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Abstract
In this paper, the notions of maximal GE-filter and prime GE-filter of a GE-algebra are introduced and the relation between
them is given. Some characterizations of prime GE-filters of a transitive GE-algebra are given in terms of the GE-filter
generated by a subset of a transitive GE-algebra. We generalized Stone’s theorem to transitive GE-algebras. The notion of
elitable GE-filter of a bordered GE-algebra is introduced and investigated its properties. We observed that the class of all
elitable GE-filters of a transitive bordered GE-algebra is a complete distributive lattice. Equivalent conditions for a GE-filter
of a transitive bordered GE-algebra to be elitable GE-filter are given. We provided conditions for a subset of a transitive
bordered GE-algebra to be elitable GE-filter.
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1 Introduction

Imai and Iséki introduced BCK-algebras (see Imai and
Iséki 1966; Iséki 1966) in 1966 as the algebraic seman-
tics for a non-classical logic with only implication. Various
researchers have examined the generalised concepts of BCK-
algebras since then. Henkin and Skolem introduced Hilbert
algebras in the 1950s to investigate intuitionistic and other
non-classical logics. A. Diego established that Hilbert alge-
bras form a locally finite variety (see Diego 1966). Later
several researchers extended the theory on Hilbert algebras.
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S. Celani given a representation theorem for Hilbert algebras
by means of ordered sets and characterized the homomor-
phisms of Hilbert algebras in terms of applications defined
between the sets of all irreducible deductive systems of the
associated algebras (see Celani 2002). Chajda et al. consid-
ered the properties of deductive systems in Hilbert algebras
which are upper semi-lattices as posets and shown that every
maximal deductive system is prime. They have given a con-
dition for a deductive system to be prime and shown that the
annihilator of any non-empty subset of a Hilbert algebra is
a deductive system which is an annihilator of the induced
upper semilattice(see Chajda et al. 2002). Hong et al. intro-
duced the concept of maximal deductive systems and shown
that every bounded Hilbert algebra with at least two ele-
ments contains at least one maximal deductive system (see
Hong and Jun 1996). Jun et al. introduced the concept of
Hilbert filter in Hilbert algebras and studied how to gener-
ate a Hilbert filter by a set (see Jun and Kim 2005). The
notion of BE-algebra was introduced by H.S. Kim and Y.H.
Kim as a generalization of a dual BCK-algebra (see Kim and
Kim 2006). Rezaei et al. discussed relations between Hilbert
algebras andBE-algebras (see Rezaei et al. 2013). Borumand
Saeid et al. introduced the notions of implicative filter, posi-
tive implicative filter, normal filter, fantastic filter, obstinate
filter and maximal filter in a BE-algebra and obtained the
related properties (see Borumand Saeid et al. 2013). Dudek
et al. introduced the notion of poor and crazy filters in BCK-
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algebras and studied their properties in different types of
BCK-algebras (see Dudek and Jun 2007).

The generalisation process is another important topic in
the study of algebraic structures. Bandaru et al. introduced
the concept of GE-algebras as a generalisation of Hilbert
algebras and studied several properties (see Bandaru et al.
2021). Rezaei and colleagues introduced and discussed the
concept of prominent GE-filters in GE-algebras (see Rezaei
et al. 2021). Bandaru et al. introduced and investigated the
concept of bordered GE-algebra (see Bandaru et al. 2021).
Later, Ozturk et al. introduced and investigated the concept
of StrongGE-filters, GE-ideals of borderedGE-algebras (see
Ozturk et al. 2021). Song et al. introduced and discussed the
concept of Imploring GE-filters of GE-algebras (see Song
et al. 2021).

In this paper, we introduce and investigate the concepts of
maximal GE-filter and prime GE-filter of a GE-algebra. We
define prime GE-filter as the GE-filter produced by a sub-
set of a transitive GE-algebra. We define and investigate the
properties of an elitable GE-filter of a bordered GE-algebra.
The class of all elitable GE-filters of a transitive bordered
GE-algebra is a complete distributive lattice, as we observe.
We describe an elitable GE-filter in a transitive bordered GE-
algebra. In addition, we define the conditions under which
a subset of a transitive bordered GE-algebra is an elitable
GE-filter.

2 Preliminaries

Definition 2.1 (Bandaru et al. 2021) AGE-algebra is a non-
empty set R with a constant 1 and a binary operation ∗
satisfying the following axioms:

(GE1) μ ∗ μ = 1,
(GE2) 1 ∗ μ = μ,
(GE3) μ ∗ (ν ∗ τ) = μ ∗ (ν ∗ (μ ∗ τ))

for all μ, ν, τ ∈ R.

In a GE-algebra R, a binary relation “≤” is defined by

(∀β, γ ∈ R) (β ≤ γ ⇔ β ∗ γ = 1) . (2.1)

Definition 2.2 (Bandaru et al. 2021) A GE-algebra R is said
to be

• transitive if it satisfies:

(∀β, γ, α ∈ R) (β ∗ γ ≤ (α ∗ β) ∗ (α ∗ γ )) . (2.2)

• antisymmetric if the binary relation “≤” is antisymmetric.

• commutative if it satisfies:

(∀β, γ ∈ R) ((β ∗ γ ) ∗ γ = (γ ∗ β) ∗ β) . (2.3)

Theorem 2.3 (Bandaru et al. 2021) Every self-distributive
BE-algebra is a GE-algebra.

The following proposition gives the equivalent conditions
for a GE-algebra to be implication algebra, dual implicative
BCK-algebra and commutative Hilbert algebra.

Proposition 2.4 (Bandaru et al. 2021) Let (R, ∗, 1) be a GE-
algebra. Then, the following are equivalent.

(i) R is commutative,
(ii) R is implication algebra,
(iii) R is dual implicative BCK-algebra,
(iv) R is commutative Hilbert algebra.

Definition 2.5 (Bandaru et al. 2021) If a GE-algebra R has a
special element, say 0, that satisfies 0 ≤ β for all β ∈ R, we
call R the bordered GE-algebra.

For every element β of a bordered GE-algebra R, we
denote β ∗ 0 by βß, and (βß)ß is denoted by βßß.

Definition 2.6 (Bandaru et al. 2021) If a bordered GE-
algebra R satisfies the condition (2.2), we say that R is a
transitive bordered GE-algebra.

Definition 2.7 (Bandaru et al. 2021) A bordered GE-algebra
R is said to be antisymmetric if the binary operation “≤” is
antisymmetric.

Proposition 2.8 (Bandaru et al. 2021) Every GE-algebra R
satisfies the following items.

(∀β ∈ R) (β ∗ 1 = 1) . (2.4)

(∀β, γ ∈ R) (β ∗ (β ∗ γ ) = β ∗ γ ) . (2.5)

(∀β, γ ∈ R) (β ≤ γ ∗ β) . (2.6)

(∀β, γ, α ∈ R) (β ∗ (γ ∗ α) ≤ γ ∗ (β ∗ α)) . (2.7)

(∀β ∈ R) (1 ≤ β ⇒ β = 1) . (2.8)

(∀β, γ ∈ R) (β ≤ (γ ∗ β) ∗ β) . (2.9)

(∀β, γ ∈ R) (β ≤ (β ∗ γ ) ∗ γ ) . (2.10)

(∀β, γ, α ∈ R) (β ≤ γ ∗ α ⇔ γ ≤ β ∗ α) . (2.11)

If R is transitive, then

(∀β, γ, α ∈ R)

(β ≤ γ ⇒ α ∗ β ≤ α ∗ γ, γ ∗ α ≤ β ∗ α) . (2.12)

(∀β, γ, α ∈ R) (β ∗ γ ≤ (γ ∗ α) ∗ (β ∗ α)) . (2.13)

123



Elitable GE-filters of bordered GE-algebras 8989

Lemma 2.9 (Bandaru et al. 2021) The following are equiva-
lent to each other in a GE-algebra R.

(∀β, γ, α ∈ R) (β ∗ γ ≤ (α ∗ β) ∗ (α ∗ γ )) . (2.14)

(∀β, γ, α ∈ R) (β ∗ γ ≤ (γ ∗ α) ∗ (β ∗ α)) . (2.15)

Definition 2.10 (Bandaru et al. 2021) A subset K of a GE-
algebra R is called a GE-filter of R if it satisfies:

1 ∈ K , (2.16)

(∀β, γ ∈ R)(β ∗ γ ∈ K , β ∈ K ⇒ γ ∈ K ). (2.17)

Lemma 2.11 (Bandaru et al. 2021) In aGE-algebra R, every
GE-filter K of R satisfies:

(∀β, γ ∈ R) (β ≤ γ, β ∈ K ⇒ γ ∈ K ) . (2.18)

Proposition 2.12 (Bandaru et al. 2021) The following asser-
tions are true in a bordered GE-algebra R.

1ß = 0, 0ß = 1. (2.19)

(∀β ∈ R)
(
β ≤ βßß, 0 ≤ βßß

)
. (2.20)

(∀β, γ ∈ R)
(
β ∗ γ ß ≤ γ ∗ βß

)
. (2.21)

(∀β, γ ∈ R)
(
β ≤ γ ß ⇔ γ ≤ βß

)
. (2.22)

(∀β, γ ∈ R)
(
β ∗ γ ß = β ∗ (γ ∗ βß)

)
. (2.23)

If R is a transitive bordered GE-algebra, then

(∀β, γ ∈ R)
(
β ≤ γ ⇒ γ ß ≤ βß

)
. (2.24)

(∀β, γ ∈ R)
(
β ∗ γ ≤ γ ß ∗ βß

)
. (2.25)

If R is an antisymmetric bordered GE-algebra, then

(∀β, γ ∈ R)
(
β ∗ γ ß = γ ∗ βß

)
. (2.26)

If R is a transitive and antisymmetric bordered GE-
algebra, then

(∀β ∈ R)
(
βßßß = βß

)
. (2.27)

Definition 2.13 (Bandaru et al. 2021) A duplex bordered ele-
ment in a bordered GE-algebra R is defined as an element β
of R that satisfies βßß = β.

The set of all duplex bordered elements of a bordered GE-
algebra R is denoted by 02(R) and is referred to as the R
duplex bordered set. It is clear that 0, 1 ∈ 02(R).

Definition 2.14 (Bandaru et al. 2021) A bordered GE-
algebra R is said to be duplex if every element of R is a
duplex bordered element, that is, R = 02(R).

Definition 2.15 (Ozturk et al. 2021) Let R be a bordered GE-
algebra. If a subset G of R meets the following conditions
for all β, γ ∈ R, it is termed a GE-ideal of R:

(1) 0 ∈ G,
(2) β ∈ G and (βß ∗ γ ß)ß ∈ G imply that γ ∈ G.

Clearly, {0} is a GE-ideal of R.
Proposition 2.16 (Ozturk et al. 2021) Let G be a GE-ideal
of R. Then, for any η, ζ ∈ R, we have

(1) η ∈ G and ζ ≤ η imply ζ ∈ G.

(2) (η ∗ ζ )ß ∈ G, ζ ∈ G ⇒ η ∈ G.

3 Maximal and prime GE-filters

Definition 3.1 (Ozturk et al. 2021) Let K be a subset of a
GE-algebra R. TheGE-filter of R generated by K is denoted
by 〈K 〉 and is defined to be the intersection of all GE-filters
of R containing K .

Example 3.2 Let R = {1, e, f , g, h, a, b} be a set with the
binary operation “∗” in the following Cayley Table.

∗ 1 e f g h a b
1 1 e f g h a b
e 1 1 1 g a a 1
f 1 e 1 h h h b
g 1 1 f 1 1 1 1
h 1 e 1 1 1 1 b
a 1 e f 1 1 1 1
b 1 e f a h a 1

Then, (R, ∗, 1) is a GE-algebra. If we take a subset G =
{1, e} of R, then the GE-filter of R generated by G is 〈G〉 =
{1, e, f , b}.

The next theorem shows how the elemental structure of
〈K 〉 is constructed.
Theorem 3.3 Let K be a non-empty subset of a transitive
GE-algebra R. Then, 〈K 〉 consists of β’s that satisfies the
following condition:

(∃β1, β2, · · · , βn ∈ K )

(βn ∗ (· · · ∗ (β2 ∗ (β1 ∗ β)) · · · ) = 1) , (3.1)

that is, 〈K 〉 = {β ∈ R | βn ∗ (· · · ∗ (β2 ∗ (β1 ∗ β)) · · · ) =
1for some β1, β2, · · · , βn ∈ K }.
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Proof Let

G := {β ∈ R | βn ∗ (· · · ∗ (β2 ∗ (β1 ∗ β)) · · · )
= 1for some β1, β2, · · · , βn ∈ K }.

Obviously, 1 ∈ G. Let μ, ν ∈ R be such that μ ∗ ν ∈ G and
μ ∈ G. Then, there is β1, β2, · · · , βm, γ1, γ2, · · · , γn ∈ K
such that

βm ∗ (· · · ∗ (β2 ∗ (β1 ∗ (μ ∗ ν))) · · · ) = 1, (3.2)

γn ∗ (· · · ∗ (γ2 ∗ (γ1 ∗ μ)) · · · ) = 1. (3.3)

By (GE3), (3.2) and (GE1), we can observe that,

μ ∗ (βm ∗ (· · · ∗ (β2 ∗ (β1 ∗ ν)) · · · )) = 1,

that is,

μ ≤ βm ∗ (· · · ∗ (β2 ∗ (β1 ∗ ν)) · · · ). (3.4)

By (2.12), we get

γ1 ∗ μ ≤ γ1 ∗ (βm ∗ (· · · ∗ (β2 ∗ (β1 ∗ ν)) · · · )). (3.5)

If we repeat this process n times, we have

1 = γn ∗ (· · · ∗ (γ2 ∗ (γ1 ∗ μ)) · · · )
≤ γn ∗ (· · · ∗ (γ1 ∗ (βm ∗ (· · · ∗ (β2 ∗ (β1 ∗ ν)) · · · ))) · · · ).

By (2.8), it follows that

γn ∗ (· · · ∗ (γ1 ∗ (βm ∗ (· · · ∗ (β2 ∗ (β1 ∗ ν)) · · · ))) · · · ) = 1.

Hence, ν ∈ G. Thus, G is a GE-filter of R. It is obvious
that K ⊆ G. Let M be a GE-filter for R that includes K .
If β ∈ G, then αn ∗ (· · · ∗ (α2 ∗ (α1 ∗ β)) · · · ) = 1 ∈ M
for some α1, α2, · · · , αn ∈ K ⊆ M . It follows that β ∈ M .
Therefore, G ⊆ M . This shows that G = 〈K 〉. �

Corollary 3.4 For every element γ in a transitive GE-algebra
R, we have

〈γ 〉 = {β ∈ R | γ ∗ β = 1},

that is, 〈γ 〉 = {β ∈ R | γ ≤ β} which is called principal
GE-filter generated by γ .

We construct the smallest GE-filter containing K and η,
given a GE-filter K and an element η in a transitive GE-
algebra R.

Theorem 3.5 Let K be aGE-filter of a transitive GE-algebra
R and η be any element of R. Then,

〈K ∪ {η}〉 = {ζ ∈ R | η ∗ ζ ∈ K }. (3.6)

Proof Let Kη := {ζ ∈ R | η∗ζ ∈ K }. Since η∗η = 1 ∈ K ,
η ∈ Kη. For any ζ ∈ K , we have ζ ≤ η ∗ ζ by (2.6). Hence,
η ∗ ζ ∈ K by Lemma 2.11. Thus, ζ ∈ Kη, which shows that
K ⊆ Kη. Hence, K ∪{η} ⊆ Kη. Since η∗1 = 1 ∈ K ,we get
1 ∈ Kη. Let ζ, α ∈ R be such that ζ ∈ Kη and ζ ∗ α ∈ Kη.
Then, η ∗ (ζ ∗ α) ∈ K and η ∗ ζ ∈ K . Using (2.7), (2.12)
and (2.5), we have

η ∗ (ζ ∗ α) ≤ ζ ∗ (η ∗ α) ≤ (η ∗ ζ ) ∗ (η ∗ (η ∗ α))

= (η ∗ ζ ) ∗ (η ∗ α),

and so η∗α ∈ K by Lemma 2.11 and (2.17). Hence, α ∈ Kη,
and thus, Kη is a GE-filter of R. Let G be a GE-filter of R
containing K ∪ {η} and ζ ∈ Kη. Then, η ∈ G and η ∗ ζ ∈
K ⊆ G. Hence, ζ ∈ G since G is GE-filter of R. Therefore,
Kη ⊆ G. Hence, Kη = 〈K ∪ {η}〉. �

Proposition 3.6 Let K and G be twoGE-filters of a transitive
GE-algebra R. Then,

〈K ∪ G〉 = {β ∈ R | η ∗ (ζ ∗ β)

= 1 for some η ∈ K and ζ ∈ G}

Proof Let J = {β ∈ R | η ∗ (ζ ∗ β) = 1 for some η ∈
K and ζ ∈ G} andβ ∈ J . Then, η∗(ζ ∗β) = 1 for some η ∈
K and ζ ∈ G. Hence, β ∈ 〈K ∪ G〉 by Theorem 3.3. There-
fore, J ⊆ 〈K ∪ G〉. Conversely, assume that β ∈ 〈K ∪ G〉.
Then, there are γ1, γ2, ...., γi , ..., γn ∈ K ∪ G such that
γn ∗ (... ∗ (γ1 ∗ β)...) = 1. By (GE3), we can get that

γn ∗ (... ∗ (γi+1 ∗ (γi .... ∗ (γ1 ∗ β)...))...) = 1 ∈ G

such that γ1, γ2, ..., γi ∈ K andγi+1, ..., γn ∈ G. Since γn ∈
G and G is a GE-filter, we have

γn−1 ∗ (... ∗ (γi+1 ∗ (γi ... ∗ (γ1 ∗ β)...))...) ∈ G.

By repeating this, we get γi ∗ (... ∗ (γ1 ∗ β)....) ∈ G. Take
c = γi ∗ (... ∗ (γ1 ∗ β)....). By repeating (GE3), we get that

γi ∗ (... ∗ (γ1 ∗ (c ∗ β))....) = 1 ∈ K ,

Since γi ∈ K and K is a GE-filter of R, we get c ∗ β ∈ K .
Put η = ζ ∗β. Then, η ∗ (ζ ∗β) = (ζ ∗β) ∗ (ζ ∗β) = 1 and
hence β ∈ J . Therefore, J = 〈K ∪ G〉. �


The intersection of two GE-filters K and G of a GE-
algebra is a GE-filter of R, as can be seen. Also, K ∩ G
is the infimum of both K and G, as can be shown. The class
of all GE-filters in a GE-algebra R is designated by O(R).
The following theorem is now established.

Theorem 3.7 Let R be a transitive GE-algebra. Then,O(R)

forms a complete distributive lattice.
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Proof For any two GE-filters K1 and K2 of a transitive GE-
algebra, define

K1 ∨ K2 = 〈K1 ∪ K2〉 = {β ∈ R | t ∗ (r ∗ β)

= 1 for some t ∈ K1 and r ∈ K2}.

Then, it is obvious that (O(R),∩,∨) is a complete lattice
with respect to set inclusion. Let K1, K2, K3 ∈ O(R). Then,
obviously, K1 ∩ (K2 ∨ K3) ⊇ (K1 ∩ K2) ∨ (K2 ∩ K3).

Conversely, assume that β ∈ K1 ∩ (K2 ∨K3). Then, β ∈ K1

and β ∈ K2 ∨ K3. Then, there are c ∈ K2 and d ∈ K3 such
that c ∗ (d ∗ β) = 1. Let α1 = d ∗ β and α2 = α1 ∗ β. It
can be observed that α1 ∈ K1 and α2 ∈ K1. Now, c ∗ α1 =
c ∗ (d ∗ β) = 1 ∈ K2 which implies that α1 = d ∗ β ∈ K2.
Hence, α1 ∈ K1 ∩ K2. Also, d ∗ α2 = d ∗ (α1 ∗ β) =
d ∗ ((d ∗β)∗β) = d ∗ ((d ∗β)∗ (d ∗β)) = d ∗1 = 1 ∈ K3.
Then, α2 ∈ K3 and hence α2 ∈ K1 ∩ K3. Now, by (GE3),
α1 ∗ (α2 ∗ β) = (d ∗ β) ∗ ((α1 ∗ β) ∗ β) = (d ∗ β) ∗ (((d ∗
β) ∗ β) ∗ β) = 1. Hence, β ∈ (K1 ∩ K2) ∨ (K1 ∩ K3).

Hence, K1 ∩ (K2 ∨ K3) ⊆ (K1 ∩ K2) ∨ (K1 ∩ K3). Thus,
(O(R),∩,∨) is a complete distributive lattice. �


Corollary 3.8 Let R be a GE-algebra with transitivity. Then,
with regard to the inclusion ordering ⊆, the class O(R) of
all GE-filters of R is a complete lattice in which for any class
{Kζ }ζ∈	 of GE-filters of R, inf{Kζ }ζ∈	 = ∩ζ∈	Kα and
sup{Kζ }ζ∈	 = 〈∪ζ∈	Kα〉.

A GE-filter K of a GE-algebra R is said to be proper if
K �= R.

Definition 3.9 A proper GE-filter N of a GE-algebra R is
said to be maximal if 〈N ∪ {β}〉 = R for any β ∈ R \ N ,
where 〈N ∪ {β}〉 is the GE-filter generated by N ∪ {β}.

Example 3.10 Let R = {1, e, f , g, h, a, b} be a set with the
binary operation “∗” in the following Cayley Table.

∗ 1 e f g h a b
1 1 e f g h a b
e 1 1 1 g g a b
f 1 e 1 h h a b
g 1 e 1 1 1 a 1
h 1 e 1 1 1 a b
a 1 e 1 g g 1 b
b 1 1 f h h a 1

Then, (R, ∗, 1) is a GE-algebra and H := {1, e, f , a, b} is a
proper GE-filter of R. Moreover, we have 〈H ∪ {g}〉 = R =
〈H ∪ {h}〉, and so H is a maximal GE-filter of R.

We now have a necessary and sufficient condition for any
proper GE-filter to be maximal.

Theorem 3.11 Let R be a transitive GE-algebra. Then, a
proper GE-filter K1 of R is maximal if and only if K1 ⊆
K ⊆ R implies K1 = K or K = R for any GE-filter K of
R.

Proof Suppose K1 is a maximal GE-filter of R. Let K be a
GE-filter of R such that K1 ⊆ K ⊆ R. Suppose K �= R.
Then, we have to show that K1 = K . Suppose K1 �= K .

Then, there exists β ∈ K such that β /∈ K1. Since K1 is a
maximal GE-filter of R, we have 〈K1∪{β}〉 = R. Let γ ∈ R.
Then, γ ∈ 〈K1 ∪ {β}〉. Then, β ∗ γ ∈ K1 ⊆ K and hence,
γ ∈ K . Therefore, K = K1. Conversely, assume that the
condition holds. Let β ∈ R\K1. Suppose 〈K1 ∪ {β}〉 �= R.

Chose γ /∈ 〈K1∪{β}〉 and γ ∈ R. Hence, K1 ⊆ 〈K1∪{β}〉 ⊂
R. Then by assumption, we get K1 = 〈K1 ∪ {β}〉. Hence,
β ∈ K1 which is a contradiction. Thus, K1 is a maximal
GE-filter of R. �

Definition 3.12 A proper GE-filter P of a GE-algebra R is
said to be prime if Q ∩ H ⊆ P implies Q ⊆ P or H ⊆ P
for any two GE-filters Q and H of R.

Example 3.13 Consider theGE-algebra R in Example 3.10. It
is easy to verify that the set K := R \{a} is a prime GE-filter
of R.

Theorem 3.14 A proper GE-filter P of a GE-algebra R is
prime if and only if 〈β〉 ∩ 〈γ 〉 ⊆ P implies β ∈ P or γ ∈ P
for all β, γ ∈ R.

Proof Assume that P is a prime GE-filter of R. Let β, γ ∈ R
be such that 〈β〉 ∩ 〈γ 〉 ⊆ P . Since P is prime, it implies that
β ∈ 〈β〉 ⊆ P or γ ∈ 〈γ 〉 ⊆ P . Conversely, assume that the
condition holds. Let K and G be two GE-filters of R such
that K ∩G ⊆ P. Let β ∈ K and γ ∈ G. Then, 〈β〉 ⊆ K and
〈γ 〉 ⊆ G. Hence, 〈β〉 ∩ 〈γ 〉 ⊆ K ∩ G ⊆ P. Then, β ∈ P
or γ ∈ P . Thus, K ⊆ P or G ⊆ P . Therefore, P is a prime
GE-filter of R. �

Theorem 3.15 Let K be a GE-filter of a transitive GE-
algebra R.Then, P∩L ⊆ K if andonly if 〈K∪P〉∩〈K∪L〉 =
K , for any GE-filters P and L of R.

Proof Let 〈K ∪ P〉∩ 〈K ∪ L〉 = K . Since P ⊆ 〈K ∪ P〉 and
L ⊆ 〈K ∪ L〉, we get that P ∩ L ⊆ 〈K ∪ P〉∩ 〈K ∪ L〉 = K .

Therefore, P∩L ⊆ K .Conversely, assume that P∩L ⊆ K .
Clearly, K ⊆ 〈K ∪ P〉∩〈K ∪L〉. Let t ∈ 〈K ∪ P〉∩〈K ∪L〉.
Since K is a GE-filter of R, we get (βn∗(...∗(β1∗t)..)) ∈ K ,

for some n ∈ N and β1, β2, ....βn ∈ P . It follows that, there
exists b1 ∈ K such that βn ∗ (... ∗ (β1 ∗ t)..) = b1. By the
similar argument, we have γm ∗(...∗(γ1∗t)..) = b2, for some
m ∈ N, γ1, γ2, ..., γm ∈ L and b2 ∈ K . Hence, by repeating
(GE3) and by (2.4), we get βn ∗ (... ∗ (β1 ∗ (b1 ∗ t))..) = 1.
Hence, b1 ∗ t ∈ P . By the similar argument, we can show
that b2 ∗ t ∈ L. Since b1, b2 ∈ K , b1 ∗ t ≤ b2 ∗ (b1 ∗ t) and
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b2 ∗ t ≤ b2 ∗ (b1 ∗ t), we get b2 ∗ (b1 ∗ t) ∈ P ∩ L ⊆ K .
Hence, t ∈ K . Therefore, 〈K ∪ P〉 ∩ 〈K ∪ L〉 ⊆ K . Thus,
〈K ∪ P〉 ∩ 〈K ∪ L〉 = K �

Corollary 3.16 Let Q be a GE-filter of a transitive GE-
algebra R. Then, for any η, ζ ∈ R,

〈η〉 ∩ 〈ζ 〉 ⊆ Q if and only if 〈Q ∪ {η}〉 ∩ 〈Q ∪ {ζ }〉 = Q.

Theorem 3.17 In a transitive GE-algebra, every maximal
GE-filter is a prime GE-filter.

Proof Let Q be a maximal GE-filter of a transitive GE-
algebra R. Let 〈μ〉 ∩ 〈ν〉 ⊆ Q for some μ, ν ∈ R. Suppose
μ /∈ Q and ν /∈ Q. Then, 〈Q∪{μ}〉 = R and 〈Q∪{ν}〉 = R.

Hence, 〈Q∪{μ}〉∩〈Q∪{ν}〉 = R.Hence, by Corollary 3.16,
〈μ〉 ∩ 〈ν〉 � Q, which is a contradiction. Hence, μ ∈ Q or
ν ∈ Q. Therefore, Q is a prime GE-filter of R. �

Corollary 3.18 Let R be a transitive GE-algebra. If Q1,

Q2, ...Qn and Q are maximal GE-filters of R such that
n⋂
j=1

Q j ⊆ Q.There exists i ∈ {1, 2, ..., n} such that Qi = Q.

The following example shows that the converse of Theo-
rem 3.17 is not valid.

Example 3.19 Let R = {1, e, f , g, h, a, b} be a set with the
binary operation “∗” in the following Cayley Table.

∗ 1 e f g h a b
1 1 e f g h a b
e 1 1 1 h h b b
f 1 e 1 g g a a
g 1 e 1 1 1 a b
h 1 e 1 1 1 a b
a 1 e f h h 1 1
b 1 e f g h 1 1

Then, (R, ∗, 1) is a transitive GE-algebra. It is routine to
verify that L := {1, e, f , g, h} is a prime GE-filter of R.
Note that P := {1, f , g, h} is a GE-filter of R such that
P � L � R. Hence, L is not a maximal GE-filter of R.

Theorem 3.20 Let R be a transitive GE-algebra and G be a
nonempty subset of R such that G is closed under “∂”, where
β∂γ := (γ ∗ β) ∗ β, for any β, γ ∈ G. If K is a GE-filter
of R such that K ∩G = ∅, then there exist a prime GE-filter
M of R such that K ⊆ M and M ∩ G = ∅.

Proof Let K be a GE-filter of R such that K ∩ G = ∅.

Consider

G = {J ∈ G(R) | K ⊆ J and J ∩ G = ∅}.

Clearly K ∈ G. Then, by Zorn’s lemma, G has a maximal
element, say M . Then, K ⊆ M and M ∩ G = ∅. We prove
that M is a prime GE-filter of R. Suppose there are GE-
filter K , Q of R such that K ∩ Q ⊆ M, K � M and Q �

M . By maximality of M , we have 〈M ∪ K 〉 ∩ G �= ∅ and
〈M∪Q〉∩G �= ∅. Let t ∈ 〈M∪K 〉∩G and r ∈ 〈M∪Q〉∩G.
Since t ∗ (t∂r) = t ∗ ((r ∗ t) ∗ t) = 1 and r ∗ (t∂r) =
r ∗ ((r ∗ t) ∗ t) = 1, we have t∂r ∈ 〈M ∪ K 〉 ∩ 〈M ∪ Q〉.
Also, t, r ∈ G andG is a GE-filter of R implies that t∂r ∈ G.
Hence, t∂r ∈ (〈M ∪ K 〉 ∩ 〈M ∪ Q〉) ∩ G. Therefore, M �=
〈M ∪ K 〉 ∩ 〈M ∪ Q〉. Hence, by Theorem 3.15, K ∩ Q � M
which is a contradiction. Therefore, M is a prime GE-filter
of R. �


Corollary 3.21 Let R be a transitive GE-algebra. Then, the
following holds:

(1) For any β ∈ R \ {1}, there exists a prime GE-filter M
such that β /∈ M.

(2)
⋂{M | M is a prime GE-filter of R} = {1}.

(3) Any proper GE-filter K of R can be expressed as the
intersection of all prime GE-filters of R containing K .

Theorem 3.22 If a GE-algebra R is transitive, then G(X) is
a chain if and only if every proper GE-filter of R is a prime
GE-filter.

Proof Suppose that G(X) is a chain. Let P be a proper GE-
filter of R. Let μ, ν ∈ R be such that 〈μ〉 ∩ 〈ν〉 ⊆ P. Since
〈μ〉 and 〈ν〉 are GE-filters of R, we get either 〈μ〉 ⊆ 〈ν〉 or
〈ν〉 ⊆ 〈μ〉. Hence, μ ∈ P or ν ∈ P . Therefore, P is a prime
GE-filter of R.

Conversely, suppose that every proper GE-filter of R is a
primeGE-filter of R. Let P and L be two proper GE-filters of
R. Since P ∩ L is a proper GE-filter of R, we get P ⊆ P ∩ L
or L ⊆ P ∩ L. Hence, P ⊆ L or L ⊆ P . Therefore, G(X)

is a chain. �


4 Elitable GE-filters

In this section, the concept of elitable GE-filters is intro-
duced and characterized. Some basic properties of elitable
GE-filters are observed in terms of maximal GE-filters.

Definition 4.1 Let K be a nonempty subset of a bordered
GE-algebra R. Then, the elitable of K is denoted by K⊗ and
is defined as K⊗ := {β ∈ R | βßß ∈ K }.

Example 4.2 Let R = {0, 1, e, f , g, h, a, b} be a set with the
binary operation “∗” in the following Cayley Table.
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∗ 0 1 e f g h a
0 1 1 1 1 1 1 1
1 0 1 e f g h a
e 0 1 1 1 0 1 1
f g 1 e 1 g e e
g 1 1 e 1 1 e e
h 1 1 1 f 1 1 1
a 0 1 1 f g 1 1

Then, (R, ∗, 1) is a bordered GE-algebra. Given a nonempty
subset K of R, we have:

K⊗ =

⎧⎪⎪⎨
⎪⎪⎩

{0, g, h} if 0 ∈ K , 1 /∈ K ,

{1, e, f , a} if 0 /∈ K , 1 ∈ K ,

∅ if 0 /∈ K , 1 /∈ K ,

R if 0 ∈ K , 1 ∈ K ,

Given a nonempty subset K in a bordered GE-algebra R,
the elitable of K may not be a GE-filter of R as seen in the
following example.

Example 4.3 In Example 4.2, if we take K := {1, g, h}, then
K⊗ = {1, e, f , a} and it is not aGE-filter of R since e∗h = 1
and e ∈ K⊗ but h /∈ K⊗.

Lemma 4.4 Let R be a bordered GE-algebra and consider
two elitable subsets K and G of R. Then, the following holds:

K ⊆ G ⇒ K⊗ ⊆ G⊗. (4.1)

(K ∩ G)⊗ = K⊗ ∩ G⊗. (4.2)

Proof Suppose K ⊆ G and β ∈ K⊗. Then, βßß ∈ K ⊆
G and hence, β ∈ G⊗. Thus, (4.1) holds. Let β ∈ (K ∩
G)⊗. Then, βßß ∈ K ∩ G. Hence, βßß ∈ K and βßß ∈ G.
Therefore, β ∈ K⊗ ∩ G⊗. Hence, (K ∩ G)⊗ ⊆ K ∩ G.
Suppose β ∈ K⊗ ∩ G⊗. Then, β ∈ K⊗ and β ∈ G⊗.
Hence, βßß ∈ K and βßß ∈ G. Therefore, βßß ∈ K ∩ G and
hence, β ∈ (K ∩ G)⊗. Therefore, K⊗ ∩ G⊗ ⊆ (K ∩ G)⊗.

Thus, (4.2) holds. �

Lemma 4.5 Let R be a bordered GE-algebra which is tran-
sitive. Then, for any β, γ ∈ R, we have

(1) βßßß ≤ βß,
(2) β ∗ γ ß ≤ βßß ∗ yß,
(3) (β ∗ γ ßß)ßß ≤ β ∗ γ ßß,
(4) (βß ∗ γ ß)ßß ≤ βß ∗ γ ß,
(5) (β ∗ γ )ßß ≤ βßß ∗ γ ßß.

Proof (1). Let β ∈ R. Then, by (GE1), (2.7) and (2.25),

1 = (β ∗ 0) ∗ (β ∗ 0) ≤ β ∗ ((β ∗ 0) ∗ 0)

= β ∗ βßß ≤ βßßß ∗ βß.

Hence, βßßß ∗ βß = 1, which gives βßßß ≤ βß.

(2). Let β, γ ∈ R. Then, by (2.21) and (2.25), β ∗ γ ß ≤
γ ∗ βß ≤ βßß ∗ γ ß.

(3). Let β, γ ∈ R. We can observe that (β ∗ γ ßß)ß ≤ (β ∗
γ ßß)ßßß. By (2.12), we get γ ß∗(β∗γ ßß)ß ≤ γ ß∗(β∗γ ßß)ßßß

and so β ∗(γ ß∗(β ∗γ ßß)ß) ≤ β ∗(γ ß∗(β ∗γ ßß)ßßß). Hence,
by (GE1),(2.7), (2.20) and (2.21), we get

1 = (β ∗ γ ßß) ∗ (β ∗ γ ßß)

≤ β ∗ ((β ∗ γ ßß) ∗ γ ßß)

≤ β ∗ (γ ß ∗ (β ∗ γ ßß)ß)

≤ β ∗ (γ ß ∗ (β ∗ γ ßß)ßßß)

≤ β ∗ ((β ∗ γ ßß)ßß ∗ γ ßß)

≤ (β ∗ γ ßß)ßß ∗ (β ∗ γ ßß).

Thus, (β ∗ γ ßß)ßß ∗ (β ∗ γ ßß) = 1. Therefore, (β ∗ γ ßß)ßß ≤
(β ∗ γ ßß).

(4). By (2.21), we have βß ∗ γ ß ≤ γ ∗ βßß. Hence, by
(2.25), (3) and (2.21), we get

(βß ∗ γ ß)ßß ≤ (γ ∗ βßß)ßß ≤ γ ∗ βßß ≤ βß ∗ γ ß.

(5). By (2.25), we get β ∗ γ ≤ βßß ∗ γ ßß. Hence, (β ∗
γ )ßß ≤ (βßß ∗ γ ßß)ßß. Also, by (4), we can observe that
(βßß ∗ γ ßß)ßß ≤ βßß ∗ γ ßß. Hence, (5) follows, since R is
transitive. �


Theorem 4.6 Let R be a bordered GE-algebra which is tran-
sitive. Then, for any GE-filter K of R, we have the following:

(1) K⊗ is a GE-filter of R.

(2) K ⊆ K⊗.

(3) (K⊗)⊗ = K⊗.

Proof (1). Since 1ßß = 1 ∈ K , we have 1 ∈ K⊗. Let η ∈ K⊗
and η ∗ ζ ∈ K⊗. Then, ηßß ∈ K and (η ∗ ζ )ßß ∈ K . Since
(η∗ζ )ßß ≤ ηßß∗ζ ßß by Lemma 4.5(5) and (η∗ζ )ßß ∈ K , we
have ηßß∗ζ ßß ∈ K . Therefore, ζ ßß ∈ K and hence, ζ ∈ K⊗.
Thus, K⊗ is a GE-filter of R.

(2). Let η ∈ K . Since η ≤ ηßß and η ∈ K , we have
ηßß ∈ K . Hence, η ∈ K⊗. Thus, K ⊆ K⊗.

(3). Clearly K⊗ ⊆ (K⊗)⊗ by (2). Let η ∈ (K⊗)⊗. Then,
ηßß ∈ K⊗ and hence, ηßßßß ∈ K . Since ηß ≤ ηßßß implies
that ηßßßß ≤ ηßß by (2.24), and K is a GE-filter of R, we
have ηßß ∈ K . Therefore, η ∈ K⊗. Thus, K⊗ = (K⊗)⊗. �


The following example shows that if R is a bordered GE-
algebra which is not transitive, then the elitable of a GE-filter
K of R may not be a GE-filter of R.

Example 4.7 Let R = {0, 1, e, f , g, h} be a set with a binary
operation ∗ given in the following table:

123



8994 J.-G. Lee et al.

∗ 0 1 e f g h
0 1 1 1 1 1 1
1 0 1 e f g h
e 0 1 1 1 0 1
f g 1 e 1 g 1
g 1 1 e 1 1 1
h 1 1 e 1 1 1

Then, R is a bordered GE-algebra which is not transitive.
Let K = {1}. Then, K is a GE-filter of R and its elitable
is K⊗ = {1, e, f }. But K⊗ is not a GE-filter of R since
e ∗ h = 1 ∈ K⊗ and e ∈ K⊗ but h /∈ K⊗.

Definition 4.8 Let R be a bordered GE-algebra. Then, a
nonempty subset K of R is called an elitable GE-filter of
R if it is a GE-filter of R and its elitable is K itself.

Example 4.9 Consider a 4−element Boolean algebra R :=
{0, 1, e, e′} with the partial order ≤. If we define

x ∗ y =
{
1 if x ≤ y
y otherwise

then (R, ∗, 1) is a bordered GE-algebra. Let K = {1, e, e′}.
Then, it can be easily verified that K is an elitable GE-filter
of R.

Example 4.10 In Example 4.2, we can observe that G =
{1, e, f , a} is an elitable GE-filter of R.

Theorem 4.11 Let R be a bordered GE-algebra. Then, the
intersection of two elitable GE-filters of R is also an elitable
GE-filter of R.

Proof Let K1 and K2 be two elitable GE-filters of R. Then,
K⊗
1 = K1 and K⊗

2 = K2 which imply from (4.2) that

K1 ∩ K2 = K⊗
1 ∩ K⊗

2 = (K1 ∩ K2)
⊗.

Hence, K1 ∩ K2 is an elitable GE-filter of R. �

In the following example, we can find two elitable GE-

filters of R whose union is not an elitable GE-filter of R.

Example 4.12 Let R = {0, 1, e, f , g, h}be a setwith a binary
operation ∗ given in the following table:

∗ 0 1 e f g h
0 1 1 1 1 1 1
1 0 1 e f g h
e h 1 1 1 h h
f g 1 e 1 g g
g f 1 e f 1 1
h f 1 e f 1 1

Then, R is a bordered GE-algebra. Let K1 = {1, e, f } and
K2 = {1, g, h}. Then, it is routine to verify that K1 and K2

are elitable GE-filters of R. But K1 ∪ K2 = {1, e, f , g, h}
is not an elitable GE-filter of R since f ∗ 0 = g ∈ K1 ∪ K2

and f ∈ K1 ∪ K2 but 0 /∈ K1 ∪ K2.

Theorem 4.13 For any transitive bordered GE-algebra R,
the classO⊗(R) of all elitable GE-filters of R is a complete
distributive lattice.

Proof For any two elitable GE-filters K and G of R, define
a relation ≤ on O⊗(X) by K ≤ G ⇔ K ⊆ G. Then, it
can be observed that (O⊗(X),≤) is a partially ordered set.
Consider K ∩ G = (K ∩ G)⊗ and K 
 G = (K ∨ G)⊗,

where

K ∨ G

= {β ∈ R | t ∗ (r ∗ β) = 1 for some t ∈ K and r ∈ G}.

Obviously (K∩G)⊗ is infimumof K andG inO⊗(X). Also,
(K ∨ G)⊗ is the upper bound of K⊗ and G⊗. Let M be any
elitable GE-filter of R such that K ⊆ M and G ⊆ M . Let
β ∈ (K ∨ G)⊗. Then, βßß ∈ K ∨ G, and hence, there exist
t ∈ K and r ∈ G such that t ∗ (r ∗ βßß) = 1. Since K ⊆ M
and G ⊆ M , we get βßß ∈ M = M⊗. Hence, β ∈ M .

Therefore, (K ∨ G)⊗ is supremum of K and G in O⊗(X).
Hence, (O⊗(X),∩,
) is a lattice. We can observe that the
set theoretical intersection of an arbitrary set of elitable GE-
filters of R is an elitable GE-filter of R again by (4.2). Hence,
the set O⊗(X) forms a complete lattice with respect to set
inclusion. The least and greatest element of O⊗(X) are {1}
and R, respectively. Now, for any K ,G, M ∈ O⊗(X), we
obtain

(K 
 G) ∩ (K 
 M) = (K ∨ G)⊗ ∩ (K ∨ M)⊗

= ((K ∨ G) ∩ (K ∨ M))⊗

= (K ∨ (G ∩ M))⊗

= K 
 (G ∩ M).

Therefore, (O⊗(R),
,∩, {1}, R) is a distributive lattice. �

Theorem 4.14 Given a GE-filter K of a transitive bordered
GE-algebra R, the following are equivalent:

(1) K is an elitable GE-filter.
(2) ηßß ∈ K implies η ∈ K , for all η ∈ R.
(3) (η ∗ ζ ß)ß ∈ K implies ζ ∈ K, for all η, ζ ∈ R.

Proof (1) ⇒ (2) Assume (1) and ηßß ∈ K . Then, η ∈ K⊗ =
K . Thus, (2) follows.

(2) ⇒ (3) Assume (2) and η, ζ ∈ R such that (η ∗ ζ ß)ß ∈
K . We can observe that ζ ß ≤ η ∗ ζ ß and hence, (η ∗ ζ ß)ß ≤
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ζ ßß. Since K is an GE-filter of R and (η ∗ ζ ß)ß ∈ K , we get
ζ ßß. Therefore, ζ ∈ K by (2). Thus, (3) follows.

(3) ⇒ (1) Assume (3). Let η ∈ K⊗. Then, ηßß ∈ K .
Therefore, (1 ∗ ηß)ß = ηßß ∈ K and hence, η ∈ K by (3).
Thus, K⊗ ⊆ K , and hence, K is an elitable GE-filter of
R. �

Theorem 4.15 If K is an elitable GE-filter of a transitive
bordered GE-algebra R, then for β, γ ∈ R, βß = γ ß and
β ∈ K imply that γ ∈ K.

Proof Let K be an elitable GE-filter of R and β, γ ∈ R be
such that βß = γ ß and β ∈ K . Then, β ≤ βßß = γ ßß and
hence, γ ßß ∈ K since K is GE-filter of R. Therefore, γ ∈ K
by Theorem 4.14. �

Theorem 4.16 Every maximal GE-filter of a transitive bor-
dered GE-algebra R is an elitable GE-filter of R.

Proof Let H be a maximal GE-filter of R. Clearly, H ⊆ H⊗
by Theorem 4.6(2). Now, we prove that H⊗ ⊆ H . Suppose
H⊗

� H . Then, there exists β ∈ H⊗ such that β /∈ H .
Hence, βßß ∈ H and 〈H ∪ {β}〉 = R. Since 0 ∈ R, we have
βß = β∗0 ∈ H .Since 0 ≤ β, we have (β∗0)∗0 ≤ (β∗0)∗β

by (2.12). That is βßß ≤ βß ∗ β. Since βß, βßß ∈ H and H
is a GE-filter of R, we get β ∈ H which is a contradiction.
Hence, H⊗ ⊆ H . Thus, H is an elitable GE-filter of R. �


The following example shows that the converse of Theo-
rem 4.16 is not valid.

Example 4.17 Let R = {0, 1, e, f , g, h, a} be a set with the
binary operation “∗” in the following Cayley Table.

∗ 0 1 e f g h a
0 1 1 1 1 1 1 1
1 0 1 e f g h a
e 0 1 1 f a h a
f 0 1 1 1 g h g
g h 1 1 1 1 h 1
h a 1 1 f a 1 a
a h 1 1 1 1 h 1

Then, (R, ∗, 1) is a transitive bordered GE-algebra. Con-
sider two GE-filters K = {1, e, f } and G = {1, e, f , g, a}
of R. Then, we can observe that K is an elitable GE-filter of
R, but K is not maximal GE-filter of R since K ⊆ G ⊆ R
but K �= G and G �= R.

We provide conditions for a subset of a transitive bordered
GE-algebra to be an elitable GE-filter.

Theorem 4.18 Let K be a nonempty subset of a transitive
bordered GE-algebra R such that its elitable is K itself. If K
satisfies (2.18) and

(∀η, ζ ∈ R)(η, ζ ∈ K ⇒ (η ∗ ζ ß)ß ∈ K ), (4.3)

then K is an elitable GE-filter of R.

Proof Suppose K⊗ = K and satisfies (2.18) and (4.3). Since
K �= ∅, there exists η ∈ K . As η ≤ 1, we have 1 ∈ K by
(2.18). Let η, ζ ∈ R be such that η ∈ K and η ∗ ζ ∈ K .
Then, ηßß ∈ K and (η ∗ ζ )ßß ∈ K by (2.10) and (2.18),
which induces (ηßß ∗ (η ∗ ζ )ßßß)ß ∈ K by (4.3). Since (ηßß ∗
(η ∗ ζ )ßßß)ß ≤ (ηßß ∗ (η ∗ ζ )ß)ß and (ηßß ∗ (η ∗ ζ )ßßß)ß ∈ K ,
we have (ηßß ∗ (η ∗ ζ )ß)ß ∈ K by (2.18). Now, (η ∗ ζ ) ∗
ηß ≤ (η ∗ ζ ) ∗ ηßßß ≤ ηßß ∗ (η ∗ ζ )ß by (2.21). Hence, it
follows from (2.24) and (2.18) that ((η ∗ ζ ) ∗ xß)ß ∈ K .
Since ζ ß = ζ ∗ 0 ≤ (η ∗ ζ ) ∗ (η ∗ 0) by (2.2), we have
((η ∗ ζ ) ∗ (η ∗ 0))ß ≤ ζ ßß by (2.24) and hence ζ ßß ∈ K by
(2.18). Thus, ζ ∈ K , and so K is a GE-filter of R. Therefore,
K is an elitable GE-filter of R. �

Corollary 4.19 If R is antisymmetric, then, for all η, ζ ∈ R,
the following are equivalent.

(1) R is duplex.
(2) ηß = ζ ß implies η = ζ.

(3) ηß ∗ ζ ß = ζ ∗ η.

Corollary 4.20 If R is antisymmetric, then the conditions
below are equivalent.

(1) R is duplex.
(2) Every GE-filter is an elitable GE-filter.
(3) Every principal GE-filter is an elitable GE-filter.

Open Problem. We were unable to identify an example of
an elitable GE-filter for an infinite GE-algebra. Is it possible
to construct an elitable GE-filter for an infinite GE-algebra?

Conclusion

In this paper, we have introduced the notions ofmaximal GE-
filter and prime GE-filter in a GE-algebra and studied the
relation between them. We have characterized prime GE-
filter in terms of the GE-filter generated by a subset of a
transitive GE-algebra. We generalized Stone’s theorem to
transitive GE-algebras. We have introduced the notion of
elitable GE-filter of a bordered GE-algebra and investigated
its properties. We have observed that the class of all elitable
GE-filters of a transitive bordered GE-algebra is a complete
distributive lattice. We have given equivalent conditions for
a GE-filter of a transitive bordered GE-algebra to be elitable
GE-filter. We have provided conditions for a subset of a tran-
sitive bordered GE-algebra to be elitable GE-filter.

123



8996 J.-G. Lee et al.

Acknowledgements This paper was supported by Wonkwang Univer-
sity in 2022.

Funding Funding was provided by Wonkwang University.

Data Availability No data were used to support this study.

Declarations

Conflicts of interest The authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bandaru RK, Borumand Saeid A, Jun YB (2021) On GE-algebras.
Bull Sect Logic 50(1):81–96. https://doi.org/10.18778/0138-
0680.2020.20

Bandaru RK, Öztürk MA, Jun YB (2021) Bordered GE-algebras, J
Algeraic Syst (submitted)

Celani S (2002) A note on homomorphisms of Hilbert alge-
bras. Int J Math Math Sci 29(1):55–61. https://doi.org/10.1155/
S0161171202011134

Chajda I, Halas R, Jun YB (2002) Annihilators and deductive sys-
tems in commutative Hilbert algebras. Comment Math Univ Carol
43(3):407–417

Diego A (1966) Sur les algebres de Hilbert. Collection de Logique
Mathematique, Edition Hermann, Serie A, XXI

Dudek WA, Jun YB (2007) Poor and crazy filters of BCK-algebras. Int
J Pure Appl Math Sci 4:25–38

Hong SM, Jun YB (1996) On deductive systems of Hilbert algebras.
Commun Korean Math Soc 11(3):595–600

Imai Y, Iséki K (1966) On axiom system of propositional calculi, XIV.
Proc Japan Acad Ser A Math Sci 42(1):19–22

Iséki K (1966) An algebra related with a propositional calculus. Proc
Japan Acad Ser A Math Sci 42(1):26–29

Jun YB, Kim KH (2005) H-filters of Hilbert algebras. Sci Math Japon-
icae e–2005:231–236

Kim HS, Kim YH (2006) On BE-algebras. Sci Math Japonicae Online
e–2006:1299–1302

OzturkMA, Lee JG, Bandaru RK, Jun YB (2021) Strong GE-filters and
GE-ideals of bordered GE-algebras, J Math, Volume 2021, Article
ID 5520023, 9 p. https://doi.org/10.1155/2021/5520023

Rezaei A, Borumand Saeid A, Borzooei RA (2013) Relation between
Hilbert algebras and BE-algebras. Appl Appl Math Int J 8(2):573–
584

Borumand SaeidA, Rezaei A, Borzooei RA (2013) Some types of filters
in BE-algebras. Math Comput Sci 7:341–352. https://doi.org/10.
1007/s11786-013-0157-6

Rezaei A, Bandaru RK, Borumand Saeid A, Jun YB (2021) Prominent
GE-filters and GE-morphisms in GE-algebras. Afrika Matematika
32:1121–1136. https://doi.org/10.1007/s13370-021-00886-6

Song SZ, Bandaru RK, Jun YB (2021) Imploring GE-filters of GE-
algebras, J Math, Volume 2021, Article ID 6651531, 7 pages.
https://doi.org/10.1155/2021/6651531

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18778/0138-0680.2020.20
https://doi.org/10.18778/0138-0680.2020.20
https://doi.org/10.1155/S0161171202011134
https://doi.org/10.1155/S0161171202011134
https://doi.org/10.1155/2021/5520023
https://doi.org/10.1007/s11786-013-0157-6
https://doi.org/10.1007/s11786-013-0157-6
https://doi.org/10.1007/s13370-021-00886-6
https://doi.org/10.1155/2021/6651531

	Elitable GE-filters of bordered GE-algebras
	Abstract
	1 Introduction
	2 Preliminaries
	3 Maximal and prime GE-filters
	4 Elitable GE-filters
	Conclusion
	Acknowledgements
	References




