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An APPSO-SVM approach building the monitoring model of dam 

safety 

Zhiping Wen1, Zhendong Fan2,3, Huaizhi Su2,3, 

Abstract 

The measured data-based dam monitoring model could be used to analyze and predict the dam's 

operational behavior providing a scientific basis for risk assessment and decision-making of dam 

management. The traditional dam safety monitoring models established by multiple regression, 

stepwise regression, time series, gray theory, and other statistical methods have poor robustness 

and generalization. For this reason, an optimized support vector machine (SVM) whose novelty 

lies in simple execution procedure, self-adaptive hyperparameter selection from adaptive position 

particle swarm optimization (APPSO), user-friendly implementation and retention of influence 

factor combination, is presented for constructing the dam safety monitoring model. 

Key words: dam safety; monitoring model; support vector machine; particle swarm optimization 

1. Introduction 

The historical measured data-based analysis and prediction for the dam's operational behavior has 

always been an important task during dam safety assessment. The measured data of dam 

monitoring projects, such as deformation, seepage, and stress-strain, could objectively reflect the 

health status of the dam such that it provides the scientific basis of dam safety monitoring model 

exerting the benefits of dam engineering under the premise of safe operation [1,2]. 

In recent years, there is a growing interest to find new alternatives of the traditional 

statistics-based dam monitoring models due to their limitations in low prediction accuracy, 

overfitting, poor generalization ability and so on [3]. Specifically, Chen established a chaotic 

dynamics-based dam monitoring model by calculating the Lyapunov exponent law reconstructed 

from monitoring data series [4]. In the works of Su et al., the support vector machine (SVM) was 

introduced to study the nonlinear and small sample problems of dam monitoring effects [5,6]; 

wavelet theory was applied to nonlinearly couple different dam monitoring sub-models [7,8]; 

chaos theory was used to identify the predictability of monitoring series [9]. Moreover, Ranković 

et al. presented a neural network-based dam monitoring model where the correlation and 

uncertainty of the influence factors are considered by fuzzy theory [10]. Furthermore, considering 

the sensitivity of the aforementioned machine learning methods to hyperparameter setting, the 

global optimization algorithms are adopted to optimize the hyperparameters for improving 

prediction accuracy of monitoring models. The cross-validation was employed to obtain the best 

parameters of SVM and neural network, respectively [11,12]; genetic algorithm was used for band 

selection [13,14]; particle swarm optimization algorithm was applied to optimized the 
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hyperparameters of SVM [15,16]. However, it is worth noting that the implementation of 

aforementioned alternatives is cumbersome and expert-dependent that results in struggling 

application on practical engineering. Therefore, a modeling method with high fitting and 

predicting accuracy, strong generalization ability, and relatively simple structure is presented in 

this article.  

In the proposed method, the SVM is introduced to process and construct the prototype 

observed data-based dam safety monitoring model due to its simple structure and powerful 

nonlinear fitting ability. Moreover, the adaptive position particle swarm optimization (APPSO) 

whose novelty lies in the enhanced searchability with the aid of inertia weight and learning factor, 

is adopted to optimize the penalty factor and kernel parameter of monitoring model. 

2. SVM building the monitoring model of dam safety 

The general principle of SVM is mapping the nonlinear variables of the input space to a linearly 

separable high-dimensional space with the aid of an inner product function (kernel function) and 

finally performing linear regression in the mapped space [16]. 
In the regression problem, assuming the training samples: (x1,y1), (x2,y2), …, (xi,yi)  (Rn×R) 

and using a nonlinear mapping   x  to map the samples from the original space to a feature 
space with higher dimensions such that the optimal linear fitting function is built as the following 
form. 

 ( ) [ , ( )]f b x ω x  (1) 

where [•] denotes the inner product.  
Next, optimizing the ω  and b  for improving the generalization ability and controlling the 

complexity of the model. According to the principle of structural risk minimization, the 
optimization process could be equivalent to the following proposition: 
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where ω  is weight factor; i  is relaxation factor and 0
i
≥ ; C  is penalty factor and 

0C  ; b  is a constant; l  is the amount of training samples. 

To solve the above optimization problem, the Lagrange function is introduced: 
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where i
  is the multiplier of Lagrange function. 

According to the condition of Karush-Kuhn-Tucker: 

 0, 0, 0, 0
L L L L

b
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 (5) 

Eq. (4) could be solved as the following form: 
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Eliminating i
  and ω , the following linear equations are obtained: 
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where [1,1, ,1]Te L ; I  is the unit matrix of l l ; 1 2[ , , , ]T

l
  α L ; 

   ( , )=i iK x x x x  denotes the inner product function, namely the kernel function.  

As shown in Eq. (8), the radial basis kernel function (RBF) referred as the local sum function 

is employed in this article because of its high fitting precision. 
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where   is the Gaussian kernel parameter.  

The final regression function of monitoring model is as follows: 

    
1

,
l

i i

i

f K x b


 x x   (9) 

During constructing Eq. (9), penalty factor C  balances the empirical risk and the structural 
risk, and kernel parameter   determines the fineness of sample division. The larger C  and 
smaller   denote the curve is likely to be overfitting; reversely, the smaller C  and larger   
represent the curve is likely to be underfitting. Therefore, the APPSO algorithm is introduced to 
optimize hyperparameter C  and  . 

3. APPSO algorithm-based hyperparameter optimization of SVM 

Particle Swarm Optimization (PSO) algorithm is inspired by bird foraging behavior and has been 

extensively applied on single-target and multi-target optimization issues due to its simple principle, 

easy implementation and high convergence velocity [17]. The standard PSO has the limitation in 

falling into local optimum, therefore the velocity factor and position factor are introduced to 

enhance the PSO’s ability of jumping out the local optimum by judging the evolutional state of the 

population. 

3.1. Standard PSO algorithm 

In the PSO algorithm, each potential solution including the fitness and velocity of the optimization 

problem is called a particle. The fitness value used to indicate the superiority of particle is 
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determined by the fitness function. The velocity of particle determines the direction and step 

length of movement. The particles constantly update their position and velocity according to their 

cognition to themselves and group till finding the global optimal solution.  

Specifically, in a D-dimensional searching space, the population  1 2, , ,
T

n
X X X LX  is 

composed of n particles where the  1 2, , ,
T

i i i iD
X X X LX  and  1 2, , ,

T

i i i iD
V V V LV  are 

the position and velocity of the i-th particle, respectively;  1 2, ,
T

i i i iD
P P P LP  denotes 

individual extreme value bestp ;  1 2, ,
T

g g g gD
P P P LP  represents the global extreme value of 

population best
g . 

During each iteration, the particles update their position iX  and velocity iV  according to 

individual extreme value bestp  and global extreme value bestg . The equations used for updating 

are described as follows: 

    1
1 1 2 2

k k k k k k

id id id id gd idV V c r P X c r P X        (10) 

 1 1k k k

id id id
X X V

     (11) 

where 1,2,d D L , 1,2,i n L ; k  is the current evolutionary algebra;   is the inertia weight; 

1c  and 2c  are the acceleration constants; 1r  and 2r  are the random numbers in [0,1] . 

3.2. Improved PSO algorithm 

In view of the limitation of standard PSO, an improved particle swarm optimization (APPSO) is 

presented. 

The larger inertia weight   represents stronger global searchability that the algorithm could 

search in a large range; the smaller   denotes the stronger local searchability that the algorithm 

could perform fine search. At the beginning of iterations, algorithm should search in a large range 

for finding the global optimal solution and the higher search accuracy is needed in the later stages, 

therefore, the Linear Decreasing Weight (LDW) algorithm is proposed [18]. Its expression is as 

follows: 

  max max mini j          (12) 

where max  and max  are the maximum weight and minimum weight, respectively; i is the 

current evolutionary algebra; j is the maximum evolution algebra. In this article, the inertia weight 
decreases linearly from 0.9 to 0.3. 

The factor 1c  denotes the influence weight of particle's own experience to its next behavior 

and the factor 2c  denotes the influence weight of other particles experiences to its next behavior. 
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During the optimization, factor 1c  linearly decreases and factor 2c  linearly increases [19]. 

  1 1 1 1s e sc c i c c j       (13) 

  2 2 2 2s e sc c i c c j       (14) 

where 1s
c , 2sc  are the initial iterative values of 1c , 2c , respectively; 1e

c , 2ec  are the final 

iterative values of 1c , 2c , respectively; i  is the current evolution algebra; j  is the maximum 

evolution algebra. In this article, the learning factor 1c  decreases linearly from 2.5 to 1 and factor 

2c  increases linearly from 1.5 to 2.75. 

It could be seen from Eq. (10) when the position of particle i  is close to the global optimal 

value g
P , its historical optimal value i

P  is also close to g
P ; the latter two parts of the equation 

tend to zero; the velocity of particles does not substantially change. Similarly, the position of 

particles will also not change in Eq. (11). In view of the situation that the local optimum is 

regarded as the "global best" by the algorithm, the particle ‘s initialization criteria is presented as 

follows.  

 

2|| ||
ij ij gj
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ij

d X P

d

V
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

  



 

 (15) 

where   is velocity factor; position factor ( , 0)    ; 2|| ||
ij ij gj

d X P   denotes the 

distance between the current position of the j -th dimension of the i -th particle and the global 

optimal position. When ij
d   and the flying velocity ij

V  , the particle is judged to be 

stagnant and the position of the particle is initialized before next iteration to prevent particle 
falling into local optimum. 

4. Construction process of APPSO-SVM based dam monitoring model  

Combined application of APPSO and SVM for constructing a dam safety monitoring model has 

the following specific steps and its flowchart is shown in Fig.1. 

Step 1: Collecting the monitoring data of dam and its operational environment; selecting 

appropriate influence factors; dividing normalized sample data into training dataset and testing 

dataset. 

Step 2: Applying the SVM to learn training dataset and obtaining the hyperparameters of 

SVM selected by APPSO. 

Step 3: APPSO based hyperparameter optimization of SVM model.  

(1) Initialization of population. Setting iteration number, population size, and optimization 

range of penalty factor C  and kernel parameter  ; inertia factor   adopts linear decreasing 

strategy; learning factor 1c  and 2c  adopt linear learning strategy; randomly setting the initial 

position 0
i

x  and velocity 0
i

v  of the particle in the optimization range. 

(2) Fitness calculation. The accuracy rate of cross validation (CV) is individual fitness [20]. 
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(3) Updating the velocity of particle according to Eq. (10); calculating distance ij
d  and 

comparing ij
d  with position factor  ; updating flight velocity ij

V  and velocity factor  . If 

ij
d   and ij

V  , reinitializing the position of particle, otherwise updating the position of 

particle according to Eq. (11). 

(4) Comparing the fitness if  of each particle with historical optimum bestp , only if 

i bestf p , best ip f , otherwise if  remains unchanged. 

(5) Comparing the historical best fitness bestp  of each particle with the optimal population 

value bestg , only if best best
p g , best best

g p , otherwise bestg  remains unchanged. 

(6) If the end condition is satisfied, the iteration is stopped, otherwise repeating (3)~(6). 

Step 4: Verifying the SVM model. The obtained SVM model is tested with the testing dataset.  

Initial population

Update particle speed v, 
calculate Euclidean distance d

The end 
condition is met?

Collect data, select 
impact factors, normalize

Divide data into training 
set and test set

Perform SVM model 
learning by training set

Optimize parameter 
model SVM

Calculate individual fitness 
values (f, pbest, gbest)

Update pbest and gbest

gbest is the search result

Get the SVM model and 
test it with the test set

Analyze the applicability 
of the model

Initialize 
particle position

Update particle position

N

Y
d<γ and ν<υ

N Y

 

Fig.1. Construction flowchart of APPSO-SVM based monitoring model for dam safety. 

5. Case Analysis 

In this section, the presented method in this article is used to analyze the deformation behavior of 

a real-world gravity dam engineering and its performance is compared with classical benchmark 

methods. 

5.1. Engineering and monitoring overview 

A concrete gravity dam composed of 60 dam sections was built on the second main stream of 

Songhua River of China in 1937 and experienced renovation and expansion from 1951 to 1953. 
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The hub project consists of a concrete gravity dam, an overflow dam, a dam-behind hydropower 

plant, and a flood discharge tunnel. The maximum dam height is 91.7m, the length of dam crest is 

1080m and the dam crest elevation is 267.70m. At present the total installed capacity of power 

generation is 1002.5MW and the average annual power generation is 19.68×108kW•h. The normal 
water level of the reservoir is 263.50m, the flood control water level is 260.50m, the dead water 

level is 242.00m, and the total storage capacity is 109.88×108m3. 

In order to ensure its safe operation, hundreds of measuring points are installed internal the 

dam to monitor horizontal deformation, vertical deformation, crack opening and uplift pressure. 

Over the past three decades, these points recorded nearly one million observations, where the 

deformation monitoring data is one of the most intuitive and comprehensive responses of dam 

behavior. Therefore, as shown in Fig.2, the horizontal dam crest deformation monitoring models 

of the 14#, 22# and 35# typical dam section, are analyzed and constructed by the proposed 

APPSO-SVM method. 

Retaining section Overflow section Water-intaking section Retaining section

Legend

Tension wire alignment

Level measurement

Vacuum laser alignment Pendulum measurement

Inverted pendulum measurement

Double-metal markPendulum measurements Overflow section Water-intaking section
 

Fig.2. Layout of monitoring points of dam deformation. 

5.2. Initial analysis for measured data 

The data from the environment surrounded dam includes upstream water level, downstream water 

level, air temperature. The environmental measured values are shown in Fig.3. The horizontal dam 

crests displacement of the 14#, 22# and 35# dam sections is shown in Fig. 4. 

Fig.3 indicates the highest water level in the upstream generally occurs from May to 

September with more rainfall. While the rainfall from January to March and December is less, 

corresponding lower upstream water level. The variation of upstream water level is within 15m 

from 2000 to 2010. The downstream water level is stable at 192m and the average annual variation 

is 2.36m. The temperature shows obvious annual cyclical changes. The highest annual temperature 

occurs from June to August, and the lowest temperature occurs from December to February of the 

following year. The annual temperature variation ranges from -30°C to 30°C. 

In Fig. 4, the sign specifies the deformation toward downstream is positive and the 

deformation toward upstream is negative. Fig. 4 indicates the horizontal dam crest displacement of 

three typical dam sections is similar, and the maximum upstream deformation occurs in the 14# 

dam section, and the downstream maximum deformation occurs in the 22# dam section. 
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Fig.3. Time curve on observed environment. 
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Fig.4. Time curve on observed horizontal radial displacement of three typical dam sections. 

5.3. Monitoring model construction of dam deformation safety 

The dataset is composed of upstream water level, downstream water level, air temperature, and the 

recorded horizontal displacement of dam crest in the 14#, 22# and 35# dam sections. Specifically, 

the training dataset is built by the data over a period from January 2001 to March 2010 and the 

testing dataset is from April 2001 to June 2010. The inputs of dataset are expressed as the 
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following form, and the outputs are composed of the horizontal displacement of analyzed dam 

section shown in Fig.4. 

Water level component: 

2 2 3 3
0 0 0, ,H H H H H H      

Temperature component: 

0 0 0 02 2 4 42 2 4 4
sin sin ,cos cos ,sin sin ,cos cos

365 365 365 365 365 365 365 365

it it it itit it it it            
 

Aging component: 

 0 0, ln ln      

where H is the current upstream water level; H0 is the upstream water level at the beginning of 

observation; t denotes the cumulative days between the current observation date and the beginning 

observation date; t0 represents the cumulative days between the starting observation date and the 
beginning date of the selected monitoring series; /100t  and 0 0 /100t  . 

After selecting the influence factors, the influence factors and the displacement effects are 

normalized in order to eliminate the influence of dimension between inputs and outputs. Assuming 

maxX  and minX  are the maximum and minimum values of each group in sample data, then the 

corresponding standardized variables are as follows: 

    min max min' 0.1 0.8X X X X X     (16) 

For evaluating performance of APPSO-SVM model, the statistical HST model, back 

propagation neural network (BPNN), and random forest regression (RFR) are selected as the 

benchmark monitoring models. 
The parameters of APPSO-SVM are set as follows: the maximum iteration is 100; the 

population size is 30; the optimization range of penalty factor and kernel parameter are [0.05,5] 
and [0.001,0.1], respectively. Moreover, in the BPNN, the number of input layer equipped with 
hyperbolic tangent sigmoid function is 9 and the number of hidden layers equipped with linear 
function is 10; in the RFR, the number of leaves and trees are 30 and 200, respectively. The SVM 
hyperparameters of three typical dam sections optimized by APPSO are listed in Table 1. 

Table 1. APPSO-SVM model hyperparameter. 

Parameter Hyperparameter value 

14# 22# 35# 

C 4.537 1.785 2.312 

σ 0.940 0.441 0.577 

The fitting curves of horizontal displacement are shown in Fig. 5 where the APPSO-SVM 

model generally outperforms other three benchmark models in terms of fitting deformation trend, 

peak displacement, trough position, and turning point. 
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Fig.5. Calculated results of APPSO-SVM model and statistical model for three dam sections. 

The fitting accuracy of APPSO-SVM model, statistical HST model, machine learning-based 

BPNN model and RFR model are shown in Table 2 and the corresponding computational time is 

listed in Table 3. The multiple correlation coefficients (R2) of three displacement curves fitted by 

APPSO-SVM and BPNN are above 0.95 higher than HST model and RFR model, moreover, the 

computational modeling time of APPSO-SVM is less than BPNN indicating the proposed method 

has relatively strong generalization ability. From the perspective of mean square error (MSE) of 

training sample, the fitting ability of APPSO-SVM is better than benchmark models. On the other 

hand, the MSE of testing sample and the prediction error shown in Fig. 6 indicate the 

APPSO-SVM model has potential prediction ability outperforming benchmark models. 
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Fig.6. Predicted results of APPSO-SVM model and statistical model for three dam sections. 

Table 2. Regression precision of APPSO-SVM and benchmark models for three dam sections. 

Precision index APPSO-SVM HST BPNN RFR 

14# 22# 35# 14# 22# 35# 14# 22# 35# 14# 22# 35# 

R2 0.977 0.979 0.970 0.930 0.934 0.929 0.965 0.970 0.967 0.662 0.674 0.599 

MSE of training 0.472 0.642 0.614 1.051 1.238 1.142 0.525 0.778 0.585 1.375 1.653 1.624 

MSE of testing 0.708 0.547 0.439 0.436 0.685 0.700 0.863 0.659 0.643 0.935 1.280 0.692 

Table 3. Computational time of SVM-APPSO and benchmark models. 

Dam section Computational time (s) 

APPSO-SVM HST BPNN RFR 

14# 0.2351 0.1062 0.3405 0.9385 

22# 0.3795 0.1150 0.9378 1.0062 

35# 0.2946 0.1492 0.7863 1.0545 

6. Conclusions 

The prototype dam data-based analysis and evaluation is an important part of dam safety 

monitoring playing an important role in properly identifying the operational risk. A novel support 

vector machine equipped with hyperparameter optimization from adaptive position particle swarm 

algorithm, simple execution procedure, and retention of influence factor combination is presented 

in this particle for monitoring model of dam safety.  

a) Presenting a dam safety monitoring model based on the advantage of SVM in solving 

nonlinear, small sample, and high-dimensional regression problems. And penal factor and 

kernel parameter of the built monitoring model are optimized by an improved particle swarm 

algorithm whose novelty lies in the enhanced ability of avoiding local optimum. 

b) The presented method is applied to modeling on horizontal dam crest displacement of a 

real-world concrete gravity dam engineering. The comparison with classical methods shows 

that the proposed method outperforms other benchmark method in terms of fitting and 

prediction accuracy. 
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