
Fixed-Charge Solid Transportation Problem with
Budget Constraints Based on Carbon Emission in
Neutrosophic Environment
Shyamali Ghosh 

Dept. of Applied Matjematics, Vidyasagar University
Sankar Kumar Roy  (  sankroy2006@gmail.com )

Dept. of Applied Mathematics , Vidyasagar University
Jose Luis Verdegay 

Dept. of Computer Science and Arti�cial Intelligence, University of Granada.

Research Article

Keywords: Fixed-charge transportation problem, Multi-objective decision making, Carbon emission,
Neutrosophic linear programming, Fuzzy programming, Global criterion method, Compromise solution

Posted Date: August 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-705598/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-705598/v1
mailto:sankroy2006@gmail.com
https://doi.org/10.21203/rs.3.rs-705598/v1
https://creativecommons.org/licenses/by/4.0/


Fixed-charge solid transportation problem with budget constraints

based on carbon emission in neutrosophic environment

Shyamali Ghosh1,† · Sankar Kumar Roy1,∗ · José Luis Verdegay2

Received: date / Accepted: date

Abstract This paper is to integrate among solid transporta-

tion problem, budget constraints and carbon emission with

probable maximum profit. The limits of air pollution and

climate variation are solely dependent by exerting CO2 gas

and rest greenhouse gases due to myriad transportation sys-

tem. Henceforth, it is our apt mission to minimize carbon

emission for pollution free environment. Again transporta-

tion system with single objective is hardly applicable to the

situation with more than one criterion. Therefore multi- ob-

jective decision making is incorporated for designing real-

life transportation problem. Due to time pressure, data lim-

itation, lack of information or measurement errors in prac-

tical problems, there exist some hesitations or suspicions.

Based on the fact, decision maker considers indeterminacy

in the designed problems. To overcome the restriction on

occurrence and non-occurrence of fuzzy and intuitionistic

fuzzy, neutrosophic set is very important and suitable to ac-

commodate such general structure of problems. Therefore

neutrosophic environment with neutrosophic linear program-

ming, fuzzy programming and global criterion method are

profiled to search the compromise solution of the multi- ob-

jective transportation problem (MOTP). Thereafter, the per-

formance of the considered model is useful by evaluating

a numerical example; and then the derived results are com-

pared. Finally sensitivity analysis and conclusions with up-

coming works of this research are stated hereafter.
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1 Introduction

Only a single objective function is considered to the cus-

tomary transportation system in the last few decades. There

subsist more than the single criterion such as transportation

cost, average delivery time of product, deterioration rate of

goods, fixed-charge for an open route etc. at the time of pass-

ing a homogeneous product from a source to different des-

tinations in the avenue of competitive economic condition.

For this sake, the single objective transportation problem

(TP) is not enough to tractable such real-life decision mak-

ing problem. To get rid of such situation, the multi-objective

decision making is included in the traditional TP where the

objective functions are contrary to each other. Hitchcock

(1941) first defined TP and then TP with linear program-

ming is known as Hitchcock-Koopmans TP. There exist var-

ious research papers on TP with multi-objective nature in

crisp or imprecise data. A few of them is presented including

their works. Maity et al. (2019) analyzed multimodal TP and

its application to artificial intelligence. Ebrahimnejad (2014)

represented a new approach for solving TP with generalized

trapezoidal fuzzy numbers. MOTP with fuzzy environment

was provided by Li and Lai (2000). Maity et al. (2016) de-

signed MOTP in uncertain environment with cost reliability.

An extension of general TP is fixed-charge transportation

problem (FTP) with the transported fixed-charge being inde-

pendent of its amount. A fixed cost is called set up cost bear-

ing the cost of transportation is considered while the solution

appears with the level of positivity and hence such a problem

is named as FTP and it is associated with 0-1 variable. There
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comes a cumulation of some charges such as renting cost of

vehicle, landing fees at an airport, toll charges on a high way,

establishment cost for machines. All these costs are consid-

ered for the transportation of some quantity towards desti-

nations. Adding to all the cost, the TP is called FTP and two

sets of cost are there with FTP. The names of these costs

are direct cost and fixed-charge. The association of direct

cost for each source to destination and fixed-charge takes

place when the function of transportations is there in the

corresponding source-destination pair. Hirsch and Dantzig

(1968) first defined FTP. Besides, there are some exact meth-

ods provided by literature review on FTP. Midya and Roy

(2017) represented an application of interval programming

using interval and rough interval on FTP in different en-

vironments. Midya and Roy (2014) included fixed-charge

MOTP with single-sink and multi-index stochastic environ-

ment. Roy et al. (2018) used random rough variables for

solving MOTP with fixed-charge.

The TP is renamed as solid transportation problem (STP)

which was first introduced by Haley (1962), when adds con-

veyance constraints with source constraints and destination

constraints. Goods train, ships, trucks, cargo flights are the

media for the transportation of homogeneous products from

sources to destinations. The TP is restructured and renamed

as FSTP after the single type conveyance is used in FTP.

Roy and Midya (2019) solved FSTP in intuitionistic fuzzy

(IF) environment with multi-objective and product blending

concept. Das et al. (2020) represented STP and facility lo-

cation with carbon policies. Ghosh et al. (2021) solved a

multi-objective STP in which variables and parameters are

IF in nature. Roy et al. (2019) analyzed FSTP with multi-

item and multi- objective using two-fold uncertainty.

In previous research works, STP involves with sources, de-

mands and conveyance capabilities for solving decision mak-

ing problem. But no one can work with STP under budget

constraints including fixed-charge, purchasing cost, trans-

portation cost and profit maximization. Also budget is an im-

portant fact in transportation problem. Whenever transport-

ing distinct items, then transportation cost rapidly increases,

which effects on the whole system. Again considering the

budget, we optimize the several objective functions which

are conflicting to each other. These objective functions min-

imize total transportation cost, total delivery time, deterio-

ration charge of breakable goods, as a result the total profit

is to be maximized. Many researchers applied budget con-

straints in MOTP. Majumder et al. (2019) used budget con-

straints in a FSTP with uncertain multi-objective and multi-

item environment. Das et al. (2016) analyzed Gaussian type-

2 fuzzy for solving STP with breakable multi-item multi-

stage under budget. Ghosh and Roy (2021) formulated and

solved multi-objective product blending fixed-charge trans-

portation problem with truck load constraints through trans-

fer under fuzzy-rough environment. Sifaouil and Aider

(2020) considered budget constraints and safety measure in

multi-objective multi-item fixed charge solid transportation

problem under uncertain interval programming environment.

Most of the cases, the transportation sector transports items

and passengers by bus, train, truck, car, ship, flight etc. Since

internal combustion of engines causes the emission of green

house gasses, therefore the transportation system is mostly

involved with emission of CO2 gas and other green house

gasses. The half part of green house gasses emits from light-

duty vehicles, passenger car, minibus etc. and the remain-

ing part emits from heavy-duty vehicles such as truck, ships,

freight transport etc. The greenhouse gas emission is high-

risk for the environmental and air pollution. The carbon emis-

sion depends on its fuel type, engine type, traffic rule, road

condition, driving rules, etc. Many researchers studied on

carbon emission in various environments. Here we include

some research works on carbon emission in transportation

poblem. Ding et al. (2013) analyzed about carbon emission

reduction and its potential in China for transportation. Sen-

gupta et al. (2018) solved a STP with carbon emission us-

ing Gamma type-2 defuzzification approach. Song and Leng

(2012) analyzed carbon emission policies for single-period

problem. Tarulescu et al. (2017) worked for CO2 emission

reduction strategies on smart transportation. Midya et al.

(2021) presented a multi-stage multi-objective FSTP in a

green supply chain.

Neutrosophic set is the generalized extension of fuzzy set

(Zadeh (1965)) and intuitionistic fuzzy set (IFS) (Atanassov

(1986)), which was first studied by Smarandache (1999). To

overcome the restriction on occurrence and non-occurrence

of fuzzy and intuitionistic fuzzy, neutrosophic set is very

important and suitable that provides the general structure.

Meaning of neutrosophic set is neutral and it is based on

the logic of universe that the elements presented by three

degrees. These are truth degree, indeterminacy degree and

falsity degree and they lie in [0, 1]. Neutrosophic set dif-

fers from IFS which involves only the uncertainty of truth

and falsity, that is belongingness and non-belongingness de-

grees. But in neutrosophic, indeterminacy factor occurs,

which is independent on truth value and falsity value, and

indeterminacy is quantified explicitly that provides more ad-

ditional information of fuzzy concept. Smarandache first in-

troduced the concept of indeterminacy and denoted by I. The

neutrosophic number (NN) is presented by z=p+Iq, for p, q

∈ R and I is the indeterminacy, which gives indeterminate

value. Here p is the determinate part and qI is the indeter-

minate part. Therefore neutrosophic is a useful mathemat-

ical concept for describing incomplete and indeterminate

information. In the case of time pressure, measurement er-

rors, limited data or lack of information, the practical prob-

lems are solved with help of indeterminacy I. Therefore it is

more important to define NN that contains indeterminacy I

and handles all the programming problems with indetermi-
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nate environment. To control over any indeterminate prob-

lems, there are also introduced neutrosophic function, neu-

trosophic pre-calculus, neutrosophic calculus by Smarandache

in 2015. Some recent studies on neutrosophic set are in-

cluded here. Rizk-Allah et al. (2018) represented a MOTP

and solved in neutrosophic environment. Time-neutrosophic

soft set studied by Khalil et al. (2018) and analyzed its ap-

plication. Das and Roy (2019) analyzed the impact of CO2

in an integrated transportation and facility location problem

under neutrosophic environment. Ye et al. (2018) analyzed

non-linear programming problems and solution methods in

neutrosophic number environment. The main contributions

of this paper are as follows:

(i) In this MOTP, all the parameters are considered as NNs

for controlling the indeterminacy.

(ii) For neutrosophic system, there exist truth membership,

indeterminacy membership and falsity membership functions

which help the problem for searching good solution.

(iii) Objective functions are conflicting to each other. There-

fore for finding the compromise solution we use three meth-

ods, namely neutrosophic linear programming, fuzzy pro-

gramming and global criterion method.

(iv) Neutrosophic linear programming always increases the

degree of truth membership value, indeterminacy member-

ship value and at the same time decreases the degree of fal-

sity membership value.

(v) Carbon emission system is more important factor in trans-

portation system. Minimization of carbon emission charge

directly maximizes the profit of the system as it helps to min-

imize the total transportation cost and decreases the rate of

air pollution indirectly.

(vi) Budget constraints and carbon capacity maximize the

profit and minimize the deterioration.

(vii) Sensitivity analysis is introduced for analyzing the ef-

fect of change of coefficient and finding the ranges of all

parametric values.

The remaining part of the paper is structured as follows:

Some basic definitions on neutrosophic set are presented in

Section 2. In Section 3, the mathematical model and three

procedures are discussed. Section 4 introduces the solution

methodology. Sections 5 and 6 describe the drawbacks of

existing methods and advantages of our proposed method

respectively. Numerical example with results and discussion

are given in Section 7. Section 8 depicts the sensitivity anal-

ysis of the parameters. Conclusions and future research scop-

es are provided in Section 9.

2 Preliminaries

We recall here some basic definitions of neutrosophic set

which are mostly useful in formulating the proposed prob-

lem.

The concept of neutrosophic set is the analytical sight to rep-

resent the indeterminate and inconsistent information and

applied in scientific and engineering applications.

Definition 2.1: Neutrosophic set: Wang et al. (2010) Let X

be the universal set. A single valued neutrosophic set Ãn over

X is of the form Ãn = {< x,µÃn(x),σÃn(x),γÃn(x) >: x ∈

X}, where µÃn(x) : X → [0,1], σÃn(x) : X → [0,1], γÃn(x) :

X → [0,1] with 0 ≤ µÃn(x)+σÃn(x)+ γÃn(x) ≤ 3,∀ x ∈ X .

Here µÃn(x), σÃn(x) and γÃn(x) are the degrees of truth-

membership, indetermin-acy-membership and falsity mem-

bership of x in Ãn respectively.

Definition 2.2: The general form of a multi-objective opti-

mization problem with l objective functions, m constraints

and n variables is given as follows:

minimize Z(X) = (Z1(x),Z2(x), . . . ,Zl(x))

subject to g j(X)≤ 0, ( j = 1,2, . . . ,m)

xi ≥ 0, (i = 1,2, . . . ,n), xi ∈ X ⊆ R
n.

The truth-membership µ I
l (Zl), indeterminacy-membership

σ I
l (Zl) and falsity-membership ν I

l (Zl) functions for the ob-

jective function Zl are respectively defined as:

µ I
l (Zl) =







1, if Zl ≤ tl ,

1− Zl−tl
al

, if tl ≤ Zl ≤ tl +al ,

0, if Zl ≥ tl +al ,

σ I
l (Zl) =



















0, if Zl ≤ tl ,
Zl−tl

dl
, if tl ≤ Zl ≤ tl +dl ,

1− Zl−tl
al−dl

, if tl +dl ≤ Zl ≤ tl +al ,

0, if Zl ≥ tl +al ,

ν I
l (Zl) =







0, if Zl ≤ tl ,
Zl−tl

cl
, if tl ≤ Zl ≤ tl + cl ,

1, if Zl ≥ tl + cl .

Where tl is the target value for Zl and al ,dl and cl are the

acceptance tolerance, indeterminacy tolerance and rejection

tolerance respectively. The graphical presentation of three

membership functions is shown in Fig. 1.

Definition 2.3: Interval valued neutrosophic number:

Smarandache (2013) An neutrosophic number is denoted by

ãn = p+ qI, where p, q ∈ R and I ⊆ [0,1] is the indeter-

minacy. Now I = [IL, IU ], and therefore the interval form of

ãn = [p+qIL, p+qIU ] = [aL,aU ].

Basic properties of interval valued neutrosophic num-

ber: Let ãn
1 = p1+q1I1 and ãn

2 = p2+q2I2 with I1 = [IL
1 , I

U
1 ],

I2 = [IL
2 , I

U
2 ] be two neutrosophic numbers. The interval forms

are ãn
1 = [p1 + q1IL

1 , p1 + q1IU
1 ] = [aL

1 ,a
U
1 ] and ãn

2 = [p2 +

q2IL
2 , p2+q2IU

2 ] = [aL
2 ,a

U
2 ]. Now the basic properties are de-

fined as:

1. Addition: ãn
1 + ãn

2 = [aL
1 +aL

2 ,a
U
1 +aU

2 ].

2. Subtraction: ãn
1 − ãn

2 = [aL
1 −aU

2 ,a
U
1 −aL

2 ].
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4 Ghosh et al.

Fig 1: Truth-membership, indeterminacy-membership and
falsity-membership for Zl .

3. Multiplication: ãn
1∗ ãn

2 =















[min(aL
1 ∗aL

2 ,a
L
1 ∗aU

2 ,a
U
1 ∗aL

2 ,
aU

1 ∗aU
2 ),

max(aL
1 ∗aL

2 ,a
L
1 ∗aU

2 ,a
U
1 ∗aL

2 ,

aU
1 ∗aU

2 )].

4. Division: ãn
1/ãn

2 =







[min(aL
1/aL

2 ,a
L
1/aU

2 ,a
U
1 /aL

2 ,a
U
1 /aU

2 ),
max(aL

1/aL
2 ,a

L
1/aU

2 ,a
U
1 /aL

2 ,a
U
1 /aU

2 )],

0 /∈ ãn
2.

5. Scalar multiplication: k.ãn =

{

[kaL,kaU ], if k ≥ 0,

[kaU ,kaL], if k < 0.

6. Absolute value: |ãn|=















[aL,aU ], if αL ≥ 0,

[0,max(−aL,aU )], if aL ≤ 0 ≤

aU ,

[−aU ,−aL], if aU ≤ 0.
7. Inequality: Ishibuchi and Tanaka (1990)















x ≤ [aL,aU ]≡ ∃ z ∈ [aL,aU ] and x ≤ z,

x ≥ [aL,aU ]≡ ∃ z ∈ [aL,aU ] and x ≥ z,

[aL ≤ bL,aU ≤ bU ], iff [aL,aU ]≤ [bL,bU ],

[aL ≥ bL,aU ≥ bU ], iff [aL,aU ]≥ [bL,bU ].

Definition 2.4: Neutrosophic linear programming prob-

lem: Ye (2018) A neutrosophic linear programming problem

is a general optimization problem if the following conditions

are met:

1. The neutrosophic objective function is linear.

2. The decision variables are all non-negative.

3. The structural constraints are all of the types of “ ≤ ” or

“ ≥ ”.

Definition 2.5: Constrained Neutrosophic optimization

problem: Ye et al. (2018) In general, a constrained opti-

mization problem in n decision variables with NNs is de-

fined as follows:

minimize/maximize F(x, I)

subject to gi(x, I)≤ 0, i = 1,2, . . . ,m

h j(x, I)≥ 0, j = 1,2, . . . , l

pk(x, I) = 0,k = 1,2, . . . ,o

x ∈ Zn

When the indeterminacy I is considered as a possible inter-

val range, the optimal solution of all feasible intervals forms

the feasible region or feasible set for x and I = [IL, IU ]. In

this case, the value of the NN objective function is an opti-

mal possible interval (NN) for F(x, I). For example, let us

consider the following optimization problem with I = [0,1]:

maximize F(x, I) = (2+3I)x1 +(4+ I)x2

= [2x1 +4x2,5x1 +5x2]

subject to (1+ I)x1 +(2+ I)x2 ≤ (6+2I)

= [x1 +2x2,2x1 +3x2]≤ [6,8]

(2+3I)x1 +(3+ I)x2 ≤ (8+2I)

= [2x1 +3x2,5x1 +4x2]≤ [8,10]

Now, this problem can be transformed into two equivalent

crisp sub-problems to obtain worst (lower bound) and best

(upper bound) solutions as follows:

Sub-problem 1:

maximize 2x1 +4x2

subject to x1 +2x2 ≤ 6

2x1 +3x2 ≤ 8
Sub-problem 2:

maximize 5x1 +5x2

subject to x1 +2x2 ≤ 6

2x1 +3x2 ≤ 8

By solving two sub-problems we get the optimal solution (as

NN) of the original problem as: F = [10.67,20].

Definition 2.6: Smarandache (1999) Let two single valued

neutrosophic sets Ãn and B̃n over the universal set X are of

the form Ãn = {< x,µÃn(x),σÃn(x),γÃn(x)>: x ∈ X},

B̃n = {< x,µB̃n(x),σB̃n(x),γB̃n(x)>: x ∈ X}. Then some ba-

sic properties are defined as:

1. Ãn ⊂ B̃n if and only if µÃn(x)≤ µB̃n(x),σÃn(x)≤ σB̃n(x),

γÃn(x)≥ γB̃n(x).

2. Ãn = B̃n if and only if µÃn(x) = µB̃n(x),σÃn(x) = σB̃n(x),

γÃn(x) = γB̃n(x).

3. The complement of Ãn is denoted by (Ãn)c and defined

by (Ãn)c = {< x,γÃn(x),

1−σÃn(x),µÃn(x)>: x ∈ X}.

4. The intersection of Ãn and B̃n is defined by Ãn ∩ B̃n =

{< x,min{µÃn(x),µB̃n(x)},

min{σÃn(x),σB̃n(x)},max{γÃn(x),γB̃n(x)}>: x ∈ X}.
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5. The union of Ãn and B̃n is defined by Ãn ∪ B̃n = {<

x,max{µÃn(x),µB̃n(x)},max

{σÃn(x),σB̃n(x)},min{γÃn(x),γB̃n(x)}>: x ∈ X}.

Definition 2.7: Smarandache (1999) Let Ãn = {< x,µÃn(x),

σÃn(x),γÃn(x)>: x∈X} and B̃n = {< x,µB̃n(x),σB̃n(x),γB̃n(x)

>: x ∈ X} are two single valued neutrosophic sets. Some op-

erations of neutrosophic sets are defined as:

1. λ Ãn =< 1− (1−µÃn(x))λ ,σÃn(x)
λ ,γÃn(x)

λ >; λ ≥ 0.

2. (Ãn)λ =< µÃn(x)
λ ,1− (1−σÃn(x))λ ,1− (1− γÃn(x))λ

>;λ ≥ 0.

3. Ãn + B̃n =< µÃn(x)+µB̃n(x)−µÃn(x)µB̃n(x),σÃn(x)

σB̃n(x),γÃn(x)γÃn(x)>.

4. Ãn.B̃n =< µÃn(x)µB̃n(x),σÃn(x)+σB̃n(x)−σÃn(x)σB̃n(x),

γÃn(x)+ γB̃n(x)− γÃn(x)γB̃n(x)>.

Abbreviations: Here we display all the abbreviations which

are used in this paper.

MOTP multi-objective transportation problem

TP transportation problem

FTP fixed-charge transportation problem

STP solid transportation problem

FSTP fixed-charge solid transportation problem

IF intuitionistic fuzzy

IFS intuitionistic fuzzy set

NN neutrosophic number

MFSTP multi-objective fixed-charge solid transportation

problem

NLPP neutrosophic linear programming problem

PIS positive ideal solution

NIS negative ideal solution

FP fuzzy programming

DM decision maker

3 Problem description

To transform homogeneous products from distinct sources

to different destinations with certain condition in TP, we

consider a multi-objective (here three objective functions)

FSTP under budget constraints and on carbon emission in

neutrosophic environment. The first objective function rep-

resents the profit over carbon emission charge and fixed-

charge from each source to each destination. The second ob-

jective function is chosen as the deterioration rate of goods,

and third one is taken as the transporting time of goods.

To overcome the complexity of incomplete and indetermi-

nate information, here we assume that all the parameters are

NNs. The main aim is to obtain compromise optimal solu-

tion for transforming homogeneous products from m sources

to n destinations using the k conveyances at shipping cost

c̃n
i jk per unit product in such a way that all the objective

functions are optimized simultaneously. That is to shipping

from supplier i to customer j by means of k conveyance with

fixed-charge f̃ n
i jk. Each supplier (i = 1,2, . . . ,m) has ãn

i units

of supply, each customer ( j = 1,2, . . . ,n) has b̃n
j units of de-

mand and each conveyance (k = 1,2, . . . , l) has ẽn
k units of

capacity.

3.1 Notations of the proposed study

The following notations are assumed to describe our pro-

posed mathematical model as:

xi jk: amount of product that to be transported from ith

source to jth destination with kth conveyance,

c̃n
i jk: cost for unit quantity of the product from ith source

to jth destination with kth conveyance,

f̃ n
i jk: fixed-charge for unit quantity of the product from

ith source to jth destination with kth conveyance,

d̃n
i jk: deterioration rate for unit quantity of the product

from ith source to jth destination with kth conveyance,

t̃n
i jk: time of transportation for unit quantity of the prod-

uct from ith source to jth destination with kth con-

veyance,

η(xi jk): binary variable takes the value “1” if xi jk 6= 0 and

“0” if xi jk = 0,

ãn
i : the supply at ith source,

b̃n
j : the demand at jth destination,

ẽn
k : the kth conveyance for TP,

B̃n
j : total budget at jth destination,

p̃n
i : purchasing cost per unit quantity of product at ith

origin,

s̃n
j : selling price per unit quantity of product at jth des-

tination,

c̃n
k : fixed carbon capacity,

ẽn
i jk: charge of carbon emission per unit,

α̃n: carbon tax at per unit of its carbon emission (α̃n >

0),

Z̃n
r : the objective function with NNs (r = 1,2,3),

Z
′n

r : the interval valued objective function (r = 1,2,3),
Z′L

r : the lower level objective function (r = 1,2,3) in

crisp nature,

Z′U
r : the upper level objective function (r = 1,2,3) in

crisp nature.

To obtain the maximum profit, it is obvious to minimize

the purchasing cost, transportation cost, fixed-charge, car-

bon emission charge and maximize the selling price. Also

in the same time, deterioration rate of goods and total de-

livery time of transportation must be minimized. Since there

exist three objective functions which are contradict to each

other and therefore the whole system is controlled by MOTP.

Without loss of generality, we choose here first objective

function becomes profit maximization, second objective func-

tion for minimizing deterioration and third objective func-
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6 Ghosh et al.

tion is for time minimization. Again budget constraints and

fixed carbon capacity are important features in our formu-

lated model. These two constraints are also controlled the

system to obtain maximum profit. The mathematical model

for profit maximization multi-objective fixed-charge solid

transportation problem (MFSTP) with carbon emission and

budget constraints under neutrosophic environment is pre-

sented as:

Model 1

maximize Z̃n
1 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

[(s̃n
j − c̃n

i jk − α̃nẽn
i jk − p̃n

i )xi jk

− f̃ n
i jkη(xi jk)]

minimize Z̃n
2 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

d̃n
i jkxi jk

minimize Z̃n
3 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

t̃n
i jkη(xi jk)

subject to
n

∑
j=1

l

∑
k=1

xi jk ≤ ãn
i (i = 1,2, . . . ,m),

m

∑
i=1

l

∑
k=1

xi jk ≥ b̃n
j ( j = 1,2, . . . ,n),

m

∑
i=1

n

∑
j=1

xi jk ≤ ẽn
k (k = 1,2, . . . , l),

m

∑
i=1

l

∑
k=1

[ p̃n
i + c̃n

i jk + α̃nẽn
i jk]xi jk ≤ B̃n

j

( j = 1,2, . . . ,n),
m

∑
i=1

n

∑
j=1

ẽn
i jkxi jk ≤ c̃n

k (k = 1,2, . . . , l),

xi jk ≥ 0,∀ i, j, k,

η(xi jk) =

{

1, if xi jk > 0,
0, otherwise.

The feasibility condition of this TP is as follows:

m

∑
i=1

ãn
i ≥

n

∑
j=1

b̃n
j ;

l

∑
k=1

ẽn
k ≥

n

∑
j=1

b̃n
j .

Remark 1: All the parameters in the objective functions and

constraints are NNs and based on this fact, Model 1 is treated

as neutrosophic MFSTP. To derive the Pareto-optimal solu-

tion (compromise solution) of this model we consider that

minimize Z̃′n
1 = maximize (−Z̃n

1), minimize Z̃′n
2= minimize

Z̃n
2 and minimize Z̃′n

3= minimize Z̃n
3 .

Theorem 3.1: Model 1 can be solved as multi-objective lin-

ear programming problem under NNs.

Proof: Model 1 satisfies all of the conditions stated in Defi-

nition 2.4. Therefore, Model 1 can be solved as general lin-

ear programming problem under neutrosophic environment.

This evinces the proof of the theorem.

3.2 Equivalent deterministic form of Model 1

Without loss of generality, we choose the NN in Model 1 of

the form ãn = p+qI, where I is the indeterminacy and then

Model 1 transforms into Model 2 as:

Model 2

minimize Z
′n

1 =
m

∑
i=1

n

∑
j=1

l

∑
k=1

[(p1
i + Ip p2

i )+(c1
i jk + Icc2

i jk)

+(α1 + Iα α2)(e1
i jk + Iee2

i jk)− (s1
j + Iss

2
j)]xi jk

+
m

∑
i=1

n

∑
j=1

l

∑
k=1

( f 1
i jk + I f f 2

i jk)η(xi jk)

minimize Z
′n

2 =
m

∑
i=1

n

∑
j=1

l

∑
k=1

(d1
i jk + Idd2

i jk)xi jk

minimize Z
′n

3 =
m

∑
i=1

n

∑
j=1

l

∑
k=1

(t1
i jk + Itt

2
i jk)η(xi jk)

subject to
n

∑
j=1

l

∑
k=1

xi jk ≤ (a1
i + Iaa2

i ) (i = 1,2, . . . ,m),

m

∑
i=1

l

∑
k=1

xi jk ≥ (b1
j + Ibb2

j) ( j = 1,2, . . . ,n),

m

∑
i=1

n

∑
j=1

xi jk ≤ (e1
k + Iee2

k) (k = 1,2, . . . , l),

m

∑
i=1

l

∑
k=1

[(p1
i + Ip p2

i )+(c1
i jk + Icc2

i jk)+(α1 +

Iα α2)(e1
i jk + Iee2

i jk)]xi jk ≤ (B1
j + IBB2

j)

( j = 1,2, . . . ,n),
m

∑
i=1

n

∑
j=1

(e1
i jk + Iee2

i jk)xi jk ≤ (c1
k + Icc2

k)

(k = 1,2, . . . , l),

xi jk ≥ 0,∀ i, j, k,

η(xi jk) =

{

1, if xi jk > 0,
0, otherwise.

Now a NN can be expressed as ãn = [p+ qIL, p+ qIU ] =

[aL,aU ] which becomes an interval number, and then there

exist lower bound and upper bound of the interval. There-

fore for existence of these bounds, Model 2 splits into two

equivalent crisp problems, which are noted as Model 3A

and Model 3B. Model 3A chooses as lower level problem

whereas Model 3B considers as upper level problem. Also

using inequality 2.4.7. the interval valued constraints trans-

form into deterministic form. Hence the deterministic form

of these models are as follows:
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Fixed-charge solid transportation problem with budget constraints based on carbon emission in neutrosophic environment 7

Model 3A

minimize Z′L
1 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

[(pU
i + cU

i jk +αU eU
i jk − sL

j )xi jk

+ f U
i jkη(xi jk)] (1)

minimize Z′L
2 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

dL
i jkxi jk (2)

minimize Z′L
3 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

tL
i jkη(xi jk) (3)

subject to
n

∑
j=1

l

∑
k=1

xi jk ≤ aU
i (i = 1,2, . . . ,m), (4)

m

∑
i=1

l

∑
k=1

xi jk ≥ bL
j ( j = 1,2, . . . ,n), (5)

m

∑
i=1

n

∑
j=1

xi jk ≤ eU
k (k = 1,2, . . . , l), (6)

m

∑
i=1

l

∑
k=1

[pL
i + cL

i jk +αLeL
i jk]xi jk ≤ BL

j

( j = 1,2, . . . ,n), (7)

m

∑
i=1

l

∑
k=1

[pU
i + cU

i jk +αU eU
i jk]xi jk ≤ BU

j

( j = 1,2, . . . ,n), (8)
m

∑
i=1

n

∑
j=1

eL
i jkxi jk ≤ cL

k (k = 1,2, . . . , l), (9)

m

∑
i=1

n

∑
j=1

eU
i jkxi jk ≤ cU

k (k = 1,2, . . . , l), (10)

xi jk ≥ 0,∀ i, j, k, (11)

η(xi jk) =

{

1, if xi jk > 0,

0, otherwise.
(12)

Model 3B

minimize Z′U
1 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

[(pL
i + cL

i jk +αLeL
i jk − sU

j )xi jk

+ f L
i jkη(xi jk)]

minimize Z′U
2 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

dU
i jkxi jk

minimize Z′U
3 =

m

∑
i=1

n

∑
j=1

l

∑
k=1

tU
i jkη(xi jk)

subject to constraints (4)− (12).

Henceforth the definition of Pareto-optimal solution (com-

promise solution) is defined as follows.

Definition 3.1: Pareto-optimal solution (compromise solu-

tion) of Model 3A/Model 3B is a feasible solution x∗ =
(x∗i jk : i = 1,2, . . . ,m; j = 1,2, . . . ,n;k = 1,2, . . . , l) such that

there exists no other feasible solution x=(xi jk : i= 1,2, . . . ,m;

j = 1,2, . . . ,n;k = 1,2, . . . , l) with Z′
r(x)≤ Z′

r(x
∗), r = 1,2,3

and Z′
r(x)< Z′

r(x
∗) for at least one r.

Theorem 3.2: The combination of the Pareto-optimal so-

lutions of Model 3A and Model 3B represent the Pareto-

optimal solution of Model 2 and consequently of Model 1 in

the form of interval neurtrosophic number.

Proof: Using Definition 2.5, Theorem 3.2 can be proven

easily.

4 Solution methodology

In multi-objective optimization problem, there does not al-

ways exist a solution which is the best for all the objective

functions. That is the solution will be the best for one ob-

jective function and that may be worst for another objec-

tive function. The objective functions are conflicting to each

other and hence the solutions cannot simply compare to each

other. For this cause, we discuss three methods for solving

neutrosophic MFSTP as follows:

– Neutrosophic linear programming problem (NLPP),

– Fuzzy programming (FP),

– Global criterion method.

4.1 Neutrosophic linear programming problem (NLPP)

Model 3A and Model 3B provide the lower bound and up-

per bound of the objective functions and the solutions are

not overall compromise solution of Model 2. So we utilize

NLPP to derive the compromise solution of multi-objective

decision making problem. To solve the proposed model in

NLPP, we describe the following steps as:

– Step 4.1.1: Transform the neutrosophic optimization prob-

lem into crisp problem which splits into two sub-problems.

– Step 4.1.2: Solve each problem individually with subject

to all constraints.

– Step 4.1.3: Determine the upper bound as positive ideal

solution (PIS) and lower bound as negative ideal solution

(NIS) for each objective function in the pay-off matrix,

displaying in Table 1, where PIS and NIS are defined

as PIS = Zr
∗ = min {Zr(X1

∗), Zr(X2
∗), Zr(X3

∗)} (r =

1,2,3) and NIS = Zr
′ =

max {Zr(X1
∗), Zr(X2

∗), Zr(X3
∗)} (r = 1,2,3) respec-

tively.

– Step 4.1.4: Design the truth-membership function and

indeterminacy-membership function with highest degree

and falsity-membership function with least degree.

Table 1 Pay-off matrix.

Z1 Z2 Z3

X1
∗ Z1(X1

∗) Z2(X1
∗) Z3(X1

∗)
X2

∗ Z1(X2
∗) Z2(X2

∗) Z3(X2
∗)

X3
∗ Z1(X3

∗) Z2(X3
∗) Z3(X3

∗)
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8 Ghosh et al.

– Step 4.1.5: Setting the tolerance and constructing the

membership functions according to the bounds as:

Tl(Z
′
l(x)) =











1, if Z′
l(x)≤ LT

l ,

1−
Z′

l(x)−LT
l

UT
l
−LT

l

, if LT
l ≤ Z′

l(x)≤UT
l ,

0, if Z′
l(x)≥UT

l ,

Il(Z
′
l(x)) =











0, if Z′
l(x)≤ LI

l ,

1−
Z′

l(x)−LI
l

U I
l
−LI

l

, if LI
l ≤ Z′

l(x)≤U I
l ,

0, if Z′
l(x)≥U I

l ,

Fl(Z
′
l(x)) =











0, if Z′
l(x)≤ LF

l ,

1−
Z′

l(x)−LF
l

UF
l
−LF

l

, if LF
l ≤ Z′

l(x)≤UF
l ,

1, if Z′
l(x)≥UF

l ,

Here UT
l = Ul = PIS for Z′

l , and LT
l = Ll = NIS for Z′

l ;

UF
l =UT

l , LF
l = LT

l + tl(U
T
l −LT

l ); LI
l = LT

l , U I
l = LT

l +

sl(U
T
l −LT

l ); tl ,sl are tolerances.

– Step 4.1.6: Choose the values of α,β ,γ in [0, 1] for each

neutrosophic number as the truth, indeterminacy and fal-

sity degrees respectively.

– Step 4.1.7: Constitute NLPP that represents in Model

4A.

Model 4A

maximize Tl(Z
′
l(x)) (l = 1,2,3)

maximize Il(Z
′
l(x)) (l = 1,2,3)

minimize Fl(Z
′
l(x)) (l = 1,2,3)

subject to constraints (4)− (12).

Model 4A can be reduced to Model 4B as:

Model 4B

maximize α

maximize β

minimize γ

subject to Tl(Z
′
l(x))≥ α, Il(Z

′
l(x))≥ β , Fl(Z

′
l(x))≤ γ,

α +β + γ ≤ 3, α +β + γ ≥ 0, α ≥ γ, α ≥ β ,

α,β ,γ ∈ [0,1],(l = 1,2,3),

constraints (4)− (12).

Now the simplified model of NLPP (Model 4B) that de-

rives the compromise solution of MOTP (i.e., Model 4C)

as follows:

Model 4C

maximize α +β − γ

subject to Z′
l(x)+(UT

l −LT
l )α ≤UT

l ,

Z′
l(x)+(U I

l −LI
l )β ≤U I

l ,

Z′
l(x)− (UF

l −LF
l )γ ≤UF

l ,

α +β + γ ≤ 3, α +β + γ ≥ 0, α ≥ γ, α ≥ β ,

α,β ,γ ∈ [0,1],(l = 1,2,3),

constraints (4)− (12).

– Step 4.1.8: Solve Model 4C by LINGO 13 iterative sche-

me.

Theorem 4.1: If x∗ = (xi jk : i= 1,2, . . . ,m; j = 1,2, . . . ,n; k

= 1,2, . . . , p) is an optimal solution of Model 4C then it is

also Pareto-optimal (non-dominated) solution of Model 2.

Proof: Let x∗ is not a Pareto optimal (non-dominated) solu-

tion of Model 2. Therefore, from Def. 3.1, we consider that

there exists at least one x such that Z′
l(x) ≤ Z′

l(x
∗) for l =

1,2,3 and Z′
l(x) < Z′

l(x
∗) for at least one l. Therefore truth

and indeterminacy membership functions µ I
l (Z

′
l(x)) and

σ I
l (Z

′
l(x)) are strictly decreasing with respect to the corre-

sponding objective function Zl in [0, 1] respectively. Again

the falsity membership function ν I
l (Z

′
l(x)) strictly increases

with respect to the objective function Z′
l in [0, 1]. Hence

µ I
l (Z

′
l(x)) ≥ µ I

l (Z
′
l(x

∗)) ∀ l and µ I
l (Z

′
l(x)) > µ I

l (Z
′
l(x

∗)) for

at least one l. Similarly σ I
l (Z

′
l(x))≥ σ I

l (Z
′
l(x

∗)) ∀ l and

σ I
l (Z

′
l(x)) > σ I

l (Z
′
l(x

∗)) for at least one l. Also ν I
l (Z

′
l(x)) ≤

ν I
l (Z

′
l(x

∗)) ∀ l and ν I
l (Z

′
l(x))< ν I

l (Z
′
l(x

∗)) for at least one l.

Now, (α +β − γ) = min {µ I
l (Z

′
l(x)), σ I

l (Z
′
l(x)), ν I

l (Z
′
l(x))}

≥ min {µ I
l (Z

′
l(x

∗)), σ I
l (Z

′
l(x

∗)), ν I
l (Z

′
l(x

∗))} = (α∗+β ∗−

γ∗) which is a contradiction that x∗ is an optimal solution of

Model 4C. Here α∗, β ∗ and γ∗ are the values of α, β and γ

at x∗ respectively. This completes the proof of the theorem.

4.2 Fuzzy programming (FP)

Since Models 3A and 3B provide the lower bound and up-

per bound of the objective functions and the solutions are not

overall compromise solution of Model 2. Therefore to find

overall compromise solution, we take the advantage of FP

which is used to solve neutrosophic MFSTP. FP was intro-

duced by Zimmermann (1978) for solving multi-objective

linear programming problem and it is very easy for solving

this type of problem. FP of Model 2 can be formulated as:

Find x = (x1,x2, . . . ,xn)
T such that minimize Z′

l (l = 1,2,3)

and subject to g j(X)≤ 0, ( j = 1,2, . . . ,m) and xi ≥ 0, (i =

1,2, . . . ,n), with tolerance al (l = 1,2,3). The membership

function µ I
l (Z

′
l(x)) (l = 1,2,3) which is defined in Def. 2.2.

Our goal is to maximize the degree of acceptance of objec-

tive functions. Therefore to solve the proposed Model 2 in

FP, we depict the following steps as:

– Step 4.2.1: Transform the neutrosophic optimization prob-

lem into crisp problem which becomes into two sub-

problems.

– Step 4.2.2: Solve each problem independently with sub-

ject to all constraints.

– Step 4.2.3: Select the tolerance of each objective func-

tion.

– Step 4.2.4: Determine PIS and NIS defined in Step 4.1.3.

and formulate the membership function corresponding

to each objective function. Now maximize the degree of

acceptance of objective function and then the equivalent
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Fixed-charge solid transportation problem with budget constraints based on carbon emission in neutrosophic environment 9

crisp model of FP is designed as:

Model 5A

maximize α

subject to Tl(Z
′
l(x))≥ α(l = 1,2,3),

α ∈ [0,1],

constraints (4)− (12).

Model 5A is transformed into simplified form in Model

5B as:

Model 5B

maximize α

subject to Z′
l(x)+(UT

l −LT
l )α ≤UT

l (l = 1,2,3),

α ∈ [0,1],

constraints (4)− (12).

– Step 4.2.6: Solve Model 5B by LINGO 13 iterative sche-

me with respect to parameter α .

Theorem 4.2: If x∗ = (xi jk : i = 1,2, . . . ,m; j = 1,2, . . . ,n;

k = 1,2, . . . , p) is an optimal solution of Model 5B then it is

also Pareto-optimal (non-dominated) solution of Model 2.

Proof: Let x∗ is not a Pareto optimal (non-dominated) solu-

tion of Model 2. Therefore, from Def. 3.1, we consider that

there exists at least one x such that Z′
l(x) ≤ Z′

l(x
∗) for l =

1,2,3 and Z′
l(x)< Z′

l(x
∗) for at least one l. Therefore mem-

bership function µ I
l (Z

′
l(x)) is strictly decreasing with respect

to the corresponding objective function Z′
l in [0, 1]. Hence

µ I
l (Z

′
l(x)) ≥ µ I

l (Z
′
l(x

∗)) ∀ l and µ I
l (Z

′
l(x)) > µ I

l (Z
′
l(x

∗)) for

at least one l. Now, α = min {µ I
l (Z

′
l(x))}≥min {µ I

l (Z
′
l(x

∗))}

= α∗ which is a contradiction that x∗ is an optimal solution

of Model 5B. Here α∗ is the value of α at x∗. This completes

the proof of the theorem.

4.3 Global criterion method

Here we introduce another approach, namely, global crite-

rion method that provides the compromise solution by min-

imizing distance among some reference points of the feasi-

ble objective region. Since Models 3A and 3B do not pro-

vide overall compromise solution of Model 2. Therefore to

find overall compromise solution, global criterion method of

Model 2 can be depicted by the following steps:

– Step 4.3.1: Transform the neutrosophic optimization prob-

lem into crisp problem which becomes into two sub-

problems.

– Step 4.3.2: Solve each problem independently with sub-

ject to all constraints.

– Step 4.3.3: Determine the max (UT
l ) and min (LT

l ) value

of each objective function from Table 1 and formulate

the crisp model is as:

Model 6

minimize F(x) =

[

∑
3

l=1

(

Z′
l(x)−LT

l

UT
l −LT

l

)2] 1
2

subject to constraints (4)− (12).

– Step 4.3.4: Solve Model 6 by LINGO 13 iterative scheme.

Definition 3.2: The compromise solution of global crite-

rion method is defined as the minimum distance between

the ideal solution and the desired solution. If Zl
∗ is the ideal

solution of the objective function Z′
l then the compromise

solution of Model 2 is defined as Zl
∗ = min ||Z′

l
∗−Z′

l ||∞ ∀ l.

4.4 Differences among solution methodologies

First of all, global criterion method is a non-fuzzy tech-

nique i.e., this method does not take into account indetermi-

nacy in the optimization problems. Therefore, we need not

have to construct any membership or non-membership func-

tions, only we have to build a single objective optimization

problem utilizing different norms such as L1,L2,L∞,etc.. On

the other hand, FP is a fuzzy optimization technique which

considers vagueness in optimization problems. Therefore, in

FP we have to build membership function for the objective

functions. Again, NLPP is an extended version of FP, which

handles the indeterminacy occupied into the optimization

problem in neutrosophic manner i.e., in NLPP we have to

construct three membership functions namely truth, falsity

and indeterminacy.

5 Limitations of the study

From literature review, we observe that many researchers

formulated STP/MFSTP in different environments such as

fuzzy and IF optimization for the parameters of cost, time

and deterioration. But their formulated models have some

limitations which are listed here.

– Li and Lai (2000) solved MOTP using fuzzy program-

ming for controlling the uncertainty. Majumder et al.

(2019) solved uncertain multi-item MFSTP with budget

constraints. This problem was analyzed with the uncer-

tainty for determining truth and falsity but they did not

think about indeterminacy that enrolled the system into

neutrosophic.

– Rizk-Allah et al. (2018) used neutrosophic compromise

programming for solving MOTP, without considering neu-

trosophic number for the parameters of MOTP. In neu-

trosophic system, there exists indeterminacy member-

ship function which is also an important factor for un-

certainty.
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10 Ghosh et al.

– Ding et al. (2013) included about carbon emission in

transportation system and its potential for reduction in

China, but it was not connected with other factors in

multi-level system such as profit, budget, carbon capac-

ity, fixed-charge etc. which are indirectly related with

carbon emission.

– Tarulescu et al. (2017) discussed about smart transporta-

tion CO2 emission reduction strategies but did not con-

sider about carbon capacity, budget and profit which are

indirectly related in transportation system with fuzzy, in-

tuitionistic fuzzy or neutrosophic environment.

– Das et al. (2016) solved breakable multi-stage multi-

item STP under budget with Gaussian type-2 fuzzy pa-

rameters but did not include with neutrosophic system.

– Khalil et al. (2018) discussed more on time neutrosophic

soft set and its applications but we see that the paper

was defined only fundamental definitions, examples and

operations on time neutrosophic set without discussing

about the real-life application or any programming prob-

lem.

– Song and Leng (2012) analyzed about single-period prob-

lem under carbon emission policies but did not incorpo-

rate multi-level or multi-period problem and not defined

for fuzzy or intuitionistic fuzzy or neutrosophic environ-

ment.

6 Advances of the proposed study

– Neutrosophic sets are characterised by three indepen-

dent membership degrees, nam-ely, truth-membership de-

gree (T), indeterminacy-membership degree (I) and falsity-

membership degree (F) which are more capable to han-

dle imprecise parameters.

– IFSs can only handle the incomplete information not

indeterminate. But neutrosophic set can tackle both in-

complete information and indeterminate information.

Therefore the neutrosophic set is more applicable for

complete uncertainty than the IFS.

– Decision makers (DMs) in neutrosophic set want to in-

crease the degree of truth-membership function and the

degree of indeterminacy but decrease the degree of falsity-

membership function, which are more realistic in real-

life problem.

– Relating with transportation system, carbon emission in-

creases the rate of air pollution and thereafter increases

the carbon emission charge. Hence profit of the system

decreases and therefore to obtain maximum profit, car-

bon emission reduction is an important factor which are

chosen in this paper.

– Also to obtain maximum profit, budget constraint and

carbon capacity are included in this problem and these

extra restrictions that help to find minimum deterioration

and minimum time of the proposed problem.

7 Real-life Experiment

In this section, we include a real-life example to illustrate

the applicability of the proposed approach with maximum

profit, minimum deterioration and minimum time in trans-

portation system. Considering two source points of West

Bengal that export two types of sea fishes to other states

(e.g., Bihar and Jharkhand) in transportation system. For

heavy duty of vehicle in transportation system, carbon emis-

sion charge includes with other costs such as selling price,

purchasing cost, transportation cost, fixed-charge. Again for

conservation strategy of data, deterioration cost is included.

Also for transporting data with long distance, time factor

must be added. According to various complicated factors,

supply, demand and conveyance are taken as NNs. Trans-

portation cost per unit item from source to destination with

fixed-charge, deterioration cost, time, carbon emission charge

are all NNs which are supplied in Tables 2, 3, 4 and 5 re-

spectively. Transportation cost, deterioration cost and car-

bon emission charge are considered in hundred dollar ($)

per unit and time in hour per unit. Also the selling price,

purchasing cost, carbon tax, source, demand, conveyance,

budget and carbon capacity which are NNs are chosen here.

The aim is to obtain maximum profit by minimizing pur-

chasing cost, carbon emission charge, transportation charge

and fixed-charge, and maximizing selling price. Time and

deterioration are also minimized such that the budget and

carbon capacity must be bounded. Therefore the problem

becomes MFSTP due to describe of such conditions with

the objective functions which are contradicted to each other.

The formulation of mathematical form of this problem are

Models 7A and 7B which are obtained from Models 3A and

3B respectively. Solution of the problem is now illustrated

thereafter. In addition to that we assume the following in the

proposed study.

Selling price=(s̃n
j ): {s̃n

1= 50+5I; s̃n
2=60+5I}; Purchasing cost=

( p̃n
i ): {p̃n

1= 5+I; p̃n
2=6+2I}; Carbon tax=(α̃n) : {α = 2+ I};

Source=(ãn
i ): {ãn

1= 230+5I; ãn
2=240+10I}; Demand=(b̃n

j ):

{b̃n
1 = 100+5I; b̃n

2=120+10I}; Conveyance=(ẽn
k): {ẽn

1= 270+5I;

ẽn
2=290+10I}; Budget=(B̃n

j ): {B̃n
1= 3900+100I; B̃n

2=3500

+100I}; Carbon capacity=(c̃n
k): {c̃n

1= 360+40I; c̃n
2=420+40I}.

Here we consider I = [0, 1] is the indeterminacy.
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Table 2 Neutrosophic transportation cost c̃n
i jk and the fixed-charge f̃ n

i jk.

D1 D2 ai

k = 1 k = 2

c11k (6+4I) (8+3I) (230+5I)
c12k (15+2I) (4+ I)
f11k (10+8I) (9+7I)
f12k (25+2I) (7+2I)
c21k (4+2I) (10+4I) (240+10I)
c22k (3+ I) (5+2I)
f21k (6+2I) (13+10I)
f22k (7+2I) (15+2I)
b j (100+5I) (120+10I)

Table 3 Neutrosophic deterioration cost d̃n
i jk.

D1 D2 ai

k = 1 k = 2

d11k (4+2I) (5+2I) (230+5I)
d12k (5+ I) (3+2I)
d21k (3+ I) (4+2I) (240+10I)
d22k (2+ I) (2+ I)
b j (100+5I) (120+10I)

Table 4 Neutrosophic time t̃n
i jk.

D1 D2 ai

k = 1 k = 2

t11k (12+3I) (15+5I) (230+5I)
t12k (8+2I) (11+4I)
t21k (6+4I) (9+5I) (240+10I)
t22k (10+5I) (14+6I)
b j (100+5I) (120+10I)

Table 5 Carbon emission charge ẽn
i jk.

D1 D2 ai

k = 1 k = 2

e11k (2+4I) (3+3I) (230+5I)
e12k (3+2I) (2+ I)
e21k (2+3I) (2+ I) (240+10I)
e22k (2+2I) (3+2I)
b j (100+5I) (120+10I)

Model 7A

minimize Z′L
1 = 2x111 + x112 +5x121 −31x122 −13x211

+4x212 −27x221 −13x222

minimize Z′L
2 = 4x111 +5x112 +5x121 +3x122 +3x211

+4x212 +2x221 +2x222

minimizeZ′L
3 = 12x111 +15x112 +8x121 +11x122 +6x211

+9x212 +10x221 +14x222

subject to x111 + x112 + x121 + x122 ≤ 235, (13)

x211 + x212 + x221 + x222 ≤ 250, (14)

x111 + x112 + x211 + x212 ≥ 100, (15)

x121 + x122 + x221 + x222 ≥ 120, (16)

x111 + x121 + x211 + x221 ≤ 275, (17)

x112 + x122 + x212 + x222 ≤ 300, (18)

34x111 +35x112 +29x211 +31x212

Table 6 Pay off matrix for Z′
l
L(l = 1,2,3).

Z′
1

L
Z′

2
L

Z′
3

L

X1
L −5093.23∗ 719.99′ 2126.63

X2
L −2550.77′ 621.54∗ 2216.92′

X3
L −4680 680 1980∗

Table 7 Pay off matrix for Z′
l
U (l = 1,2,3).

Z′
1

U
Z′

2
U

Z′
3

U

X1
U −9239.85∗ 1106.65 3079.95

X2
U −7323.08 923.08∗ 3341.54′

X3
U −5706.52′ 1240.01′ 2813.33∗

≤ 4000, (19)

13x111 +19x112 +14x211 +20x212

≤ 3900, (20)

38x121 +20x122 +24x221 +30x222

≤ 3600, (21)

26x121 +13x122 +13x221 +17x222

≤ 3500, (22)

2x111 +3x121 +2x211 +2x221 ≤ 360, (23)

6x111 +5x121 +5x211 +4x221 ≤ 400, (24)

3x112 +2x122 +2x212 +3x222 ≤ 420, (25)

6x112 +3x122 +3x212 +5x222 ≤ 460, (26)

xi jk ≥ 0,∀ i, j, k. (27)

Model 7B

minimize Z′U
1 = −30x111 −27x112 −14x121 −45x122

−35x211 −22x212 −45x221 −33x222

minimize Z′U
2 = 6x111 +7x112 +6x121 +5x122 +4x211

+6x212 +3x221 +3x222

minimize Z′U
3 = 15x111 +20x112 +10x121 +15x122 +10x211

+14x212 +15x221 +20x222

subject to constraints (13)− (27).

Solving Model 7A and Model 7B using LINGO 13 iterative

scheme, we derive the solutions and calculate the value of

the objective functions that are reflected in Tables 6 and 7.

Since the solutions are contradict to each other and to find

the overall compromise solution we solve Model 4C with the

help of proposed NLPP. The PIS and NIS are obtained from

Tables 6 and 7 and they are denoted by ∗ and ′ respectively.

Finally we design Model 8 with help of NLPP to find the

compromise solution of Model 2.
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Model 8

maximize α +β − γ

subject to Z′L
l (x)+(UL

l −LL
l )α ≤UL

l ,

Z′L
l (x)+(UL

l −LL
l )(β −1)s1l ≤ LL

l ,

Z′L
l (x)− (UL

l −LL
l )γ(1− t1l)≤UL

l ,

Z′U
l (x)+(UU

l −LU
l )α ≤UU

l ,

Z′U
l (x)+(UU

l −LU
l )(β −1)s2l ≤ LU

l ,

Z′U
l (x)− (UU

l −LU
l )γ(1− t2l)≤UU

l ,

α +β + γ ≤ 3, α ≥ γ, α ≥ β ,

α,β ,γ ∈ [0,1],(l = 1,2,3)

constraints (13)− (27).

Where UL
l =PIS of ZL

l , Ll
L=NIS of Zl

L; Ul
U=PIS of Zl

U,

Ll
U=NIS of Zl

U. The solutions for Model 8 are obtained

as: α = 1, β = 1, γ = 0.002368; x122 = 59.08542, x211 =

54.82179, x212 = 45.17821, x221 = 31.47276, x222 = 29.442,

x111 = x112 = x121 = 0;ZL
1 = 6323.33,ZL

2 = 644.26,ZL
3 =

50;ZU
1 = 9294.01,ZU

2 = 963.53,ZU
3 = 74.

Therefore the compromise solutions of proposed Model 1

in NLPP is Z1 = [6323.33,9294.01], Z2 = [644.26,963.53],

Z3 = [50,74]. Also the solutions of FP and global criterion

methods are respectively given as: Z1 = [5900.82,9482.29],

Z2 = [719.97,1048.82],Z3 = [58,84]; and Z1 = [5906.9,

11941.13],Z2 = [720.49,1056.57],Z3 = [52,74].

– Results and discussion

Solving Model 2 with help of NLPP, FP and global criterion

method, and the solutions of Model 1 are depicted in Section

7. Therefore the values of three objective functions obtained

by three methods are displayed in Table 8 as:

Table 8 Solution of NLPP, FP and Global criteria method.

Methods Z1 Z2 Z3

NLPP (6323.33,9294.01) (644.26,963.53) (50,74)
FP (5900.82,9482.29) (719.97,1048.82) (58,84)
Global Criteria (5906.9,11941.13) (720.49,1056.57) (52,74)

Comparing the results that calculated from the NLPP, FP

and global criterion method, we conclude that optimal val-

ues of the objective functions (Z1, Z2, Z3) that received from

NLPP always provides better result than FP and global crite-

rion method. Also, from the analysis, it is very much essen-

tial to include the extra restriction on carbon capacity in our

formulated problem to safe our environment and to obtain

maximum profit in transportation system by minimizing the

total transportation cost.

8 Sensitivity analysis

To explain and interpret the effect of change to the coef-

ficients of the objective functions, sensitivity analysis is a

compulsive and concerning procedure in optimization prob-

lem. Now, it is difficult to analyze the range of all parametric

values and its slide change such that the optimal value re-

mains same. There exist some research papers on sensitive

analysis about transportation problem with linear program-

ming, such as Hasen et al. (1989), Ebrahimnejad (2011) etc.

But whenever there exist large change of variables and con-

straints, then a complexity arises such that the values of ba-

sic variables are changed. Therefore to control over these

complexity, we introduce sensitivity analysis of MFSTP with

NLPP such that all the basic variables remain fixed. Now to

find the ranges of these parameters in neutrosophic MFSTP,

we define the steps as follows:

– Step 8.1: Taking all the basic variables as fixed for the

optimal solution of MFSTP.

– Step 8.2: Change the values of each parameter at a time

with fixing other parameters and solve the MFSTP by

LINGO 13 iterative scheme.

– Step 8.3: Continue Step 8.2, until change the basic vari-

able or no feasible solution arises in optimal solution.

– Step 8.4: Find the range of each parameter in Step 8.3.

Sensitivity analysis for supply, demand and conveyance

parameters changes as:

Let ai change to a∗i as a∗i = ai +θi,(i = 1,2), b j change

to b∗j as b∗j = b j +η j,( j = 1,2) and ek change to e∗k as

e∗k = ek + τk,(k = 1,2). Using the described procedure,

we derive the values of a∗i ,b
∗
j , and e∗k which are shown

in Table 9.

Table 9 Ranges of supply, demand and conveyance.

Actual values of ai, b j and ek Changes values of ai, b j and ek

a1 = 230 10.5 ≤ a∗1 < ∞

a2 = 240 120.1 ≤ a∗2 < ∞

b1 = 100 94.4 ≤ b∗1 ≤ 115.1
b2 = 120 113.6 ≤ b∗2 ≤ 136.6
e1 = 270 80.3 ≤ e∗1 < ∞

e2 = 290 120.1 ≤ e∗2 < ∞

9 Conclusion and future research scopes

Transportation system always depends on various factors.

The most of the common factors are time, profit, budget, de-

terioration, carbon emission, purchasing cost, selling price,

fixed-charge etc. Since all the data are collected from real

world system, therefore there exist some complexity, restric-

tion and uncertainty. The aim of our transportation problem

is to overcome such complexity by taking neutrosophic data

and find the compromise solution. Here we take all the data

as NNs and use NLPP that maximizes the truth-membership

value, the indeterminacy-membership value and minimizes
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falsity-membership value. Again carbon emission is included

and we see that this improves the profit, reduce the air pol-

lution which is more necessary. Three methods have been

executed to obtain the compromise solutions by solving the

multi-objective transportation problem. Out of which NLPP

has provided the best solution and the method is also very

simple, suitable and applicable for multi-objective decision

making problem. Fuzzy set and IFS only find the uncertainty

with membership and non-membership value, but neutro-

sophic system adds an extra important aspect as indetermi-

nacy membership value which is independent on member-

ship and non-membership values. Therefore neutrosophic

system is more reliable than fuzzy system or IFS for clearly

defining incomplete and indeterminate information on real-

life problems. The applicability of the proposed approach

has been clarified through a real-life example. Moreover,

the stable ranges of some parameters have been revealed

by the sensitivity analysis. Finally, some decisions regarding

the budget and carbon emission during transportation have

been discussed which can be very helpful to the organiza-

tions/companies for resolving the economical and environ-

mental issues.

In future scope of research, neutrosophic system can be ex-

tended as bipolar-neutrosophic system and can be applied

for linear or non-linear problem. Also carbon emission sys-

tem will be taken as cap and trade policy with neutrosophic

number. Neutrosophic programming with neutrosophic num-

ber can be applied in fractional problem or multi-item trans-

portation. Different uncertainties such as type-2 neutrosophic,

type-2 uncertain variable, uncertain-random, type-2 intuition-

istic fuzzy, etc. can be developed in our model. Furthermore,

several heuristics, meta-heuristics and hybrid methods can

be developed to solve the large instances of our proposed

problem.
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