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Abstract
In the field of graph theory, the shortest path problem is one of the most significant problems. However, since varieties of
indeterminated factors appear in complex networks, determining of the shortest path from one vertex to another in complex
networks may be a lot more complicated than the cases in deterministic networks. To illustrate this problem, the model of
uncertain random digraph will be proposed via chance theory, in which some arcs exist with degrees in probability measure
and others exist with degrees in uncertain measure. The main focus of this paper is to investigate the main properties of the
shortest path in uncertain random digraph. Methods and algorithms are designed to calculate the distribution of shortest path
more efficiently. Besides, some numerical examples are presented to show the efficiency of these methods and algorithms.

Keywords Shortest path problem · Distance · Uncertain random digraph · Chance theory · Uncertainty theory

1 Introduction

In the field of graph and network optimization, the short-
est path problem is a very important problem. The shortest
path problem of graph aims to find the minimum of all path
lengths from the starting point to the end point. The length of
a path refers to the sum of the weights of all arcs on the path
or the number of arcs. The shortest path problem has a wide
range of applications, including the lowest cost problems, the
shortest time problems, the minimum flow problems and so
on. For certain graphs and networks, there are many classi-
cal algorithms for shortest path problems, such as: Dijkstra
Algorithm, Bellman–Ford Algorithm, SPFA Algorithm and
Floyd–Warshall Algorithm (Bondy and Murty 2008).

However, practical networks are always changing instead
of keeping static. As a result, shortest path problems seem to
becomemore complicated. To satisfy the need of researching
shortest path problems under network changes, indetermin-
istic factors such as random and uncertain factors have been
taken into consideration in the research of graph theory.

To deal with the problems of indeterminacy, Kolmogoroff
(1933) established the systems of probability theory in 1933.
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As we all know, probability needs a lot of historical data to
make sure the statistical rules can be sufficiently generated. In
1959, two models of random graphs were proposed by Erdos
and Renyi (1959). Of course, the theory of probability is
never a master key to deal with all the problems in the field of
indeterminacy. Just as what wementioned above, probability
theory is data-dependent, i.e., if there’s no sufficient data to
estimate the distribution, the theory will be invalid to solve
the practical problems.

Besides probability theory, fuzzy theory also provides an
important model framework for the study of the shortest
path problem. Zadeh (1965) proposed the definition of fuzzy
set in 1965. When using fuzzy theory to solve the shortest
path problem, there are two main methods: direct solution
methods and heuristic methods. In the work of using the
direct solution methods, Deng et al. (2012) extended clas-
sical Dijkstra algorithm to deal with the fuzzy shortest path
problems. Dubois and Prade (1980) found new methods to
extended Floyd algorithms to solve fuzzy shortest path prob-
lems. Okada and Soper (2000) proposed a method to find all
Pareto optimal paths from one certain node to all the other
nodes with fuzzy numbers. As for heuristic methods, Chuang
and Kung (2005) proposed a heuristic procedure to find the
FSP length among all possible paths in a network. Hernandes
et al. (2007) uses genetic algorithm to solve the fuzzy shortest
path problem. Ebrahimnejad et al. (2016, 2015, 2020) pro-
posed artificial bee colony (ABC) algorithm, particle swarm
optimization algorithm, lexicographic optimization method
to solve the fuzzy shortest problems with fuzzy arc weights.
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Many excellent results have been obtained by using fuzzy
theory to study the shortest path problem. However, fuzzy
set theory is lack of duality axiom, which may lead to wrong
results in practice. In order to overcome this defect of fuzzy
theory, uncertainty theory was founded by Liu (2007). Short-
est path problemwith uncertain arc lengths was discussed by
Gao (2011). In 2013, uncertain graph was proposed by Gao
and Gao (2013). Some of uncertain graphs were soon dis-
cussed, such as Euler index (Zhang and Peng 2012), diameter
index (Gao and Gao 2013), cycle index (Gao 2013), regular-
ity index (Gao 2014), tree index (Gao 2016). In addition,
some traditional problems of graph theory were discussed in
uncertain graphs. More information can be found in Li et al.
(2018), Rosyida et al. (2018), Zhou et al. (2014a), Gao et al.
(2015), Gao and Qin (2016).

In recent years, networks becamemore andmore complex.
Different kinds of indeterminate factors appear at the same
time. Random and uncertain factors in particular, appear in
most cases. In order to solve this problem, Liu (2013b) pro-
posed the chance theory in 2013 which includes concepts of
uncertain random variable and chance measure. In addition,
expected value and variance of an uncertain random vari-
able were proposed. Chance theory has been applied to many
optimization networks problems, such as uncertain random
programming (Liu 2013a), goal programming (Qin 2018),
multi-objective programming (Zhou et al. 2014b).

Uncertain random graph was proposed by Liu (2014).
In an uncertain random graph, all edges are independent,
and some edges exist with degrees in probability measure
while other edges exist with degrees in uncertain measure.
Liu (2014) discussed the diameter index of an uncertain ran-
dom graph. Sheng and Gao (23016); Sheng and Mei (2020)
gave the EVSPM, SPM and MCMSPM models of shortest
path problems in uncertain random graph. In 2016, the Euler
index of an uncertain random graph was discussed by Zhang
et al. (2017). In 2018, the cycle index of an uncertain ran-
dom graphwas discussed byChen et al. (2018). Li and Zhang
(2020) discussed the edge-connectivity of uncertain random
graph, and the vertex-connectivity of uncertain randomgraph
was investigated by Li and Gao (2020).

The uncertain randomgraphmodel provides a new idea for
us to study the shortest path problem of networks in reality. In
real life, when we describe an uncertain event, we must first
generate the distribution function of the event in advance.
If this distribution is close enough to the frequency, we can
safely use the probability model for modeling. If not, we will
use uncertainty theory for modeling and analysis. However,
the network in real life is often very complex. Some arcs can
have enough historical data for probability modeling, while
others may have a large difference between the distribution

and the actual situation due to the lack of historical data, so
the uncertain theory needs to be used. To sum up, we can find
that the uncertain randomgraphmodel ismore suitable for the
description of real networks than the traditional probability
model. It is a better research model of real networks and their
shortest path problems.

In this paper, we will propose the model of uncertain
random digraph, and discuss the shortest path problem. Def-
inition of distance from one vertex to another in a random
uncertain digraph will be given. Then, we will discuss the
shortest path distribution and give an efficient algorithm to
calculate the distribution. And we will use the method of
this paper to establish the spreading model of COVID-19
in social networks. In addition, we will illustrate that our
algorithm will greatly reduce the complexity compared with
existing methods.

The remainder of the paper is organized as follows. In
Sect. 2, we will introduce some necessary notations of
digraph, and give a brief introduction of chance theory. In
Sects. 3 and 4, we will discuss the shortest path problem
in uncertain digraph and uncertain random digraph, respec-
tively, including the form of the distribution of shortest path
and algorithms of simplifying the process of calculation.
Examples will be shown to illustrate the efficiency of these
algorithms. The last section will conclude this paper with a
brief summary.

2 Preliminaries

In this section, we first introduce some necessary definitions
and notations of digraph. Then, we introduce some prelimi-
nary knowledge about chance theory.

2.1 Notations of digraphs

A digraph D is an ordered pair (V , A) consisting of a set
V of vertices and a set A of arcs (directed edges). Without
loss of generality, in the rest of this paper, we assume V =
{1, 2, 3, . . . , n}. An ordered pair (i, j) ∈ Ameans there exist
an arc from vertex i to j , where i and j are called the tail
and the head of arc (i, j), respectively. Here, we will only
consider simple digraphs.

A directed walk with length k is an alternating sequence
W = i1i2 · · · ik ik+1 such that {i1, i2, . . . , ik} ⊂ V and
(i j , i j+1) ∈ A for j = 1, 2, . . . , k. If all the vertices of
W are distinct, then W is called a directed path.

The adjacency matrix of digraph D, denoted by M(D), is
a n × n matrix such that
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M(D) =

⎛
⎜⎜⎜⎜⎜⎝

α11 α12 α13 . . . α1n

α21 α22 α23 . . . α2n

α31 α32 α33 . . . α3n
...

...
...

...

αn1 αn2 αn3 . . . αnn

⎞
⎟⎟⎟⎟⎟⎠

,

where

αi j =
{
1, i f (i, j) ∈ A

0, otherwise.

And if there is an arc from vertex i to j , then αi j = 1,
otherwise αi j = 0. A well-known proposition is proposed in
the following to find out whether there exists a directed walk
of length k(k = 1, 2, 3, . . . , n − 1) from i to j .

Proposition 1 Let D be a digraph and let X be the adjacency
matrix of D. For two distinct vertices i , j , there exists a
directedwalk of length k from i to j if and only if ai j (Xk) ≥ 1,
where ai j (Xk) is the (i, j) entry of matrix Xk.

For anyvertices i, j ∈ V , if there exist a directedpath from
vertex i to vertex j , then the distance from i to j , denoted
by d(i, j), is the minimal length of all the directed paths
from i to j . If there is no directed path from i to j , which
means i and j are in different components, then d(i, j) is
usually defined as ∞. In the field of graph theory, d(i, j)
can be calculated by Dijkstra Algorithm Bondy and Murty
(2008), the complexity of which is O(n2). As all directed
paths are directed walks, a proposition can be proposed in
the following.

Proposition 2 Let D be a digraph and X be the adja-
cency matrix of D. For two distinct vertices i , j and k =
1, 2, 3, . . . , n − 1,

d(i, j) ≤ k i f and only i f αi j (I + X + X2 + · · · + Xk)

> 0,

where αi j is the (i, j)-entry of matrix I +X+X2+· · ·+Xk.

2.2 Chance theory

Let (Γ ,L,M) and (Ω,A,Pr) be an uncertainty space and
a probability space, respectively. The product (Γ ,L,M) ×
(Ω,A,Pr) is called a chance space. The product σ -algebra
L × A is the smallest σ -algebra containing all measurable
rectangles of the form Λ × A, where Λ ∈ L and A ∈ A. For
each Θ ∈ L × A, Θ is called an event of the chance space.
The chance measure of event Θ was defined by Liu (2013b)
as

Ch{Θ} =
∫ 1

0
Pr{ω ∈ Ω|M{γ ∈ Γ |(γ, ω) ∈ Θ} ≥ x}dx .

Anuncertain randomvariable is a functionη fromachance
space (Γ ,L,M) × (Ω,A,Pr) to the set of real numbers
such that {η ∈ B} is an event in L × A for any Borel set B.
A random variable is called a Boolean random variable if it
takes values from {0, 1}. Similarly, an uncertain variable or an
uncertain random variable is called a Boolean uncertain vari-
able or a Boolean uncertain random variable, respectively, if
it takes values from {0, 1}. A function with n variables is
called a Boolean function if it is a mapping from {0, 1}n to
{0, 1}.
Theorem 1 (Liu 2013a) Assume that η1, η2, . . . , ηm are
independent Boolean random variables, i.e.,

ηi =
{
1 with probability measure ai
0 with probability measure 1 − ai

for i = 1, 2, . . . ,m, and the variables τ1, τ2, . . . , τn are
independent Boolean uncertain variables, i.e.,

τ j =
{
1 with uncertain measure b j

0 with uncertain measure 1 − b j

for j = 1, 2, . . . , n. If f is a Boolean function, then
η = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn) is a Boolean uncer-
tain random variable such that

Ch{η = 1} =
∑

(x1,...,xm )∈{0,1}m

( m∏
i=1

μi (xi )
)
f ∗(x1, . . . , xm),

where

f ∗(x1, . . . , xm)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (x1,...,xm ,y1,...,yn)=1

min
1≤ j≤n

v j (y j ),

if sup
f (x1,...,xm ,y1,...,yn)=1

min
1≤ j≤n

v j (y j ) < 0.5

1 − sup
f (x1,...,xm ,y1,...,yn)=0

min
1≤ j≤n

v j (y j ),

if sup
f (x1,...,xm ,y1,...,yn)=1

min
1≤ j≤n

v j (y j ) ≥ 0.5,

μi (xi ) =
{
ai if xi = 1
1 − ai if xi = 0

(i = 1, 2, . . . ,m), v j (y j ) =
{
b j if y j = 1
1 − b j if y j = 0

( j = 1, 2, . . . , n).

3 The shortest path problem in uncertain
digraphs

In this section, we will introduce the definition of uncertain
digraph. Then, we will discuss the shortest path problem in
uncertain digraphs and give the distribution of shortest path.
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3.1 Problem description

We first give the definition of uncertain digraph and some
necessary notations.

Definition 1 Let V be a set of n vertices, and write V =
{1, 2, . . . , n}. We call

A =

⎛
⎜⎜⎜⎝

α11 α12 · · · α1n

α21 α22 · · · α2n
...

... · · · ...

αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎠

an uncertain adjacency matrix, if αi j represent the uncer-
tain measures that the arcs (i, j) exist, i, j = 1, 2, . . . , n,,
respectively. The ordered pair (V,A) is called an uncertain
digraph, which is denoted by D.

Remark 1 Since D is simple, αi i = 0, f or i = 1, 2, . . . , n.
Note that A is normally asymmetric, i.e., it’s possible that
αi j �= α j i .

Write

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n
x21 x22 · · · x2n
...

... · · · ...

xn1 xn2 · · · xnn

⎞
⎟⎟⎟⎠

and

X =
{
X | xi j = 0 or 1, i, j = 1, 2, . . . , n

xii = 0, i = 1, 2, . . . , n

}
. (1)

In D = (V,A), all the arcs (i, j) exist with the uncertain
measure αi j . For any X ∈ X defined by (1), xi j = 1 repre-
sents that the arc from i to j exists. By the definition of αi j ,
the uncertain measure that the event {xi j = 1} happens is
αi j .

AsDhasn vertices, there aren(n−1)uncertain arcs. Then,
there are 2n(n−1) possible realizations of arcs. Each realiza-
tion of arcs and corresponding vertices form a deterministic
digraph D. Since a digraph could be fully characterized by
its adjacencymatrix. Once a realization of arcs is given, there
exists an unique matrix X in X satisfying such that X is the
adjacency matrix of D. By the product axiom of uncertain
measure (Liu 2007), the uncertain measure of the event that
D appears is

min
1≤i, j≤n

μi j (X),

where

μi j (X) =
{

αi j if xi j = 1
1 − αi j if xi j = 0.

For any two distinct vertices i and j in D, the length of
the shortest path from vertex i to j , denoted by d(i, j), is a
function of all xi j . Since xi j is an uncertain variable, d(i, j)
is an uncertain variable as well. Once X is given, we could
calculate d(i, j) by Dijkstra Algorithm (Bondy and Murty
2008). Therefore, wewill naturally study the distribution and
the properties of uncertain variable d(i, j).

3.2 Distribution of shortest path in uncertain
digraph

Aiming at dealing with the problem in the last subsection, we
first give a lemma and some notations of uncertain theory.

Lemma 1 (Operational Law of Boolean System) (Liu 2013a)
Assume that the variables ξ1, ξ2, . . . , ξn are independent
Boolean uncertain variables, i.e.,

ξ j =
{
1 with uncertain measure b j

0 with uncertain measure 1 − b j

for j = 1, 2, . . . , n. If f is a Boolean function, then ξ =
f (ξ1, ξ2, . . . , ξn) is a Boolean uncertain variable such that

M{ξ = 1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (y1,...,yn)=1

min
1≤ j≤n

v j (y j ),

if sup
f (y1,...,yn)=1

min
1≤ j≤n

v j (y j ) < 0.5

1 − sup
f (y1,...,yn)=0

min
1≤ j≤n

v j (y j ),

if sup
f (y1,...,yn)=1

min
1≤ j≤n

v j (y j ) ≥ 0.5,

where y j take values either 0 or 1, and v j are defined by

v j (y j ) =
{
b j if y j = 1
1 − b j if y j = 0

( j = 1, 2, . . . , n)

for i = 1, 2, . . . , n, respectively.

According to Proposition 2, the property d(i, j) ≤ k can
be fully characterized by the adjacency matrix of a digraph.
So we give the characteristic function of this property in the
following.

For any n × n Boolean matrix X and any integer k (k =
1, 2, . . . , n − 1), we define

fk(X) =
{
1, if αi j (I + X + · · · + Xk) > 0
0, otherwise,

(2)

where αi j is the (i, j)-entry of matrix I +X+X2+· · ·+Xk .
And by Lemma 1, we have the following Theorem.

Theorem 2 Let D = (V,A) be an uncertain digraph. For
distinct vertices i , j ∈ V , the uncertain measure that the
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distance from i to j is no more than k is denoted by ηki j (D).
And we have

ηki j (D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
X∈X, fk (X)=1

min
1≤i, j≤n

μi j (X),

if sup
X∈X, fk (X)=1

min
1≤i, j≤n

μi j (X) < 0.5

1 − sup
X∈X, fk (X)=0

min
1≤i, j≤n

μi j (X),

if sup
X∈X, fk (X)=0

min
1≤i, j≤n

μi j (X) ≥ 0.5.

where

μi j (X) =
{

αi j , if xi j = 1
1 − αi j , if xi j = 0

(3)

and X is the set of matrices satisfying (1).

Remark 2 According to the duality axiom, the uncertainmea-
sure that i and j are in two different components is denoted
by η∞

i j (D). And we have η∞
i j (D) = 1 − ηn−1

i j (D).

According to Theorem 2, it is easy to calculate the distri-
bution function of d(i, j).

Theorem 3 Let D = (V,A) be an uncertain digraph. For
two distinct vertices i and j , let 
(i, j)(x) be the distribution
function of uncertain variable d(i, j). Then,


(i, j)(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 1

η
[x]
i j (D), if 1 ≤ x < n − 1

ηn−1
i j (D), if x ≥ n − 1.

3.3 Maximum dkij-digraph

InD, given distinct vertices i and j , the uncertain distribution
function of d(i, j) is given byTheorem2 and 3. However, it’s
impractical to calculate the distribution function by Theorem
2 and 3, aswe have to concern all the realization digraphs. For

examples, ifD has n uncertain arcs, then it has 2
n(n−1)

2 uncer-

tain arcs and 2
n(n−1)

2 realization digraphs. The complexity of

computing fk is O(n3). So the complexity is 2
n(n−1)

2 O(n3) in
total, which is not polynomial. In next part, we will propose
a more efficient method to calculate ηki j (D), and present a
polynomial algorithm.

Definition 2 Let D = (V,A) be an uncertain digraph. A
digraph D is called a maximum dki j digraph if all the follow-
ing hold.

(1) V (D) = V;
(2) d(i, j) ≤ k;
(3) min

(i, j)∈A(D)
αi j is maximum.

Maximum dki j digraph given by Definition 2 could be used

to calculated uncertain measure ηki j (D), which is shown in
the following Theorem.

Theorem 4 Let D = (V,A) be an uncertain digraph and i ,
j be the two vertices in V . Let D = (V , A) be a maximum
dki j digraph of D. Then,

ηki j (D) = min
(i, j)∈A(D)

αi j .

Proof We assume min
(i, j)∈A(D)

αi j = a0. Let D0 = (V,A0) be

an uncertain digraph, where A0 = (bi j )n×n and

bi j =
{

αi j , if (i, j) ∈ A(D)

0, if (i, j) /∈ A(D)
f or 1 ≤ i, j ≤ n .

We will first prove ηki j (D) ≥ a0. Note that D could be
viewed as a realization digraph ofD0, and the uncertain mea-
sure that it appears is a0. We have ηki j (D) ≥ min

(i, j)∈A(D)
αi j =

a0. As D has more arcs than D0, it’s easier to find a directed
path from i to j . Then, we have

ηki j (D) ≥ ηki j (D0) ≥ min
(i, j)∈A(D)

αi j = a0. (4)

We then show that ηki j (D) ≤ a0. As the number of realiza-
tion digraphs is finite, there exists a realization digraph D1

of D whose adjacency matrix X1 satisfies fk(X1) = 1 and

sup
X∈X, fk (X)=1

min
1≤i, j≤n

μi j (X) = min
1≤i, j≤n

μi j (X1).

fk and μi j are defined by (2) and (3), respectively. By the
definition of D, min

(i, j)∈A(D1)
μi j ≤ a0. Thus,

sup
X∈X, fk (X)=1

min
1≤i, j≤n

μi j (X)

= min
1≤i, j≤n

μi j (X1)

≤ min
(i, j)∈A(D1)

μi j

=
(

min
(i, j)∈A(D1)

αi j

)
∧

(
min

(i, j)/∈A(D1)
(1 − αi j )

)

≤ min
(i, j)∈A(D1)

αi j

≤ a0.

(5)

Let D2 = (V , A2) be a realization digraph of D such that
A2 = A(D)∪{(i, j)|αi j > a0}\{(i, j)|αi j = a0}. Let X2 be
the adjacency matrix of D2. Therefore, min

(i, j)∈A(D2)
αi j > a0.

By the choice of digraph D2, d(i, j) > k holds in D2, i.e.,
fk(X2) = 0.
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If sup
X∈X, fk (X)=1

min
1≤i, j≤n

αi j (X) < 0.5, according to Theo-

rem 2 and (5), then we have

ηki j (D) = sup
X∈X, fk (X)=1

min
1≤i, j≤n

μi j (X) ≤ a0. (6)

If sup
X∈X, fk (X)=1

min
1≤i, j≤n

αi j (X) ≥ 0.5, then by (5), a0 ≥
0.5. According to Theorem 2,

ηki j (D) = 1 − sup
X∈X, fk (X)=0

min
1≤i, j≤n

μi j (X)

≤ 1 − min
1≤i, j≤n

μi j (X2)

= 1 −
(

min
(i, j)∈A(D2)

αi j

)
∧

(
min

(i, j)/∈A(D2)
(1 − αi j )

)

≤ 1 −
(

min
(i, j)∈A(D2)

αi j

)
∧ (1 − a0)

≤ 1 − a0 ∧ (1 − a0).

Since a0 ≥ 0.5 ≥ 1 − a0, we have

ηki j (D) ≤ 1 − (1 − a0) = a0. (7)

By inequalities (6) and (7), ηki j (D) ≤ a0. And by inequal-

ities (4), ηki j (D) = a0 is proved to be correct. ��

3.4 Algorithm and example

By Theorem 4, in an uncertain digraph D = (V,A), once
i, j, k are given, the uncertain measure ηki j (D) can be calcu-

lated by finding a maximum dki j digraph ofD. Although such
a maximum digraph may not be unique, we can always use
a greedy algorithm to find a maximum dki j digraph of D.

Algorithm 1 Greedy Algorithm for calculating ηki j (D).
Note that D = (V,A) be an uncertain digraph. Let A(D)

be the set of uncertain arcs. Let i and j be the vertices in V
and k be a constant taking values from {1, 2, . . . n − 1}.
Step 1. Set A = ∅.
Step 2. Choose (i, j) ∈ A(D) such that αi j is maximum.
Set A = A ∪ {(i, j)}, and A(D) = A(D)\{(i, j)}. Calculate
d(i, j) using Dijkstra Algorithm(if there’s no path from i to
j , return to n) in D = (V , A).
Step 3. If d(i, j) ≤ k, stop the iteration. The digraph
D = (V, A) is a maximum dki j digraph. Thus, by Theorem 4,

ηki j (D) = αi j . Otherwise, go to Step 4.
Step 4. If A(D) �= ∅, then go to Step 2. If A(D) = ∅, then
stop and ηki j (D) = 0.

Using algorithm 1 and Theorem 3, distribution function

(i, j)(x) could be calculated easily by the following Algo-
rithm.

Algorithm 2 Maximum Digraph Algorithm(MDA) for
calculating 
(i, j)(x).

Note that D = (V,A) be an uncertain digraph. Let A(D)

be the set of uncertain arcs. Let i and j be the vertices in V .
Step 1. Set A = ∅, k = n − 1.
Step 2. Choose (i, j) ∈ A(D) such that αi j is maximum.
Set A = A ∪ {(i, j)}, and A(D) = A(D)\{(i, j)}. Calculate
d(i, j) using Dijkstra Algorithm(if there’s no path from i to
j , return to n) in D = (V , A).
Step 3. If d(i, j) ≤ k, then the digraph D = (V, A) is a
maximum dki j digraph. Thus, by Theorem 4, ηki j (D) = αi j .
Let k = k − 1 and then go to Step 3; otherwise, go to Step 4.
Step 4. If A(D) �= ∅, then go to Step 2. If A(D) = ∅, then
stop and ηki j (D) = 0.
Step 5. According to Theorem 3, we could calculate the dis-
tribution function 
(i, j)(x).

Next, we will discuss the complexity of Algorithm 2. Let
m be the number of different uncertain values with which
arcs exist. In Step 2, we need to calculate d(i, j) by Dijkstra
Algorithm,which the complexity is O(n2). As theAlgorithm
hasm interactions of Step 2, the complexity of Algorithm 1 is
O(mn2).When the number of vertices is small, the algorithm
is quite efficient. Here is an example.

Example 1 Let D = {V,A} be an uncertain digraph. V =
{1, 2, 3, 4, 5} and

A =

⎛
⎜⎜⎜⎜⎝

0 0 0 0.9 0.4
1 0 0.9 0 0.3
1 0.3 0 0.6 0
0 0 0 0 0.8
0 0 0 0.3 0

⎞
⎟⎟⎟⎟⎠

.

We calculate the value of ηk25, k ∈ {1, 2, 3, 4} using
Algorithm 1.

The uncertain measures of all arcs are listed from high to
low as follows: 1, 0.9, 0.8, 0.6, 0.4, 0.3 (Fig. 1).

In the first iteration, k = 4, and then we add the arcs
with uncertain measure 1. It can be easily verified that
d(2, 5) = +∞ > 4. According to the algorithm, we con-
tinue the iteration.

In the second iteration, k = 4, then we add the arcs with
uncertain measure 0.9. It can be found that d(2, 5) = +∞ >

4. We continue the iteration.
In the third iteration, k = 4, then we add the arcs with

uncertain measure 0.8. We find it that d(2, 5) = 3 ≤ 4. D
is the maximum d425 digraph, thus η425 = 0.8. Let k = 3 and
we find that d(2, 5) ≤ 3 still holds. So η325 = 0.8. Let k = 2,
and we continue the iteration.
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Fig. 1 Iterations in Example 1

Fig. 2 Distribution function of d(2, 5)

In the fourth iteration, k = 2, then we add the arcs with
uncertain measure 0.6. By Dijkstra Algorithm, d(2, 5) =
3 > 2, so we continue.

In the fifth iteration, k = 2, then we add the arcs with
uncertain measure 0.4. We find that d(2, 5) = 2 ≤ 2, so
η225 = 0.4. Let k = 1, and we continue the iteration.

In the sixth iteration, k = 1, then we add the arcs with
uncertain measure 0.3. d(2, 5) = 1 ≤ 1, so η125 = 0.3. All
the directed edges have been added, so we stop the iteration.
By the iteration process, distribution function of d(2, 5) is


(2,5)(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 1
0.3, if 1 ≤ x < 2
0.4, if 2 ≤ x < 3
0.8, if x ≥ 3,

whose image is shown in Fig.2.

3.5 Effectiveness of MDA algorithm

In order to illustrate the effectiveness of this algorithm,
we choose two classical algorithms for solving the shortest
path problem: genetic algorithm (GA) and ant colony algo-
rithm (ACO) to compare with the maximum directed graph
algorithm (MDA) proposed in this paper. Each algorithm
performs ten rounds of operation, and the final results are as
follows. We select an uncertain digraph D with 20 vertices
and 39 arcs, and the connection of its vertices is shown in
Fig.3.

We study the shortest path distribution of d(1, 20) in
uncertain digraph D. The three algorithms run 10 times,
respectively, and the final distributions are all the same. The
final results of convergence iteration times and running time
are shown in Fig. 4. We can find the following points:

(1) According to Fig. 4, the average running time ofMDA
algorithm is only 1.452s, which is less than 14.806s of GA
algorithm and 22.565s of ACO algorithm. Compared with
the two classical algorithms, the running time can be greatly
shortened.

(2) The average convergence time of MDA algorithm is
0.854s, which is greatly improved compared with 9.577s of
GA algorithm and 12.911s of ACO algorithm.

(3) The variance of average running time and average
convergence time of MDA algorithm are 0.008996 and
0.003384, respectively, which are far less than GA algorithm
and ACO algorithm. This algorithm has good stability.

Above all, since GA algorithm and ACO algorithm are
heuristic algorithms, their running speed and results are
greatly affected by initial parameters. MDA algorithm does
not depend on the selection of initial parameters, but only
related to the structure of uncertain digraph. It runs stably
and efficiently. So, it is an efficient algorithm to solve the
shortest path distribution problems in uncertain digraphs.

Fig. 3 Uncertain digraph D
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Fig. 4 Model comparison

3.6 Numerical simulation of the shortest pathmodel
on COVID-19 transmission in social networks

The transmission of COVID-19 has severely threatened
people’s lives since 2019.Therefore, research about the trans-
mission of COVID-19 has its theoretical and practical signif-
icance. According to theWorld Health Organization(WHO),
COVID-19 has distinct community transmission character-
istics. It can easily spread through the social network and the
spreading rate of COVID-19 is much higher than the other
viruses. In this part, we simulate the spread of viruses in
social networks.

We use a vertex to represent a person. For any two person
i and j , if COVID-19 is transmitted from i to j , there is an
arc between the corresponding vertices, otherwise it does not
exist. Due to the strong dependence of probability model on
the amount of data. Since the virus transmission is affected
by indeterminate factors, which are lack of supporting histor-
ical data, the distribution obtained by models of probability
theory will be far from the actual situation. Then, we have to
ask experts in relevant fields to give the experience distribu-
tion. As a result, we assume all the arcs exist with a certain
measure. As the measures that COVID-19 transmit from i
to j and from j to i are different, it can only be character-
ized by directed graphs instead of undirected graphs. At the
same time, due to the lack of historical data of interpersonal
communication, it is difficult for us to build a model by prob-
ability theory. As a result, we assume all the arcs exist with
degree of uncertain measure.

When a small number of infected people appear in a social
network, they have infected some people around because of
the incubation period. At this time, the distance of uncertain
digraph can be used to estimate the required isolation range.
One reason why random graphs are not suitable here is that
the probability measures of arcs in the graph are difficult to
be obtained objectively. The other reason is that according

Fig. 5 Social network of 100 nodes

to the independence of probability measure, the probabil-
ity measure of a product event is equal to the product of all
the probability measures. According to the little probabil-
ity event principle, the transmission range is generally very
small. However, this estimation is sometimes inconsistent
with the reality, since the transmission range will be much
larger due to the incubation period of the virus.

Then,we simulate howa person infects others around him.
We assume the number of vertices in the transmission net-
works is 100. According to sociological research, we assume
that the out-degrees and in-degrees of each vertex are around
25 originally. We consider the transmission range of infected
person 1. Choose one of the remaining 99 healthy people,
assuming the 100th one. We will explore how many people
the virus needs to transmit from the first person to the 100th
person. This is equivalent to calculating the distance between
them in an uncertain digraph.

LetD = {V,A} be an uncertain digraphwith 100 vertices.
All the arcs exist with degree of uncertain measure that two
people have close contact. We calculate the value of ηk1,100
and the distribution function of uncertain variable d(1, 100)
using Algorithm 1 and 2. The original social network of 100
vertices is shown in Fig. 5. By algorithm 1, the value of η21,100
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is 0.1250. The same is true of the calculation of ηk1,100. So
we can get distribution function of d(1, 100). Distribution
function of d(1, 100) is


(1,100)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < 1
0.1250, if 1 ≤ x < 2
0.3631, if 2 ≤ x < 3
0.5781, if 3 ≤ x < 4
0.8340, if 4 ≤ x < 5
0.9006, if 5 ≤ x < 6
0.9580, if 6 ≤ x < 7
0.9681, if x ≥ 7,

whose image is shown in Fig. 6. Through calculation, we find
that d(1, 100) does not exceed 7 with an uncertain measure
of 0.9580. In other words, patient 1 will infect the healthy
person 100 through up to six times of transmission. In fact,
if we choose other healthy people, the calculation result is
almost the same, which means that an infected person will
infect the whole community by seven rounds of transmission
at most.

4 Shortest path problem in uncertain
random digraph

In this section, we will propose the model of uncertain
random digraph, and discuss the shortest path problem in
uncertain random digraphs.

4.1 Problem description

In an uncertain random digraph with n vertices, all arcs are
independent, and some arcs exist with degrees in probabil-

Fig. 6 Distribution function of d(1, 100)

ity measure while other arcs exist with degrees in uncertain
measure.

We define two disjoint collections of arcs,

U = {(i, j) | 1 ≤ i, j ≤ n and(i, j)are uncertain arcs},
R = {(i, j) | 1 ≤ i, j ≤ n and(i, j)are random arcs},

with U ∪R = {(i, j) | 1 ≤ i, j ≤ n}. Note that deterministic
arcs are regarded as special uncertain ones which exist with
degrees in uncertain measure 1.

The adjacency matrix is an n × n matrix

A =

⎛
⎜⎜⎜⎝

α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...

αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎠ ,

where αi j represent the truth values in uncertain measure
or probability measure if the arc from i to j exist, i, j =
1, 2, . . . , n. As digraphs considered in this paper are simple,
αi i = 0, for i = 1, 2, . . . , n, and A is normally asymmetric
matrix, i.e., αi j �= α j i , for i �= j .

Definition 3 Assume V is the collection of vertices, U is the
collection of uncertain arcs, R is the collection of random
arcs, andA is the adjacency matrix. Then, the quartette D =
(V,U ,R,A) is said to be an uncertain random digraph.

For an uncertain randomdigraphD = (V,U ,R,A), write

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

⎞
⎟⎟⎟⎠

and

X =

⎧⎪⎨
⎪⎩
X

∣∣∣
xi j = 0 or 1, if (i, j) ∈ R
xi j = 0, if (i, j) ∈ U
xii = 0, i = 1, 2, . . . , n

⎫⎪⎬
⎪⎭

. (8)

For any X ∈ X, the extension class of X is defined by

X∗ =

⎧⎪⎨
⎪⎩
Y

∣∣∣
yi j = xi j , if (i, j) ∈ R
yi j = 0 or 1, if (i, j) ∈ U
yii = 0, i = 1, 2, . . . , n

⎫⎪⎬
⎪⎭

. (9)

As there are n(n−1) possible arcs, there are 2n(n−1) possi-
ble realization of arcs. Each one of them could be represented
by a deterministic digraph, which is called a realization
digraph. Since a digraph could be fully characterized by its
adjacency matrix. For every X ∈ X and Y ∈ X∗, such that
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Y is the adjacency matrix of a realization digraph H . The
chance measure of the event that the realization digraph H
appears, is

⎛
⎝ ∏

(i, j)∈R
wi j (Y )

⎞
⎠

(
min

(i, j)∈U
wi j (Y )

)
, (10)

where

wi j (Y ) =
{

αi j , if yi j = 1
1 − αi j , if yi j = 0.

Example 2. Let D = (V,U ,R,A) be an uncertain random
digraph (shown in Fig.7), A = {(1, 2), (1, 3), (1, 5), (2, 3),
(3, 1), (3, 4), (4, 5), (5, 2)}. where V = {1, 2, 3, 4, 5}, R =
{(1, 2), (1, 3), (3, 4)}, U = {(1, 5), (2, 3), (3, 1), (4, 5),
(5, 2)}, and

Fig. 7 Uncertain random digraph D and its realization digraphs

A =

⎛
⎜⎜⎜⎜⎝

0 0.2 0.9 0 0.8
0 0 0.4 0 0
0.1 0 0 0.7 0
0 0 0 0 0.3
0 0.4 0 0 0

⎞
⎟⎟⎟⎟⎠

.

AsD has 8 edges, it has 28 realizations graphs, three of which
are shown in Fig.7. The chance measure of the event that H1

appears is

0.2 × 0.9 × 0.7 × min{0.6, 0.9, 0.4, 0.8, 0.3} = 0.0378.

Similarly, the chance measure of the events that H2 and H3

appear are 0.0504 and 0.0014, respectively.

Remark 3 If U = ∅, an uncertain random digraph D =
(V,U ,R,A) becomes a random digraph. Then,

X =
{
X

∣∣∣xi j = 0 or 1, i, j = 1, 2, . . . , n
xii = 0, i = 1, 2, . . . , n

}
. (11)

For any X ∈ X, X is the adjacency matrix of a realization
digraph, which appears with probability

∏
1≤i, j≤n

wi j (X).

If R = ∅, an uncertain random digraph D = (V,U ,R,A)

becomes an uncertain digraph in Definition 1.

The shortest path length from i to j , denoted by d(i, j), is
a function of all xi j . Since xi j is a uncertain random digraph,
d(i, j) is an uncertain random variable. Therefore, we will
naturally study the chance distribution and the properties of
uncertain random variable d(i, j).

4.2 Distribution of shortest path in uncertain
random digraph

In this section, we will give the formula of the shortest path
distribution function in uncertain random digraphs. Accord-
ing to Theorem 1, we have the following theorem.

Theorem 5 Let D = (V,U ,R,A) be an uncertain random
digraph. For any vertices i , j ∈ V , X is the class of matrices
satisfying (8), X∗ is the extension class of X satisfying (9).
The chance measure that the distance from i to j is at most
k is denoted by ηki j (D). And we have

ηki j (D) =
∑
X∈X

( ∏
(i, j)∈R

wi j (X)
)
f ∗
k (X),
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where

f ∗
k (X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
Y∈X∗, fk (Y )=1

min
(i, j)∈U

wi j (Y ),

if sup
Y∈X∗, fk (Y )=1

min
(i, j)∈U

wi j (Y ) < 0.5

1 − sup
Y∈X∗, fk (Y )=0

min
(i, j)∈U

wi j (Y ),

if sup
Y∈X∗, fk (Y )=1

min
(i, j)∈U

wi j (Y ) ≥ 0.5.

and

wi j (X) =
{

αi j , if xi j = 1
1 − αi j , if xi j = 0.

(12)

Remark 4 According to the duality axiom, the chance mea-
sure that i and j are in two different components is denoted
by η∞

i j . And we have η∞
i j = 1 − ηki j (D).

Corollary 1 Let D = (V,A) be a random digraph. X is the
class of matrices satisfying (8), X∗ is the extension class of
X satisfying (9). wi j satisfies (12). For any vertices i , j ∈ V ,
we have

1. the probability measure that the distance from i to j is
at most k is

P{d(i, j) ≤ k} =
∑

X∈X,gk (Y )=1

⎛
⎝ ∏

1≤i, j≤n

wi j (X)

⎞
⎠ .

2. the probability measure that i and j are in two different
components is

P{d(i, j) = ∞} = 1 − P{d(i, j) ≤ n − 1},

According to Theorem 5 and the definition of distribution
function, it is easy to calculate the distribution function of
d(i, j) by the following theorem.

Theorem 6 Let D = (V,U ,R,A) be an uncertain random
digraph. For any two distinct vertices i and j ,
(i, j)(x) is the
chance distribution function of uncertain random variable
d(i, j), and we have


(i, j)(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 1

η
[x]
i j (D), if 1 ≤ x < n − 1

ηn−1
i j (D), if x ≥ n − 1.

Although the method of formulating chance distribution
function has been given, it seems to be theoretical and quite
complicated because we have to concern all the realiza-
tion digraphs. So we need a simplified formula to calculate
final result. According to Theorem 5, after random arcs are
fixed, the uncertain randomdigraphwill become an uncertain
digraph. As a result, we can calculated f ∗ by Algorithm 1.

In next part, we will propose an efficient method to calculate
ηki j (D).

4.3 Algorithm and example

According to Algorithm 1 and Theorem 5, we give an effi-
cient Algorithm to calculate ηki j (D) of an uncertain random
digraph.

Algorithm 3 Algorithm for calculating the ηki j (D)of an
uncertain random digraph
Step 1. Divide the realization digraph of uncertain random
digraph D = (V,U ,R,A) into l parts by the arcs with
degree of random measure, where l = 2|R|. For each part of
theD, we assume there exist only arcs with degree of random
measure from the beginning. Let j = 1.
Step 2. Calculate f ∗

k by Algorithm 1. Let j = j + 1.
Step 3. If j = l, stop and calculate the ηki j (D) by Theorem
5; if j < l, set j = j + 1 and go to Step 2.

Next, we will discuss the complexity of Algorithm 3. We
assume |R(D)| = r , m be the number of different uncertain
values with which arcs exist. In Step 2, we need to calculate
f ∗
k by Algorithm 1, whose the complexity is O(mn2). Since

there are 2r iterations, the complexity of Step 2 is O(2rmn2).
In Step 3, there are 2r multiplications and each multiplica-
tion has complexity of O(r). Then, we have to calculate 2r

additions. Thus, the complexity of Algorithm 3 is

O(2rmn2) × (O(r2r ) + 2r ) = 4r rmn2.

Example 2 D = {V,U ,R,A} be an uncertain random
digraph.R = {(3, 1), (2, 1)} and other arcs exist with degree
of uncertain measure. We calculate the value of η325(D) using
Algorithm 3 (Figs. 8, 9).

Since there are 2 arcs exist with degree of probability
measure, we divide the realization of digraph into 22 = 4

Fig. 8 Uncertain random digraph D

123



9080 H. Li, K. Zhang

Fig. 9 The result of the four cases

cases. We calculate the f ∗
k , respectively. We give the solu-

tion procedure of the case 1, another 3 cases can be solved
by the same method. According to Algorithm 1, four maxi-
mumdki j digraph are found and f ∗

k equals to 0.8, 0.6, 0.8, 0.6,

respectively. By Theorem 5, η325(D) is given by the following
equation

η325(D) = 0.336 + 0.168 + 0.144 + 0.072 = 0.72.

Fig. 10 Distribution function of d(2, 5)

As a result, the distribution function 
(2,5)(x) is


(2,5)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x < 1
0.3, if 1 ≤ x < 2
0.36, if 2 ≤ x < 3
0.72, if 3 ≤ x < 4
0.776, if x ≥ 4,

whose image is shown in Fig. 10.

5 Conclusions

In this paper,we discussed the shortest path problem in uncer-
tain digraphs and uncertain random digraphs. Key properties
of d(i, j) ≤ k have been discussed.We gave the formulas for
calculating ηki j (D) and distribution function of d(i, j). And
an efficient polynomial algorithm was proposed to calculate
ηki j (D). When the number of vertices is small, the algorithm
performs well and can greatly reduce the amount of compu-
tation. We also used this model to study the transmission of
covid-19 in social networks.

Due to the strong dependence of probability model on the
amount of data. If there is no or lack of historical data, the
distribution obtained by using themodel of probability theory
will be far from the actual situation. In this case, the theory
of uncertainty will have great theoretical value and practical
significance. Of course, if there is enough historical data, the
classical probability model may have better results.

Further research will focus on the following aspects. First,
MDAalgorithm is amore efficient algorithm.With the help of
the property that the shortest path increases with the increase
in edges in directed graphs, this method can be considered
when studying the index properties of edge increase in other
uncertain directed graphs in the future. Second, important
indices, such as diameter, radius could be considered in the
frame of uncertain random digraphs. Finally, similar models
could be introduced, such as uncertain fuzzy graph.
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