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Abstract Pythagorean fuzzy set (PFS) is a broadening of intuitionistic fuzzy
set that can represent the situations where the sum of membership and the
non-membership values exceeds one. Adding parameterization to PFS we ob-
tain a structure named as Pythagorean fuzzy soft set (PFSS). It has a higher
capacity to deal with vagueness as it captures both the structures of a PFS
and a soft set. Several practical situations demand the measure of similarity
between two structures, whose sum of membership value and non-membership
value exceeds one. There are no existing tools to measure the similarity be-
tween PFSS and this paper put forward similarity measures for PFSS. An ax-
iomatic definition for similarity measure is proposed for PFSS and certain ex-
pressions for similarity measure are introduced. Further, some theorems which
express the properties of similarity measures are proved. A comparative study
between proposed expressions for similarity measure is carried out. Also, a
clustering algorithm based on PFSS is introduced by utilizing the proposed
similarity measure.
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1 Introduction

A measure of analogy between the objects is necessary for many real-life prob-
lems like clustering, pattern recognition, sequence alignment, medical diagno-
sis, etc. This motivates to introduce similarity measures and caste its useful
expressions. Since all the problems mentioned above have to cope with un-
certainties, the notion of similarity measure is explored in many generalized
set-theoretical concepts that can handle vagueness.

In 1965, Zadeh’s fuzzy set (FS) theory [35] was a paradigm shift in this
regard, as it decreases the space between real life and mathematics. The FS
points out the membership value of objects in [0, 1] and which surpasses the
crisp set (whose range of membership value is 0 and 1). For this reason, there
are a lot of research works on FSs in the literature and many extensions are
attained. We mention some of them here. Intuitionistic fuzzy set (IFS), intro-
duced by Atanassov [2], is capable to explain the objects’ membership value
together with nonmembership value, µ and ν respectively with the property,
0 ≤ µ+ ν ≤ 1. Torra figured out the Hesitant fuzzy set (HFS) [30], which can
overcome the difficulty that hesitancy of giving membership value by estab-
lishing more than one membership value of an object. Yager’s Pythagorean
fuzzy set (PFS) [34] is a broadening of IFS, which relaxes the dependency of
membership and nonmembership value by 0 ≤ µ2 + ν2 ≤ 1. Similarly, sev-
eral generalizations of fuzzy sets are introduced for representing vagueness
happening in different situations.

In 1999, Molodtsov [22] introduced soft sets and it is an adequate tool to
handle vagueness in a parametric manner. A soft set is able to view as a bag
with an approximate representation of the objects and involves two compo-
nents that are predicate and approximate value set. As the initial description
has an approximate nature, the machinery of traditional mathematics fails
whereas the soft set can be used to manage many problems in this aspect. By
considering this importance, several studies based on soft sets are done, and
some of them can be seen in [18,1,6,15]. Later on, hybrid structures like fuzzy
soft sets (FSS) [8], intuitionistic fuzzy soft set (IFSS) [19], Pythagorean fuzzy
soft set (PFSS) [28] are introduced which can represent vagueness as well.

PFS is an extension of IFS. In contrast to IFS, PFS allows one to consign a
membership value and a non-membership value resulting sum can exceed one.
Studies on aggregation operations, decision-making problems, multi-criteria
decision-making problems using PFS are appeared in papers of Garg et al. [9,
10]. Also, Peng et al. [27] give an extensive review of PFS. PFSS is a hybrid
structure of the soft set and PFS, that can effectively deal with vagueness.
Impressively PFSS grasp the properties of PFS and soft sets together. The
structure, PFSS was established by Peng et al. [28]. After which Guleria et al.
[12] gave the matrix representation, operation, and decision-making problems
of PFSS. Later on, Athira et al. [4,5] studied the entropy and distance measure
of PFSS. Recently, topological and group structures on PFSS are introduced
and that can be seen in [25,13] also Athira and Sunil proposed the incomplete
PFSS [3].
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Similarity measures of PFSSs and clustering analysis 3

As mentioned earlier, the similarity measure is a significant implement to
estimate the degrees of association among two or more items. The idea of
similarity measure for FS was initially introduced by Wang [31]. Meanwhile
several studies were done on similarity measure of FS [14,33] and after which
the similarity measure was extended to IFS [17], PFS [26] etc. Also, Majumdar
and Samanta defined certain similarity measure for soft sets [21] and FSS [20].
Later on, it has been extended to IFSS [7]. Among various structures discussed
so far, PFSS being the most generalized one. Vagueness can be represented
more effectively by PFSS, and in this case, comparing their affinity is not
readily available in the existing literature. This paves the way to the necessity
of introducing similarity measures for PFSS.

This paper contains three sections besides the introduction. Section 2 in-
cludes basic definitions that are required for future study. In section 3, defini-
tions of similarity measures and certain properties of the proposed measures
are inserted. The final section consists of the applications of the new mea-
sures to the clustering algorithm as well as the benefits of proposed similarity
measures with the already established measures.

2 Preliminaries

This section addresses elementary definitions beneficial for entire discussions.
That is, the main definitions connected with PFS, soft sets, and PFSS. Unless
otherwise specified, ℧ be the universal set, L be parameter set, and P (℧) be
the power set of ℧.

Definition 1 [34] A Pythagorean fuzzy set P on ℧ is the set {(u, µp(u), νp(u)) :
u ∈ ℧} where µp : ℧ → [0, 1] and νp : ℧ → [0, 1] with 0 ≤ µ2

p + ν2p ≤ 1.

Definition 2 [34] Let p1 = (µ1, ν1) and p2 = (µ2, ν2) be two Pythagorean
fuzzy numbers.The set operations are given by;

1. p1 ⊆ p2 if µ1 ≤ µ2 & ν1 ≥ ν2
2. p1 ∪ p2 = (max{µ1, µ2},min{ν1, ν2})
3. p1 ∩ p2 = (min{µ1, µ2},max{ν1, ν2})
4. pc = (ν, µ)

Definition 3 [36] Let PFS(℧) be the set of all PFSs over ℧ and ψ be a
mapping ψ : PFS(℧) × PFS(℧) → [0, 1]. Then ψ is a similarity measure of
PFSs if it holds:

1. (ϕ1, ϕ2) = 1 ⇔ ϕ1 = ϕ2

2. (ϕ1, ϕ2) = ψ (ϕ2, ϕ1)
3. (ϕ1, P3) ≤ ψ(ϕ1, P2) ∧ ψ(ϕ2, ϕ3) if ϕ1 ⊆ ϕ2 ⊆ ϕ3

∀ϕ1, ϕ2, ϕ3 ∈ PFS(℧).

Definition 4 [22] The pair (S,L) is soft set over ℧, if S is a mapping from
L to P (℧).
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4 Athira T M et al.

Definition 5 [18] Let (S1,L1) and (S2,L2) are soft sets over ℧. We can define
the set operations as follows;

1. (S1,L1)⊆̃(S2,L2) if S1(h) ⊆ S2(h) and L1 ⊆ L2, ∀h ∈ L1. We say (S1,L1)
and (S2,L2) are soft equal if (S1,L1)⊆̃(S2,L2) and (S2,L2)⊆̃(S1,L1).

2. The complement ((S1,L1)
c) of (S1,L1) is the soft set (S1

c,L1), where Sc
1 :

L1 → P (U) such that Sc
1(h) = {S1(h)}

c = ℧− S1(h), ∀h ∈ L1.
3. The union of (S1,L1) and (S2,L2) is denoted by (S1,L1)∪̃(S2,L2) and is

a soft set (S3,L1 ∪ L2) where S3 : L1 ∪ L2 → P (℧) is given by,

S3(h) =





S1(h), for h ∈ L1 − L2

S2(h), for h ∈ L2 − L1

S1(h) ∪ S2(h), for h ∈ L1 ∩ L2

.

4. The intersection of (S1,L1) and (S2,L2) is denoted by (S1,L1)∩̃(S2,L2)
and is a soft set (S4,L1 ∩ L2) where S4 : L1 ∩ L2 → P (℧) is given by
S4(h) = S1(h) ∩ S2(h), ∀h ∈ L1 ∩ L2.

Definition 6 [16] Let S(℧) denotes the collection of all soft sets over ℧. A
similarity measure is a map ψ : S(℧)×S(℧) → [0, 1] with following properties;
for (S1,L), (S2,L), (S3,L) ∈ S(℧),

1. if (S1,L) = (S2,L), then ψ((S1,L), (S2,L)) = 1
2. (S1,L), (S2,L)) = ψ((S2,L), (S1,L))
3. (S1,L), (S3,L)) ≤ ψ(S1,L), (S2,L)) and

(S1,L), (S3,L)) ≤ ψ(S2,L), (S3,L)) if (S1,L)⊆̃(S2,L)⊆̃(S3,L).

Definition 7 [28] A PFSS over ℧ is a pair (P,L) where L is a collection of
parameters and P is a mapping from L into PFS(℧) and PFS(℧) is the set
of all PFS subsets of ℧.

From the definition 7 it is clear that PFSS is a hybrid structure of PFS and
soft set.

Definition 8 [28] Suppose L1,L2 ⊆ L and (P,L1), (G,L2) are two PFSSs over
℧. (P,L1) is said to be PFSS subset of (P,L2) denoted as (P,L1)⊑(G,L2) if,

1. L1 ⊆ L2

2. P(h) ⊆ G(h), ∀h ∈ L1

i.e., ∀x ∈ ℧ and h ∈ L1, µP(h)(x) ≤ µG(h)(x) and νP(h)(x) ≥ νG(h)(x).

If (P,L1)⊑(G,L2) and (G,L2)⊑(P,L1) then (P,L1) and (G,L2) are said to be
equal.

Definition 9 [28] The intersection of two PFSSs (P,L1) and (G,L2) over
℧, denoted by, (P,L1)⊓(G,L2) and is defined to be the PFSS (R,L1 ∩ L2)
where R is a map from L1 ∩ L2 into PFS(℧) given by R(h) = P(h) ∩ G(h),
∀h ∈ L1∩L2, while the union of two PFSSs over ℧, denoted as (P,L1)⊔(G,L2)
and is defined to be (T ,L1 ∪L2) where T is a map from L1 ∪L2 into PFS(℧)
given by,

T (h) =





P(h) for h ∈ L1 \ L2

G(h) for h ∈ L2 \ L1

P(h) ∪ G(h) for h ∈ L1 ∩ L2
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Similarity measures of PFSSs and clustering analysis 5

3 Similarity Measures of PFSS

A real-valued function that measures out the similarity among two objects is
called the similarity measure. This section explains the similarity measure for
PFSSs, moreover different expressions to calculate similarity measures. Also,
we proved a couple of theorems that describe certain interesting properties of
the similarity measures.

The definition for similarity measure should emphasize the properties es-
sential for a measure that quantifies the similarity between PFSSs. That is,
the similarity measure between two PFSSs is maximum if and only if both are
equal, and it is minimum if the sets are entirely different. To avoid unnecessary
complexity we assume the values of similarity measures lie between 0 and 1.

Definition 10 For the PFSS (P,L), (G,L), (R,L) over the universal set ℧

with parameter set L. A mapping Ψ : PFSS(℧)× PFSS(℧) → R
+ defines a

similarity measure if it satisfies the four axioms given below,

A1. 0 ≤ Ψ((P,L), (G,L)) ≤ 1
A2. Ψ((P,L), (G,L)) = Ψ((G,L), (P,L))
A3. Ψ((P,L), (G,L)) = 1 iff (P,L) = (G,L)
A4. Ψ((P,L), (R,L)) ≤ Ψ((P,L), (G,L)) and

Ψ((P,L), (R,L)) ≤ Ψ((G,L), (R,L)) if (P,L) ⊑ (G,L) ⊑ (R,L).

Theorem 1 Let ℧ = {u1, u2, · · · , un} be universal set, L = {h1, h2, · · · , hm}
be the parameter set and (P,L), (G,L) are any two PFSSs over ℧. Then

Ψr((P,L), (G,L)), r = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are similarity measures.

1.

Ψ1((P,L), (G,L)) =

n
∑

i=1

m
∑

j=1





min{µ2
P(hj)

(ui), µ
2
G(hj)

(ui)}+

min{ν2
P(hj)

(ui), ν
2
G(hj)

(ui)}





n
∑

i=1

m
∑

j=1





max{µ2
P(hj)

(ui), µ
2
G(hj)

(ui)}+

max{ν2
P(hj)

(ui), ν
2
G(hj)

(ui)}





(1)

2.

Ψ2((P,L), (G,L)) =
1

m

m
∑

j=1

n
∑

i=1
1−min







|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|,

|ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|







n
∑

i=1
1 + max







|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|,

|ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|







(2)

3.

Ψ3((P,L), (G,L)) = 1−
1

2mn

m
∑

j=1

n
∑

i=1











|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|+

|π2
P(hj)

(ui)− π2
G(hj)

(ui)|











(3)

4.

Ψ4((P,L), (G,L)) =
1

mn

m
∑

j=1

n
∑

i=1

cos





π

2
max{

|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|,

|ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|}



 (4)
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6 Athira T M et al.

5.

Ψ5((P,L), (G,L)) =
1

mn

m
∑

j=1

n
∑

i=1

cos





π

4





|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|

+ |ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|







 (5)

6.

Ψ6((P,L), (G,L)) = 1−
1

m

m
∑

j=1



























n
∑

i=1

|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|

+ |ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|

n
∑

i=1

|µ2
P(hj)

(ui) + µ2
G(hj)

(ui)|

+ |ν2
P(hj)

(ui) + ν2
G(hj)

(ui)|



























(6)

7.

Ψ7((P,L), (G,L)) =
1

m

m
∑

j=1



























n
∑

i=1

min{µ2
P(hj)

, µ2
G(hj)

}+

min{1− ν2
P(hj)

, 1− ν2
G(hj)

}

n
∑

i=1

max{µ2
P(hj)

, µ2
G(hj)

}+

max{1− ν2
P(hj)

, 1− ν2
G(hj)

}



























(7)

8.

Ψ8((P,L), (G,L)) =





























α

m

m
∑

j=1

n
∑

i=1
min{µ2

P(hj)
, µ2

G(hj)
}

n
∑

i=1
max{µ2

P(hj)
, µ2

G(hj)
}

+

1− α

m

m
∑

j=1

n
∑

i=1
min{ν2

P(hj)
, ν2

G(hj)
}

n
∑

i=1
max{ν2

P(hj)
, ν2

G(hj)
}





























, α ∈ [0, 1] (8)

9.

Ψ9((P,L), (G,L)) =
1

m

m
∑

j=1

n
∑

i=1





µ2
P(hj)

(ui).µ
2
G(hj)

(ui) + ν2
P(hj)

(ui).ν
2
G(hj)

(ui)

+ π2
P(hj)

(ui).π
2
G(hj)

(ui)





max























n
∑

i=1

(µ4
P(hj)

(ui) + ν4
G(hj)

(ui) + π4
P(hj)

(ui)),

n
∑

i=1

(µ4
G(hj)

(ui) + ν4
G(hj)

(ui) + π4
G(hj)

(ui))























(9)

10.

Ψ10((P,L), (G,L)) = 1−
1

m

m
∑

j=1







































n
∑

i=1

(|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|
2+

|ν2
P(hj)

(ui)− ν2
G(hj)

(ui)|
2+

|π2
P(hj)

(ui)− π2
G(hj)

(ui)|
2)

n
∑

i=1

(|µ2
P(hj)

(ui) + µ2
G(hj)

(ui)|
2+

|ν2
P(hj)

(ui) + ν2
G(hj)

(ui)|
2+

|π2
P(hj)

(ui) + π2
G(hj)

(ui)|
2)







































1
2

(10)
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Similarity measures of PFSSs and clustering analysis 7

Proof For proving Ψr((P,L), (G,L)), r = 1, 2, · · · , 10 are similarity measure,
it must satisfy the four axioms A1, A2, A3 and A4. We will prove axiom A3 for
Ψ9((P,L), (G,L)), axiom A4 for Ψr((P,L), (G,L)), r = 3, 4, 6 and rest of the
proof is straight forward.

For proving Axiom A3 for Ψ9((P,L), (G,L)), let Ψ9((P,L), (G,L)) = 1 im-
plies that

1
m

m∑
j=1

n
∑

i=1







µ2
P(hj)

(ui).µ
2
G(hj)

(ui) + ν2P(hj)
(ui).ν

2
G(hj)

(ui)

+ π2
P(hj)

(ui).π
2
G(hj)

(ui)







max







































n∑

i=1

(µ4
P(hj)

(ui) + ν4P(hj)
(ui) + π4

P(hj)
(ui)),

n∑

i=1

(µ4
G(hj)

(ui) + ν4G(hj)
(ui) + π4

G(hj)
(ui))







































= 1

Then for each j = 1, 2, · · · ,m,

n∑

i=1

(
µ2
P(hj)

(ui).µ
2
G(hj)

(ui) + ν2P(hj)
(ui).ν

2
G(hj)

(ui)

+ π2
P(hj)

(ui).π
2
G(hj)

(ui)

)

= max





n∑

i=1

(µ4
P(hj)

(ui) + ν4P(hj)
(ui) + π4

P(hj)
(ui)),

n∑

i=1

(µ4
G(hj)

(ui) + ν4G(hj)
(ui) + π4

G(hj)
(ui))





=⇒ ~V1 · ~V2 = max{( ~V1 · ~V1)
2, ( ~V2 · ~V2)

2} (11)

where,
~V1 =

(

µ2
P(hj)

(u1), ..., µ2
P(hj)

(un), ν2P(hj)
(u1), ..., ν2P(hj)

(un), π2
P(hj)

(u1), ..., π2
P(hj)

(un)
)

~V2 =
(

µ2
G(hj)

(u1), ..., µ2
G(hj)

(un), ν2G(hj)
(u1), ..., ν2G(hj)

(un), π2
G(hj)

(u1), ..., π2
G(hj)

(un)
)

.

The Cauchy Schwarz inequality for positive real numbers gives,
~V1 ·

~V2 ≤ ( ~V1 ·
~V1).( ~V2 ·

~V2) ≤ max{( ~V1 ·
~V1)

2, ( ~V2 ·
~V2)

2} and the equality

retains iff ~V1 = c ~V2 for a constant c.

Thus from equation 11 we get,

(
n∑

i=1

µ2
P(hj)

(ui),
n∑

i=1

ν2
P(hj)

(ui),
n∑

i=1

π2
P(hj)

(ui)

)
=

c

(
n∑

i=1

µ2
G(hj)

(ui),
n∑

i=1

ν2
G(hj)

(ui),
n∑

i=1

π2
G(hj)

(ui)

)
and that directly implies that

c = 1. Thus ~V1 = ~V2.
Now we are going to prove axiom A4. So consider (P,L) ⊑ (G,L ⊑

(R,L). It implies that µP(hj)(ui) ≤ µG(hj)(ui) ≤ µR(hj)(ui) and νP(hj)(ui) ≥
νG(hj)(ui) ≥ νR(hj)(ui) ∀i, j.

1.

Ψ3((P,L), (G,L)) = 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|+

|π2
P(hj)

(ui)− π2
G(hj)

(ui)|
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8 Athira T M et al.

Ψ3((P,L), (R,L)) = 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|+

|π2
P(hj)

(ui)− π2
R(hj)

(ui)|




Let Ψ3((P,L), (G,L))− Ψ3((P,L), (R,L)) = ∆Ψ3.

∆Ψ3 =
1

2mn

m
∑

j=1

n
∑

i=1











|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|+ |ν2
P(hj)

(ui)− ν2
R(hj)

(ui)|+

|π2
P(hj)

(ui)− π2
R(hj)

(ui)| − |µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|−

|ν2
P(hj)

(ui)− ν2
G(hj)

(ui)| − |π2
P(hj)

(ui)− π2
G(hj)

(ui)|











=
1

2mn

m
∑

j=1

n
∑

i=1











µ2
R(hj)

(ui)− µ2
G(hj)

(ui) + ν2
G(hj)

(ui)− ν2
R(hj)

(ui)+

|µ2
P(hj)

(ui) + ν2
P(hj)

(ui)− (µ2
R(hj)

(ui) + ν2
R(hj)

(ui)|−

|µ2
P(hj)

(ui) + ν2
P(hj)

(ui)− (µ2
G(hj)

(ui) + ν2
G(hj)

(ui)|











Consider four cases;

Case 1: µ2
P(hj)

(ui) + ν2
P(hj)

(ui) ≥ max{µ2
R(hj)

(ui) + ν2
R(hj)

(ui), µ
2
G(hj)

(ui) +

ν2
G(hj)

(ui)}

then ∆Ψ3 = 1
2mn

m∑
j=1

n∑
i=1

(
ν2
G(hj)

(ui)− ν2
R(hj)

(ui)
)
≥ 0.

Case 2: µ2
P(hj)

(ui) + ν2
P(hj)

(ui) ≤ min{µ2
R(hj)

(ui) + ν2
R(hj)

(ui), µ
2
G(hj)

(ui) +

ν2
G(hj)

(ui)}

then ∆Ψ3 = 1
2mn

m∑
j=1

n∑
i=1

2
(
µ2
R(hj)

(ui)− µ2
G(hj)

(ui)
)
≥ 0.

Case 3: µ2
G(hj)

(ui) + ν2
G(hj)

(ui) ≤ µ2
P(hj)

(ui) + ν2
P(hj)

(ui) ≤ µ2
R(hj)

(ui) +

ν2
R(hj)

(ui) then,

∆Ψ3 = 1
2mn

m∑
j=1

n∑
i=1

2
(
µ2
R(hj)

(ui) + ν2
G(hj)

(ui)− µ2
P(hj)

(ui)− ν2
P(hj)

(ui)
)

≥ 1
2mn

m∑
j=1

n∑
i=1

2

(
[µ2

P(hj)
(ui) + ν2P(hj)

(ui)− ν2R(hj)
(ui)]+

ν2G(hj)
(ui)− µ2

P(hj)
(ui)− ν2P(hj)

(ui)

)

= 1
2mn

m∑
j=1

n∑
i=1

2
(
ν2
G(hj)

(ui)− ν2
R(hj)

(ui)
)
≥ 0.

Case 4: µ2
R(hj)

(ui) + ν2
R(hj)

(ui) ≤ µ2
P(hj)

(ui) + ν2
P(hj)

(ui) ≤ µ2
G(hj)

(ui) +

ν2
G(hj)

(ui) then

∆Ψ3 = 1
2mn

m∑
j=1

n∑
i=1

2
(
µ2
P(hj)

(ui) + ν2
P(hj)

(ui)− ν2
R(hj)

(ui)− µ2
G(hj)

(ui)
)
≥

1
2mn

m∑
j=1

n∑
i=1

2

(
µ2
P(hj)

(ui) + ν2P(hj)
(ui)− [µ2

P(hj)
(ui)

+ ν2P(hj)
(ui)− µ2

R(hj)
(ui)]− µ2

G(hj)
(ui)

)

= 1
2mn

m∑
j=1

n∑
i=1

2
(
µ2
R(hj)

(ui)− µ2
G(hj)

(ui)
)
≥ 0.

By considering all the above cases it is obtained that Ψ3((P,L), (G,L)) ≥
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Similarity measures of PFSSs and clustering analysis 9

Ψ3((P,L), (R,L)) and same way it can be proved
Ψ3((G,L), (R,L)) ≥ Ψ3((P,L), (R,L)).

2.

Ψ4((P,L), (G,L)) =
1

mn

m∑

j=1

n∑

i=1

cos

[
π

2
max{

|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|,

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|}

]

Ψ4((P,L), (R,L)) =
1

mn

m∑

j=1

n∑

i=1

cos

[
π

2
max{

|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|,

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|}

]

Since |µ2
P(hj)

(ui) − µ2
G(hj)

(ui)| ≥ |µ2
P(hj)

(ui) − µ2
R(hj)

(ui)|, |ν2
P(hj)

(ui) −

ν2
G(hj)

(ui)| ≥ |ν2
P(hj)

(ui) − ν2
R(hj)

(ui)| and cosine is increasing on [0, π/2],

it is directly obtained that Ψ4((G,L), (R,L)) ≥ Ψ4((P,L), (R,L)).
Similarly we get Ψ4((G,L), (R,L)) ≥ Ψ4((P,L), (R,L)).

3.

Ψ6((P,L), (G,L)) = 1−
1

m

m∑

j=1




n∑

i=1

|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|

+ |ν2P(hj)
(ui)− ν2G(hj)

(ui)|
n∑

i=1

|µ2
P(hj)

(ui) + µ2
G(hj)

(ui)|

+ |ν2P(hj)
(ui) + ν2G(hj)

(ui)|




Ψ6((P,L), (R,L)) = 1−
1

m

m∑

j=1




n∑

i=1

|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|

+ |ν2P(hj)
(ui)− ν2G(hj)

(ui)|
n∑

i=1

|µ2
P(hj)

(ui) + µ2
R(hj)

(ui)|

+ |ν2P(hj)
(ui) + ν2R(hj)

(ui)|




We have,

(
|µ2

P(hj)
(ui)− µ2

G(hj)
(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|

)
≤

(
|µ2

P(hj)
(ui)− µ2

R(hj)
(ui)|+

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|

)

=⇒ 1






|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|







≤ 1






|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|







=⇒ 1+
2
(

µ2
P(hj)

(ui)+ν2
R(hj)

(ui)
)







|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|







≤ 1+
2
(

µ2
P(hj)

(ui)+ν2
G(hj)

(ui)
)







|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|
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10 Athira T M et al.

=⇒







|µ2
P(hj)

(ui) + µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui) + ν2R(hj)

(ui)|













|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|







≤







|µ2
P(hj)

(ui) + µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui) + ν2G(hj)

(ui)|













|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|







=⇒ 1− 1
m

m∑
j=1

n
∑

i=1







|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|







n
∑

i=1







|µ2
P(hj)

(ui) + µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui) + ν2G(hj)

(ui)|







≥

1− 1
m

m∑
j=1

n
∑

i=1







|µ2
P(hj)

(ui)− µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2R(hj)

(ui)|







n
∑

i=1







|µ2
P(hj)

(ui) + µ2
R(hj)

(ui)|+

|ν2P(hj)
(ui) + ν2R(hj)

(ui)|







.

Thus Ψ6((P,L), (G,L)) ≥ Ψ6((P,L), (R,L)) and similarly it can be proven
that Ψ4((G,L), (R,L)) ≥ Ψ4((P,L), (R,L)).

Theorem 2 For r = 1, 2, 3, 4, 5, 6, 8, 9, 10 and α = β = 1/2,

1. Ψr((P,L), (G,L)
c) = Ψr((P,L)

c, (G,L))
2. Ψr((P,L)

c, (G,L)c) = Ψr((P,L), (G,L))
3. Ψr((P,L) ⊓ (G,L), (P,L) ⊔ (G,L)) = Ψr((P,L), (G,L)), r 6= 3, 9, 10

Proof

Ψ1((P,L), (G,L)
c) =

n∑
i=1

m∑
j=1

(
min{µ2

P(hj)
(ui), ν

2
G(hj)

(ui)}+

min{ν2P(hj)
(ui), µ

2
G(hj)

(ui)}

)

n∑
i=1

m∑
j=1

(
max{µ2

P(hj)
(ui), ν

2
G(hj)

(ui)}+

max{ν2P(hj)
(ui), µ

2
G(hj)

(ui)}

)

=

n∑
i=1

m∑
j=1

(
min{ν2P(hj)

(ui), µ
2
G(hj)

(ui)}+

min{µ2
P(hj)

(ui), ν
2
G(hj)

(ui)}

)

n∑
i=1

m∑
j=1

(
max{ν2P(hj)

(ui), µ
2
G(hj)

(ui)}+

max{µ2
P(hj)

(ui), ν
2
G(hj)

(ui)}

)

= Ψ1((P,L)
c, (G,L))

Similarly the rest of the proof can be done.

Theorem 3 For r = 2, 3, 4, 5 we get,

1. Ψr((P,L), (P,L) ⊓ (G,L)) = Ψr((G,L), (P,L) ⊔ (G,L))
2. Ψr((P,L), (P,L) ⊔ (G,L)) = Ψr((G,L), (P,L) ⊓ (G,L))
3. Ψr((P,L), (P,L) + (G,L)) = Ψr((G,L), (P,L).(G,L))
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Similarity measures of PFSSs and clustering analysis 11

4. Ψr((P,L), (P,L).(G,L)) = Ψr((G,L), (P,L) + (G,L))

Proof Here we give proof for r = 3 and the proof for remaining values of r
follows similarly.

Ψ3((P,L), (P,L)⊓ (G,L)) = 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
P(hj)

(ui)− µ2
P⊓G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2P⊓G(hj)

(ui)|+

|π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)|




= 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
P(hj)

(ui)−min{µ2
P(hj)

(ui), µ
2
G(hj)

(ui)}|+

|ν2P(hj)
(ui)−min{ν2P(hj)

(ui), ν
2
G(hj)

(ui)}|+

|π2
P(hj)

(ui)−min{π2
P(hj)

(ui), π
2
G(hj)

(ui)}|


 (12)

Ψ3((G,L), (P,L)⊔(G,L)) = 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
G(hj)

(ui)− µ2
P⊔G(hj)

(ui)|+

|ν2G(hj)
(ui)− ν2P⊔G(hj)

(ui)|

+ |π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)|




= 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
G(hj)

(ui)−max{µ2
P(hj)

(ui), µ
2
G(hj)

(ui)}|+

|ν2G(hj)
(ui)−max{ν2P(hj)

(ui), ν
2
G(hj)

(ui)}|+

|π2
G(hj)

(ui)−max{π2
P(hj)

(ui), π
2
G(hj)

(ui)}|


 (13)

We have |π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)| =

|−µ2
P(hj)

(ui)−ν
2
P(hj)

(ui)+min{µ2
P(hj)

(ui), µ
2
G(hj)

(ui)}+min{ν2
P(hj)

(ui), ν
2
G(hj)

(ui)}|

and |π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)| =

|−µ2
G(hj)

(ui)−ν
2
G(hj)

(ui)+max{µ2
P(hj)

(ui), µ
2
G(hj)

(ui)}+min{ν2
P(hj)

(ui), ν
2
G(hj)

(ui)}|.

Consider all the four cases;
Case 1: If µ2

P(hj)
(ui) ≤ µ2

G(hj)
(ui) and ν

2
P(hj)

(ui) ≤ ν2
G(hj)

(ui), then

|π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)|

= | − µ2
P(hj)

(ui)− ν2P(hj)
(ui) + µ2

P(hj)
(ui) + ν2G(hj)

(ui)|

= |ν2G(hj)
(ui)− ν2P(hj)

(ui)|

|π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)|

= | − µ2
G(hj)

(ui)− ν2G(hj)
(ui) + µ2

G(hj)
(ui) + ν2P(hj)

(ui)|

= |ν2P(hj)
(ui)− ν2G(hj)

(ui)|.

Case 2: If µ2
P(hj)

(ui) ≤ µ2
G(hj)

(ui) and ν
2
G(hj)

(ui) ≤ ν2
P(hj)

(ui), then

|π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)|

= | − µ2
P(hj)

(ui)− ν2P(hj)
(ui) + µ2

P(hj)
(ui) + ν2G(hj)

(ui)|

= |ν2G(hj)
(ui)− ν2P(hj)

(ui)|
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12 Athira T M et al.

|π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)|

= | − µ2
G(hj)

(ui)− ν2G(hj)
(ui) + ν2G(hj)

(ui) + ν2P(hj)
(ui)|

= |ν2P(hj)
(ui)− ν2G(hj)

(ui)|.

Case 3: If µ2
G(hj)

(ui) ≤ µ2
P(hj)

(ui) and ν
2
G(hj)

(ui) ≤ ν2
P(hj)

(ui), then

|π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)|

= | − µ2
P(hj)

(ui)− ν2P(hj)
(ui) + µ2

G(hj)
(ui) + ν2P(hj)

(ui)|

= |µ2
G(hj)

(ui)− µ2
P(hj)

(ui)|

|π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)|

= | − µ2
G(hj)

(ui)− ν2G(hj)
(ui) + µ2

P(hj)
(ui) + ν2G(hj)

(ui)|

= |µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|.

Case 4: If µ2
G(hj)

(ui) ≤ µ2
P(hj)

(ui) and ν
2
P(hj)

(ui) ≤ ν2
G(hj)

(ui), then

|π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)|

= | − µ2
P(hj)

(ui)− ν2P(hj)
(ui) + µ2

G(hj)
(ui) + ν2G(hj)

(ui)|

= |µ2
G(hj)

(ui)− µ2
P(hj)

(ui) + ν2G(hj)
(ui)− ν2P(hj)

(ui)|

|π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)|

= | − µ2
G(hj)

(ui)− ν2G(hj)
(ui) + µ2

P(hj)
(ui) + ν2G(hj)

(ui)|

= |µ2
P(hj)

(ui)− µ2
G(hj)

(ui) + ν2P(hj)
(ui)− ν2G(hj)(ui)

|.

In all the four cases we have

|π2
P(hj)

(ui)− π2
P⊓G(hj)

(ui)| = |π2
G(hj)

(ui)− π2
P⊔G(hj)

(ui)|.

Thus,

Ψ3((P,L), (P,L) ⊓ (G,L)) = Ψ3((G,L), (P,L) ⊔ (G,L)).

Similarly, the remaining properties can be done.

4 Applications of Similarity Measures of PFSS

Here, a comparison study is carried out and that shows the superiority of the
measure that we introduced. The applications of the obtained results are ex-
plained through the method of cluster analysis. A suitable clustering algorithm
is proposed and displayed an example.
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Similarity measures of PFSSs and clustering analysis 13

4.1 Comparative Study

This section marks out the advantages of similarity measures of PFSS over the
existing measures. Table 1 contains already established similarity measures for
IFSS.

Table 1 Table showing already established similarity measures

Authors Similarity measures

Ψ((P,L), (G,L))

Çağman et al. [7] ΨC(P,G) =

n
∑

i=1

m
∑

j=1







|(µP(hj)
(ui)− νP(hj)

(ui)).

(µG(hj)
(ui)− νG(hj)

(ui))|







n
∑

i=1

m
∑

j=1
max

{||µP(hj)
(ui)− νP(hj)

(ui)||
2,

||µG(hj)
(ui)− νG(hj)

(ui)||
2}

}

Muthukumar et al. [24] ΨM (P,G) =

m
∑

j=1







µP(hj)
(u).µG(hj)

(u)+

νP(hj)
(u).νG(hj)

(u)







m
∑

j=1







(µP(hj)
(u))2 ∨ µG(hj)

(u))2+

(νP(hj)
(u))2 ∨ νG(hj)

(u))2







Mukherjee et al. [23] ΨMu(P,G) = 1

1+ 1
2mn

n
∑

i=1

m
∑

j=1







|µP(hj)
(ui)− µG(hj)

(ui)|
2+

|νP(hj)
(ui)− νG(hj)

(ui)|
2







1
2

Sarala et al. [29] ΨS(P,G) = 1− 1
2mn

n
∑

i=1

m
∑

j=1

(

|µP(hj)
(ui)− µG(hj)

(ui)|+

|νP(hj)
(ui)− νG(hj)

(ui)|

)

A similarity measure for IFSS cannot be directly adopted to a similarity
measure for PFSS, even though PFSS is a generalization of IFSS. For example,
consider the similarity measure SC(P,G) given in the Table 1. The following
example shows that ΨC(P,G) = 0 for entirely different PFSS P and G.

Example 1 Consider the universal set ℧ = {u1, u2} and the parameter set
L = {e1, e2}. The PFSSs (P1,L) and (P2,L) is given as,

(P1,L) =

(
(0.11, 0.89) (0.31, 0.31)
(0.56, 0.56) (0.72, 0.00)

)
and (P2,L) =

(
(0.42, 0.42) (0.61, 0.42)
(0.91, 0.11) (0.33, 0.33)

)
.

Then SC(P1,P2) = 0 where (P1,L) and (P2,L) are two different PFSSs.
Therefore ΨC(P,G) is not a similarity measure for PFSSs. Note that the pro-
posed similarity measure, for example Ψ3(P1,P2) of (P1,L) and (P2,L) is 0.53.

The next example describes a comparative analysis of the new notion of
similarity measure with the remaining notions of similarity measures within
Table 1 in the context of a pattern recognition problem.
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14 Athira T M et al.

Example 2 Take three patterns T1,T2,T3 and an unknown pattern U into
account. It is to be identified that the pattern Q belongs to which class i.e.,
either T1, T2 or T3. The description of each patterns in terms of PFSS is given
below.

Consider the universal set ℧ = {u1, u2} and the parameter set L = {e1, e2}.
Then the patterns are given as,

T1 =

(
(0.19, 0.31) (0.60, 0.12)
(0.58, 0.22) (0.79, 0.11)

)
, T2 =

(
(0.25, 0.25) (0.26, 0.30)
(0.61, 0.22) (0.61, 0.31)

)
,

T3 =

(
(0.34, 0.64) (0.59, 0.15)
(0.29, 0.12) (0.49, 0.18)

)
, U =

(
(0.28, 0.48) (0.41, 0.19)
(0.44, 0.16) (0.66, 0.23)

)
.

The table 2 explains a situation in which pattern recognition using existing
similarity measures fail.

Table 2 Pattern recognition

Ψ(T1,U) Ψ(T2,U) Ψ(T3,U) Decision

ΨM 0.74 0.74 0.74 Can not be classified
ΨMu 0.96 0.96 0.96 Can not be classified
ΨS 0.88 0.89 0.89 Can not be classified
Ψ3(Proposed) 0.82 0.86 0.82 P2

4.2 PFSSs Clustering Algorithm

Clustering analysis has been extensively studied and applied in heterogeneous
fields. A straight forward and practical algorithm is proposed in the PFSSs
environment. Before doing this some useful definitions are incorporated.

Definition 11 Let (Pk,L) be k number of PFSSs over ℧ . M = [Muv]k×k is
called similarity matrix if Muv = Ψ((Pu,L), (Pv,L)) and Ψ((Pu,L), (Pv,L))
denotes the similarity measure between (Pu,L) and (Pv,L) which satisfying,

i 0 ≤ Muv ≤ 1, u, v = 1, 2, · · · , k
ii Muu = 1, u = 1, 2, · · · , k
iii Muv = Mvu, u, v = 1, 2, · · · , k

Definition 12 [32] Let M = [Muv]k×k be a similarity matrix, if M2 =
M ◦ M = [Muv]k × k; then M2 is defined as composition matrix of M,
where Muv = max

p
{min{Mup,Mpv}}, u, v = 1, 2, · · · ,m.

Definition 13 [32] Let M = (Muv)k×k be a similarity matrix. Then in ac-
cordance with a finite compositions M → M2 → M4 →, · · · ,M2p → · · · ,
there must exist an integer p > 0 such that M2p = M2(p+1), and M2p is
known as equivalent similarity matrix.
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Similarity measures of PFSSs and clustering analysis 15

Definition 14 [32] For a given equivalent similarity matrix M = (Muv)k×k,
Γ -cutting matrix of M is MΓ = [MΓ

uv]k×k where,

MΓ
uv =

{
1 if Muv ≥ Γ

0 if Muv < Γ
.

and Γ ∈ [0, 1] is the confidence interval.

Suppose we have k alternatives P1, P2, · · · , Pk characterised by n attributes,
a1, a2, · · · , an. Further, consider there are r experts h1, h2, · · · , hr where each
of them provide their preferences in terms of PFSSs in accordance with at-
tributes given. Our goal is to group the given alternatives Pu(u = 1, 2, · · · , k)
by considering the opinions of each experts with equal importance. The step
by step algorithm for fulfilling our goal is given below.

Step 1: Represent experts’ view points about each alternatives with
respect the attributes in terms of PFSSs. Here, {a1, a2, · · · an} is the
universal set and {h1, h2, · · · , hr} is parameter set.
Step 2: Construct the similarity matrix M = (muv)k×k, where muv =
S3(Pu, Pv) and it can be rewritten as,

Ψ3((P,L), (G,L)) = 1−
1

2mn

m∑

j=1

n∑

i=1




|µ2
P(hj)

(ui)− µ2
G(hj)

(ui)|+

|ν2P(hj)
(ui)− ν2G(hj)

(ui)|+

|π2
P(hj)

(ui)− π2
G(hj)

(ui)|




Step 3: Construct the corresponding similarity matrix M2k, where
k = 1, 2, 3, . . . such as M → M2 → M4 →, · · · ,M2k → · · · , until
M2k = M2k+1.
Step 4: Using definition 14, formulate Γ -cutting matrix MΓ =
[MΓ

uv]k×k for a confidence interval Γ .
Step 5: Classify the PFSSs according to the rule; If every elements in
the uth row (column) of MΓ matrix are identical as the corresponding
elements in vth row (column) of MΓ matrix then respective Pus belong
to the same class.

4.2.1 Illustrative Example

Consider the situation explained by Garg et al. in the paper [11] with the fol-
lowing additional aspect. Instead of considering the opinion of a single expert,
consider five experts and represent each of their explanations separately. The
PFSSs are represented for the ten software evaluated by five experts concern-
ing the four criteria skill in the image processing (IP), measurement equipment
for coordinate/distance/area/volume (ME), producing contour lines by apply-
ing digital elevation models (DEM)/digital surface models (DEM/DSM) and,

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



16 Athira T M et al.

production of 3D modeling/texturing abilities (PM/TA) which are given in
tables 3, 4, · · · , 12.

Table 3 Table showing explanations of software ∆1

IP ME DEM/DSM PM/TA

Expert1 (0.481,0.392) (0.690,0.211) (0.772,0.233) (0.781,0.240)
Expert2 (0.890,0.200) (0.672,0.312) (0.691,0.481) (0.611,0.352)
Expert3 (0.783,0.152) (0.662,0.282) (0.672,0.411) (0.920,0.290)
Expert4 (0.872,0.272) (0.422,0.591) (0.823,0.513) (0.740,0.060)
Expert5 (0.513,0.581) (0.661,0.041) (0.691,0.231) (0.760,0.380)

Table 4 Table showing explanations of software ∆2

IP ME DEM/DSM PM/TA

Expert1 (0.586,0.318) (0.662,0.332) (0.471,0.481) (0.371,0.542)
Expert2 (0.890,0.140) (0.910,0.290) (0.760,0.550) (0.640,0.530)
Expert3 (0.881,0.172) (0.702,0.261) (0.661,0.321) (0.873,0.143)
Expert4 (0.770,0.450) (0.271,0.682) (0.721,0.561) (0.822,0.292)
Expert5 (0.572,0.573) (0.773,0.133) (0.741,0.234) (0.774,0.264)

Table 5 Table showing explanations of software ∆3

IP ME DEM/DSM PM/TA

Expert1 (0.251,0.451) (0.512,0.321) (0.322,0.543) (0.450,0.331)
Expert2 (0.890,0.011) (0.641,0.442) (0.724,0.342) (0.452,0.442)
Expert3 (0.754,0.254) (0.781,0.222) (0.782,0.561) (0.889,0.332)
Expert4 (0.778,0.144) (0.343,0.853) (0.872,0.591) (0.521,0.311)
Expert5 (0.471,0.672) (0.442,0.031) (0.713,0.343) (0.783,0.371)

Table 6 Table showing explanations of software ∆4

IP ME DEM/DSM PM/TA

Expert1 (0.342,0.272) (0.551,0.241) (0.563,0.233) (0.713,0.291)
Expert2 (0.881,0.000) (0.570,0.360) (0.730,0.450) (0.880,0.441)
Expert3 (0.811, 0.156) (0.783,0.223) (0.891,0.452) (0.885,0.465)
Expert4 (0.571,0.572) (0.633,0.173) (0.771,0.441) (0.662,0.233)
Expert5 (0.554,0.234) (0.714,0.312) (0.892,0.342) (0.662,0.142)
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Similarity measures of PFSSs and clustering analysis 17

Table 7 Table showing explanations of software ∆5

IP ME DEM/DSM PM/TA

Expert1 (0.761,0.331) (0.322,0.682) (0.551,0.651) (0.273,0.673)
Expert2 (0.783,0.191) (0.681,0.352) (0.666,0.546) (0.462,0.600)
Expert3 (0.680, 0.272) (0.750,0.262) (0.752,0.431) (0.891,0.289)
Expert4 (0.560,0.150) (0.570,0.271) (0.781,0.654) (0.554,0.252)
Expert5 (0.514,0.592) (0.622,0.562) (0.721,0.322) (0.773,0.363)

Table 8 Table showing explanations of software ∆6

IP ME DEM/DSM PM/TA

Expert1 (0.721,0.321) (0.445,0.274) (0.672,0.322) (0.401,0.301)
Expert2 (0.721,0.244) (0.381,0.624) (0.574,0.567) (0.213,0.733)
Expert3 (0.520,0.330) (0.460,0.770) (0.670,0.540) (0.440,0.620)
Expert4 (0.780,0.372) (0.332,0.672) (0.822,0.472) (0.722,0.132)
Expert5 (0.882,0.121) (0.881,0.214) (0.784,0.234) (0.652,0.652)

Table 9 Table showing explanations of software ∆7

IP ME DEM/DSM PM/TA

Expert1 (0.621,0.261) (0.571,0.292) (0.522,0.362) (0.722,0.131)
Expert2 (0.651,0.251) (0.732,0.362) (0.772,0.361) (0.731,0.231)
Expert3 (0.681,0.162) (0.892,0.272) (0.661,0.321) (0.751,0.142)
Expert4 (0.670,0.240) (0.860,0.321) (0.780,0.330) (0.660,0.130)
Expert5 (0.520,0.120) (0.610,0.240) (0.640,0.460) (0.870,0.230)

Table 10 Table showing explanations of software ∆8

IP ME DEM/DSM PM/TA

Expert1 (0.241,0.481) (0.641,0.352) (0.561,0.122) (0.591,0.311)
Expert2 (0.881,0.242) (0.262,0.573) (0.567,0.611) (0.212,0.661)
Expert3 (0.871,0.132) (0.342,0.783) (0.573,0.573) (0.442,0.722)
Expert4 (0.661,0.471) (0.232,0.712) (0.342,0.621) (0.321,0.711)
Expert5 (0.552,0.732) (0.561,0.461) (0.531,0.622) (0.212,0.782)
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Table 11 Table showing explanations of software ∆9

IP ME DEM/DSM PM/TA

Expert1 (0.574,0.174) (0.554,0.060) (0.550,0.190) (0.420,0.420)
Expert2 (0.821,0.121) (0.212,0.782) (0.661,0.231) (0.232,0.872)
Expert3 (0.820,0.001) (0.770,0.120) (0.770,0.140) (0.890,0.230)
Expert4 (0.780,0.330) (0.330,0.780) (0.540,0.720) (0.110,0.780)
Expert5 (0.131,0.671) (0.330,0.780) (0.560,0.680) (0.321,0.771)

Table 12 Table showing explanations of software ∆10

IP ME DEM/DSM PM/TA

Expert1 (0.45,0.23) (0.51,0.11) (0.56,0.26) (0.88,0.13)
Expert2 (0.83,0.12) (0.33,0.82) (0.76,0.32) (0.45,0.87)
Expert3 (0.89,0.23) (0.73,0.34) (0.89,0.30) (0.17,0.82)
Expert4 (0.56,0.17) (0.78,0.12) (0.88,0.42) (0.77,0.12)
Expert5 (0.47,0.66) (0.67,0.21) (0.66,0.22) (0.78,0.11)

Step 1 From the tables 3, 4, · · · , 12, PFSS representation of software
∆x(x = 1, 2, · · · 10) can be done easily where,
universal set is {IP,ME,DEM/DSM,PM/TA} and
parameter set is {Expert1,Expert2,Expert3,Expert4,Expert5}.

Step 2 The similarity matrix is framed using Ψ3(∆x, ∆y).

M =




1.0000 0.8362 0.8100 0.7850 0.7860 0.7210 0.7796 0.69657 0.6911 0.7423
0.8362 1.0000 0.7792 0.7527 0.7741 0.7094 0.7537 0.6962 0.7070 0.7121
0.8100 0.7792 1.0000 0.7593 0.7857 0.6947 0.7455 0.6986 0.7332 0.7201
0.7850 0.7527 0.7593 1.0000 0.7430 0.6668 0.7723 0.6599 0.6744 0.7613
0.7860 0.7741 0.7857 0.7430 1.0000 0.7113 0.7562 0.6423 0.6854 0.7033
0.7210 0.7094 0.6947 0.6668 0.7113 1.0000 0.6968 0.7249 0.6632 0.6778
0.7796 0.7537 0.7455 0.7723 0.7562 0.6968 1.0000 0.6275 0.6530 0.7269
0.6965 0.6962 0.6986 0.6599 0.6423 0.7249 0.6275 1.0000 0.7474 0.6661
0.6911 0.7070 0.7332 0.6744 0.6854 0.6632 0.6530 0.7474 1.0000 0.6787
0.7423 0.7121 0.7201 0.7613 0.7033 0.6778 0.7269 0.6661 0.6787 1.0000




Step 3 Calculate M2 = M◦M

M2 =




1.0000 0.8362 0.8100 0.7850 0.7860 0.7210 0.7796 0.7210 0.7332 0.7613
0.8362 1.0000 0.8100 0.7850 0.7860 0.7210 0.7796 0.7094 0.7332 0.7527
0.8100 0.8100 1.0000 0.7850 0.7860 0.7210 0.7796 0.7332 0.7332 0.7593
0.7850 0.7850 0.7850 1.0000 0.7850 0.7210 0.7796 0.6986 0.7332 0.7613
0.7860 0.7860 0.7860 0.7850 1.0000 0.7210 0.7796 0.7113 0.7332 0.7430
0.7210 0.7210 0.7210 0.7210 0.7210 1.0000 0.7210 0.7249 0.7249 0.7210
0.7796 0.7796 0.7796 0.7796 0.7796 0.7210 1.0000 0.6986 0.7332 0.7613
0.7210 0.7094 0.7332 0.6986 0.7113 0.7249 0.6986 1.0000 0.7474 0.6986
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 0.7474 1.0000 0.7201
0.7613 0.7527 0.7593 0.7613 0.7430 0.7210 0.7613 0.6986 0.7201 1.0000
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Calculate M4 = M2 ◦M2

M4 =




1.0000 0.8362 0.8100 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.8362 1.0000 0.8100 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.8100 0.8100 1.0000 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.7850 0.7850 0.7850 1.0000 0.7850 0.7249 0.7796 0.7332 0.7332 0.7613
0.7860 0.7860 0.7860 0.7850 1.0000 0.7249 0.7796 0.7332 0.7332 0.7613
0.7249 0.7249 0.7249 0.7249 0.7249 1.0000 0.7249 0.7249 0.7249 0.7210
0.7796 0.7796 0.7796 0.7796 0.7796 0.7249 1.0000 0.7332 0.7332 0.7613
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 1.0000 0.7474 0.7332
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 0.7474 1.0000 0.7332
0.7613 0.7613 0.7613 0.7613 0.7613 0.7210 0.7613 0.7332 0.7332 1.0000




Calculate M8 = M4 ◦M4

M8 =




1.0000 0.8362 0.8100 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.8362 1.0000 0.8100 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.8100 0.8100 1.0000 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.7850 0.7850 0.7850 1.0000 0.7850 0.7249 0.7796 0.7332 0.7332 0.7613
0.7860 0.7860 0.7860 0.7850 1.0000 0.7249 0.7796 0.7332 0.7332 0.7613
0.7249 0.7249 0.7249 0.7249 0.7249 1.0000 0.7249 0.7249 0.7249 0.7249
0.7796 0.7796 0.7796 0.7796 0.7796 0.7249 1.0000 0.7332 0.7332 0.7613
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 1.0000 0.7474 0.7332
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 0.7474 1.0000 0.7332
0.7613 0.7613 0.7613 0.7613 0.7613 0.7249 0.7613 0.7332 0.7332 1.0000




Calculate M16 = M8 ◦M8

M16 =




1.0000 0.8362 0.8100 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.8362 1.0000 0.8100 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.8100 0.8100 1.0000 0.7850 0.7860 0.7249 0.7796 0.7332 0.7332 0.7613
0.7850 0.7850 0.7850 1.0000 0.7850 0.7249 0.7796 0.7332 0.7332 0.7613
0.7860 0.7860 0.7860 0.7850 1.0000 0.7249 0.7796 0.7332 0.7332 0.7613
0.7249 0.7249 0.7249 0.7249 0.7249 1.0000 0.7249 0.7249 0.7249 0.7249
0.7796 0.7796 0.7796 0.7796 0.7796 0.7249 1.0000 0.7332 0.7332 0.7613
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 1.0000 0.7474 0.7332
0.7332 0.7332 0.7332 0.7332 0.7332 0.7249 0.7332 0.7474 1.0000 0.7332
0.7613 0.7613 0.7613 0.7613 0.7613 0.7249 0.7613 0.7332 0.7332 1.0000




It is obtained that M8 = M16. Thus the equivalent similarity matrix is
identified as M8.

Step 4 Let the confidence level Γ = 0.7860. The Γ -cutting matrix MΓ is obtained
as,

MΓ =




1 1 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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Step 5 The classification of ∆x(x = 1, 2, · · · 10)s by using MΓ matrix is obtained
as, {∆1, ∆2, ∆3, ∆5}, {∆4},{∆6} ,{∆7} ,{∆8}, {∆9}, {∆10}.

Thus, under the given criteria with confidence level Γ = 0.7860, we are able
to conclude that the data processing and analysis of software ∆1, ∆2, ∆3 and
∆5 come under the same group, and each of the remaining ones form single
groups.

Table 13 Table showing clustering of ∆xs for different confidence level

Confidence level Clusters Number of

Classes

0.0000 ≤ Γ ≤ 0.7249 {∆1, ∆2, ∆3, ∆4, ∆5, ∆6, ∆7, ∆8, ∆9, ∆10} 1
0.7249 < Γ ≤ 0.7332 {∆1, ∆2, ∆3, ∆4, ∆5, ∆7, ∆8, ∆9, ∆10}, {∆6} 2
0.7332 < Γ ≤ 0.7613 {∆1, ∆2, ∆3, ∆4, ∆5, ∆7, ∆10}, {∆6}, {∆8, ∆9} 3
0.7613 < Γ ≤ 0.7796 {∆1, ∆2, ∆3, ∆4, ∆5, ∆7}, {∆6}, {∆8}, {∆9}, {∆10} 5
0.7796 < Γ ≤ 0.7850 {∆1, ∆2, ∆3, ∆4, ∆5}, {∆6}, {∆7}, {∆8}, {∆9}, {∆10} 6
0.7850 < Γ ≤ 0.7860 {∆1, ∆2, ∆3, ∆5}, {∆4},{∆6}, {∆7}, {∆8},{∆9},{∆10} 7
0.7860 < Γ ≤ 0.8100 {∆1, ∆2, ∆3}, {∆4}, {∆5}, {∆6}, {∆7}, {∆8}, {∆9}, {∆10} 8
0.8100 < Γ ≤ 0.8362 {∆1, ∆2}, {∆3}{∆4}, {∆5}, {∆6}, {∆7}, {∆8}, {∆9}, {∆10} 9
0.8362 < Γ ≤ 1.0000 {∆1}, {∆2}, {∆3}, {∆4}, {∆5}, {∆6}, {∆7}, {∆8}, {∆9}, {∆10} 10

Since the MΓ matrix varies according to different confidence levels, we
obtain different clustering results. From Table 13, it is obtained that as the
confidence level increases, the number of patterns obtained also increases. The
clustering effect diagram (Figure 1) obtained by analysing the table 13 and
we can conclude that software are separated mainly into the following two di-
rections, {∆1, ∆2, ∆3, ∆4, ∆5, ∆7, ∆8, ∆9, ∆10} and {∆6}. Thus, one can use
the clustering effect diagram to take decisions in the above problem with a
prescribed confidence level. Since in the proposed clustering algorithm we con-
sidered the opinions of five experts for choosing the software, it will be more
accurate than the present algorithms.
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0.0000

0.7249

0.7332

0.7613

0.7796

0.7850
0.7860

0.8100

0.8362

1.0000

∆1 ∆3 ∆2 ∆4 ∆5 ∆7 ∆6 ∆10 ∆8 ∆9

Fig.1 Clustering effect diagram corresponding to Ten software

5 Conclusion

This paper put forward the notion of similarity measure for PFSSs. Different
expressions to compute similarity measures are obtained and a comparative
study is executed. Finally, a real-life application, viz. cluster analysis is ex-
plained. This paper can fill up the deficiency of a measuring tool for finding
similarities of objects when the vagueness is represented as PFSSs. We plan
to study the concept of information measures of PFSS which are useful in
decision-making problems in future.
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