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Abstract. One-class classification (OCC) is a machine learning problem where 

training data has only one class. Recently, self-supervised OCC algorithms have 

been increasing attention. These algorithms train the model for pretext tasks and 

use the model error for OCC. However, these tasks are specialized for images, 

and applying them to feature data is not practical or appropriate for such pur-

pose. This paper proposes a one-class classification approach using feature-

slide prediction (FSP) subtask for feature data (OCFSP). In particular, the self-

labeled dataset is created from training data. In which additional feature vectors 

are generated by sliding original vectors and self-annotated as the number of the 

feature slide. Such a dataset is used to train a multi-class classifier, which aims 

to predict the number of the feature slides. Since this classification model is 

built using data from only one class, the FSP accuracy for seen data is high rela-

tive to unseen data. Accordingly, OCC could be made using the accuracy of 

FSP. Proposed methods are experimented with using the imbalanced-learn da-

taset. 

Keywords: Machine Learning, One-class Classification, Self-supervision. 

1 Introduction 

In recent years, Machine Learning (ML) has been introduced to various fields. Es-

pecially, supervised learning is widely applied with annotation by experts [1, 2]. 

However, such methods require a large volume of data. Moreover, model accuracy 

worsens due to the dataset problems, such as data imbalance [3] and outlier [4].  

Besides, the supervised learning model cannot predict classes that are not in train-

ing data. Especially, there is a case that only one class is collectible as training da-ta. 

Since all class labels are the same in training data, the supervised model classifies all 

data as the same class. This problem is called one-class classification (OCC) [5], 

which is an important issue in ML and related to anomaly detection [6], novelty de-

mailto:toshitaka.hayashi@uhk.cz
mailto:h.fujita@hutech.edu.vn


2 

tection [7]. Intrusion detection [8], and zero-shot learning [9]. The objective of OCC 

is classifying input data into a seen class or the rest of unseen classes. These classes 

are defined as included in training data or not, respectively.  

For this purpose, various OCC algorithms are proposed. Early studies are shallow 

methods, such as OCSVM [10], Local Outlier Factor (LOF) [11], and Isolation Forest 

(IF) [12]. These methods are effective for feature data. However, shallow methods 

have limitations for image data since there is no feature extraction process, such as the 

convolutional layer [13]. 

Recently, DL-based OCC methods have been proposed for image datasets [13]. 

These methods are roughly classified into three groups, shallow methods with feature 

extraction [13], fake-unseen-samples approach [14], and self-supervised approach 

[15, 16]. In which, the last approach is the best in terms of accuracy [15, 16]. These 

methods consider a pretext task for data. Then, the model for such a task is trained 

using training data. Since all training data is seen, model error for seen data is small 

relative to unseen data. Therefore, OCC could be made using model error for the pre-

text task. 

The motivation of this study is to apply the self-supervised approach to feature da-

ta. Self-supervised OCC algorithms show the best accuracy in the image datasets. 

However, these pretext tasks are specialized to image [15, 16], and applying these 

tasks to vector data is not practical or suitable for such a purpose. Accordingly, con-

sidering effective subtask for feature data is a significant challenge.  

Existing pretext tasks are roughly classified into two groups, generation (regres-

sion) [16] or classification [15]. Generation tasks are related to reconstruction or 

transformation, and these methods have an advantage in terms of processing speed. In 

contrast, classification tasks aim to classify the self-labeled dataset created according 

to defined classification subtask, and these tasks have an advantage for accuracy. 

These aspects are trade-off practices [16].  

This study prioritizes accuracy and selects classification tasks. Then, the main 

problem is what kind of classification should be applied. In image data, pretext tasks 

are such as rotation classification [17], classification of geometric transformation 

[15], and image perturb classification [18]. However, these tasks are not possible in 

feature data because rotation or geometric transformations are not applicable. 

Accordingly, One-class classification approach using feature slide prediction 

(OCFSP) is proposed in the conference paper [19]. In which, a novel subtask, namely 

feature-slide prediction (FSP), is proposed as a pretext task for feature data. This task 

uses a self-labeled dataset, which includes additional feature vectors created by slid-

ing dimensions of original vectors. These additional vectors are annotated as to how 

features are slid. Then, a multi-class classifier is trained for classifying these feature 

slides. Since this classification model is built using data from only one class, the accu-

racy of FSP for seen data is high relative to unseen data. Therefore, seen and unseen 

classes could be discriminated based on the accuracy of FSP. 

This paper is an extension of such a conference paper. In which FSP is made with 

further classification algorithms. Moreover, OCFSP is compared with other OCC 

algorithms in multiple train test split. In which OCFSP has relatively high accuracy 

where training data is small size. 
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The contributions of this study are listed as follows: 

 Novel One-class classification algorithm, namely OCFSP, is proposed. The main 

originality is the FSP subtask. In which the self-labeled dataset is created by sliding 

feature vector. Then, the classification model is trained to predict the number of 

feature slides. To our knowledge, this is the first classification subtask for feature 

data. 

 OCFSP is experimented with using the imbalanced-learn dataset. Moreover, 

OCFSP is compared with other OCC algorithms. OCFSP shows a high AUC score 

where seen data is in the narrow distribution. Moreover, OCFSP outperforms other 

methods where training data is small size. 

 Time complexity is analyzed. OCFSP shows fast processing speed in the testing 

stage, which is different from classification subtasks in image datasets. Such dif-

ference is related to the memory size of data. 

The organization of the paper is summarized as follows. Section 2 describes related 

work, such as OCC and self-supervised OCC. Section 3 presents the proposed OCFSP 

framework. Section 4 and section 5 provide experiment results and discussions. Final-

ly, section 6 gives the conclusion and future work. 

2 Related Work 

2.1 One-class classification 

OCC is a promising research area because it can detect unseen samples, which is the 

weak point of supervised learning. In this problem, only one class is seen as training 

data, and other classes are unseen. The main challenge is how to detect unseen data 

without training.  

In addition, combining multiple one-class classifiers is a promising solution for multi-

class training data. In which, one-class classifiers are trained in class by class. Then, 

testing samples are predicted based on all classifiers in the manner of ensemble learn-

ing [20]. Such kind of strategy is called one-class ensemble [21-23], which is promis-

ing research in detecting unseen samples. Moreover, one-class ensemble is effective 

for data imbalance problem. Since the models are trained from one class, data balance 

is not a problem [23]. Such an approach is applicable in many situations. 

Fig. 1 shows general OCC framework, which has two stages, training, and testing. In 

the training stage, the behavior of a seen class is determined based on some algo-

rithms. Then, classification is made by whether testing data includes seen behavior. 
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Fig. 1. One-class classification framework 

 

For this purpose, several OCC algorithms are proposed. One-class Support Vector 

Machine (OCSVM) applies mapping function for seen data into feature vector space. 

In such vector space, unseen samples are considered origin O. Then, the maximum 

margin hyper-plane between mapped seen vectors and O is computed [10]. In con-

trast, Local Outlier Factor (LOF) computes outlier scores of a sample using local 

density of original sample and the neighbor samples [11]. Such kind of scoring be-

comes large where data is far from the neighbor samples [11]. Additionally, Isolation 

Forest (IF) is the technique to detect outlier using tree structure with random split. In 

such tree, outlier is isolated with high probability since it is far from normal samples 

[12]. Further-more, recent studies extend these algorithms [4, 21, 24]. In addition, 

cluster-based method generates clusters from seen class. Then, data which is not as-

signed to cluster are considered as unseen [25].  

Apart from these studies, DL-based OCC are developed for image data [13]. These 

methods are roughly classified into three groups, feature extraction + shallow method 

[13], fake-unseen approach [14], and self-supervised OCC [15,16]. The first method 

is extension of shallow method. In contrast, the second approach generates fake-

unseen-samples and apply supervised classification [14]. However, such approach is 

difficult since there is no information for unseen samples. In other hand, self-

supervised OCC considers any subtask and trains ML model for such subtask. Such 

methods are the best in terms of accuracy [15,16]. 

2.2 Self-supervised One-class Classification 

Recently, self-supervised OCC is a promising framework and increasing attention. 

Such a framework considers pretext tasks for training data. Then, the ML model is 

trained for such subtask. Since training data has only seen class, model error for seen 

data is small relative to unseen data. Therefore, OCC could be made using model 

error of pretext task. 
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Several pretext tasks are proposed for self-supervised OCC [15, 16, 18, 26, 27]. 

These tasks are roughly classified into two groups, generation, and classification. 

Generative tasks, such as reconstruction and transformation, have an advantage in 

terms of processing speed [16]. However, there is a limitation for accuracy.  

In contrast, classification tasks aim to classify the self-labeled dataset. Such a da-

taset includes original data and additional data (that is created using original data). In 

which self-labels correspond to how data are created. These tasks have an advantage 

in terms of accuracy [15]. However, this approach takes time to create the self-labeled 

dataset. These aspects are trade-off practices. 

Self-supervised OCC is mainly used for image data. In which various subtasks are 

proposed, such as classification of geometric transformation [15], perturb classifica-

tion [18], and image transformation to one image [16]. However, these subtasks are 

specialized for image data. Therefore, applying to other data types is not suitable for 

such a purpose. 

Self-supervised techniques have been applied to time-series data in the context of 

anomaly detection [26, 27]. Baldacci et al. use the gas consumption forecasting task 

for time-series anomaly detection [26]. Blázquez-García et al. proposed classification 

sub-task for water leak detection [27]. In which, a self-labeled dataset is created with 

additional signals generated by multiplications of original signals [27]. 

On the other hand, this paper proposes a classification subtask for feature data, 

namely FSP subtask. In which the self-labeled dataset is created with sliding original 

feature vectors. To the best of our knowledge, FSP is the first classification subtask 

for feature data. 

3 One-class Classification using feature-slide prediction subtask 

In this section, novel one-class classification algorithm OCFSP is presented. In par-

ticular, FSP is proposed as a new subtask for feature data. Fig. 2 shows the frame-

work, which consists of two stages, training, and testing. In which, only seen data is 

used as training data. 
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Fig. 2. OCFSP framework 

 

In the training stage, additional data are generated by sliding feature vectors. Then, 

self-labeled dataset is created by gathering original and these additional data. In 

which, self-label represents how many slides are applied. Then after, classification 

model is trained using such a created dataset. Finally, threshold value is computed 

based on accuracy of FSP model. 

In the testing stage, additional data is generated in the same way as training. Then, 

FSP model is applied, and the accuracy is computed. If accuracy is higher than a 

threshold value, data is treated as seen class. Otherwise, data is concluded as unseen 

class. In the following paragraphs, mathematical descriptions are provided. 

Data is defined as d-dimensional feature vector X, as shown in equation (1).  

 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑑)                 (1) 

 

Where d is number of dimensions. The objective in OCC is predicting class label Y 

that is defined as in equation (2). 

 𝑌 = {𝑆, 𝑈}                     (2) 

 

Where S and U are seen and unseen class, respectively. 

This study proposes FSP subtask. Such task generates additional data A. In which, 

feature slide T is computed to generate additional data A from X as equation (3). 

 𝑇(𝑋, 𝑧): 𝑋 → 𝐴𝐴 = {𝐴1, … , 𝐴𝑧}                   (3) 
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In which, z is number of applied slides where 0 < z < d because d-dimensional data 

has d-1 possible slides. Moreover, volume of A increases related to z. Additionally, 

the components of A are defined as equation (4). 

  𝐴1 = (𝑋2, 𝑋3, … , 𝑋𝑑 , 𝑋1)⋮𝐴𝑧 = (𝑋𝑧+1, … , 𝑋𝑑, 𝑋1, … , 𝑋𝑧)⋮𝐴𝑑−1 = (𝑋𝑑 , 𝑋1, … , 𝑋𝑑−1)                                                         (4) 

 

In which, original feature vector X is slid forward by the number of the slide. These 

original and additional data are annotated using self-label SL as in equation (5). 

 𝑆𝐿 = {0,1, … , 𝑧}                                                                                    (5) 

 

In which, original data is self-labeled as 0. In contrast, additional data are labeled as 

number of the slides. Accordingly, FSP model g is defined as following equation (6). 

 𝑔: 𝑋 , 𝐴 → 𝑆𝐿                                                                                         (6) 

 

In which, g aims to predict SL which is number of feature slides. 

Finally, score of data related to seen class is computed using original data X and addi-

tional data A as in equation (7).  

 Score(𝑋) = 𝐿(g(𝑋) = 0 | 𝑋) +  ∑ 𝐿(𝑔(𝐴𝑘) = 𝑘 | 𝐴𝑘)𝑧𝑘=1           (7) 

 

Where k is the value of each slide. This score is computed using likelihood function 

related to correct prediction. Likelihood provides a more detailed score value than 

general accuracy, where data size is small. Therefore, such kind of scoring highlights 

the difference between seen and unseen classes. 

In the following sub-sections, training stage and testing stage are presented. 

3.1 Training stage 

In the training stage, dataset Dtr is defined as equation (8): 

 𝐷𝑡𝑟 = [𝑋𝑡𝑟1, 𝑋𝑡𝑟2, … , 𝑋𝑡𝑟𝑁]                                                         (8) 

 

Where N is number of the data. Besides, additional datasets are created by sliding Dtr 

as in equation (4). These datasets are defined as in equation (9): 

 𝐴𝑡𝑟1 = [𝐴𝑡𝑟1,1, 𝐴𝑡𝑟1,2, … , 𝐴𝑡𝑟1,𝑁]⋮𝐴𝑡𝑟𝑧 = [𝐴𝑡𝑟𝑧,1, 𝐴𝑡𝑟𝑧,2, … , 𝐴𝑡𝑟𝑧,𝑁]                                                       (9) 
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Besides, Self-labeled dataset Dself; is created by merging Dtr and Atr as in equation 

(10):  

 𝐷𝑠𝑒𝑙𝑓 = [𝐷𝑡𝑟, 𝐴𝑡𝑟1, … , 𝐴𝑡𝑟𝑧]                                                                           (10) 

 

Then, self-label SL is assigned to these dataset as shown in equation (5). Besides, 

feature-slide classifier g is trained using Dself and SL as shown in equation (6). In 

such process, existing classification algorithms are applied. Since training is done 

using only seen samples, this classifier has high accuracy for seen class relative to 

unseen class. Therefore, threshold value between seen and unseen, could be computed 

using accuracy for seen data. Such computation is made in heuristic optimal way. 

3.2 Testing stage 

In the testing stage, input is Xtest, and additional data Atest are generated from Xtest 

as shown in equation (4). These data are merged to self-labeled testing set Dtest as 

shown in equation (11): 

 𝐷𝑡𝑒𝑠𝑡 = [𝑋𝑡𝑒𝑠𝑡, 𝐴𝑡𝑒𝑠𝑡1, … , 𝐴𝑡𝑒𝑠𝑡𝑧]                                                                  (11) 

 

Then, score of Xtest is computed as equation (12). 

 score(𝑋𝑡𝑒𝑠𝑡) = 𝐿(g(𝑋𝑡𝑒𝑠𝑡) = 0 | 𝑋𝑡𝑒𝑠𝑡) + ∑ 𝐿(𝑔(𝐴𝑡𝑒𝑠𝑡𝑘) = 𝑘 | 𝐴𝑡𝑒𝑠𝑡𝑘)𝑧
𝑘=1  

(12) 

 

Such equation is based on previous equation (7) 

Finally, seen-unseen classification f is established using equation (13). 

 𝑓(𝑋𝑡𝑒𝑠𝑡) =  {𝑆 (𝑠𝑐𝑜𝑟𝑒(𝑋𝑡𝑒𝑠𝑡) ≥  𝜆)𝑈 (𝑠𝑐𝑜𝑟𝑒(𝑋𝑡𝑒𝑠𝑡) <  𝜆)              (13) 

 

Where λ is a threshold value, which is determined in a heuristic optimal way. 

 

4 Experiment 

The proposed method (OCFSP) has been validated using data listed in section 4.1. 

The measurement of evaluation is shown in section 4.2. The experiment results are 

shown in section 4.3. 
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4.1 The data 

OCFSP is evaluated with an imbalanced learn dataset [28], which is implemented as a 

Python package. Such dataset consists of 27 sub-datasets with class imbalance for 

binary classification [28]. 

Table 1 shows information of datasets, such as dimension, number of each class, and 

Imbalance Ratio (IR). All datasets are normalized based on min-max. In the experi-

ment, one class is treated as seen class, and another class is concluded as unseen class. 

Table 1. Details of imbalanced datasets in experiment 

Data Dimension Minority Majority IR 

ecoli 7 35 301 8.60  

optical_digits 64 554 5066 9.14  

satimage 36 626 5809 9.28  

pen_digits 16 1055 9937 9.42  

abalone 10 391 3786 9.68  

sick_euthyroid 42 293 2870 9.80  

spectrometer 93 45 486 10.80  

car_eval_34 21 134 1594 11.90  

isolet 617 600 7197 12.00  

us_crime 100 150 1844 12.29  

yeast_ml8 103 178 2239 12.58  

scene 294 177 2230 12.60  

libras_move 90 24 336 14.00  

thyroid_sick 52 231 3541 15.33  

coil_2000 85 586 9236 15.76  

arrhythmia 278 25 427 17.08  

solar_flare_m0 32 68 1321 19.43  

oil 49 41 896 21.85  

car_eval_4 21 65 1663 25.58  

wine_quality 11 183 4715 25.77  

letter_img 16 734 19266 26.25  

yeast_me2 8 51 1433 28.10  

webpage 300 981 33799 34.45  

ozone_level 72 73 2463 33.74  

mammography 6 260 10923 42.01  

protein_homo 74 1296 144455 111.46  

abalone_19 10 32 4145 129.53  

 

In which, training data and testing data are split by three ratios, such as 80%:20%, 

60%:40%, and 10%:90%. Then, the training set is split into minority and Majority 

data, and the one-class classifiers are trained separately. Each split is applied five 

times, and these average scores are reported as the experiment result. 
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4.2 Measurement of the evaluation 

Evaluation is done using the Area under the ROC Curve (AUC).  This curve is a 

graph plotting the performance in all possible thresholds. In which the x-axis and y-

axis are FPR and TPR, respectively. These values are computed as given in Eq. (14) – 

Eq. (15) and Table 2. In which, Positive and Negative are corresponding to minority 

and Majority class, respectively. 

 TPR = 𝑇𝑃𝑇𝑃+𝐹𝑁 (14) 

 FPR = 𝐹𝑃𝐹𝑃+𝑇𝑁 (15) 

Table 2. Confusion Matrix 

 Predicted 

Positive Negative 

Actual Positive TP FN 

Negative FP TN 

 

4.3 Experiment result 

The experiment is made with the following three parts: 1) Considering appropriate 

number of the slide, 2) Compare with other OCC algorithms, and 3) Compute pro-

cessing time. 

In this experiment, OCC algorithms and supervised classification algorithms are 

applied using scikit-learn package [29]. Table 3 provides applied packages for algo-

rithms. Baseline methods are OCC algorithms. In addition, OCFSP uses supervised 

classification algorithms for FSP model. In which AUC scores are computed using 

outputs of score functions as shown in Table 3. Such kind of scorings are likelihood 

related to seen class, or correct slide prediction, respectively. 

Table 3. Applied packages for the experiment 

Method Scikit-learn Package Score function 

 

Baseline 

OCC 

OCSVM OneClassSVM score_samples 

LOF LocalOutlierFactor score_samples 

IF IsolationForest score_samples 

GMM GaussianMixture score_samples 

 

OCFSP 

DT DecisionTreeClassifier predict_proba 

LR LogisticRegression predict_log_proba 

GNB GaussianNB predict_log_proba 

MLP MLPClassifier predict_proba 
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In addition, FSP is made by four classification algorithms, such as Decision Tree 

(DT), Logistic Regression (LR), Gaussian Naïve Bayes (GNB) and Multi-layer Per-

ceptron (MLP). These algorithms are selected from algorithms included in the scikit-

learn library [29]. In which, processing time is considered for model selection because 

model training takes time when the size of the self-labeled dataset increases. All algo-

rithms are applied with default parameters. 

The first experiment is made for considering appropriate number of the feature 

slide for OCFSP. Fig. 3 shows the average AUC score for imbalanced-learn dataset. 

These results are corresponding to seen classes, train test split, and classification algo-

rithms for FSP. In addition, Z represents number of the slides applied to original data. 

Therefore, Z+1 class classification is made as pretext task.  

 

Fig. 3. The average AUC score for OCFSP 
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In such figure, AUC is small, where the z value is small. The reason is considered as 

random prediction leads to high accuracy where number of the class is small. In such 

a case, FSP for unseen class becomes unfairly high accuracy. On the other hand, the 

AUC score decreases where the z value is large. Such problem is due to FSP becomes 

unpredictable for even seen class.  

Besides, Table 4 shows the best AUC scores for each pair of seen class and classi-

fication algorithm. Overall, MLP is the best classifier where seen class is minority. In 

contrast, DT shows the best performance for majority seen class. In addition, larger 

training data provides higher AUC score. 

Table 4. The best AUC score and number of the feature slide Z 

 Seen = minority Seen = majority 

80%:20% 60%:40% 10%:90% 80%:20% 60%:40% 10%:90% 

OCFSP-DT 71.4 71.0 69.6 60.2 59.9 59.4 

z=28 z=26 z=25 z=28 z=16 z=27 

OCFSP-LR 75.6 75.4 73.3 56.8 56.4 54.1 

z=11 z=11 z=9 z=3 z=3 z=3 

OCFSP-GNB 65.9 65.8 63.5 55.6 55.9 54.9 

z=29 z=22 z=29 z=29 z=2 z=3 

OCFSP-MLP 76.2 76.1 73.9 56.8 56.8 55.6 

z=7 z=5 z=5 z=3 z=3 z=9 

 

In the following experiments, number of the feature slide z are selected as shown 

in Table 4. In some datasets, z is larger than the dimension of the data. In such a case, 

the reported result is AUC score where z = d - 1. 

Besides, the performance for the minority classifier is better than the majority clas-

sifier. The reason is considered the seen data distribution. Perhaps, the minority class 

has a narrower distribution than the majority class. In which the distribution of the 

feature slide is narrow in the same way.  

On the other hand, the majority class and such feature slide vectors should have 

wide distribution. In such a case, self-labeled data distribution should overlap, and 

feature slide prediction becomes difficult. In which model training is not successful, 

and such model error cannot discriminate between seen and unseen classes. 

4.4 Comparison with other OCC algorithms 

The proposed OCFSP is compared with other OCC algorithms. Comparison is made 

with four OCC algorithms. These methods are applied with default parameters of 

scikit-learn package [29]. 
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 One-class Support Vector Machine (OCSVM) [10] uses mapping function from 

seen data into feature vector space. In such space, the maximum margin hyper-

plane is computed between mapped seen data and Origin O that is regarded as un-

seen.  

 Local Outlier Factor (LOF) [11] compute outlier scores for sample. Such score is 

calculated with density of original samples and these neighbor samples. Outlier 

score is large where data is far from the neighbor samples.  

 Isolation Forest (IF) [12] uses tree structure with random split. Such tree is regard-

ed to assign seen data into the same place and isolate unseen data. Therefore, score 

could be computed from where data is assigned.  

 Gaussian Mixture Model (GMM) [30] is known as unsupervised clustering algo-

rithm, which could be applicable to discriminate seen and unseen data. As a pro-

cess, GMM is applied for training data and clusters are generated. Then, score re-

lated to these cluster is computed for each data. Since clusters are created from 

seen class, score is related to seen class. Therefore, data with small score is con-

cluded as unseen class [25].  

Tables 5-7 shows the comparison where seen data is minority class. In particular, 

Table 5 provides the result where train test split is 8:2. In which, OCFSP methods 

show the best AUC scores for 10 datasets in total. In addition, OCFSP-MLP is tie 

with baseline methods in terms of average AUC score. 

Table 5. Comparison where seen data is minority, train test split is 8:2. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 89.0  89.4  91.8  84.1  50.6  86.6  77.4  90.7  

optical_digits 97.4  98.8  95.3  97.2  94.4  86.9  82.6  83.9  

satimage 90.6  83.2  91.8  79.0  86.6  74.3  81.1  73.7  

pen_digits 99.0  99.8  98.9  99.4  99.3  84.0  83.1  97.8  

abalone 80.5  75.7  83.8  82.7  59.9  64.4  26.5  62.5  

sick_euthyroid 70.6  77.4  77.6  84.7  65.8  77.4  57.4  76.9  

spectrometer 48.5  26.3  56.4  49.6  69.3  63.4  52.0  55.3  

car_eval_34 99.9  98.2  59.4  99.8  95.0  98.7  98.5  98.5  

isolet 93.1  96.2  92.3  93.7  72.1  78.7  64.6  81.4  

us_crime 72.0  71.8  66.7  69.3  72.4  81.1  71.0  82.6  

yeast_ml8 58.7  58.5  56.0  45.3  56.3  52.3  50.3  52.6  

scene 62.7  59.7  63.0  59.0  64.7  63.5  62.7  60.6  

libras_move 92.4  67.9  91.6  91.6  82.7  93.6  78.7  95.7  

thyroid_sick 71.3  60.8  74.5  77.5  64.7  77.9  56.2  77.6  

coil_2000 55.3  52.9  56.3  54.6  56.1  66.0  52.0  66.9  

arrhythmia 58.4  58.2  61.9  63.9  71.2  68.3  50.0  66.9  

solar_flare_m0 61.0  52.5  52.7  56.9  55.2  58.9  60.0  57.9  

oil 68.2  56.7  49.8  78.4  64.3  52.0  50.6  52.7  
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car_eval_4 99.9  97.9  24.9  99.8  99.0  99.4  97.9  99.4  

wine_quality 47.3  45.7  50.2  46.9  62.8  58.6  56.7  59.7  

letter_img 89.9  98.4  89.8  97.5  97.6  90.8  83.5  93.8  

yeast_me2 83.0  85.9  77.3  70.0  52.1  87.7  51.6  88.8  

webpage 62.1  84.0  52.9  79.1  69.6  70.9  69.8  71.0  

ozone_level 76.7  78.7  81.6  67.2  69.8  80.3  58.1  79.6  

mammography 79.4  74.5  80.1  79.8  69.2  81.6  88.5  85.1  

protein_homo 80.1  75.2  79.8  79.1  60.7  78.4  50.0  78.7  

abalone_19 70.9  61.2  73.2  71.6  65.7  65.3  69.3  66.0  

Average 76.2  73.5  71.5  76.2  71.4  75.6  65.9  76.2  

 

Table 6 shows the comparison where train test split is 60%:40%. In which, OCFSP 

methods show the best scores for 11 datasets in total. In addition, OCFSP-MLP is the 

0.1 point behind in the average score, which is comparable with the baseline. 

Table 6. Comparison where seen data is minority, train test split is 6:4. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 91.5  58.1  92.1  87.8  53.9  88.3  76.2  92.0  

optical_digits 97.6  98.8  95.3  97.2  94.1  87.0  83.8  85.0  

satimage 91.5  83.7  92.4  79.9  86.7  74.7  81.2  74.5  

pen_digits 99.0  99.8  98.9  99.5  99.3  83.4  83.0  97.4  

abalone 81.8  70.2  84.6  82.8  62.8  66.9  27.0  58.6  

sick_euthyroid 69.5  73.0  75.4  83.5  67.0  76.3  57.4  74.9  

spectrometer 52.7  32.2  59.2  52.4  72.9  63.6  52.7  59.8  

car_eval_34 99.8  96.6  63.5  99.6  94.6  98.6  98.4  98.6  

isolet 93.0  96.3  92.2  94.9  77.2  79.1  64.4  80.9  

us_crime 73.4  71.5  69.5  68.8  71.2  79.8  70.8  81.5  

yeast_ml8 56.3  57.9  57.0  47.4  52.2  50.5  50.3  51.7  

scene 62.6  59.7  63.5  58.7  63.8  63.8  60.6  60.6  

libras_move 90.5  63.3  85.3  88.4  81.2  88.5  75.5  94.0  

thyroid_sick 71.7  62.4  76.1  78.3  64.2  80.4  56.0  80.2  

coil_2000 54.5  52.9  55.9  54.1  56.4  65.7  52.0  66.3  

arrhythmia 63.1  61.9  59.5  65.6  67.9  66.3  50.0  63.4  

solar_flare_m0 56.7  51.0  49.5  56.2  48.5  57.6  60.6  59.4  

oil 63.6  52.1  49.1  66.7  53.4  53.6  50.4  53.1  

car_eval_4 99.9  95.7  36.8  99.8  99.2  99.4  97.8  99.3  

wine_quality 49.3  47.3  50.9  47.9  61.6  58.9  57.4  60.0  

letter_img 89.7  97.5  88.2  97.4  97.5  90.9  84.0  94.1  

yeast_me2 79.4  82.9  77.3  73.5  53.0  83.3  50.7  84.9  

webpage 62.2  79.2  53.9  80.1  69.2  70.9  69.5  72.0  
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ozone_level 78.5  80.4  83.4  73.0  67.1  81.3  58.5  81.1  

mammography 79.7  81.5  80.3  79.3  73.2  81.8  89.8  84.7  

protein_homo 80.8  75.1  80.5  79.6  62.0  78.0  50.0  78.1  

abalone_19 69.7  59.5  73.6  64.0  66.3  67.0  68.3  67.7  

Average 76.2  71.9  72.0  76.2  71.0  75.4  65.8  76.1  

 

In the same way, Table 7 provides the comparison where train test split is 1:9. 

OCFSP outperform baseline in 12 datasets. In addition, OCFSP-MLP shows the best 

AUC score in the compared methods. 

 

Table 7. Comparison where seen data is minority, train test split is 1:9. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 91.0  88.4  66.3  89.3  78.1  90.0  50.1  90.0  

optical_digits 97.0  97.2  94.3  89.4  87.6  86.8  81.5  84.4  

satimage 91.3  90.2  92.2  77.1  85.6  76.1  80.8  77.5  

pen_digits 98.8  96.0  98.0  99.2  98.8  79.3  82.0  96.5  

abalone 81.0  72.2  83.9  81.9  68.7  67.6  26.3  64.8  

sick_euthyroid 70.5  69.3  67.8  81.9  75.5  79.6  55.5  76.9  

spectrometer 59.3  40.4  44.6  66.9  56.0  56.0  53.1  57.2  

car_eval_34 95.8  75.3  61.2  97.3  85.9  94.4  96.4  94.6  

isolet 92.8  92.1  90.5  96.0  64.9  79.2  65.8  83.5  

us_crime 76.8  66.8  67.8  70.1  70.7  85.1  71.1  85.3  

yeast_ml8 55.8  54.8  54.0  51.3  53.2  50.9  50.9  51.4  

scene 61.0  59.4  59.1  57.9  57.7  63.8  54.8  58.6  

libras_move 59.3  45.3  50.0  58.7  64.3  61.3  62.2  58.4  

thyroid_sick 73.5  68.3  75.3  78.1  72.9  80.9  56.9  80.4  

coil_2000 54.1  54.0  56.8  50.7  54.6  64.7  50.9  65.7  

arrhythmia 57.2  57.4  50.0  57.4  55.1  59.3  50.0  58.1  

solar_flare_m0 59.6  49.8  33.0  60.9  55.7  58.3  64.8  61.0  

oil 60.8  50.7  48.0  59.9  51.6  51.9  49.6  52.5  

car_eval_4 98.1  79.9  53.5  97.9  94.9  97.2  96.7  97.2  

wine_quality 49.9  49.5  53.1  51.1  57.7  55.9  58.0  56.2  

letter_img 89.4  89.3  84.2  96.3  94.6  89.3  83.3  91.8  

yeast_me2 61.9  61.0  66.0  58.3  54.9  84.4  50.1  84.0  

webpage 61.6  60.4  50.0  76.5  63.9  69.5  70.1  72.3  

ozone_level 73.2  62.1  79.8  79.5  69.6  80.8  55.5  81.0  

mammography 80.8  76.7  81.1  80.0  77.2  82.3  88.7  83.3  

protein_homo 81.4  70.8  79.8  77.8  67.8  73.3  50.0  74.0  
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abalone_19 56.2  59.1  62.3  54.4  61.2  61.6  59.2  59.7  

Average 73.6  68.0  66.8  73.9  69.6  73.3  63.5  73.9  

 

Besides, Tables 8-10 show the experiment result where majority class is the seen 

class. In particular, Table 8 provides comparison where train test split is 8:2. In which 

OCFSP shows the best scores in four datasets. On the other hand, OCFSP underper-

forms baseline in the average score. 

Table 8. Comparison where seen class is majority, split is 8:2 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 80.5  65.7  78.4  81.6  50.2  28.3  41.0  36.6  

optical_digits 21.2  97.7  44.9  75.6  75.1  52.8  48.5  51.9  

satimage 23.8  51.6  38.8  40.3  64.2  50.1  55.4  71.0  

pen_digits 78.8  98.3  81.8  83.9  87.7  76.9  64.3  67.9  

abalone 52.4  43.9  59.8  31.8  49.9  70.9  79.8  69.7  

sick_euthyroid 42.8  61.1  42.1  43.7  48.5  37.0  42.9  46.6  

spectrometer 83.6  91.9  88.4  72.5  65.7  49.7  49.3  56.6  

car_eval_34 98.6  50.0  90.4  98.3  58.5  93.0  96.0  82.1  

isolet 22.9  77.5  26.2  37.1  48.0  35.5  47.3  37.2  

us_crime 79.5  73.7  82.0  75.6  71.3  76.8  65.5  74.0  

yeast_ml8 48.6  47.6  49.6  60.2  54.3  49.1  52.6  48.0  

scene 49.2  52.8  47.4  47.3  52.0  44.7  47.1  46.5  

libras_move 82.1  91.3  73.5  95.6  87.7  92.4  53.7  96.4  

thyroid_sick 52.4  68.7  49.0  46.1  50.2  61.7  47.5  62.1  

coil_2000 53.9  56.0  54.1  53.4  51.5  38.5  50.3  37.0  

arrhythmia 46.3  41.3  46.0  40.2  45.8  35.9  48.6  35.8  

solar_flare_m0 76.7  61.7  77.7  77.4  65.7  62.6  70.0  63.8  

oil 60.3  75.6  73.8  82.6  59.4  57.4  49.7  58.7  

car_eval_4 99.2  50.0  89.0  97.4  55.5  86.7  94.8  76.0  

wine_quality 66.8  69.5  70.6  72.0  65.5  55.8  62.7  58.7  

letter_img 59.6  93.9  51.5  52.6  67.8  62.4  47.1  69.0  

yeast_me2 78.2  67.4  74.6  73.3  49.6  36.4  25.3  31.8  

webpage 49.5  72.7  40.1  89.7  82.7  77.6  88.1  76.9  

ozone_level 55.1  45.8  46.9  37.7  47.0  33.2  35.9  35.5  

mammography 84.5  90.2  87.3  87.0  42.1  51.7  49.7  39.1  

protein_homo 85.6  88.2  88.9  85.9  78.7  73.1  51.3  69.8  

abalone_19 34.6  59.6  43.6  63.3  49.8  42.3  37.7  34.4  

Average 61.7  68.3  62.8  66.7  60.2  56.8  55.6  56.8  

 

In the same way, Table 9 provides comparison where split is 6:4. OCFSP shows the 

best score in 3 datasets and underperforms baseline methods in average AUC score. 
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Table 9. Comparison where seen data is majority, split is 6:4. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 77.0  63.1  77.0  81.6  50.2  25.7  39.6  31.9  

optical_digits 21.6  97.3  45.4  75.6  65.4  51.1  55.5  50.7  

satimage 23.1  50.9  34.9  40.3  66.2  48.9  55.5  69.1  

pen_digits 78.6  97.7  81.9  83.9  88.6  77.2  69.7  66.9  

abalone 50.0  43.1  55.6  31.8  49.8  69.0  79.8  69.1  

sick_euthyroid 43.6  63.0  40.8  43.7  49.5  39.8  43.1  44.8  

spectrometer 82.4  89.6  86.3  72.5  69.0  49.6  50.7  55.5  

car_eval_34 97.7  50.0  89.5  98.3  64.0  91.2  90.4  81.1  

isolet 22.3  76.2  26.1  37.1  47.6  35.3  46.8  36.7  

us_crime 78.9  71.7  81.1  75.6  68.9  76.4  57.0  74.0  

yeast_ml8 49.4  48.2  49.9  60.2  55.3  49.3  50.5  49.5  

scene 49.1  53.4  47.7  47.3  51.5  43.9  47.1  45.6  

libras_move 83.1  88.8  73.6  95.6  87.7  90.9  44.3  92.9  

thyroid_sick 52.8  68.1  48.4  46.1  51.4  60.4  47.9  61.9  

coil_2000 54.2  55.0  54.6  53.4  50.8  38.9  50.2  37.0  

arrhythmia 44.2  42.1  44.3  40.2  46.4  37.3  49.5  39.6  

solar_flare_m0 75.7  58.8  76.8  77.4  62.3  64.9  66.3  65.7  

oil 62.7  78.7  76.1  82.6  58.7  58.1  49.9  59.9  

car_eval_4 99.1  50.0  86.3  97.4  59.3  87.3  91.9  77.9  

wine_quality 65.4  70.7  70.3  72.0  64.2  56.6  62.5  59.0  

letter_img 60.2  91.4  52.7  52.6  64.7  62.9  53.8  65.5  

yeast_me2 74.9  63.7  71.2  73.3  49.4  38.2  48.2  33.6  

webpage 49.2  71.5  38.3  89.7  81.1  77.7  78.1  77.4  

ozone_level 52.8  45.6  45.6  37.7  45.9  32.4  46.5  35.9  

mammography 85.3  90.4  87.8  87.0  43.0  49.9  43.1  39.2  

protein_homo 86.1  88.6  88.9  85.9  77.4  73.2  50.7  68.3  

abalone_19 38.4  67.5  45.3  63.3  49.8  41.8  40.6  46.1  

Average 61.4  68.0  62.1  66.7  59.9  56.6  55.9  56.8  

 

Finally, Table 10 provides the comparison. OCFSP shows the best AUC scores in 6 

datasets. As shown the seen data is majority, OCFSP underperforms other OCC 

methods. Such result is due to the difficulty in feature slide prediction for majority 

data (see section 5.3). 

Table 10. Comparison where seen class is majority, split is 1:9 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 
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ecoli 75.6  77.6  77.9  81.6  49.7  26.8  34.7  24.4  

optical_digits 23.0  84.5  46.5  75.6  63.5  44.1  54.4  56.0  

satimage 25.3  57.5  39.5  40.3  66.5  47.1  54.4  54.7  

pen_digits 77.9  92.5  80.4  83.9  85.0  76.3  69.7  75.2  

abalone 50.9  42.0  59.3  31.8  49.8  72.3  80.1  71.7  

sick_euthyroid 43.0  54.8  41.4  43.7  48.5  34.2  43.5  44.1  

spectrometer 82.0  76.9  83.5  72.5  64.8  48.4  55.6  50.6  

car_eval_34 78.9  50.3  73.1  98.3  59.6  71.0  75.1  72.6  

isolet 22.1  66.4  24.8  37.1  45.7  35.1  46.2  36.3  

us_crime 77.8  76.9  80.6  75.6  76.2  81.8  57.9  81.4  

yeast_ml8 49.1  52.4  51.0  60.2  56.1  50.1  51.1  52.0  

scene 49.6  52.5  49.8  47.3  52.5  41.6  49.2  43.6  

libras_move 82.9  51.3  67.1  95.6  72.6  72.1  49.4  80.0  

thyroid_sick 50.8  52.3  47.7  46.1  49.4  57.8  47.9  54.5  

coil_2000 55.0  50.9  55.0  53.4  51.6  39.7  50.1  38.7  

arrhythmia 46.3  44.0  42.1  40.2  47.5  39.2  49.9  46.0  

solar_flare_m0 71.2  71.3  72.4  77.4  70.1  66.5  67.5  67.8  

oil 59.9  69.2  72.1  82.6  66.4  64.5  49.9  65.1  

car_eval_4 70.8  50.7  73.7  97.4  54.7  68.0  73.2  63.0  

wine_quality 66.3  70.5  70.3  72.0  65.8  61.7  64.0  57.1  

letter_img 60.7  76.6  47.4  52.6  58.3  61.7  50.9  49.0  

yeast_me2 78.1  75.7  75.1  73.3  49.7  39.2  39.5  40.3  

webpage 50.1  64.8  39.7  89.7  78.6  76.9  81.0  79.4  

ozone_level 54.3  42.5  44.5  37.7  45.4  30.4  45.6  38.7  

mammography 84.8  88.4  87.8  87.0  44.3  39.7  44.5  49.8  

protein_homo 85.9  88.3  88.1  85.9  81.0  72.3  50.5  70.8  

abalone_19 42.9  62.9  50.2  63.3  49.6  41.6  40.0  39.1  

Average 59.8  64.6  60.8  66.7  59.4  54.1  54.7  55.6  

 

OCFSP shows comparable performance for minority seen samples. However, the 

AUC score worsens for majority samples. In particular, AUC scores are less than 50 

in several datasets. In which FSP accuracy for unseen minority data is larger than seen 

majority data. Such problem is related to data distribution of classes. Overall, majority 

distribution is considered as wider than minority. In such case, learning majority dis-

tribution could cover minority distribution. In addition, minority data exists in narrow 

distribution. In such case, additional data has significant difference from original data. 

Therefore, FSP task becomes easier. 

5 Discussion 

This section provides discussion for OCFSP. 
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5.1 One-class ensemble classifier 

In this section, OCFSP is applied as the part of one-class ensemble classifier.  In 

which, OCC classifiers are trained in class by class. Then, all classifiers are combined 

to create the final classifier. Imbalanced-learn dataset has two classes, minority, and 

majority. Therefore, minority classifier and majority classifier are trained separately. 

Then, an ensemble of both OCC classifiers is computed using equations (16) and (17).  

 𝑆𝑐𝑜𝑟𝑒𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑋) =  𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦(𝑋) −  𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑋)      (16) 

 𝑓(𝑋) =  {𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 (𝑆𝑐𝑜𝑟𝑒𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑋) ≥  𝜆)𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑆𝑐𝑜𝑟𝑒𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑋) <  𝜆)           (17) 

 

These two equations are based on previous paper [23]. Where λ is threshold value 
(Deciding such value is not necessary to compute AUC score.). Tables 11-13 com-

pares the ensembled AUC score for OCC and OCFSP.  

In particular, Table 11 provides experiment result where split is 8:2. In which, 

OCFSP is the best in four datasets. However, such result is not good. 

Table 11. Comparison of ensemble classifier, train test split is 8:2. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 88.1  95.3  95.7  85.5  48.7  89.7  66.7  92.1  

optical_digits 33.9  99.9  97.8  99.1  98.1  88.7  82.7  90.9  

satimage 52.1  85.4  92.5  87.0  89.1  73.8  75.0  77.2  

pen_digits 86.9  100.0  99.4  99.8  99.8  91.2  81.7  98.8  

abalone 65.3  75.3  84.9  82.8  59.9  71.0  77.2  61.3  

sick_euthyroid 45.7  81.2  84.1  89.0  65.3  65.7  54.3  79.6  

spectrometer 84.2  91.8  97.0  49.7  87.9  91.6  80.5  82.5  

car_eval_34 99.8  98.2  71.2  99.8  94.9  98.4  98.8  98.3  

isolet 30.2  99.0  92.5  93.8  71.0  79.8  62.9  81.2  

us_crime 81.5  87.0  91.3  74.9  80.9  87.9  78.8  87.4  

yeast_ml8 49.5  51.2  54.8  48.0  59.5  53.5  52.7  52.9  

scene 50.4  67.6  71.1  59.0  67.1  65.1  60.0  60.2  

libras_move 87.6  92.1  96.6  91.6  94.5  97.7  82.1  99.2  

thyroid_sick 54.2  64.7  83.5  81.7  66.1  79.3  56.1  78.6  

coil_2000 54.4  59.9  64.4  66.6  59.6  66.1  53.2  66.8  

arrhythmia 46.3  41.4  60.5  62.9  67.8  68.3  48.6  64.4  

solar_flare_m0 77.5  63.3  80.6  73.2  62.6  64.9  72.3  60.0  

oil 61.6  72.8  76.3  79.0  62.0  53.9  50.6  53.8  

car_eval_4 99.9  97.9  40.6  99.8  98.7  97.6  98.4  98.0  

wine_quality 67.2  72.1  78.4  76.6  72.0  70.1  67.5  63.7  

letter_img 63.1  99.5  94.3  98.9  98.6  90.5  70.5  94.7  
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yeast_me2 79.2  88.3  89.8  82.2  51.7  86.9  27.1  88.6  

webpage 49.9  96.7  49.2  96.9  89.3  91.0  93.6  89.7  

ozone_level 57.0  81.3  85.9  67.2  69.3  79.6  50.2  79.3  

mammography 85.2  92.4  91.9  90.4  62.1  86.2  81.0  63.9  

protein_homo 85.8  96.8  96.8  97.4  83.2  83.3  51.4  84.1  

abalone_19 36.5  63.0  72.7  76.5  65.6  60.4  44.8  65.7  

Average 65.7  82.0  81.3  81.8  75.0  79.0  67.4  78.3  

 

Table 12 shows the result where train test split is 6:4. OCFSP is the best in the four 

datasets. 

Table 12. Comparison of ensemble classifier, train test split is 6:4. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 85.7  64.5  95.2  88.8  52.3  91.2  57.9  92.6  

optical_digits 34.1  99.9  97.6  99.0  98.1  88.3  82.6  91.1  

satimage 51.9  85.1  93.1  86.9  88.6  73.5  75.6  77.4  

pen_digits 86.9  99.9  99.2  99.8  99.8  90.6  81.5  98.8  

abalone 63.4  69.6  84.7  82.9  62.7  71.9  78.9  64.6  

sick_euthyroid 46.5  78.0  80.8  88.0  68.0  66.9  54.4  78.3  

spectrometer 82.9  89.7  94.2  52.8  89.0  91.1  80.7  88.2  

car_eval_34 99.7  96.6  72.6  99.7  94.8  98.1  98.7  98.2  

isolet 29.6  99.1  91.4  94.9  72.3  80.0  62.6  80.6  

us_crime 80.8  85.9  91.6  69.3  80.0  86.6  78.7  86.4  

yeast_ml8 50.2  51.3  55.9  47.8  58.4  51.2  53.4  51.1  

scene 50.3  66.9  71.8  58.7  63.3  65.2  58.6  60.8  

libras_move 88.5  89.7  94.8  88.4  94.2  96.0  81.6  98.8  

thyroid_sick 54.7  69.5  84.9  82.3  64.7  80.5  56.1  80.1  

coil_2000 54.8  58.0  65.5  65.4  58.7  65.9  52.8  66.6  

arrhythmia 44.8  42.3  51.2  64.7  63.3  66.8  49.2  62.1  

solar_flare_m0 76.7  59.7  79.9  72.1  59.7  68.2  72.8  61.2  

oil 63.8  74.5  80.8  67.0  64.1  55.5  50.3  53.6  

car_eval_4 99.9  95.7  49.5  99.9  97.7  97.7  98.3  98.1  

wine_quality 65.7  73.7  77.9  76.5  70.1  69.8  69.4  63.4  

letter_img 63.7  99.2  93.3  99.0  98.4  90.5  70.8  94.5  

yeast_me2 75.7  81.7  86.2  84.3  52.4  83.3  30.2  83.9  

webpage 49.6  95.1  47.8  96.6  88.9  90.9  93.2  89.4  

ozone_level 54.7  79.9  86.6  73.0  65.8  80.5  50.5  80.1  

mammography 85.9  93.2  92.5  91.3  66.1  87.6  79.5  65.5  

protein_homo 86.3  96.8  97.2  97.6  84.2  83.6  51.5  82.6  
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abalone_19 40.2  69.5  73.3  70.1  66.2  62.6  49.1  67.0  

Average 65.4  80.2  81.1  81.4  74.9  79.0  67.4  78.3  

 

In contrast, Table 13 provides the result where training testing split is 1:9. In which, 

OCFSP outperforms other methods in 12 datasets. Moreover, OCFSP-MLP is the best 

in the average AUC score. 

Table 13. Comparison of ensemble classifier, train test split is 1:9. 

Dataset Baseline OCC OCFSP 

OCSVM LOF IF GMM DT LR GNB MLP 

ecoli 83.3  89.0  82.4  90.0  78.1  83.7  35.1  89.9  

optical_digits 35.9  99.0  95.9  90.1  92.7  87.8  81.4  88.0  

satimage 52.9  90.1  91.2  78.6  84.1  74.8  75.1  72.1  

pen_digits 86.2  98.6  98.1  99.7  99.2  86.5  82.1  97.9  

abalone 62.6  72.5  82.9  81.7  68.8  76.0  77.8  68.0  

sick_euthyroid 46.1  59.6  59.5  84.1  75.4  68.8  52.7  77.7  

spectrometer 83.1  75.6  83.3  71.1  84.4  74.1  75.4  88.2  

car_eval_34 95.8  75.5  67.7  97.4  83.4  93.8  96.6  92.5  

isolet 29.2  96.2  87.1  96.1  62.4  80.1  63.7  83.1  

us_crime 80.0  79.0  88.1  70.2  81.1  88.9  77.2  88.6  

yeast_ml8 50.1  53.3  53.6  51.3  55.9  51.9  52.8  50.8  

scene 50.7  54.0  60.7  58.2  58.9  64.7  52.9  58.5  

libras_move 85.4  45.7  67.1  59.2  77.0  68.0  62.1  80.5  

thyroid_sick 53.5  57.6  77.2  78.8  73.5  81.7  57.0  80.3  

coil_2000 55.6  54.5  65.0  51.1  56.9  64.9  51.6  66.1  

arrhythmia 46.4  51.6  42.1  56.8  51.3  59.4  50.0  55.6  

solar_flare_m0 72.8  71.1  67.2  61.1  70.4  67.9  71.6  65.9  

oil 61.0  70.5  73.3  60.0  60.0  54.8  49.2  54.7  

car_eval_4 95.5  79.8  61.0  97.9  88.8  94.9  96.5  94.5  

wine_quality 66.7  70.6  76.2  63.3  68.3  67.7  67.9  60.3  

letter_img 64.3  96.2  88.5  97.8  96.1  92.1  70.5  94.1  

yeast_me2 78.8  77.4  82.9  58.2  54.4  86.5  39.0  84.7  

webpage 50.5  84.8  41.7  82.0  83.5  88.2  86.6  88.1  

ozone_level 55.9  58.7  74.3  79.5  67.2  80.3  47.0  80.3  

mammography 85.6  90.5  92.2  89.7  61.5  74.0  78.2  73.0  

protein_homo 86.1  95.0  96.9  94.2  87.4  79.2  51.1  77.8  

abalone_19 43.6  62.2  58.5  54.4  60.9  51.7  54.0  56.1  

Average 65.1  74.4  74.6  76.0  73.4  75.6  65.0  76.6  
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Previous three tables show that OCFSP ensemble is relatively effective where training 

data is small size. Therefore, OCFSP could be considered as one of the alternative 

OCC algorithms. 

5.2 Time Complexity Analysis 

Table 14 shows processing time for OCC and OCFSP. In which, webpage dataset is 

used for time computation. Such dataset has 300 dimensions and is split into 20868 

training data (589 minority, and 20279 majority) and 13912 testing data. Comparison 

is made for both seen and unseen data. In addition, number of the slide Z is 29 for 

OCFSP. In the OCFSP algorithm, GNB is the fastest FSP model. In contrast, MLP 

takes time for training.  

Table 14. Processing time of OCC algorithms (seconds) 

Method Seen = minority Seen = majority 

training testing training testing 

OCSVM 0.07 1.0 93 46.9 

LOF 0.04 0.3 16.2 9.2 

IF 0.3 2.8 5.3 2.7 

GMM (1 mixture) 0.05 0.04 1.8 0.04 

OCFSP-DT 3.2 2.3 208 2.3 

OCFSP-LR 4.7 3.2 204 3.2 

OCFSP-GNB 0.4 3.7 31.6 3.7 

OCFSP-MLP 42.9 2.3 1624 2.3 

 

Overall, OCFSP takes more time for training stage because FSP model is trained from 

additional data generated as self-labeled dataset. In which, training time increases 

where number of the slide Z is large value. 

In contrast, OCFSP is fast in the testing stage. Such result is different from previ-

ous self-supervised OCC in image dataset. In particular, the previous study reports 

that classification of geometric transformation task takes time. On the other hand, 

OCFSP is applicable as real time processing. For this reason, the following hypothesis 

is considered; 1) Applying feature slide is faster than geometric transformation, 2) 

Memory size for feature data is smaller than image data. In other words, increasing 

memory size could provide speed-up for self-supervised OCC in image dataset. 

Besides, OCFSP does not change testing time according to the size of training data. 

Therefore, OCFSP is applicable as real time processing for feature data. 

5.3 Accuracy of feature slide prediction subtask 

Fig. 4 provides accuracy scores for FSP subtask. Such figure consists of 10 sub-

figures. Left sub-figures show the accuracy where seen data is minority. On the other 
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hand, right sub-figures provide the result for majority seen class. In addition, the bot-

tom sub-figures compare accuracy of all applied classification algorithms for seen 

class. These scores are computed using self-labeled testing set of optical digits dataset. 

 

Fig. 4. Feature Slide Prediction accuracy for optical_digits dataset 

 

In which, train test split is done as 8:2. FSP accuracy for seen class is higher than 

unseen classes, where seen class is minority. In contrast, FSP accuracy does not have 
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difference where seen class is majority. In addition, MLP shows the highest accuracy 

for seen class. 

 

5.4 Considering other pretext task for feature data. 

OCFSP shows fair AUC score for minority data. However, OCFSP is not good where 

seen data is majority. In which, accuracy for unseen minority data is larger than seen 

majority data. Such problem is related to data distribution. Overall, majority distribu-

tion is considered as wider than minority. Therefore, learning feature slide of majority 

distribution could cover minority distribution. Such situation is not appropriate for the 

strategy of the self-supervised OCC in terms of using model error. 

In other words, OCFSP is not effective where seen data has diversity. In such case, 

FSP model learns diverse feature slide and covers FSP task for unseen data. In which 

FSP model cannot provide model error difference between seen and unseen classes. 

This is conceptual problem for FSP subtask. 

To avoid such problem, other pretext task should be considered for feature data. In 

which, model should not learn diversity from seen data. The main challenge is how to 

create such pretext task. 

 

6 Conclusion and Future work 

In this paper, OCFSP algorithm is proposed as self-supervised OCC for feature data. 

The main originality is FSP subtask. In which, the self-labeled dataset is created by 

sliding feature vectors. Then, this dataset is trained by supervised classification algo-

rithms. Since the training is computed using seen data, accuracy for seen class is con-

sidered high relative to unseen class. Accordingly, OCC is computable based on the 

accuracy of FSP model. Proposed OCFSP is experimented with using an imbalanced-

learn dataset and shows comparable performance with other OCC methods. OCFSP 

provide relatively high accuracy where seen data exists in narrow distribution. More-

over, OCFSP shows consistent testing speed, which is applicable for real time pro-

cessing. As a weak point, OCFSP takes much time for training. In addition, FSP sub-

task has limitations in training from wide distribution.  

To tackle such weak point, considering other pretext tasks are promising research 

area. In particular, classification subtask could provide high speed testing time for 

feature data, in the same way as OCFSP. In which, how to handle diversity of seen 

data is significant challenge. 
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