 0.0022 0.0253 0.1090

As seen in Table 1, the obtained LUB of sampling interval in Corollary 1 is larger than the various

methods in [13,14,28], which indicates the advantages of proposed theoretical results.
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Example 2. The nonlinear mass-spring system [32] is considered as follows:

Mÿ(t) + g(y(t)) = Φ(ẏ(t))u(t), (37)

where M represents the mass, u(t) denotes the control force, and y(t) is the position vector of the

spring. g(y(t)) and Φ(ẏ(t)) are the nonlinear terms of spring and input, respectively.

Assume that y(t) ∈ [−a, a] and ẏ(t) ∈ [−b, b]. Let Φ(ẏ(t)) = 1, g(y(t)) = a1y(t)+a2y
3(t) and define

x1(t) = y(t), x2(t) = ẏ(t), which yields the following system:





ẋ1(t) = x2(t)

ẋ2(t) = −a1

M
x1(t)− a2

M
x3
2(t) +

1
M
u(t).

(38)

Also, the system (38) can be written as T-S fuzzy model (9), where

A1 =




0 1

−a1

M
− a2

M
a2 0


 , A2 =




0 1

−a1

M
0


 , B1 = B2 =



0

1
M




with M = 0.97, a1 = 1.98, a2 = 1.51, and fuzzy membership functions δ1(x1(t)) =
x2
1(t)
a2 and

δ2(x1(t)) = 1− δ1(x1(t)). Based on the switching rules (6), we have the following constraints
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Figure 6. State trajectories of the system (38).

B1 : {P̃1 > P̃2, Ũ1 > Ũ2, W̃1 > W̃2, Q̃1 > Q̃2, S̃1 > S̃2, R̃1 > R̃2}, (39)
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Figure 7. Responses of u(t) in Example 2.

B2 : {P̃1 ≤ P̃2, Ũ1 ≤ Ũ2, W̃1 ≤ W̃2, Q̃1 ≤ Q̃2, S̃1 ≤ S̃2, R̃1 ≤ R̃2}. (40)

Now, let us assume that a = 1, b = 0.8, τ = 0.02, λ1 = λ2 = 1, and β = 0.5, the LUB of sampling

interval is calculated as d̄ = 0.1072 by solving (26)-(29) with the constraints B1, and the gain matrices

are obtained as follows:

K1,1 =

[
0.3740 −0.8070

]
,K1,2 =

[
0.3314 −0.8930

]
,

L1,1 =

[
4.5717 −3.0836

]
, L1,2 =

[
4.5997 −2.9810

]
,

Solving (26)-(29) with the constraints B2, we get the LUB of sampling interval d̄ = 0.1016. Also, the

following control gain matrices are determined:

K2,1 =

[
0.3128 −0.8774

]
,K2,2 =

[
0.2926 −0.9864

]
,

L2,1 =

[
3.9423 −3.0566

]
, L2,2 =

[
3.9072 −3.1546

]
.

Hence, the final LUB of sampling interval d̄ = 0.1016 is derived from Theorem 2. Further, in Figure 6

and 7 respectively, the state trajectories of system (38) and stabilizing controller are plotted based on

the control gain values. Figure 6 shows that the trajectories of mass-spring system is asymptotically

stable by the memory-based coupling SDC (8), which implies that the proposed method is applicable

and effective.
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5. Conclusion

In this work, the stability and stabilization analysis for nonlinear systems through the fuzzy

memory-based coupling SDC has been investigated. Under the consideration of signal transmission

delay, Bernoulli sequence and switching approach, a fuzzy memory-based coupling SDC has been de-

signed. To do this, the LKF has been constructed with a fuzzy membership function, and utilized the

generalized N -order free-matrix inequality, the adequate conditions have been established in terms of

LMIs for guaranteeing the stability of T-S fuzzy systems with less conservativeness. In comparison

with the existing studies, the LUB of sampling interval has been calculated by the proposed method.

At last, the simulation results for the nonlinear system have been demonstrated the merits of presented

theoretical results.
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