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 Butterfly optimization algorithm (BOA) is a relatively novel optimization technique 
for solving function optimization as well as real world applications. However, the 
paramount challenge in BOA is that it is prone to stagnation in local optima. The 
purpose of this study is to balance the exploration and exploitation abilities of BOA 
when two new strategies are introduced. The dynamic inertia weight based on 
Logistic model as the first strategy is introduced to modify the position updating 
equation. Another strategy is the opposition-based learning. A new variant of BOA 
called BBOA based on these two strategies is proposed. Ten widely used benchmark 
test functions and 30 complex benchmarks from CEC 2014 are selected to verify the 
effectiveness of BBOA. The used benchmark problems are composed of unimodal, 
multimodal, rotated, shifted, hybrid and composite functions. The experimental 
results and analysis show that the proposed BBOA has better exploration ability 
than the conventional BOA when solving different characteristics functions. Finally, 
BBOA is applied to solve three real-world engineering applications and sixteen 
feature selection problems. The results demonstrate that BBOA can outperform 
other competitors in terms of the accuracy of solution on constrained engineering 
design and feature selection problems. 

 

 

1. Introduction 

Till date, many nature-inspired meta-heuristic optimization algorithms, such as genetic algorithm (GA), 

particle swarm optimization (PSO), artificial bee colony (ABC), ant colony optimization (ACO), cuckoo search 

(CS), bat algorithm (BA), grey wolf optimizer (GWO), firefly algorithm (FA), whale optimization algorithm 

(WOA), are proposed to handle various search problems and are found in swarm intelligence and evolutionary 

computation literatures. GA mimics the process of natural selection (Goldberg 1989). PSO is inspired by the 

social behavior of bird flocking and fish schooling (Kennedy and Eberhart 1995). ABC is based on the principle 

of honey bee foraging behavior (Karaboga and Basturk 2008). ACO is inspired by the foraging behavior of ant 

colonies (Blum 2005). CS is based on the obligate brood parasitic behavior of some cuckoo species (Huang et al. 

2016). BA mimics the echolocation behavior of microbats (Yang et al. 2010). GWO mimics the social leadership 

and hunting behavior of grey wolves (Long et al. 2018a). FA is inspired by the idealized behavior of the flashing 

characteristics of fireflies (Yang 2009). WOA is based on the bubble-net hunting behavior of humpback whales 

(Long et al. 2020a). The main advantage of these algorithms is their use of the “trial-and-error” principle in 

searching for solutions. Thus, these algorithms were successfully applied in solving function optimization and 

real-world engineering optimization problems. 

In this paper, we focus on the butterfly optimization algorithm (BOA), which was developed by Arora and 

Singh (2019). BOA mimics the food searching and mating behavior of biological butterflies in nature. The frame 

work of BOA is mainly based on the foraging strategy of butterflies, which utilize their sense of smell to 

determine the location of nectar or mating partner. Similar to other nature-inspired meta-heuristic algorithms, 

BOA does not require gradient knowledge of the function, easy implementation, and fewer parameters for 

adjustment. Preliminary studies suggest that the BOA shows excellent performance on function optimization 
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problems, when compared to the other nature-inspired meta-heuristic algorithms. Therefore, BOA is widely 

applied to solve global optimization and real-world optimization problems (Arora and Anand 2019). 

Similar to other nature-inspired meta-heuristic optimization algorithms, the BOA also faces up to some 

challenging problems. For instance, the basic BOA has tendency to show premature converge to local optima 

when solving complex multimodal problems. This phenomenon can be attributed to the loss of population 

diversity in the later stage of iteration. As a matter of fact, convergence and diversity are necessary during the 

iterative process of BOA. However, the two aspects contradict each other. To avoid falling into local optima by 

achieving a proper balance between convergence and diversity, many modified version of BOA have been 

suggested (Arora et al. 2018; Arora and Anand 2018; Arora and Singh 2017; Yuan et al. 2020; Sharma and Saha 

2020). While the most BOA variants introduce additional operators or new mechanisms, premature convergence 

remains a major issue in most existing BOA variants. Thus, the goal of this paper is to balance the exploration and 

exploitation capabilities of BOA by introducing two strategies. The primary contributions of this study are 

summarized as follows: 

1) A new variant of the BOA, called BBOA, is suggested to solve benchmark test functions and engineering 

design problems. 

2) The dynamic inertia weight based on Logistic model is proposed to effectively balance the exploration 

and exploitation abilities of the conventional BOA. 

3) The opposition-based learning strategy is introduced to further enhance the population diversity. 

4) Comprehensive experiments demonstrated that the BBOA obtains excellent performance on function 

optimization and engineering design problems. 

The remainder of this paper is organized as follows. Section 2 provides the preliminary knowledge. The 

modifications are introduced and the BBOA are explained in Section 3. The BBOA is tested on benchmark 

problems and real-world engineering applications in Section 4. Section 5 concludes this investigation and presents 

the future works. 

2. Butterfly optimization algorithm 

BOA is a new meta-heuristic algorithm developed by Arora and Singh (2019). It simulates the foraging and 

mating behavior of butterflies. In BOA, the fragrance is formulated as a function of the physical intensity of 

stimulus as follows: 
a

cIf                                               (1) 

where f  represents the perceived magnitude of the fragrance, c  denotes the sensory modality, I  is the 

stimulus intensity and a  is the power exponent. The search process of BOA is divided two phases, i.e., global 

search and local search. 

There are three phases in BOA: initialization, iteration and final phases. In the initialization phase, the initial 

parameters and an initial population of butterflies are generated. In the iteration phase, a number of iterations are 

performed by the algorithm. There are two key steps in the algorithm: global search and local search phases. 

In global search phase, the butterfly takes a step toward the optimal butterfly/solution ( *
g ) : 

iiii ftxgrtxtx  ))(()()1( *2                                 (2) 

where ix  represents the position vector of thi  butterfly, t  is the number of iteration, ]1,0[r  is a random 

number, *
g  denotes the global optima, and if  is the fragrance of thi  butterfly. 

Local search phase is described as follows: 

ikjii ftxtxrtxtx  ))()(()()1( 2                                (3) 

where jx  and kx  are thj  and thk  butterflies from the population. 
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The above mentioned equations (2) and (3) are used in BOA in a following manner 










otherwizeftxtxrtxtx

prandifftxgrtxtx

ikjii

iiii

,))()(()()1(

,))(()()1(
2

*2

                         (4) 

where ]1,0[p  is a constant number. 

In the final phase, till the stopping criteria is not matched, the iteration phase is continued. 

The pseudo code of the basic BOA is shown in Algorithm 1. 

 

3. Balanced butterfly optimization algorithm 

3.1 Modification of position-updating equation 

It is well-known that every nature-inspired meta-heuristic algorithm must balance the tradeoff between 

exploration and exploitation, as it is very important to efficiently find the global best solution. Generally speaking, 

in the early stages of search process, it is always desired that the search agents are needed to wander throughout 

the search space rather than gathering around a local optima region (exploration). However, to find the optimum 

solution of problem, it must converge towards the global best solution in the later stages of search process 

(exploitation). 

BOA as a relatively new nature-inspired meta-heuristic optimization algorithm, the abilities of exploration and 

exploitation are also needed to balance. According to the Eq. (4), the global best solution (g*) and the two 

randomly selected solutions (xj and xk) are introduced to balance the exploration and exploitation, respectively. In 

other words, the individual in the global search phase updates its position by learning from the global best solution 

of the current population, to accelerate the convergence and improve the exploitation ability. Furthermore, the 

individual in the local phase renews its position by learning from the current and two randomly selected 

individuals simultaneously, to improve the diversity and enhance the exploration ability. However, the parameter 

r  in the Eq. (4) is a random number, its ability to balance the exploration and exploitation is limited. 

PSO is a nature-inspired meta-heuristic optimization algorithm developed by Kennedy and Eberhart (1995). 

Empirical studies on PSO with inertia weight ( w ) have shown that a relatively large w  exhibits better global 

exploration, while a relatively small w  results in local exploitation (Long et al. 2020b; Shi and Eberhart 1998; 

Long et al. 2019b). Inspired by PSO, in order to balance the exploration and exploitation of BOA, we herein 

introduce an inertia weight ( w ) and modify the position-updating equation described by Eq. (4) as follows: 










otherwizeftxtxrtxtwtx

prandifftxgrtxtwtx

ikjii

iiii

,))()(()()()1(

,))(()()()1(
2

*2

                        (5) 
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where ]1,0[w  is the inertia weight coefficient. 

According to the principle of the SCA, in the early stage of search process, the larger w  value means that the 

search step size is longer and the population search range is wider, which can enhance the global search 

exploration ability. However, the convergence speed is lower. In order to accelerate the convergence, the value of 

w  should be reduced at a higher speed. In the latter stage of search process, the smaller w  value means that the 

search step size is shorter and the population is concentrated on a small search region, which can improve the 

local exploitation. However, the population diversity is poor. To avoid the population fall into the local optimum, 

the value of w  should be reduced at a slower speed. Assume that the maximum and minimum values of w  are 

wmax and wmin, respectively. In the early stage of the evolution search, assume that the initial decay rate of w  is 

b . The value of b  is gradually reduced as the number of iterations increase. When the value of w  decreases to 

the wmin, the w  will stop decreasing, i.e., the decay rate b  is zero. Therefore, the variation of the value of w  

is in accordance with the Logistic model, and its mathematical formulation is: 





















max

min

)0(

)(
)(

1
)(

ww

tw
w

tw
b

dt

twd

                                  (6) 

Using the separation variable method to solve the Eq. (6), and the dynamical adjustment formula of w  can 

be obtained: 

bt
e

w

w

w
tw












11

)(

max

min

min                                    (7) 

where t  is the current iteration, and b  is the initial decay rate. From the Eq. (7), when 0t , )(tw wmax, and 

when t , it is easy to prove )(tw wmin. 

Compared with the position updating Eq. (4) in the basic BOA, the position updating Eq. (5) in our algorithm 

introduces the dynamic inertia weight w  to further balance between convergence speed and population diversity 

of the BOA. 

3.2 Opposition-based learning strategy 

In the basic BOA, according to the position updating way of the other butterfly individuals, the new candidate 

individuals are generated by moving the current individual toward the global best individual (g*). In the latter 

stage of evolution search, all of the other butterfly individuals are attracted toward the global best butterfly; they 

may converge prematurely without enough exploration of search space. Therefore, the basic BOA is prone to 

premature convergence. Accordingly, the ability to jump to out of local optima has become the most important and 

attractive goal in BOA improvement. 

Opposition-based learning (OBL) is one of the powerful optimization tools developed by Tizhoosh (2005). 

The OBL strategy has successfully been applied in various meta-heuristic algorithms, such as differential 

evolution (DE) (Rahnamayan et al. 2008), PSO (Wang et al. 2011), grasshopper optimization algorithm (GOA) 

(Ewees et al. 2018), sine cosine algorithm (SCA) (Gupta and Deep 2019), shuffled frog leaping (SFL) (Ahandani 

and Avavi-Rad 2015), antlion optimizer (ALO) algorithm (Dinkar and Deep 2018) used to enhance the 

exploration ability. Therefore, this paper introduces the OBL strategy to improve the global exploration. 

Definition 1. Opposite number. The opposite of real number ],[ ulx  is given by x̂ : 

xulx ˆ                                            (8) 

where l  and u  are the lower and upper bound of search space, respectively. 

Definition 2. Opposite point. Suppose ],,,[X 21 nxxx  , where Rxxx n ,,, 21   and ],[ iii ulx  . The 
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opposite point ]ˆ,,ˆ,ˆ[X̂ 21 nxxx   is defined by: 

nixulx iiii ,,2,1,ˆ                                    (9) 

In OBL strategy, the opposite point X̂  is replaced with it is corresponding solution X  based on the fitness 

function. If )X(f  is better than )X̂(f , then X  not changed, otherwise, X̂X  .  

In this paper, the OBL strategy is applied to the global best individual with a certain probability. The specific 

implementation is as follows. Suppose ]1,0[r  is a random number, if qr   ( ]1,0[q  is a constant number), 

the OBL strategy is implemented, otherwise, the OBL strategy is not performed. The purpose of this strategy is 

not performed the OBL strategy every iteration, and thereby reduce the computational complexity of algorithm. 

3.3 The flowchart of BBOA 

With the descriptions above, the flow chart of the proposed BBOA is shown in Fig. 1. 

 

Fig. 1. The flow chart of the proposed BBOA. 
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4 Simulations and comparisons 

To comprehensively investigate the performance of BBOA, a series of experiments are used to handle various 

mathematical benchmark test cases. All experiments are conducted using MATLAB R2014a software under a 

Windows 10 operating system and the hardware platform used is configured with Intel (R) Core (TM) i5-5575R 

CPU (2.80 GHz) and 8GB RAM. 

4.1 Experiments on widely used benchmark functions 

In this subsection, 10 widely used benchmark functions are chosen from reference (Long et al. 2019a) to 

investigate the capability of BBOA. The formulation and descriptions of functions are summarized in Table 1. 

Table 1 

The descriptions of benchmark test functions. 

Name Function formulation Search range fmin 

Sphere 2
1 1
( )

D

ii
f x


X  [-100, 100] 0 

Schwefel 2.21 2 ( ) max {| |,1 }
i i i

f x x D  X  [-100, 100] 0 

Rosenbrock 2 2 2
3 11
( ) [100( ) ( 1) ]

D

i i ii
f x x x

   X  [-30, 30] 0 

Quartic 4
4 1
( ) [0,1)

D

ii
f ix random


 X  [-1.28, 1.28] 0 

Sumpower 
( 1)

5 1
( ) | |

iD

ii
f x




X  [-1, 1] 0 

Ackley  21 1
6 1 1
( ) 20exp 0.2 exp cos(2 ) 20

D D

i iD Di i
f x x e

 
       
  X  [-32, 32] 0 

Alpine 7 1
( ) | sin( ) 0.1 |

D

i i ii
f x x x


 X  [-10, 10] 0 

Levy 2 2 2 2
8 1 11
( ) ( 1) [1 sin (3 )] sin (3 ) | 1|[1 sin (3 )]

D

i i D Di
f x x x x x  

      X  [-10, 10] 0 

Pathological 

2 2 2
1

9 2 2 22
1 1

sin ( 100 ) 0.5
( ) 0.5+

1 0.001( 2 )

D i i

i
i i i i

x x
f

x x x x




 

  
 
    

X
 

[-100, 100] 0 

Stretched V-Sine 
1 2 2 0.25 2 2 0.1 2

10 1 11
( ) ( 2 ) ((sin50( ) ) 1)

D

i i i ii
f x x x x



 
    X  [-10, 10] 0 

In Table 1, these test functions have different characteristics, i.e., unimodal, multi-modal, non-separable, 

hybrid and composition characteristics. The functions with different characteristics are used to test the different 

capabilities of algorithm. For instance, the unimodal functions are very beneficial to test the exploitation ability of 

algorithms since they only have one global optimum. The multimodal functions have many local optima and are 

very suitable to evaluate the exploration capability of algorithms (Long et al. 2018a). 

4.1.1 Results on benchmark functions with 30 dimensions 

To verify the effectiveness and efficiency of BBOA, other common algorithms are also implemented on the 

widely used benchmark functions in Table 1. Thus, the nonlinear inertia weight PSO (NIW-PSO) (Chatterjee and 

Siarry 2006), covariance matrix adaptation evolution strategy (CMA-ES) (Hansen and Ostermeier 2001), and 

BOA (Arora and Singh 2019) are selected to optimize these benchmark functions and the results are compared to 

those obtained by BBOA. For fair comparisons, the parameters of four optimizers are all set in a relatively fair 

way. Thus, the population size is 30, and the total number of iterations is 500. The dimension of each function is 

30. The other best parameters of four algorithms are set using test and trial. In BBOA, wmin = 0.1, wmax = 0.9, b = 

0.5. Four algorithms are tested under the same condition and operating system. To reduce random error, each 

algorithm is independently executed 30 runs. The experimental results of four algorithms in terms of the average 

value (Mean) and standard deviation (St.dev) of functions are provided in Table 2. It should be noted that the best 

result of each function is highlighted by bold. Additionally, the Wilcoxon sign rank test (Long et al. 2019a) at 0.05 

significant level is utilized to investigate the statistically significant difference between BBOA and other 

algorithms. The symbols of “+”, “≈”, and “-” represent that BBOA is superior to, similar to, and worse than the 

corresponding algorithms, respectively. Meanwhile, the Friedman test is also used to rank the average 

performance of four algorithms, and the average ranking (AR) and the total ranking (TR) are provided in Table 2. 
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Table 2 

Experimental results of four algorithms on ten benchmark test functions with D = 30. 

Function 
NIW-PSO CMA-ES BOA BBOA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev 

f1 2.32E-12 2.11E-12 6.88E-11 3.97E-11 2.50E-11 2.74E-12 0.00E+00 0.00E+00 

f2 3.87E+00 4.51E-01 2.08E-04 4.23E-05 1.09E-08 1.30E-09 0.00E+00 0.00E+00 

f3 6.21E+01 2.40E+01 1.81E+01 1.78E-01 2.90E+01 1.89E-02 2.90E+01 5.49E-03 

f4 2.31E-02 4.43E-03 4.90E-03 2.83E-03 2.47E-03 7.04E-04 1.51E-04 4.54E-05 

f5 2.12E-31 6.25E-31 2.89E-10 2.63E-10 5.87E-13 3.10E-13 0.00E+00 0.00E+00 

f6 1.16E+00 1.10E+00 2.80E-06 3.01E-07 1.10E-08 1.10E-09 8.88E-16 0.00E+00 

f7 5.72E-03 1.25E-03 1.16E-05 5.10E-06 1.29E-08 1.33E-08 0.00E+00 0.00E+00 

f8 1.51E+01 1.10E+01 3.35E-05 2.73E-05 4.33E-12 5.42E-12 0.00E+00 0.00E+00 

f9 1.05E+01 5.85E-01 1.25E+01 2.79E-01 1.22E+01 2.18E-01 0.00E+00 0.00E+00 

f10 2.01E+01 3.45E+00 1.79E-01 1.46E-02 4.96E-05 6.55E-05 0.00E+00 0.00E+00 

+/≈/- 10/0/0 9/0/1 9/1/0 - 

AR 3.40 3.10 2.35 1.15 

TR 4 3 2 1 

From Table 2, BBOA can obtain the theoretical optimal values (0) on seven test functions (i.e., f1, f2, f5, and 

f7-f10). Compared with NIW-PSO algorithm, BBOA gets better results on all of the test functions. With respect to 

the CMA-ES algorithm, BBOA finds better results on all of the functions other than f3. For f3, the better result is 

obtained by CMA-ES. Compared to the BOA algorithm, BBOA provides better and similar results on nine and 

one test functions, respectively. In addition, according to the results of the Wilcoxon’s sign rank test, the proposed 

BBOA is significantly better than NIW-PSO, CMA-ES, and BOA on nine functions. In terms of AR and TR 

values, BBOA obtains the first average ranking, followed by BOA, CMA-ES, and NIW-PSO, respectively. 

To further investigate the advantages of BBOA, the convergence curves of four algorithms for four typical test 

functions (i.e., f2, f5, f6, and f10) are provided in Fig. 2.  

0 100 200 300 400 500
10

-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

 Schwefel 2.21

Iteration

O
b

je
c
tiv

e
 f
u

n
c
tio

n
 v

a
lu

e

 

 

NIW-PSO

CMA-ES

BOA

BBOA

0 100 200 300 400 500
10

-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

Sumpower

Iteration

O
b

je
c
tiv

e
 f
u

n
c
tio

n
 v

a
lu

e

 

 

NIW-PSO

CMA-ES

BOA

BBOA

 

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

Ackley

Iteration

O
b

je
c
tiv

e
 f
u

n
c
tio

n
 v

a
lu

e

 

 

NIW-PSO

CMA-ES

BOA

BBOA

0 100 200 300 400 500
10

-80

10
-60

10
-40

10
-20

10
0

Stretched V-sine

Iteration

O
b

je
c
tiv

e
 f
u

n
c
tio

n
 v

a
lu

e

 

 

NIW-PSO

CMA-ES

BOA

BBOA

 

Fig. 2. Convergence curves of four algorithms for four typical test functions with D = 30. 
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As can be seem from Fig. 2, the proposed BBOA can obtain fast convergence and high precision compared to 

the other three algorithms on four typical test functions with D = 30. 

4.1.2 Scalability test 

The scalability test can evaluate the impact of dimension on both excellence of results and effectiveness of 

optimizers, simultaneously (Long et al. 2019b). To further test the scalability of the proposed method, the BBOA 

is applied to solve the higher dimensional functions (i.e., D = 100 and D = 1000). In this experiment, 10 

benchmark test functions from Table 1 are used. We used the same parameter settings as in the experiments above, 

and maintain the population size or number of fitness function evaluations. The average (Mean) and standard 

deviation (St.dev) of objective function values obtained by BBOA and other three algorithms, the results of the 

Wilcoxon’s sign rank test, and the results of Friedman’s test are reported in Tables 3 and 4, respectively. The best 

result of each function is marked in bold. 

Table 3 

Experimental results of four algorithms on ten benchmark test functions with D = 100. 

Function 
NIW-PSO CMA-ES BOA BBOA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev 

f1 6.13E+01 2.35E+01 1.20E-02 1.70E-03 2.51E-11 1.94E-12 0.00E+00 0.00E+00 

f2 1.94E+01 1.42E+00 6.39E-01 1.45E-01 1.28E-08 1.04E-09 0.00E+00 0.00E+00 

f3 2.71E+03 6.77E+02 1.63E+02 7.01E+01 9.90E+01 1.64E-02 9.90E+01 2.03E-02 

f4 5.33E-01 1.36E-01 1.50E-02 4.86E-03 4.50E-03 2.89E-03 3.71E-04 3.74E-04 

f5 2.55E-24 9.63E-24 1.28E-08 1.08E-08 6.23E-13 2.42E-13 0.00E+00 0.00E+00 

f6 5.08E+00 6.91E-01 1.92E-02 4.00E-03 1.20E-08 1.89E-09 8.88E-16 0.00E+00 

f7 2.99E+00 1.87E+00 1.44E-01 6.52E-03 1.45E-08 2.72E-08 0.00E+00 0.00E+00 

f8 1.94E+02 5.24E+01 9.92E-01 8.26E-04 3.06E-11 7.54E-12 0.00E+00 0.00E+00 

f9 4.35E+01 1.39E+01 4.65E+01 1.57E-01 4.46E+01 1.04E+00 0.00E+00 0.00E+00 

f10 1.14E+02 6.06E+00 1.36E+01 8.26E-01 5.59E-06 4.76E-06 0.00E+00 0.00E+00 

+/≈/- 10/0/0 10/0/0 9/1/0 - 

AR 3.60 3.20 2.15 1.05 

TR 4 3 2 1 

 

Table 4 

Experimental results of four algorithms on ten benchmark test functions with D = 1000. 

Function 
NIW-PSO CMA-ES BOA BBOA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev 

f1 9.40E+04 6.75E+03 8.70E+03 5.12E+02 2.88E-11 5.28E-12 0.00E+00 0.00E+00 

f2 4.10E+01 4.13E+00 3.04E+01 5.31E+00 1.46E-08 1.12E-09 0.00E+00 0.00E+00 

f3 2.53E+07 5.37E+06 6.62E+05 7.50E+04 9.99E+02 1.29E-02 9.99E+02 2.29E-03 

f4 3.82E+02 5.59E+01 5.92E+01 4.76E+00 6.60E-03 3.07E-03 4.54E-04 7.28E-05 

f5 3.58E-18 3.25E-18 4.56E+00 1.35E+00 8.09E-13 5.10E-13 0.00E+00 0.00E+00 

f6 1.22E+01 2.17E-01 5.57E+00 4.26E-01 1.27E-08 1.33E-09 8.88E-16 0.00E+00 

f7 4.55E+02 1.98E+01 3.63E+02 1.10E+01 1.87E-07 4.11E-07 0.00E+00 0.00E+00 

f8 6.94E+03 1.00E+03 2.33E+04 3.50E+03 3.42E-11 2.35E-12 0.00E+00 0.00E+00 

f9 4.82E+02 4.29E+00 4.92E+02 3.89E+00 4.75E+02 1.35E-01 0.00E+00 0.00E+00 

f10 1.64E+03 5.09E+01 1.20E+03 3.49E+00 3.02E-06 1.86E-06 0.00E+00 0.00E+00 

+/≈/- 10/0/0 10/0/0 9/1/0 - 

AR 3.60 3.30 2.05 1.05 

TR 4 3 2 1 

From Tables 3-4, except for the function f3 with D = 100 and D = 1000, BBOA showed very good scalability 

to the search dimension for the other functions, in other words, the performance of BBOA did not deteriorate 

seriously as the dimension increased. It should be emphasized that the problem optimization for 1000 dimensions 

was very challenging for BOA because it does not use any particular operators tailored to solve high-dimensional 

optimization. In addition, Figs. 3-4 provided the convergence curves of four algorithms on four typical functions 
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with D = 100 and D = 1000. As can be seen from Figs. 3-4, BBOA can reveal obvious advantages over other three 

algorithms in terms of convergence and precision. 
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Fig. 3. Convergence curves of four algorithms for four typical test functions with D = 100. 
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Fig. 4. Convergence curves of four algorithms for four typical test functions with D = 1000. 
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4.1.3 The impact of wmin and wmax 

In BBOA, the inertia weight w is an important parameter to effectively balance between convergence and 

diversity. However, from the Eq. (7), the value of w is mainly determined by wmin and wmax. Some experiments are 

conduced to investigate the impact of wmin and wmax. According to the repeated test and trials, we concluded that 

the proposed BBOA is not sensitive to the parameter wmax. Therefore, in this subsection, we only analyze the 

impact of wmin by some experiments. We manipulated the value of wmin while keeping the other parameters fixed. 

Vales wmin = 0.1, wmin = 0.3, wmin = 0.5, and wmin = 0.7 are examined for all of the 10 functions with D = 30 in 

Table 1. It should be noted that, in previous experiments, the value of wmin is 0.1. For comparison, the results 

related to wmin = 0.1 are also reported. The Mean and St.dev results of BBOA using different wmin values are 

provided in Table 5. 

Table 5 

Experimental results of BBOA using different wmin values on ten benchmark functions with D = 30. 

Function 
wmin = 0.1 wmin = 0.3 wmin = 0.5 wmin = 0.7 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev 

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.49E-297 0.00E+00 3.94E-152 3.30E-153 

f2 0.00E+00 0.00E+00 3.34E-260 0.00E+00 1.23E-149 2.40E-151 3.28E-77 2.26E-78 

f3 2.90E+01 5.49E-03 2.90E+01 1.25E-02 2.90E+01 1.40E-03 2.90E+01 9.53E-03 

f4 1.51E-04 4.54E-05 4.87E-04 6.41E-04 5.09E-04 5.72E-04 8.66E-04 3.80E-04 

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.31E-303 0.00E+00 1.25E-156 0.00E+00 

f6 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

f7 0.00E+00 0.00E+00 5.30E-261 0.00E+00 2.23E-150 2.70E-151 6.84E-78 6.41E-79 

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.49E-299 0.00E+00 2.13E-153 1.40E-153 

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.50E+00 5.97E+00 

f10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.30E-75 4.19E-76 5.21E-39 4.97E-40 

From Table 5, compared with BBOA using wmin = 0.3, BBOA with wmin = 0.1 obtains better and similar results 

on three (f2, f4 and f7) and seven functions, respectively. The performance of BBOA using wmin = 0.1 has better 

than wmin = 0.5 on seven test functions. For the other three (f3, f6 and f9) test functions, BBOA with wmin = 0.1 and 

wmin = 0.5 find similar results. With respect to the BBOA with wmin = 0.7, BBOA using wmin = 0.1 gets better 

results on all of the test functions except for f3 and f6. For f3 and f6, two algorithms obtain similar results. 

In addition, Fig. 5 shows the convergence curves of BBOA using different wmin values for four typical test 

functions (f2, f5, f6 and f10) with D = 30. As can be seen from Fig. 5, BBOA using wmin = 0.1 has higher precision 

and faster convergence than other three cases on f2 (Schwefel 2.21), f5 (Sumpower), and f10 (Stretched V-sine) 

functions. For f6 (Ackley), BBOA using wmin values obtain similar results. However, BBOA with wmin = 0.1 has 

better faster convergence than other three cases. 

From Table 5 and Fig. 5, according to all of the wmin values analyzed, we concluded that the setting of wmin = 

0.1 for the BBOA is an appropriate choice. 
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Fig. 5. Convergence curves of BBOA using different wmin values for four typical test functions with D = 30. 

4.2 Experiments on complex benchmark functions from CEC 2014 

In this subsection, the effectiveness and efficiency of BBOA is further verified by using the other 30 functions 

from IEEE CEC 2014 special session, which is more difficult than the 10 widely used benchmark functions in 

Table 1. The 30 test functions are categorized into four groups, i.e., Unimodal (F01-F03), Multimodal (F04-F16), 

hybrid (F17-F22), and composite functions (F23-F30). The detailed information of 30 functions can be found in 

(Liang et al. 2013). The search range of these 30 test functions is [-100, 100]. These 30 benchmark test functions 

are rotated, shifted, hybrid and composite functions, respectively. The source codes for these 30 benchmark test 

functions are available in http://www3.ntu.edu.sg/home/EPNSugan/. 

The results of BBOA are compared with the basic BOA, three traditional competitive approaches, and two 

up-to-date methods. CMA-ES (Hansen and Ostermeier 2001) is a well-known evolution strategy with covariance 

matrix adaptation and is a traditional competitive method; CLPSO (Liang et al. 2006) is a well-performance 

particle swarm optimization based on comprehensive learning concept and is a classical competitive approaches; 

JADE (Zhang and Sanderson 2009) is a well-known adaptive differential evolution with optional external archive 

and is a traditional competitive meta-heuristic optimization algorithm; RW-GWO (Gupta and Deep 2019a) is an 

improved version of grey wolf optimizer with random walk concept and is an up-to-date meta-heuristic algorithm 

developed in 2019; ISCA (Gupta and Deep 2019b) is a novel variant of sine cosine algorithm with crossover 

operator and is an up-to-date optimization technique developed in 2019. The above mentioned five meta-heuristic 

optimization techniques represent the state-of-the-art in ES, PSO, DE, GWO, and SCA algorithms respectively 

and their performance is very competitive. The parameters of five selected approaches are set as their original 

papers. For a fair comparison, the same maximum number of function evaluations (FEs) is set to 104×D (D is the 

dimension of the function), which is the termination criteria for seven algorithms. For each test function, the error 

values (f(x)-f(x0)) are calculated. It is noted that x is the best solution when a method ends and x0 is the global 

optimal solution. For each algorithm, the mean error values (Mean) and the standard deviation of function values 

(St.dev) are calculated over 30 independent trials for each test function. In addition, the Friedman’s ranking test 

results of each algorithm are provided. Comparison results are listed in Table 6. When a method achieved the best 

performance on the corresponding test function, the mean value is highlighted with bold. 

From Table 6, compared with CMA-ES algorithm, the proposed BBA gets better results on 23 benchmark test 

functions. However, for seven functions (i.e., F01, F05, F10-F12, F17, and F21), the better results is obtained by 

CMA-ES. With respect to the CLPSO algorithm, BBA finds better results on all of the test functions. Compared to 

the RW-GWO algorithm, BBA provides better and worse results on 16 and 12 test functions, respectively. In 

addition, for F24 and F26, RW-GWO and BBA obtain similar results. BBOA outperforms ISCA on 25 benchmark 

test functions. However, the better results obtained by ISCA for the four functions (i.e., F01, F04, F21, and F22). 
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Table 6 

Experimental results of seven algorithms on CEC 2014 benchmark functions with D = 30. 

Function Criterion CMA-ES CLPSO JADE RW-GWO ISCA BOA BBOA 

F01 Mean 9.42E+04 1.48E+08 4.48E+02 8.02E+06 1.427E+07 6.10E+08 1.59E+07 

 St.dev 7.89E+04 2.57E+07 1.04E+03 3.31E+06 5.937E+06 2.08E+08 2.88E+06 

F02 Mean 2.55E+10 6.81E+09 0.00E+00 2.23E+05 3.131E+08 4.70E+10 3.11E+08 

 St.dev 3.85E+09 1.12E+09 0.00E+00 5.51E+05 2.073E+08 5.81E+09 1.46E+07 

F03 Mean 1.45E+04 9.86E+04 5.63E-04 3.16E+02 2.629E+03 9.17E+04 5.18E+02 

 St.dev 5.66E+03 1.68E+04 2.51E-03 4.34E+02 1.682E+03 7.94E+03 8.92E+01 

F04 Mean 2.52E+03 9.77E+02 0.00E+00 3.41E+01 1.466E+02 1.38E+04 1.87E+02 

 St.dev 5.36E+02 1.39E+02 0.00E+00 1.80E+01 2.550E+01 5.85E+02 2.55E+01 

F05 Mean 2.00E+01 2.11E+01 2.03E+01 2.05E+01 2.086E+01 2.10E+01 2.03E+01 

 St.dev 2.63E-05 4.87E-02 3.79E-02 7.46E-02 9.131E-02 2.71E-02 2.95E-02 

F06 Mean 4.09E+01 5.08E+01 9.42E+00 9.84E+00 8.333E+00 3.56E+01 7.26E+00 

 St.dev 2.13E+00 2.46E+00 2.16E+00 3.49E+00 1.826E+00 1.53E+00 1.68E+00 

F07 Mean 2.31E+02 6.32E+01 0.00E+00 2.53E-01 3.731E+00 6.18E+02 1.93E+00 

 St.dev 2.83E+01 8.63E+00 0.00E+00 1.43E-01 1.859E+00 6.74E+01 5.15E-01 

F08 Mean 2.83E+02 2.92E+02 0.00E+00 4.38E+01 2.937E+01 2.80E+02 2.75E+01 

 St.dev 2.21E+01 1.87E+01 0.00E+00 8.48E+00 6.929E+00 1.83E+01 8.24E-01 

F09 Mean 3.28E+02 4.73E+02 2.62E+01 6.33E+01 6.115E+01 4.12E+02 2.96E+01 

 St.dev 3.47E+01 2.13E+01 4.18E+00 1.30E+01 1.526E+01 8.19E+01 1.15E+01 

F10 Mean 2.61E+02 7.62E+03 5.31E-03 9.61E+02 6.770E+02 6.94E+03 6.43E+02 

 St.dev 1.06E+02 5.19E+02 1.01E-02 2.72E+02 2.522E+02 2.46E+02 1.51E+02 

F11 Mean 1.69E+02 1.14E+04 1.64E+03 2.68E+03 2.427E+03 7.15E+03 2.29E+03 

 St.dev 1.98E+02 5.09E+02 2.64E+02 3.68E+02 6.261E+02 3.63E+02 3.83E+02 

F12 Mean 3.03E-01 2.67E+00 2.71E-01 5.45E-01 1.605E+00 2.52E+00 9.92E-01 

 St.dev 2.18E+00 3.28E-01 3.75E-02 1.66E-01 3.519E-01 2.17E-01 4.49E-02 

F13 Mean 5.51E+00 7.61E-01 2.20E-01 2.80E-01 3.454E-01 7.46E+00 3.10E-01 

 St.dev 3.07E-01 8.47E-02 3.91E-02 6.30E-02 6.063E-02 2.51E-01 5.41E-02 

F14 Mean 7.53E+01 1.60E+01 2.34E-01 4.23E-01 6.459E-01 2.35E+02 4.12E-01 

 St.dev 8.08E+00 3.71E+00 3.00E-02 2.15E-01 2.178E-01 1.62E+01 6.00E-02 

F15 Mean 1.02E+04 3.31E+03 3.10E+00 8.81E+00 1.327E+01 1.21E+05 9.36E+00 

 St.dev 3.24E+04 1.93E+03 4.30E-01 1.51E+00 2.877E+00 5.86E+04 2.42E+00 

F16 Mean 1.38E+01 2.24E+01 9.37E+00 1.03E+01 1.068E+01 1.26E+01 9.13E+00 

 St.dev 5.31E-01 2.33E-01 3.64E-01 6.11E-01 5.420E-01 3.22E-01 2.88E-01 

F17 Mean 5.49E+03 1.77E+07 9.67E+03 5.71E+05 4.538E+05 2.29E+07 4.32E+05 

 St.dev 3.62E+03 4.74E+06 5.99E+04 4.10E+05 4.076E+05 1.06E+07 3.01E+05 

F18 Mean 1.52E+09 2.51E+07 3.58E+02 6.52E+03 5.833E+03 1.33E+09 5.39E+03 

 St.dev 3.93E+08 8.22E+06 1.51E+03 4.62E+03 1.197E+04 6.89E+08 4.73E+03 

F19 Mean 2.98E+02 9.23E+01 4.44E+00 1.14E+01 1.185E+01 4.39E+02 1.16E+01 

 St.dev 4.25E+01 1.19E+01 6.70E-01 2.03E+00 2.084E+00 3.38E+01 2.05E+00 

F20 Mean 4.61E+03 5.17E+04 2.89E+03 6.27E+02 1.729E+03 3.94E+04 6.77E+02 

 St.dev 3.88E+03 1.06E+04 2.33E+03 1.12E+03 1.401E+03 9.43E+03 2.61E+02 

F21 Mean 6.86E+03 5.71E+06 7.58E+03 2.58E+05 1.579E+05 5.90E+07 3.17E+05 

 St.dev 2.76E+03 2.15E+06 3.79E+04 1.76E+05 1.274E+05 2.35E+07 2.26E+05 

F22 Mean 1.61E+03 1.36E+03 1.46E+02 2.08E+02 2.206E+02 2.58E+03 2.69E+02 

 St.dev 9.15E+01 1.71E+02 7.25E+01 1.29E+02 8.724E+01 2.73E+02 7.55E+01 

F23 Mean 5.79E+02 3.90E+02 3.15E+02 3.15E+02 3.177E+02 8.99E+02 2.00E+02 

 St.dev 4.94E+01 8.19E+00 2.30E-13 2.77E-01 1.278E+00 3.62E+02 0.00E+00 

F24 Mean 2.12E+02 3.39E+02 2.26E+02 2.00E+02 2.000E+02 4.53E+02 2.00E+02 

 St.dev 7.49E+00 6.72E+00 3.59E+00 3.43E-03 1.680E-03 1.12E+02 0.00E+00 

F25 Mean 2.12E+02 2.46E+02 2.04E+02 2.04E+02 2.064E+02 2.88E+02 2.00E+02 

 St.dev 2.97E+02 5.30E+00 1.27E+00 1.18E+00 2.236E+00 3.34E+01 0.00E+00 

F26 Mean 1.25E+02 1.10E+02 1.02E+02 1.00E+02 1.062E+02 1.28E+02 1.00E+02 

 St.dev 5.51E+01 2.83E+01 1.41E+01 7.36E-02 2.368E+01 4.02E+01 0.00E+00 

F27 Mean 1.07E+03 1.33E+03 3.44E+02 4.09E+02 4.736E+02 4.62E+02 2.00E+02 

 St.dev 2.30E+02 3.66E+02 5.16E+01 6.09E+00 6.618E+01 1.80E+01 0.00E+00 

F28 Mean 2.79E+03 3.02E+03 8.03E+02 4.34E+02 8.718E+02 1.53E+03 2.00E+02 

 St.dev 5.92E+02 4.20E+02 3.58E+01 8.45E+00 5.716E+01 7.23E+01 0.00E+00 

F29 Mean 3.52E+04 4.10E+05 7.59E+02 2.14E+02 2.254E+05 5.28E+02 2.00E+02 

 St.dev 5.34E+03 1.64E+05 1.59E+02 2.37E+00 1.491E+06 2.34E+01 0.00E+00 

F30 Mean 6.48E+05 6.00E+04 1.92E+03 6.69E+02 8.049E+03 5.89E+02 2.00E+02 

 St.dev 1.31E+05 1.52E+04 6.41E+02 2.14E+02 2.631E+03 1.95E+02 0.00E+00 

Average ranking 4.73 5.87 1.95 2.93 3.83 6.07 2.43 

Total ranking 5 6 1 3 4 7 2 
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Additionally, BBOA and ISCA find similar result for the F24 function. The performance of BBOA is significantly 

better than the basic BOA on all of the test functions. JADE is one of the most competitive meta-heuristic 

optimization algorithms. Compared with JADE algorithm, BBOA obtains better and worse results on 11 and 18 

test functions, respectively. In addition, BBOA and JADE find similar result for the function F05. Regarding the 

results of the Friedman’s ranking test, JADE ranked the first, followed by BBOA, RW-GWO, ISCA, CMA-ES, 

CLPSO, and BOA. To sum up, BBOA shows a quite competitive performance with respect to the six selected 

algorithms in terms of the quality and robustness for the CEC 2014 benchmark test functions. 

4.3 Experiments on engineering design problems 

This subsection further investigates the performance of the proposed BBOA by solving three constrained real 

engineering design problems (Coello and Montes 2002), i.e., tension/compression spring design, pressure vessel 

design, and three-bar truss design. These design problems are widely discussed in the literature and have been 

solved to better clarify the performance of the algorithms. The Deb’s feasibility-based rule (Deb 2000) is used to 

handle the constraints. In BBOA, the population size is 30 and the maximum number of iterations is 1000. 

4.3.1 Tension/compression spring design problem 

As shown in Fig. 6, the main goal of this design problem is to minimize the weight of the tension/compression 

spring. There are three variables, i.e., d (x1), D (x2), and P (x3). 
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Fig. 6. Tension/compression spring design problem. 
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where 205.0 1  x , 30.125.0 2  x , 1500.2 3  x . 

The tension/compression spring design problem has already been solved by many optimization approaches. 

The comparison results of BBOA with other state-of-the-art algorithms are given in Table 7. For the tension/ 

compression spring design problem, as shown in Table 7, the best solution is obtained by the TEO, EEGWO, and 

CSA. However, the number of function evaluations for the TEO, EEGWO, and CSA are 30,000, 50,000 and 

50,000, respectively. Compared with the GA, CPSO, GSA, GWO, MVO, SCA, WOA, MGWO, and IGWO 

algorithms, BBOA finds better results for the tension/compression spring design problem.  

Table 7 

Comparison results of different algorithms for tension/compression spring design problem. 

Algorithm x1 (d) x2 (D) x3 (P) f (best) f (mean) f (worst) St.dev Max_NFEs 

GA (Coello and Montes 2002) 10.890522 0.363965 0.051989 0.012681 0.012742 0.012973 5.90E-05 80,000 
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CPSO (He and Huang 2007) 11.244543 0.357644 0.051728 0.0126747 0.012730 0.012924 5.20E-05 200,000 

GSA (Rashedi et al. 2009) 14.22867 0.317312 0.05000 0.0128739 0.0134389 0.0142117 1.34E-02 30,000 

GWO (Mirjalili et al. 2014) 12.04249 0.344541 0.051178 0.0126723 0.0126971 0.0127208 2.10E-05 30,000 

MVO (Mirjalili et al. 2016) 14.22623 0.315956 0.05000 0.0128169 0.0144644 0.0178397 1.62E-03 30,000 

SCA (Mirjalili 2016) 12.72269 0.334779 0.050780 0.0127097 0.0128396 0.0129984 7.80E-05 30,000 

WOA (Mirjalili and Lewis 2016) 10.3551 0.374194 0.052406 0.012676 0.012868 0.013072 5.86E-04 30,000 

TEO (Kaveh and Dadras 2017) 11.16839 0.358792 0.051775 0.012665 0.012685 0.012715 4.41E-06 300,000 

MGWO (Kumar and Kumar 2017) 11.80809 0.348197 0.051334 0.0126696 0.0126799 0.0127057 1.10E-05 30,000 

EEGWO (Long et al. 2018a) 11.3113 0.35634 0.051673 0.012665 0.012685 0.012720 2.22E-05 50,000 

IGWO (Long et al. 2018b) 11.2756 0.356983 0.051701 0.012667 0.012691 0.012718 1.97E-05 50,000 

CSA (Askarzadeh 2016) 11.289012 0.356717 0.051689 0.0126652 0.012666 0.0126702 1.36E-06 50,000 

BBOA 11.28603 0.356768 0.051690 0.012666 0.012682 0.012710 3.98E-06 30,000 

 

4.3.2 Pressure vessel design problem 

The main objective of the pressure vessel design problem is to minimize the whole cost of the cylindrical 

pressure vessel (see Fig. 7). There are four variables, i.e., Ts (x1), Th (x2), R (x3), and L (x4). 

RR

LTh Ts

 

Fig. 7. Pressure vessel design problem. 

The mathematical formulation of pressure vessel design problem is defined as follows: 

Minimize 3
2
14

2
1

2
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0129600
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34
2
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where 99,0 21  xx , 200,10 43  xx . 

The pressure vessel design problem is solved by several optimization techniques. The comparison results of 

BBOA with other state-of-the-art algorithms are shown in Table 8. For the compression vessel design problem, the 

best index in Table 8 shows that the result obtained by BBOA is interior to the CSA, TEO, and HPSO algorithms. 

Compared with the other algorithms, BBOA provides the better “best” results. For the mean, the worst, and the 

st.dev indices, the results obtained by BBOA are better than those obtained by all of the selected algorithms. In 

addition, for the number of function evaluations, TEO has the minimum number of FEs (20,000), while SPGA has 

a considerable number of FEs (900,000). The number of FEs by BBOA (30,000) is moderate among the 

algorithms. 

 
Table 8 

Comparison results of different algorithms for pressure vessel design problem. 

Algorithm x1 (Ts) x2 (Th) x3 (R) x4 (L) f (best) f (mean) f (worst) St.dev Max_NFEs 

SPGA (Coello 2000) 0.8125 0.4375 40.3239 200.0000 6288.7445 6293.8432 6308.4970 7.4133 900,000 

CDE (Becerra and Coello 2006) 0.8125 0.4375 42.0984 176.6377 6059.7340 6085.2303 6371.0455 43.013 204,800 

CPSO (He and Huang 2007) 0.8125 0.4375 42.0913 176.7465 6061.0777 6147.1332 6363.8041 86.45 240,000 
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SCA (Mirjalili 2016) 0.8176 0.4179 41.74939 183.5727 6137.3724 6326.7606 6512.3541 126.609 30,000 

CSA (Askarzadeh 2016) 0.8125 0.4375 42.0984 176.6366 6059.7144 6342.4991 7332.8416 384.9454 250,000 

TEO (Kaveh and Dadras 2017) 0.8125 0.4375 42.0984 176.6366 6059.71 6138.61 6410.19 129.9033 20,000 

EEGWO (Long et al. 2018a) 13.093 6.7922 42.09758 176.6495 6059.8704 6066.7220 6091.0922 10.64121 50,000 

IGWO (Long et al. 2018b) 12.853 6.9805 42.09806 176.6416 6059.7659 6059.9066 6060.1246 0.139521 50,000 

WOA (Mirjalili and Lewis 2016) 12.970 7.3377 42.03656 177.4064 6067.2991 6205.8012 6463.3448 190.9459 30,000 

HPSO (He and Wang 2007) 0.8125 0.4375 42.0984 176.6366 6059.7143 6099.9323 6288.6770 86.20 81.000 

BBOA 13.086 6.7918 42.09831 176.6389 6059.7450 6059.8021 6059.8791 5.40E-02 30,000 

 

4.3.3 Three-bar truss design problem 

The aim of the three-bar truss design problem (as shown in Fig. 8) is to minimize the volume of a statically 

loaded three-bar truss and evaluate the optimal cross-sectional areas. There are three design variables. 

  

H H

H

P

x1

x2
x1 = x3

 

Fig. 8. Three-bar truss design problem. 

The mathematical formulation of three-bar truss design problem is given as follows: 
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where 1,0 21  xx , 100l cm, 2P KN/cm2, and 2 KN/cm2. 

The optimization techniques in the literature are previously applied to solve the three-bar truss design problem. 

The comparison results of BBOA with other well-performance optimization algorithms are shown in Table 9. 

From Table 9, BBOA, GWO, MVO, and MGWO algorithms get similar “best” results for the three-bar truss 

design problem. In addition, the result obtained by BBOA is better than the GSA, SCA, WOA, and EEGWO. 

Table 9 

Comparison results of different algorithms for three-bar truss design problem. 

Algorithm x1  x2  f (best) f (mean) f (worst) St.dev Max_NFEs 

GSA (Rashedi et al. 2009) 0.777662 0.448853 264.8299 271.0348 279.7925 4.128589 30,000 

GWO (Mirjalili et al. 2014) 0.788409 0.409003 263.8959 263.8966 263.8980 4.37E-04 30,000 

MVO (Mirjalili et al. 2016) 0.788993 0.407351 263.8959 263.8961 263.8971 2.49E-04 30,000 

SCA (Mirjalili 2016) 0.789068 0.407162 263.8984 263.9356 263.9951 2.88E-02 30,000 

WOA (Mirjalili and Lewis 2016) 0.792110 0.398620 263.9060 263.9361 264.0214 4.81E-02 30,000 

MGWO (Kumar and Kumar 2017) 0.788561 0.407162 263.8959 263.8963 263.8976 4.29E-04 30,000 

EEGWO (Long et al. 2018a) 0.788410 0.408990 263.8960 263.8963 263.8966 2.19E-04 50,000 

BBOA 0.788566 0.407180 263.8959 263.8960 263.8962 2.12E-04 30,000 
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4.4 BBOA applied to feature selection problems 

To further study the performance of the proposed BBOA, the feature selection (FS) problems are solved. The 

main purpose of feature selection is to choose the most significant features from the original features to reduce the 

dimensionality of the datasets. In fact, FS is a typical combinatorial optimization problem which requires lots of 

computation. In this subsection, BBOA is introduced to solve feature selection problems. However, the solution 

space of FS is represented by binary values. It must be noted that BBOA is a continuous-space-based optimization 

method which needs to transform it from continuous version into binary one when solving the FS problems. One 

of the easiest conversion techniques is to use a transfer function. The advantage of this technique is not to modify 

the framework of BOA. This paper uses the S-shaped transfer function and is given as follows: 

x
e

xT 


1

1
)(                                           (10) 

where τ is a constant number. 

Sixteen well-known benchmark datasets from the UCI data repository (Bache and Lichman 2013) are used to 

further investigate the effectiveness of BBOA. These datasets are utilized by many researchers or performance 

comparison in the field of feature selection. The characteristics of these datasets are provided in Table 7. 

Table 10 

Details of datasets. 

Dataset No. of Attributes No. of Objects No. of Classes 

BreastEW 30 569 2 

Breastcancer 9 699 2 

CongressEW 16 435 2 

Exactly 13 1000 2 

Exactly2 13 1000 2 

HeartEW 13 270 2 

IonosphereEW 34 351 2 

Lymphography 18 148 4 

M-of-n 13 1000 2 

PenglungEW 325 73 7 

SonarEW 60 208 2 

SpectEW 22 267 2 

Tic-tac-toe 9 958 2 

Vote 16 300 2 

WineEW 13 178 3 

Zoo 16 101 7 

We compared the performance of BBOA with other eight population-based algorithms, such as ABC [3], 

differential evolution (DE) (Storn and Price 1997), gravitational search (GSA) (Rashedi et al. 2009), sine cosine 

algorithm (SCA) (Mirjalili 2016), salp swarm algorithm (SSA) (Mirjalili et al. 2017), hybrid PSO and grey wolf 

optimizer (HGWO) (Singh and Singh 2017), conscious crow search algorithm (CCSA) (Zamani et al. 2020), and 

the basic BOA (Arora and Singh 2019). In all experiments, the population size is 10, and the maximum number of 

iteration is 100. Each algorithm is conducted 30 independent runs on each dataset to reduce error. The parameter 

values of the selected eight algorithms are fixed according to their corresponding papers. The average and 

standard deviation results of nine algorithms are summarized in Table 11. For each dataset, the optimal values are 

made in boldface. In addition, the average Friedman’s test ranking values of nine algorithms on sixteen datasets 

are also provided in Table 11. 

Table 11 

Comparison between BBOA and other eight algorithms in term of classification accuracy. 

Datasets Measure ABC DE GSA SCA SSA HGWO CCSA BOA BBOA 

BreastEW Mean 0.9517 0.9522 0.9495 0.9487 0.9518 0.9557 0.9540 0.9502 0.9637 

 St.dev 0.0033 0.0022 0.0031 0.0031 0.0028 0.0028 0.0029 0.0033 0.0021 
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Breastcancer Mean 0.9715 0.9700 0.9687 0.9692 0.9700 0.9708 0.9699 0.9696 0.9722 

 St.dev 0.0018 0.0017 0.0020 0.0014 0.0021 0.0014 0.0021 0.0016 0.0015 

CongressEW Mean 0.9631 0.9589 0.9529 0.9543 0.9584 0.9657 0.9620 0.9566 0.9621 

 St.dev 0.0044 0.0029 0.0041 0.0029 0.0032 0.0033 0.0042 0.0036 0.0034 

Exactly Mean 1.0000 1.0000 0.9970 0.9973 0.9997 1.0000 0.8848 0.9959 0.9995 

 St.dev 0.0000 0.0000 0.0065 0.0050 0.0010 0.0000 0.1055 0.0066 0.0010 

Exactly2 Mean 0.7598 0.7628 0.7568 0.7621 0.7589 0.7648 0.7509 0.7678 0.7695 

 St.dev 0.0173 0.0138 0.0071 0.0195 0.0127 0.0093 0.0105 0.0178 0.0103 

HeartEW Mean 0.8278 0.8246 0.7965 0.8159 0.8178 0.8237 0.8222 0.8165 0.8337 

 St.dev 0.0084 0.0076 0.0104 0.0076 0.0090 0.0063 0.0106 0.0058 0.0062 

IonosphereEW Mean 0.9261 0.9194 0.9105 0.9121 0.9151 0.9286 0.9197 0.9137 0.9311 

 St.dev 0.0083 0.0048 0.0081 0.0053 0.0057 0.0048 0.0066 0.0032 0.0071 

Lymphography Mean 0.8574 0.8568 0.8355 0.8497 0.8486 0.8568 0.8470 0.8544 0.8586 

 St.dev 0.0105 0.0075 0.0110 0.0090 0.0064 0.0092 0.0110 0.0081 0.0107 

M-of-n Mean 1.0000 1.0000 0.9975 0.9988 0.9995 1.0000 0.9410 0.9997 0.9998 

 St.dev 0.0000 0.0000 0.0056 0.0020 0.0013 0.0000 0.0587 0.0008 0.0011 

PenglungEW Mean 0.9062 0.9144 0.9041 0.9171 0.9116 0.9171 0.9130 0.9158 0.9181 

 St.dev 0.0102 0.0087 0.0089 0.0054 0.0083 0.0070 0.0067 0.0067 0.0048 

SonarEW Mean 0.9041 0.9147 0.8940 0.9103 0.9099 0.9135 0.9053 0.9108 0.9121 

 St.dev 0.0107 0.0085 0.0099 0.0074 0.0084 0.0080 0.0113 0.0055 0.0083 

SpectEW Mean 0.8333 0.8354 0.8185 0.8219 0.8333 0.8416 0.8373 0.8260 0.8425 

 St.dev 0.0094 0.0069 0.0072 0.0055 0.0061 0.0070 0.0094 0.0048 0.0063 

Tic-tac-toe Mean 0.8435 0.8354 0.8118 0.8121 0.8308 0.8341 0.8122 0.8143 0.8426 

 St.dev 0.0044 0.0041 0.0031 0.0033 0.0041 0.0045 0.0166 0.0024 0.0031 

Vote Mean 0.9537 0.9493 0.9492 0.9505 0.9483 0.9578 0.9558 0.9522 0.9568 

 St.dev 0.0037 0.0038 0.0039 0.0036 0.0047 0.0039 0.0044 0.0033 0.0045 

WineEW Mean 0.9820 0.9798 0.9725 0.9826 0.9775 0.9823 0.9803 0.9809 0.9842 

 St.dev 0.0039 0.0038 0.0065 0.0040 0.0032 0.0027 0.0050 0.0038 0.0017 

Zoo Mean 0.9837 0.9891 0.9817 0.9921 0.9881 0.9851 0.9837 0.9916 0.9896 

 St.dev 0.0048 0.0030 0.0048 0.0041 0.0052 0.0051 0.0048 0.0036 0.0008 

Average ranking 4.06 4.25 8.38 6.09 6.06 2.69 6.03 5.50 1.94 

Total ranking 3 4 9 8 7 2 6 5 1 

From Table 11, BBOA outperforms ABC on 13 datasets. However, ABC obtains the better results on 4, 9, and 

13 datasets. Compared with DE algorithm, the BBOA achieves the better and worst results on 13 and three 

datasets (4, 9, and 11), respectively. In particular, the BBOA performs better than SCA and SSA on all of the 

datasets except for “Zoo” and “Exactly” datasets, respectively. With respect to the GSA, CCSA, and BOA, the 

BBOA provides the better results on all of the datasets. Additionally, the BBOA performs better than HGWO on 

12 datasets. However, the HGWO achieves the better results on four datasets. According to the Friedman ranking 

test results, the BBOA ranked the first, followed by HGWO, ABC, DE, BOA, CCSA, SSA, SCA, and GSA. 

5 Conclusions 

In this paper, a new variant of BOA, called BBOA, has been proposed. The proposed BBOA introduces two 

different operators, i.e., the modified position-updating equation strategy based on the dynamic inertia weight, and 

the opposition-based learning strategy. These two operators can balance the exploration and exploitation of BOA. 

The forty benchmark test functions, three engineering design, and sixteen feature selection problems are selected 

to investigate the performance of the proposed BBOA and compare with the state-of-the-art algorithms. The 

experimental results show that the proposed BBOA algorithm has better precision and faster convergence. In the 

future, it is interesting to generalize BBOA for solving constrained single objective, multi-objective, and practice 

optimization problems. 
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