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Abstract Encrypted traffic classification plays a criti-

cal role in network management, providing appropri-

ate Quality-of-Service and Network Intrusion Detec-

tion. Conventional port-based and deep packet inspec-

tion (DPI) approaches cannot classify encrypted traf-

fic effectively. Methods based on machine learning can

classify encrypted traffic by extracting statistical fea-

tures of the flow. However, they require manual ex-

traction of features. Recent studies show that the ap-

proaches based on deep learning are compelling for the

task. They can automatically learn raw traffic features

without manual feature extraction. However, these stud-

ies still take the payload of encrypted traffic as the

model input, which may cause privacy risks. Besides,

a massive encrypted payload causes great storage pres-

sure on traffic classification. In this paper, we propose
a reliable encrypted traffic classification framework by
only using the flow header called Only Header, which
avoids privacy risks and achieves lightweight storage.

Firstly, we introduce a twice segmentation mechanism

to dilute the interference traffic and increase the weight

of effective traffic. Then we use capsule neural networks

(CapsNet) to learn spatial and byte features of the flow
header. The Only Header’s effectiveness is compared
with other methods using two public datasets, including
ISCX VPN-nonVPN and ISCX Tor-nonTor datasets.

The experimental results demonstrate that the Only
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Header outperforms the state-of-the-art encrypted traf-

fic classification methods.

Keywords encrypted traffic classification · capsule
neural networks · twice segmentation mechanism ·

privacy risk

1 Introduction

Nowadays, internet traffic classification aims at classi-

fying traffic based on the type of protocol or behavior,

which has become a fundamental analytical technique

for advanced network management. As a countermea-

sure to solve the increasingly severe network threats,

traffic classification technology can be adopted for iden-

tifying the malicious behaviors and then hinder the

threats from spreading in time [24]. From another view,

with the rapid development of network technology and
the gradual rise of novel applications, traffic classifi-
cation technology can also help to improve the net-
work resource utilization by providing precise traffic

type knowledge. Hence, traffic classification is crucial

to network management, especially for Network Intru-

sion Detection (NID) and Quality-of-Service (QoS).

In recent decades, the plain-text network transfer-
ring has become a vulnerability with severe consequences,

which challenging the regular adoption of the network

and users’ privacy. Therefore, more and more applica-

tions adopt secure protocols such as SSL, VPN, Tor to

protect their traffic from being tapped by the Man-in-

the-middle attack [10]. Meanwhile, in order to bypass

detection by security software such as firewalls, malware

software uses encryption techniques to hide communi-

cation content. In such a situation, traffic encryption

has become a standard practice adopted by benign net-

work applications and malware for different purposes.
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Fig. 1 Definition of the flow header and structure of a packet
in the flow. Packet header is the 16-byte Record (Packets)
header in the libpcap file format definition, which is a very
basic format to save captured network data. Ethernet Header
is the 14-byte header of the Ethernet frame. IP Header is the
header of the IPv4 packet, consisting 20 bytes. TCP/UDP
Header is the header of the TCP/UDP packet, including 20
or 8 bytes. CRC is a 4-byte cyclic redundancy check used to
detect any in-transit corruption of data.

Unfortunately, the encrypted traffic brings a challenge

to network management, as the payload of the appli-

cation layer cannot be inspected, making traditional

traffic classification approaches don’t work [4].

Recently, deep learning performs well for encrypted

traffic classification. On the one hand, many studies
take the first N (such as 784, 900, 1024, etc.) bytes of
encrypted traffic as the model input. They then use con-

volutional neural network (CNN), stacked autoencoder

(SAE), and other models to extract traffic features and

achieve service and application classification [15,21,25,

29, 33]. However, the above studies directly touch the

application payload, which can easily cause certain pri-
vacy troubles [22]. In addition, since a large amount of
application payload is used as a feature of the mod-

els, such methods put a lot of pressure on data storage.

On the other hand, some studies propose to learn the

sequence features such as packet sequence of flow and

message sequence of flow [21,29]. However, these meth-
ods are greatly affected by the environment and user
habits [9]. Therefore, they have low robustness.

To tackle the problem mentioned above, we pro-

pose a reliable encrypted traffic classification framework
without privacy risk, Only Header. It only uses the flow

header (shown in Figure 1) as the proposed model’s in-

put, which avoids privacy risks and reduces data stor-

age pressure. In more detail, our proposed model first

extracts header and splits traffic by a twice segmenta-

tion mechanism in preprocessing to dilute the interfer-

ence traffic and increase the weight of effective traffic.

Then, it learns the spatial features and byte features

of the flow header using CapsNet that takes the loca-

tion of fixed strings and the order between packets into

consideration. Finally, the traffic is classified by a fully

connected softmax layer. To demonstrate the effective-

ness of the Only Header, we perform experiments for

encrypted traffic identification, regular and VPN traf-

fic classification, regular and Tor traffic classification on
the ISCX VPN-nonVPN dataset and ISCX Tor-nonTor
dataset. The experimental results demonstrate that our

proposed model outperforms the state-of-the-art classi-

fication approaches. This paper is a further expansion

and deepening of the previous research work [5].

The main contributions of this paper are summa-

rized as follows:

– We propose a reliable encrypted traffic classifica-

tion framework without privacy risk, Only Header.

It only uses the flow header as the proposed model’s

input, which avoids privacy risks and reduces data

storage pressure.
– We propose a novel encrypted traffic classification

model using CapsNet. The model is effective as not
only the location of fixed strings are taken into con-
sideration, but the order between packets also re-
mains the effective features behind the traffic.

– A twice segmentation mechanism is introduced to
increase the effective traffic weight, which shows higher
accuracy than traditional traffic representation over

packet and flow.
– We evaluate the framework against the state-of-the-

art methods on the publicly available ISCX VPN-

nonVPN dataset and ISCX Tor-nonTor dataset. Ex-

perimental results have demonstrated the proposed

model’s effectiveness, measured by encrypted traffic

identification, regular and VPN traffic classification,

and regular and Tor traffic classification accuracy.

2 Related Work

Traffic classification has attracted extensive attention

from academic and industrial fields, achieving abundant

accomplishments [6,23]. However, with the widespread

application of encrypted traffic, port-based methods [6,
12,16,18] and DPI methods [3,7,13,20,30] are not suit-
able for encrypted traffic classification. Recently, the

methods based on Machine Learning (ML-based) and

the methods based on Deep Learning (DL-based) show

effective classification results. Since they can identify

the encrypted traffic by mining and learning the statis-

tical features. In this section, we outline specific ML-
based methods and DL-based methods for encrypted
traffic classification.

2.1 ML-based Methods for Encrypted Classification

ML-based methods extract statistical features such as

packet size and duration from the traffic samples. They



Only Header: A Reliable Encrypted Traffic Classification Framework without Privacy Risk 3

then use the appropriate ML algorithms to learn the

statistical traffic features for encrypted traffic classifica-

tion. These methods mainly include two parts: feature

extraction and model selection. In feature extraction,

Moore et al. [17] propose almost 250 flow or packet

features for encrypted classification. Okada et al. [19]

analyze 49 flow features of encrypted traffic and non-

encrypted traffic and obtain strong correlation features
such as mean packet size, inter-arrival time (IAT), and
transfer time. In general, although time-related features

have outstanding classification capability, they show

the worse robustness [23]. Therefore, if the traffic clas-

sifier is not designed for a specific network, time-related

features will easily make the performance of the classi-

fier unstable.

Machine learning models used in encrypted traffic

classification mainly include supervised learning models

and semi-supervised learning models. Okada et al. [19]

propose an encrypted classification method based on

the estimation of traffic features called EFM, and then

they combine several supervised learning models (SVM,

Naive Bayes, C4.5) to achieve application classification

of encrypted traffic. Arndt et al. [1] compare C4.5, k-

means, and Multi-Objective Genetic Algorithm (MOGA)

in encrypted classification. C4.5 shows the best robust-

ness, while MOGA shows the lowest false positive rate.

Bar-Yanai et al. [2] propose a real-time classification

model of encrypted traffic by combining k-means and
KNN algorithms, which takes into account the light
complexity of k-means and the accuracy of KNN. Zhang
et al. [32] propose an improvement to the k-means algo-

rithm, using the harmonic mean to reduce the impact

of random initial clustering scores. This method can in-

crease the accuracy of the k-means algorithm used for

encrypted traffic classification.
Given the ML-based methods mentioned above, al-

most without exception, they have a common disad-

vantage that they show an over-reliance on feature se-

lection. This process requires a comprehensive prior

knowledge of the field so that we may lose essential

features. Meanwhile, these methods are challenging to

transfer when encountering a new scene.

2.2 DL-based Methods for Encrypted Classification

Deep learning is an effective way to solve the prob-
lem of feature design. It can automatically select fea-
tures from the raw traffic during training instead of

extracting features manually [11]. In previous studies,

DL-based methods usually take the raw traffic data

as input, which includes the underlying protocol layer

and the upper application data. Specifically, Wang et

al. [27] extract the first 1000 bytes of TCP flow and

use a stacked autoencoder (SAE) to achieve encrypted

protocol classification. Wang et al. [25] propose to se-
lect the first 784 bytes of the raw traffic and then use
one-dimensional convolution neural networks (1dCNN)

to learn the spatial features for encrypted service classi-

fication. Lotfollahi et al. [15] use the IP header and the

first 1480 bytes of the IP packet payload as the input of

CNN and SAE models to achieve encrypted service and

application classification. Zou et al. [33] combine CNN

and Long Short Term Memory (LSTM), using CNN to

learn in-packet features of the first 784 bytes in a single

packet, and using LSTM to learn inter-packet features

of any three consecutive packets. Besides, other similar

studies also get the same excellent classification accu-

racy [5, 28, 31]. It can be seen that these methods are

based on extracting the first N bytes data of encrypted

traffic and then learn the spatial features, sequence fea-

tures, and byte features of the traffic through suitable

deep learning models.

Other methods are to learn encrypted traffic fea-

tures for the time sequence of traffic (such as packet

length sequence, message sequence, etc.), and then use

Markov chain, LSTM, etc., to learn the sequence fea-

tures of encrypted traffic. Yao et al. [29] regard en-

crypted network flow as a time sequence and build an
attention-based LSTM model to learn the flow’s se-
quence features. Shapira et al. [21] create images based

on the sequence features of the packet size and the ar-

rival time and use CNN to learn the image’s spatial

features.

However, the methods based on raw traffic bytes

have disadvantages of privacy problems and massive

storage pressure. These methods all utilize the encrypted

traffic application payload as one of the features of the

model. Due to the encryption algorithm, the applica-

tion payload is irregular ciphertext and does not con-

tain useful features. Moreover, taking the application
payload as one of the features increases the pressure of
data storage. Secondly, Taylor et al. [22] show that al-
though most applications currently use encryption pro-

tocols to protect user data, 80% of applications have

both encrypted and unencrypted connections. Devel-

opers usually consider the importance and cost of data.

Information such as passwords and locations are trans-
mitted in encrypted mode, while other information is
still transmitted in plain text. Therefore, 78% of appli-
cations have privacy issues.

In addition, the methods based on the time sequence

of traffic are unstable and poor in robustness. Although

these methods do not involve traffic application pay-

load, the flow’s sequence features are easily affected by

network performance and user habits, resulting in large

differences [9]. Therefore, such methods are less robust.
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In order to design an encrypted traffic classification

method that is robust and does not involve user privacy,
we focus on mining the difference of the flow header in
each category of traffic by deep learning models. On

the one hand, privacy problems can be avoided. On the

other hand, the flow header can reduce the data storage

pressure because of its lightweight.

3 The Proposed Model

In this section, we propose a reliable encrypted traf-

fic classification framework without privacy risk, Only

Header. It uses CapsNet to learn the spatial features

and byte features of the flow header. The details of our
proposed model are shown in Figure 2, which consists of
extracting flow header, training CapsNet for encrypted

classification. Finally, the fine-tuned model is applied

to traffic identification, regular and VPN traffic classi-

fication, regular and Tor traffic classification.

3.1 Extracting Flow Header

In this section, we design extracting flow header as the

first part of the Only Header by the following steps:

extracting header, twice segmentation, flow padding.

We advocate only extracting flow header from the raw

traffic, which can avoid privacy risk and reduce data

storage pressure. Besides, we introduce a twice segmen-

tation mechanism to dilute the interference traffic and
increase effective traffic weight. Hence, extracting flow
header can achieve extracting header bytes, traffic seg-
mentation, traffic cleaning, and traffic standardization.

3.1.1 Extracting Header

The application payload is easy to cause privacy risks
and enormous pressure on data storage. So we only ex-
tract the header of every packet in the flow, including

packet header, IP header, and TCP/UDP header. In ad-

dition, we delete the IP address in the packet to avoid

model overfitting [15,25].

3.1.2 Twice Segmentation

1. Flow Segmentation

DL-based methods need to divide the continuous

traffic into discrete units plurality according to a par-

ticular granularity [26]. Raw traffic P is a set containing

the different size of packets, denoted as:

P = {p1, . . . , pi . . . , p|P |} (1)

where |P | is the number of packets in P , pi is the i-th

packet in P , which is defined as:

pi = (xi, bi, ti) (2)

where i = 1, 2, . . . , |P |, bi ∈ (0,∞), ti ∈ [0,∞), xi is

the five-tuple (source IP, source port, destination IP,
destination port, transport layer protocol) of the i-th

packet, bi is the byte length of the i-th packet and ti is

the start time of the i-th packet.

Raw traffic is first segmented by flow because it

is frequently used in current traffic classification stud-

ies [6]. A flow F is a group of packets in P that have

the same five-tuple, which is defined as:

F = {p1 = (x1, b1, t1), . . . , pn = (xn, bn, tn)} (3)

where n ≤ |P |, it is the packet number of F .

2. Packet Segmentation

Actual network traffic usually exists massive smaller-

size flow that is unrelated to the class of traffic such as

SNMP, DNS, and ARP, affecting the effective classifi-

cation of traffic. Owing to those larger-size flow are the

main activities in the communication process that have

less unrelated traffic, we propose a packet segmenta-

tion to dilute unrelated flows and increase the weight

of valid flow. It splits flow continuously by setting the

maximum number of packets in the flow F . Gi denotes

the i-th traffic in F that is defined as:

Gi = {p1 = (x1, b1, t1), . . . , pm = (xm, bm, tm)}

m =







|F | −
∑i−1

k=1
|Gk| if |F | − C · (i− 1) < C

C otherwise

(4)

where m is the number of the packet in Gi, and C is

the maximum number of packets that is defined as:

C =
Lsample

max(Lheader)
(5)

where Lsample denotes the byte length of a sample, and

Lheader denotes the byte length of the sum of packet

header, IP header (deleting the 4-byte source IP address

and the 4-byte destination IP address), TCP/UDP header.

Noteworthy, Since the TCP header is 20 bytes and the

UDP header is 8 bytes, we uniformly select the first

20 bytes of the TCP/UDP packet in order to preserve

the maximum header information. Thus, the maximum

byte length of the sum of header is 48. The reason for

this setting is that we hope to make full use of Gi to

predict the whole flow accurately. In our view, the more

packets Gi has, the more representative it is. Thus, we

make C reach the maximum.
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Fig. 2 Framework of the Only Header for encrypted traffic classification.

3.1.3 Flow Padding

Using neural networks to train data requires a fixed

amount of input, so we have a uniform size of 784 bytes

for the traffic of the above steps. When Gi is larger

than 784 bytes, only the first 784 bytes are retained.

Otherwise, the 0x00 is added in the end to complement

it to 784 bytes. In addition, to make the traffic as a

normative input to the following model, we reshape 784

bytes to 28*28 matrix.

3.2 Training CapsNet for Encrypted Classification

In this section, we design the training CapsNet model as
another part of the Only Header. We use the CapsNet
to classify the traffic matrices with the size of 28*28,

which consists of convolution operation and dynamic

routing. The model structure is shown in Figure 3. The

input and output of CapsNet use vectors instead of

scalars of traditional neural networks. The length of

vectors indicates the probability of the encrypted traf-

fic, and the direction indicates the attributes of the fea-

tures such as size and position. In addition, compared

to CNN, CapsNet no longer adopts pooling operations.

It is well known that the pooling operation also discards

some necessary information, including accurate location

information, while reducing connection parameters and

refining features.

3.2.1 Convolution Operation

CapsNet model reads traffic matrices via preprocessing

mentioned above with the size of 28*28*1 that ranging

from 0-255, so we first normalize traffic matrices to limit

the value range to [0,1].

In the ReLU Conv1 layer, a convolution operation

of stride 1 is performed on a traffic matrix using 256

convolution kernels with the size of 9*9 to generate 256

feature matrices of traffic with the size of 20*20.

Subsequently, the second convolutional layer (Pri-

maryCaps) is used as the input of the capsule to con-

struct the tensor structure. Specifically, we perform 8

different weighted Con2d operations on 256 feature ma-

trices of traffic and execute 32 convolution kernels with

the size of 9*9 and a stride of 2 in each Con2d to fin-

ish convolution operation. Finally, 6*6*32 vectors with

a dimension of 8 are generated. Each vector is a new
capsule unit formed by 8 common convolution units.
The length of the capsule indicates the probability of a
class that traffic belongs to. The direction of the cap-

sule indicates the attributes of traffic (location of fixed

strings, the order between packets).

3.2.2 Dynamic Routing

The third layer of DigitCaps propagates and updates

the input capsule. The capsule processing is divided

into two steps: linear combination and routing. For the

linear combination, the capsule output activity vector
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Fig. 3 Schematic diagram of traffic classification model based on Capsule.

of the lower layer ui is multiplied by a weight matrix

Wij to obtain a prediction vector ûj|i, and all inputs of
the higher layer capsule sj are weighted summations of

the predicted vectors, given by

û = Wijui

sj =
∑

i

cij ûj|i
(6)

where cij is a coupling coefficient determined by itera-

tive dynamic path.
For the dynamic routing mechanism, to find the

most suitable path between the capsule’s output and

the next layer’s input, cij in (6) is updated by

cij =
exp{bij}

∑

k

exp{bik}
(7)

where bij is the logarithmic prior probability of capsule

i coupled to capsule j.

The length of one capsule output vector is between

[0,1], indicating the probability of a certain class. Thus,

a squashing function is used to compress vectors that
is defined as follows:

vj =
||sj ||

2

1 + ||sj ||2
sj

||sj ||
(8)

where vj is the output vector of capsule j and sj is its

total inputs.

Wij and other convolution parameters of the entire

network are updated by the loss function. Therefore,

Table 1 The main parameters of CapsNet model.

Name Operation Input Filter Stride Output

ReLU Conv1 Convolution 28*28 9*9 1 20*20*256

PrimaryCaps Convolution 20*20*256 9*9 2 1152*8*1

DigitCaps
Multiplication 1152*8*1 — — 1152*16*1

Summation 1152*16*1 — — 5/12*16*1

FC Softmax 5/12*16*1 — — 5/12*1*1

FC Softmax 5/12*1*1 — — 5/12

we use the margin loss commonly used in SVM as the

loss function, defined as:

Lc =Tc max (0,m+ − ||vc||)
2+

λ(1− Tc)max (0, ||vc|| −m−)2
(9)

where c is predicted class and Tc is an indication func-
tion that if c is correct, Tc equals 1, otherwise 0. m+

is upper boundary of vc while m− is lower boundary, λ

is regularization strength. We adopt reconstruction loss

to avoid overfitting. Table 1 describes the main param-

eters of each layer in our model.

4 Experiment

4.1 Dataset

The most critical condition for training deep learning

models is that there are a large number of represen-
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Table 2 Number of samples in each class for encrypted traffic

classification.

Regular Traffic VPN Traffic Tor Traffic

Class Total Class Total Class Total

Chat 7815 VPNChat 8820 TorChat 1295

Email 7940 VPNEmail 1580 TorEmail 10000

File 10000 VPNFile 10000 TorFile 10000

P2P 7565 VPNP2P 10000 TorP2P 10000

VoIP 10000 VPNVoIP 10000 TorVoIP 10000

Streaming 10000 VPNStreaming 10000 TorVideo 10000

TorAudeo 10000

TorBrowsing 10000

tative datasets. However, the lack of available datasets

is an essential factor hindering traffic classification [25].

To demonstrate the effectiveness of the proposed method,

we use the ISCX VPN-nonVPN dataset [8] and ISCX

Tor-nonTor [14] to evaluate the Only Header. ISCX

VPN-nonVPN dataset provides 150 raw traffic files,

including 7 kinds of conventional encrypted pcap files

(chat, streaming, etc.) and 7 kinds of VPN pcap files

(VPNchat, VPNstreaming, etc.). ISCX Tor-nonTor dataset

provides 85 raw traffic files, including 8 kinds of conven-

tional encrypted pcap files (browsing, email, etc.) and

8 kinds of Tor pcap files (Torbrowsing, Toremail, etc.).

On the ISCX VPN-nonVPN dataset, the author la-

bels 150 traffic files according to specific applications

instead of marking them according to service, making

some traffic files ambiguous. Particularly, browsing is

HTTPS traffic generated when browsing or executing
a task that contains a browser [8]. We are not sure
some certain traffic files like hangoutVoIP belonging to

browsing or belonging to Voip. Therefore, we decide

to delete browsing and VPNbrowsing labels, changing

14 classes to 12 classes. In addition, because the non-

Tor traffic in the ISCX Tor-nonTor dataset is derived

from the ISCX VPN-nonVPN dataset, we only use Tor
traffic. Finally, we get three encrypted traffic, including
regular encrypted traffic, VPN traffic, and Tor traffic.

According to (5), the maximum number of packets

in packet segmentation is set to 16. Application and the
total number of samples are shown in Table 2.

4.2 Experimental Setup

In this paper, we use Python3, TensorFlow as software

frameworks, which run on Ubuntu 16.04 64bit OS. The

server is a DELL R720 with 16CPU cores and 128GB

of memory. An Nvidia Corporation GM204GL GPU is

used as the accelerator.

Table 3 Task description to evaluate our preprocessing

method.

Exp Description Classification

1 Identification of regular, VPN and Tor 3 classification

2 Regular and VPN traffic classification 12 classification

3 Regular and Tor traffic classification 14 classification

4.3 Evaluation Metric

We use accuracy (Acc), precision (Pre), recall (Rec),

and F -measure (F1) metrics to evaluate our proposed
methods, reflecting the ability of the method to iden-

tify network traffic. Accuracy is used to evaluate the

overall effect of the method. Precision and recall reflect

the recognition efficiency of the identification method in

each class. F -measure is the evaluation index obtained

by comprehensive precision and recall.

4.4 Traffic Preprocessing Evaluation

In extracting flow header, we observe that application
payload can cause privacy risk and cannot be regarded

as effective features in encrypted traffic classification.
Therefore, we only extract the flow header to avoid pri-
vacy trouble and reduce data storage pressure. More-

over, we introduce the twice segmentation mechanism

to split traffic. The segmentation mechanism performs

flow segmentation and packet segmentation on the traf-

fic. It can achieve the purposes of diluting the propor-

tion of unrelated traffic and increasing effective traf-

fic weight. In order to evaluate the above traffic pre-

processing methods, we perform encrypted traffic iden-

tification, regular and VPN traffic classification, reg-

ular and Tor traffic classification on the ISCX VPN-

nonVPN and ISCX Tor-nonTor datasets. The detailed

task description is shown in Table 3.

4.4.1 Analysis of the Flow Header

On the flow header analysisr, we perform T-SNE dimen-

sionality reduction visualization on regular encrypted

traffic, VPN traffic, and Tor traffic, and the results are

shown in Figure 4. It can be seen that TSNE’s dimen-

sionality reduction visualization performs well, regard-

less of whether it contains application payload. How-

ever, in the visualization of all data, some sample points

are not easy to separate in regular encrypted traffic and

VPN traffic, while the visualization of flow header per-

forms better. From an intuitive point of view, the flow

header is more conducive to traffic classification.
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flow header.

Fig. 4 T-SNE embedding of the encrypted traffic in identi-

fication task. Purple denotes regular encrypted traffic, green

denotes VPN traffic, and yellow denotes Tor traffic.

(a) Packet size distribution of each encrypted traffic class.

(b) Percentage of packet size in each interval.

Fig. 5 Packet size distribution of the three types of encrypted

traffic (regular encrypted traffic, VPN traffic and Tor traffic).

Next, we analyze the impact of only the flow header

on data storage. First, we count the packet size dis-
tribution of regular encrypted traffic, VPN traffic, and
Tor traffic shown in Figure 5. Figure 5(a) depicts the

packet size distribution for each class, with each class

containing 100 randomly selected packets from the en-

tire transmission conversation. Figure 5(b) depicts the

proportion of packet sizes at different intervals for all

transmission conversations in the six classes. It can be

Table 4 Size change of encrypted traffic on whether to re-

main application data (GB).

Class All data Flow header Proportion

Regular 1.94 0.13 14.9:1

VPN 1.96 0.17 11.5:1

Tor 11.32 0.74 15.3:1

Table 5 Result on whether to remain application payload for

encrypted traffic (%).

Exp
All data Flow header

Acc F1 Acc F1

1 99.9 99.9 99.9 99.9

2 99.1 99.3 99.2 99.2

3 98.1 98.0 99.3 99.2

observed that except for the Email traffic, others are
usually transmitted in large size packets (around 1500
bytes). In addition, the packets with 1280-1514 size ac-

count for the highest percentage of packets, taking up

31.9%, and the packets with more than 79 bytes oc-

cupy 74.7%. This indicates that most packets contain

application payload. More intuitively, we count the size

changes on whether to remain application payload of

the three types of encrypted traffic, as shown in Ta-

ble 4. It can be seen that all data is 11-15 times larger

than the flow header. Therefore, if the application pay-

load cannot generate effective features, extracting flow

header will significantly reduce data storage pressure

during the encrypted traffic classification process.

In order to verify the performance of the flow header,
we perform 3 group experiments that the detail of tasks

are shown in Table 3. According to Table 5, the flow
header doesn’t reduce the classification effect of en-
crypted traffic in the three tasks. On the contrary, in
all tasks, the classification results of the Only Header

are as well as the classification results of all data, even

better in regular and Tor traffic classification (Exp 3).

A large amount of randomized encrypted payload can-

not be used as effective features for classification when
the application payload is retained. Therefore, when the
application payload is removed, the flow header has a
regular field distribution, which is more conducive to

mining spatial features and byte features between dif-

ferent classes. Therefore, This process can not only keep

the accuracy of classification but also avoid privacy risk

and greatly reduce data storage pressure.

4.4.2 Analysis of Twice Segmentation Mechanism

We propose the twice segmentation to increase the weight

of effective traffic. In order to evaluate the twice seg-
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Table 6 Result on whether to perform the twice segmenta-

tion for encrypted traffic (%).

Exp
Raw Flow Twice Segmentation

Acc F1 Acc F1

1 99.9 99.9 99.9 99.9

2 97.2 95.4 99.2 99.2

3 98.4 97.7 99.3 99.2

Chat
Email File P2P Voip

Streaming
VPNChat

VPNEmail
VPNFile

VPNP2P
VPNVoip

VPNStreaming
0.5

0.6

0.7

0.8

0.9

1.0

F-
m

ea
su

re
(%

)

Flow/1dCNN
Twice Segmentation/1dCNN
Flow/CapsNet
Twice Segmentation/CapsNet

Fig. 6 F -measure about whether to conduct twice segmen-

tation using 1dCNN and CapsNet.

mentation mechanism, we perform 3 group tasks men-
tioned in Table 3. Moreover, to verify that CapsNet is

more suitable than 1dCNN in traffic classification tasks,
we use both models for comparison in regular and VPN
traffic classification (Exp 2). The results are shown in

Table 6 and Figure 6. As Table 6 shows, in encrypted

traffic identification (Exp 1), regardless of whether to

perform the twice segmentation mechanism, both the

accuracy and F -measure can reach 99.9%. In regular

and VPN traffic classification (Exp 2), the twice seg-
mentation mechanism improves 2.0% of the accuracy
and 3.8% of the F -measure. In regular and Tor traffic

classification (Exp 3), the twice segmentation mecha-
nism increases the accuracy by 0.9% and the F -measure

by 1.5% over raw flow.

Figure 6 describes the performance results of Cap-

sNet and 1dCNN on regular and VPN traffic classifi-

cation. In the 1dCNN model, we observe that 10 kinds

of traffic (except Chat and Email classes) can achieve

better results using twice segmentation. Besides, the

F -measure of two classes, File and Voip, are less than

80% using flow. In contrast, twice segmentation im-

proves the F -measure, making each class reaches more

than 90%. In the CapsNet model, all kinds of traffic us-

ing twice segmentation are better than the traditional
flow, and each of them is above 97%. Moreover, in the
comparison of 1dCNN and CapsNet, most classes of

traffic show CapsNet performs better than 1dCNN no

matter whether to conduct twice segmentation. Com-

pared to other combinations, the F -measure for each

class achieves the best value with twice segmentation

and CapsNet model.

In summary, our proposed twice segmentation mech-

anism has shown better experimental results in encrypted

traffic classification. In addition, no matter whether we

execute packet segmentation or not, CapsNet shows

higher accuracy and F -measure than 1dCNN.

4.5 Baseline Experiments Comparison

In this subsection, we perform three experiments men-

tioned in Table 3 to evaluate the Only Header and

compare the results with baseline methods on ISCX

VPN-nonVPN and ISCX Tor-nonTor datasets. Owing

to the accuracy and F -measure for encrypted traffic

identification reach 99.9%, and the baseline methods

also can achieve 99% accuracy, we no longer analyze

and compare this task in detail. The results of other

tasks are as follows, including regular and VPN traffic

classification, regular and Tor traffic classification.

4.5.1 Comparison on Regular and VPN Traffic

Classification

We compare the Only Header to the following baseline

methods for regular and VPN traffic classification.

– 1dCNN [25] utilizes the first 784 bytes of raw flow

as the input of the 1dCNN model. 1dCNN performs

better than traditional CNN on encrypted traffic

classification.

– Deep Packet [15] converts IP packets, including
IP header and IP payload, into a 1500-byte vector

and then uses 1dCNN and SAE to learn the deep

features of the packet vector to realize encrypted

traffic classification.

– Attention based LSTM and HAN [29] regards

the flow (the first ten packets and the first 1500

bytes of each packet) as a time sequence and con-

structs the attention based LSTM and hierarchical

attention network (HAN) to learn flow time fea-

tures.

– CNN-LSTM [33] combines CNN and LSTM. It

employs CNN to learn the spatial features of the

single packet and utilizes LSTM to learn the time
sequence features of three consecutive packets in the
flow.

In order to evaluate and compare the effectiveness
of the Only Header for regular and VPN traffic clas-

sification, we adopt the above preprocessing to experi-

ment on raw traffic collected in the ISCX VPN-nonVPN

dataset. The experiment shows that the precision and

recall of each class are as high as 97% as shown in Ta-

ble 7. The F -measure of 9 classes (except Chat, Email,
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Table 7 Classification result of the Only Header for regular

and VPN traffic (%).

Class Pre Rec F1

Chat 97.3 98.3 97.8

Email 97.6 98.9 98.1

File 99.5 99.6 99.6

P2P 98.8 99.7 99.2

Voip 99.3 97.0 98.1

Streaming 99.2 98.9 99.1

VPNChat 99.2 99.8 99.5

VPNEmail 99.7 99.7 99.7

VPNFile 99.2 99.3 99.3

VPNP2P 99.8 99.9 99.9

VPNVoip 99.8 99.7 99.7

VPNStreaming 99.9 99.5 99.7

Accuracy 99.2
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0.001 0.001 0.001 0.002 0.997

Normalized confusion matrix

Fig. 7 Confusion matrix of the Only Header for regular and

VPN traffic.

Table 8 Result of the Only Header compared with baseline

methods for regular and VPN traffic classification (%).

Method Model Input Acc

Only Header CapsNet flow header 99.2

1dCNN [25] 1dCNN flow 86.6

Deep Packet [15]
SAE packet 88.2

1dCNN packet 89.8

Attention based Attention based LSTM flow 91.2

LSTM and HAN [29] HAN flow 89.8

CNN-LSTM [33] CNN and LSTM flow 92

and Voip) reach 99%. In addition, the F -measure of

VPN traffic classes are better than regular encrypted

traffic, indicating that Only Header performs especially

Table 9 Classification result of the Only Header for regular

and Tor traffic (%).

Class Pre Rec F1

Chat 96.8 97.2 97.0

Email 97.4 98.1 97.7

File 99.6 99.6 99.6

P2P 98.4 99.9 99.1

Voip 99.4 96.9 98.1

Streaming 98.9 99.3 99.1

TorChat 99.2 100.0 99.6

TorEmail 100.0 100.0 100.0

TorFile 99.9 99.8 99.9

TorP2P 99.7 99.8 99.7

TorVoIP 100.0 100.0 100.0

TorVideo 99.9 100.0 100.0

TorAudio 99.8 99.6 99.7

TorBrowsing 99.6 99.7 99.6

Accuracy 99.3

outstanding in VPN traffic classification. The confusion

matrix of the Only Header with rows normalized for

regular and VPN traffic classification is shown in Fig. 7.

As the figure shows, all of the traffic classes on the diag-

onal show the deeper blue color, indicating the effective

classification ability of the Only Header for regular and
VPN traffic classification.

Compared with the baseline methods for encrypted

traffic service classification on the ISCX VPN-nonVPN

dataset that use deep learning as well, Table 8 reports

that accuracy is higher 7.2% than CNN-LSTM in [33]

that is the best method to our best knowledge. In a

word, the Only Header performs better and achieves
the standard of practical application.

4.5.2 Comparison on regular and Tor Traffic

Classification

We compare Only Header to the following baseline meth-
ods for regular and Tor traffic classification.

– C4.5 [14] presents a time analysis on Tor traffic

flows and proposes a series of features according to
the time sequence of flow, and then it utilizes C4.5
to learn the flow features on Tor traffic classification.

– FlowPic [21] creates the image according to the

packet sizes and packet arrival times of flow and
then uses CNN to learn the spatial features of the
image to build an encrypted traffic classification model.

Tor traffic only supports the encrypted links and

TCP flow over the Internet. It is complicated to trace

and analyze its traffic [14]. We use regular encrypted
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Fig. 8 Confusion matrix of the Only Header for regular and

Tor traffic.

Table 10 Result of the Only Header compared with baseline

methods for regular and Tor traffic classification (%).

Method Model Input Acc

Only Header CapsNet flow header 99.3

C4.5 [14] C4.5 flow features 84

FlowPic [21] FlowPic flow time sequence 85.7

traffic in the ISCX VPN-nonVPN dataset and Tor traf-
fic in the ISCX Tor-nonTor dataset to implement reg-
ular and Tor traffic classification. As shown in Table 9,

we observe that all kinds of traffic can reach more than

99% except Chat and Email. The accuracy of classi-

fication is 99.3%. Besides, the precision and recall of

both TorEmail and TorVoIP are 100%. The confusion

matrix of the Only Header with rows normalized for
regular and Tor traffic classification is shown in Fig. 8.
As the figure shows, all of the traffic classes on the diag-

onal show the deeper blue color, indicating the effective

classification ability of the Only Header for regular and

Tor traffic classification.
On the comparison of other approaches, it is shown

in Table 10 that the accuracy of the Only Header is

higher 15.3% and 13.6% than baseline methods. There-

fore, the Only Header makes a great improvement for

Tor traffic classification.

5 Conclusion

Based on the analysis of the current research on en-

crypted traffic classification, this paper proposes a re-

liable encrypted traffic classification framework with-

out privacy risk. It utilizes CapsNet model to learn

the spatial and byte features of the flow header, which

avoids privacy troubles and reduces data storage pres-
sure. Besides, the Only Header is more suitable for en-
crypted traffic classification tasks than others for the

reason that it takes into account the location of fixed

strings and the order between packets. Meanwhile, the

Only Header increases the effective traffic weight by a

twice segmentation mechanism, which exhibits higher
accuracy than traditional traffic representation such as
packet and flow. The experimental results show our
study yields significant improvements against the state-

of-the-art methods on ISCX VPN-nonVPN and ISCX

Tor-nonTor traffic dataset.
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