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Abstract
The complex q-rung orthopair fuzzy sets (Cq-ROFSs) can serve as a generalization of q-rung orthopair fuzzy sets (q-

ROFSs) and complex fuzzy sets FS (CFSs). Cq-ROFSs provide more freedom for people handling uncertainty and

vagueness by the truth and falsity grades on the condition that the sum of the q-powers of the real part and imaginary part is

within the unit interval. Further, Frank operational laws are an extended form of Archimedes’ T mode and Archimedes’ S

mode and Frank aggregation operators have a certain parameter which makes them more flexible and more generalized

than many other aggregation operators in the process of information fusion. The objectives of this paper are to extend the

Frank operations to the complex q-rung orthopair fuzzy environment and to introduce their score function and accuracy

function. Meanwhile, some complex q-rung fuzzy Frank aggregation operators are developed, such as the complex q-rung

orthopair fuzzy Frank weighted averaging (Cq-ROFFWA) operator, the complex q-rung orthopair fuzzy Frank weighted

geometric (Cq-ROFFWG) operator, and the complex q-rung orthopair fuzzy Frank ordered weighted averaging (Cq-

ROFFOWA) operator, and their special cases are discussed. In addition, an innovative MADM method is introduced

according to the propounded operators to deal with multi-attribute decision-making problems under the complex q-rung

orthopair fuzzy environment. Consequently, the practicability and effectiveness of the created methods are proposed by

parameter exploration and comparative analysis.

Keywords Complex q-rung orthopair fuzzy set � Aggregation operators � Frank operator � Multi-attribute decision making

1 Introduction

Multi-attribute decision-making (MADM) problems have

gradually become an important area in decision science.

Since the objects are usually uncertain, fuzzy numbers

(Chou et al. 2006; Fan and Feng 2009) are more fit for

expressing some attribute values involved in MADM

problems. The fuzzy sets (FSs) (Zadeh 1965) which were

defined in 1965 are suitable to express fuzzy multi-criteria

decision-making problems with vagueness. Atanassov and

Gargov (1989) introduced intuitionistic fuzzy sets (IFSs),

which contain a membership function and a non-member-

ship function. In the last few decades, scholars (Xu 2007;

Chen et al. 2011; Zhang 2013) have introduced many rel-

evant intuitionistic fuzzy aggregation operators. However,

in some special conditions, the membership degree plus the

non-membership degree may be greater than one. IFSs

could not describe this situation, so Yager (2013) intro-

duced Pythagorean fuzzy sets (PFSs). A PFS is
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characterized by the sum of the squares of the membership

function and the non-membership function being less than

or equal to 1. The application of PFS is wider than that of

IFSs in expressing the uncertainty in MADM problems.

Ever since the first appearance of PFS, there are many

studies (Yager 2013, 2014; Zhang and Xu 2014; Peng and

Yang 2015, 2016; Zhang 2016a, 2016b; Gou et al. 2016;

Mahanta and Panda 2021; Ma et al. 2021;Du et al. 2017;

Akram et al.2020; Liu et al.

2021a, 2021b, 2021c, 2021d, 2021e; Xian and Cheng 2021;

Zhang and Ma 2020; Sarkar and Biswas 2020; Shakeel

et al. 2020) on MADM problems under Pythagorean fuzzy

circumstances.

However, in some special conditions, if a decision-

maker gives 0.8 for membership degree and 0.7 for non-

membership degree, then the sum of the squares of both is

greater than 1. For addressing such types of difficulties,

Yager (2016) explored the q-rung orthopair fuzzy set

(QROFS) with a condition that the sum of the q-power of

membership degree and the q-power of non-membership

degree is restricted to [0, 1]. The QROFS is usually able to

cope with much higher degrees of uncertainty. Since it was

initiated, numerous researchers have exploited and utilized

it in various areas (Wang et al. 2019; Du et al. 2021; Xing

et al. 2019; Ju et al. 2019a, 2019b, 2020; Gao et al. 2019;

Garg 2021a; Mahmood and Ali 2021a, 2021b; Aydemir

and Yilmaz Gündüz 2020; Rawat and Komal 2022; Akram

et al. 2021; Liu et al.2021a, 2021b, 2021c, 2021d, 2021e).

According to the above prevailing studies, similar

approaches are limited and are unable to represent the

partial ignorance of the data and its fluctuations at a given

period of time. To handle this, Ramot et al. (2002) intro-

duced complex FS (CFS). Additionally, Alkouri and Salleh

(2012) presented the theory of complex IFS (CIFS), which

extended the range of the supporting grade and the sup-

porting against grade from real numbers to complex

numbers with a unit disc, and the CIFS can describe two-

dimensional information.

Based on the CIFS, Ullah et al. (2020) proposed the

complex PFS (CPFS), which is useful for efficiently

describing uncertain and unreliable information. A char-

acteristic of CPFS is that the sum of the square of the real

part (and imaginary part) of complex membership grade

and the square of the real part (and imaginary part) of

complex non-membership grade is limited to [0, 1].

However, the CIFS and CPFS could not cope with infor-

mation whose sum of the squares of the real part (also for

the imaginary part) of both grades exceeds the unit interval.

For example, some experts are asked to provide their

preference about the degree of an alternative Di on a cri-

terion Cj, and the complex-valued membership grade may

be 0:93ei2p 0:84ð Þ, and the complex-valued non-membership

grade may be 0:86ei2p 0:75ð Þ. To describe this type of

information, Liu et al. (2020b, 2020c, 2020a) proposed the

theory of complex QROFS (Cq-ROFS) with the condition

the sum of the q-power of the real part (also for an imag-

inary part) of membership degree and real part (imaginary

part) of the non-membership degree is belonging to [0, 1].

Since the Cq-ROFS is an extension of CIFS and CPFS to

deal with real-life problems, the complex q-ROFS becomes

a powerful tool for solving uncertain problems. Garg et al.

(2021a) explored the aggregation operators under Cq-

ROFSs. Afterward, the Cq-ROFS is usually able to deal

with much higher degrees of uncertainty. The application

of the Cq-ROFS is more exquisitely than that of CIFS and

CPFS to describe the ambiguity in real-decision activities.

Since the Cq-ROFS’ appearance, scholars and various

researchers have paid great attention to multiple attribute

group decision-making problems under complex q-rung

orthopair fuzzy circumstances. For example, Liu et al.

(2020b, 2020c, 2021a, 2021b, 2021c2020a) propounded

distance measures and cosine similarity measures for Cq-

ROFS and proposed the Schweizer–Sklar operator, Muir-

head mean operator, BM operator, and Einstein operators

to Cq-ROFS. Mahmood and Ali (2021a, 2021b) defined

complex q-rung orthopair fuzzy Hamacher aggregation

operators for Cq-ROFS. Yuan et al. (2020) propounded

some fuzzy 2-tuple linguistic Maclaurin symmetric mean

operators based on the Cq-ROFS. Garg et al. (2021c)

developed complex interval-valued q-rung orthopair fuzzy

set. Zeeshan and Mahmood (2020) extended Maclaurin

symmetric mean operators in complex q-rung orthopair

fuzzy environment. Garg et al. (2021b) defined complex

q-rung orthopair Hamy Mean Operators.

Frank t-norm and t-conorm (1979) are generalizations of

probabilistic and Lukasiewicz t-norm and t-conorm. The

Frank t-norm and t-conorm are more flexible and adequate

to deal with practical decision making since they have a

parameter. In recent years, the Frank operator has received

increased attention from the scientific community, and it

has achieved a lot of researcher results on different fuzzy

sets. Some operations on various fuzzy sets have been

introduced based on the Frank T-norm and S-norm, such as

intuitionistic Frank operations (Xia et al. 2012; Zhang et al.

2015), single-valued neutrosophic Frank operations (Garg

2016), hesitant Frank operations (Qin et al. 2016), dual-

hesitant fuzzy Frank operations (Wang et al. 2016), interval

intuitionistic linguistic Frank aggregation operators (Du

and Hou 2018), Frank prioritized Bonferroni mean opera-

tions (Ji et al. 2018), linguistic intuitionistic fuzzy Frank

weighted Heronian mean operator (Peng et al. 2018),

interval-valued probabilistic hesitant fuzzy aggregation

operators (Yahya et al. 2021), triangular interval type-2

fuzzy Frank operations (Qin and Liu 2014), interval-valued
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Pythagorean Frank power operations (Yang et al. 2018),

picture fuzzy Frank weighted averaging operator (Seikh

and Mandal 2021a). Some researchers also studied various

mathematical properties of the Frank t-norms (Liu et al.

2018; Xing et al. 2019; Zhou et al. 2019; Seikh and Mandal

2021b).

To the best of our knowledge, Frank t-norm and t-con-

orm are a generalization of algebraic triangular t-norm and

t-conorm and Lukasiewicz t-norm and t-conorm. Further-

more, compared with algebraic operators, Einstein opera-

tors and many other operators, the application of Frank

operator rule is more flexible and robust. The Frank t-norm

and t-conorm involve a parameter, which make them more

robust and resilient than other triangular norms in the

procedure of fusion of information. Frank operator has less

calculation quantity than many operators such as Heronian

Mean (HM) operator and Bonferroni mean (BM) operator,

and Frank operator is only one kind of t-norm satisfying the

compatibility rule.

The primary motivations and contributions of this article

are shown as follows:

1. Since the Cq-ROFS is an extension of CIFS and CPFS,

it has more proficient, extensive and reliable than

existing notions like CIFS and CPFS to deal with

unpredictable information in the decision-making pro-

cess. Further, up to now, there is not any research on

the combination of complex q-rung orthopair fuzzy

circumstance with Frank aggregation operator. So, it is

very significant to extend the Frank operator to solve

MCDM problems under complex q-rung orthopair

fuzzy circumstance.

2. The Frank operator based on CQROFS is a meaningful

concept to cope with two-dimensional information in a

single set. So the goals of this article are to present

complex q-rung orthopair fuzzy Frank weighted aver-

aging (Cq-ROFFWA) operator, complex q-rung ortho-

pair fuzzy Frank weighted geometric (Cq-ROFFWG)

operator and complex q-rung orthopair fuzzy Frank

ordered weighted averaging (Cq-ROFFOWA)

operator.

3. To discuss some properties of these operators, such as

the monotonicity, idempotency and boundedness, the

relationships between these operators are put forward.

4. To design two different innovative approaches based

on Cq-ROFFWA operator and Cq-ROFFWG operator.

5. To propound two example of its application, which

validate the feasibility and reliability of the proposed

methods. Furthermore, comparing the propounded

methods with the existing methods, we will conclude

that the proposed methods are superior to the existing

methods, and we will show that the Frank t-conorm and

t-norm aggregation operators make the aggregation

process more flexible.

The article is organized as below. We review some basic

concepts and definitions of the existing sets in Sect. 2. In

Sect. 3, we develop the operational laws of Frank t-norm

and t-conorm under complex q-rung orthopair fuzzy cir-

cumstances. In Sect. 4, we propose some complex q-rung

orthopair fuzzy Frank operators. In Sect. 6, we define two

approaches for MADM with complex q-rung orthopair

fuzzy information based on the developed operators. In

Sect. 7, a numerical example is introduced to show the

efficiency and a contrastive study is given to certificate the

merits of the proposed method. Some conclusion remarks

are listed in Sect. 8.

2 Preliminaries

Definition 1 (Liu et al. 2020a, b) Cq-ROFS is defined as

follows:

C ¼ x; uC xð Þ; vC xð Þð Þð Þ=x 2 Xh i;

where uC xð Þ:X ! w1 : w1 2 C; w1j j � 1f g; vC xð Þ : X !
w2 : w2 2 C; w2j j � 1f g; such that uC xð Þ ¼ a1 þ

ib1; vC xð Þ ¼ a2 þ ib2; provided that 0� w1j jqþ w2j jq � 1; or

uC xð Þ ¼ GC xð Þei:2pWGC
xð Þ and vC xð Þ ¼ HC xð Þei:2pWHC

xð Þ,

where 0�Gq
C xð Þ þ Hq

C xð Þ� 1and 0�Wq
GC

xð Þ þWq
HC

xð Þ�
1. The complex Cq-RFN is given as C ¼
GC xð Þei:2pWGC

xð Þ;HC xð Þei:2pWHC
xð Þ� �

.

Definition 2 (Liu et al. 2020a, b) For any Cq-ROFN

C1 ¼ G1e
i2pWG1 ;H1e

i2pWH1

� �
, the score function and accu-

racy function are proposed as below

S C1ð Þ ¼ 1

2
Gq

1 þWq
G1

� Hq
1 �Wq

H1

� �
; ð1Þ

H C1ð Þ ¼ 1

2
Gq

1 þWq
G1

þ Hq
1 þWq

H1

� �
; ð2Þ

where S C1ð Þ 2 �1; 1½ � and H C1ð Þ 2 0; 1½ �:

Definition 3 (Liu et al. 2020a, b) For any two Cq-

ROFSs,C1 and C2, the following rules are used:

1. If S C1ð Þ[ S C2ð Þ, then C1 [C2;

2. If S C1ð Þ ¼ S C2ð Þ, then

(1) If H C1ð Þ[H C2ð Þ, then C1 [C2;

(2) If H C1ð Þ ¼ H C2ð Þ, then C1 ¼ C2.

Definition 4 (Liu et al. 2020a, b) For any two Cq-ROFNs

C1 ¼ G1e
i2pWG1 ;H1e

i2pWH1

� �
and C2 ¼ G2e

i2pWG2 ;
�

H2e
i2pWH2 Þ, with k� 1, then
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(1) C1 � C2 ¼ Gq
1 þ Gq

2 � Gq
1G

q
2

� �1
q

�

e
i2p Wq

G1
þWq

G2
�Wq

G1
Wq

G2

� �1
q

;H1H2e
i2pWH1

WH2 Þ;
(2) C1 � C2 ¼ G1G2e

i2pWG1
WG2 ; Hq

1 þ Hq
2 � Hq

1H
q
2

� �1
q

�

e
i2p Wq

H1
þWq

H2
�Wq

H1
Wq

H2

� �1
q�
;

(3) kC1 ¼ 1 � 1 � Gq
1

� �k� �1
q

e
i2p 1� 1�Wq

G1

� �k
� �1

q

;

0

BB@

Hk
1e

i2pWk
H1

!

;

(4) Ck
1 ¼ Gk

1e
i2pWk

G1 ; 1 � 1 � Hq
1

� �k� �1
q

�

e
i2p 1� 1�Wq

H1

� �k
� �1

q

�
:

3 Complex q-rung orthopair fuzzy Frank
aggregation operators

Under this part, we investigate Frank’s operational laws for

complex q-rung orthopair fuzzy numbers, which are

developed as follows.

Theorem 1 For any three Cq-ROFNs

C1 ¼ G1e
i2pWG1 ;H1e

i2pWH1

� �
, C2 ¼ G2e

i2pWG2 ;H2e
i2pWH2

� �

and C ¼ Gei2pWG ;Hei2pWHð Þ, with any k; k1; k2 [ 0, then

(1) C1 � C2 ¼ C2 � C1;

(2) C1 � C2 ¼ C2 � C1;

(3) k � C1 � C2ð Þ ¼ kC1 � kC2;

(4) k1k2ð Þ � C ¼ k1 � k2 � Cð Þ;
(5) k1C � k2C ¼ k1 þ k2ð Þ � C;

(6) C1 � C2ð Þk¼ Ck
1 � Ck

2;

(7) Ck1

1 � Ck2

1 ¼ Ck1þk2

1 :

The proof of Theorem 1 is given in ‘‘Appendix.’’

Theorem 2 For any three Cq-ROFNs C1 ¼
G1e

i2pWG1 ;H1e
i2pWH1

� �
and C2 ¼ G2e

i2pWG2 ;H2e
i2pWH2

� �
,

then

(1) Cc
1 _ Cc

2 ¼ C1 ^ C2ð Þc;
(2) Cc

1 � Cc
2 ¼ C1 � C2ð Þc;

(3) Cc
1 � Cc

2 ¼ C1 � C2ð Þc;
(4) C1 _ C2ð Þ � C1 ^ C2ð Þ ¼ C1 � C2;
(5) C1 _ C2ð Þ � C1 ^ C2ð Þ ¼ C1 � C2;

(6) C1 _ C2ð Þ ^ C3 ¼ C1 ^ C3ð Þ _ C1 ^ C3ð Þ;
(7) C1 _ C2ð Þ � C3 ¼ C1 � C3ð Þ _ C1 � C3ð Þ;
(8) C1 ^ C2ð Þ � C3 ¼ C1 � C3ð Þ ^ C1 � C3ð Þ;
(9) C1 ^ C2ð Þ � C3 ¼ C1 � C3ð Þ ^ C1 � C3ð Þ:

The proof of Theorem 2 can be proven from the Frank

operational laws of Cq-ROFNs, so it is omitted here.

3.1 Complex q-rung orthopair fuzzy Frank
aggregation operators

In theme of this subsection, the complex q-rung orthopair

fuzzy Frank aggregation operators are introduced, and the

relevant properties are given

Definition 5 Let Cj ¼ Gje
i2pWGj ;Hje

i2pWHj
� �

j ¼ 1; 2; :::; nð Þ
be a family of Cq-ROFNs.wj be the weight of Cj, meeting

wj 2 0; 1½ �; and
Pn

j¼1 wj ¼ 1: The complex q-rung ortho-

pair fuzzy Frank weighted averaging (Cq-ROFFWA)

operator is initiated by

The aggregated value by using Definition 5 is still a Cq-

ROFN.

Proof By using mathematical induction to prove Eq. (3).

Cq - ROFFWA C1;C2; :::Cnð Þ ¼ �
n

j¼1
wjCj

¼
1 � logs 1 þ

Qn

j¼1

s1� Gjð Þq � 1
� �wj

 ! !1
q

e
i2p 1�logs 1þ

Qn

j¼1

s
1� WGjð Þq�1

� �wj
� �� �1

q

;

logs 1 þ
Qn

j¼1

s Hjð Þq � 1
� �wj

 ! !1
q

e
i2p logs 1þ

Qn

j¼1

s
WHjð Þq�1

� �wj
� �� �1

q

0

BBBBBBBB@

1

CCCCCCCCA

ð3Þ
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Case 1: if n = 2, then

w1C1 ¼
1 � logs 1 þ

s1�Gq
1 � 1

� �w1

s� 1ð Þw1�1

 ! !1
q

e

i2p 1�logs 1þ
s
1�W

q
G1 �1

� �w1

s�1ð Þw1�1

0

@

1

A

0

@

1

A

1
q

;

logs 1 þ
sH

q
1 � 1

� �w1

s� 1ð Þw1�1

 ! !1
q

e

i2p logs 1þ
s
W
q
H1 �1

� �w1

s�1ð Þw1�1

0

@

1

A

0

@

1

A

1
q

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

w2C2 ¼
1 � logs 1 þ

s1�Gq
2 � 1

� �w2

s� 1ð Þw2�1

 ! !1
q

e

i2p 1�logs 1þ
s
1�W

q
G2 �1

� �w2

s�1ð Þw2�1

0

@

1

A

0

@

1

A

1
q

;

logs 1 þ
sH

q
2 � 1

� �w2

s� 1ð Þw2�1

 ! !1
q

e

i2p logs 1þ
s
W
q
H2 �1

� �w2

s�1ð Þw2�1

0

@

1

A

0

@

1

A

1
q

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

Cq - ROFFWA C1;C2; :::Cnð Þ ¼ w1C1 þ w2C2

¼ 1 � logs 1 þ
s1�Gq

1 � 1
� �w1

s� 1ð Þw1�1

 ! !1
q

e

i2p 1�logs 1þ
s
1�W

q
G1 �1

� �w1

s�1ð Þw1�1

0

@

1

A

0

@

1

A

1
q

; logs 1 þ
sH

q
1 � 1

� �w1

s� 1ð Þw1�1

 ! !1
q

e

i2p logs 1þ
s
W
q
H1 �1

� �w1

s�1ð Þw1�1

0

@

1

A

0

@

1

A

1
q

0

BBBBBB@

1

CCCCCCA

�

1 � logs 1 þ
s1�Gq

2 � 1
� �w2

s� 1ð Þw2�1

 ! !1
q

e

i2p 1�logs 1þ
s
1�W

q
G2 �1

� �w2

s�1ð Þw2�1

0

@

1

A

0

@

1

A

1
q

; logs 1 þ
sH

q
2 � 1

� �w2

s� 1ð Þw2�1

 ! !1
q

e

i2p logs 1þ
s
W
q
H2 �1

� �w2

s�1ð Þw2�1

0

@

1

A

0

@

1

A

1
q

0

BBBBBB@

1

CCCCCCA

;

¼

1 � logs 1 þ

s1�Gq
1 � 1

� �w1

s� 1ð Þw1�1

 !
s1�Gq

2 � 1
� �w2

s� 1ð Þw2�1

 !

s� 1ð Þ

0

BBBB@

1

CCCCA

0

BBBB@

1

CCCCA

1
q

e

i2p 1�logs 1þ

s
1�W

q
G1 �1

� �w1

s�1ð Þw1�1

0

@

1

A s
1�W

q
G2 �1

� �w2

s�1ð Þw2�1

0

@

1

A

s�1ð Þ

0

BBBBB@

1

CCCCCA

0

BBBBBB@

1

CCCCCCA

1
q

;

logs 1þ

sH
q
1 � 1

� �w1

s� 1ð Þw1�1

 !
sH

q
2 � 1

� �w2

s� 1ð Þw2�1

 !

s� 1

0

BBBB@

1

CCCCA

0

BBBB@

1

CCCCA

1
q

e

i2p logs 1þ

s
W
q
H1 �1

� �w1

s�1ð Þw1�1

s
W
q
H2 �1

� �w2

s�1ð Þw2�1

s�1

0

BB@

1

CCA

0

BB@

1

CCA

1
q

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCA
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¼

1 � logs 1 þ
s1�Gq

1 � 1
� �w1 s1�Gq

2 � 1
� �w2

s� 1ð Þ
P2

j¼1

wj�1

0

BBB@

1

CCCA

0

BBB@

1

CCCA

1
q

e

i2p 1�logs 1þ
s
1�W

q
G1 �1

� �w1

s
1�W

q
G2 �1

� �w2

s�1ð Þ

P2

j¼1

wj�1

0

BB@

1

CCA

0

BB@

1

CCA

1
q

;

logs 1þ
sH

q
1 � 1

� �w1 sH
q
2 � 1

� �w2

s� 1ð Þ
P2

j¼1

wj�1

0

BBB@

1

CCCA

0

BBB@

1

CCCA

1
q

e

i2p logs 1þ
s
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Case 3 lastly, we check for k = m ? 1, such that
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For n = k ? 1, the result is kept. Hence Eq. (3). It is

kept for all n.

Theorem 3 (Idempotency) Let Cj j ¼ 1; 2; :::; nð Þ be a set of
be a family of Cq-ROFNs, if all aj¼a0 j ¼ 1; 2; :::; nð Þ, then,

Cq - ROFFWAðC1;C2; . . .;CnÞ = C0

Proof We know that C0 ¼ G0e
i2pWG0 ;H0e
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In the following, we will discuss some characteristics of

Cq - ROFFWA operator.
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Qn

j¼1

s1� Gjð Þq � 1
� �wj

 ! !1
q

e
i2p 1�logs 1þ

Qn

j¼1

s
1� WGjð Þq�1

� �wj
� �� �1

q

;

logs 1 þ
Qn

j¼1

s Hjð Þq � 1
� �wj

 ! !1
q

e
i2p logs 1þ

Qn

j¼1

s
WHjð Þq�1

� �wj
� �� �1

q

0

BBBBBBBB@

1

CCCCCCCCA

¼

lim
s!þ1

1 � lim
s!þ1

ln 1 þ
Qn

j¼1

s1�Gq
j � 1

� �wj

 !

ln s

0

BBBB@

1

CCCCA

1
q

e

i2p lim
s!þ1

1� lim
s!þ1

ln 1þ
Qn

j¼1

s
1� WGjð Þq�1

� �wj
� �

ln s

0

BB@

1

CCA

1
q

;

lim
s!þ1

ln 1 þ
Qn

j¼1

sH
q
j � 1

� �wj

 !

ln s

0

BBBB@

1

CCCCA

1
q

e

i2p lim
s!þ1

ln 1þ
Qn

j¼1

s
WHjð Þq�1

� �wj
� �

ln s

0

BB@

1
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1
q

0
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1
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Based on the L’Hospital’s rule, we have

¼ 1 � lim
s!þ1

Qn

j¼1

s1�Gq
j � 1

� �wj

1 þ
Qn

j¼1

s1�Gq
j � 1

� �wj

Xn

j¼1

wj 1 � Gq
j

� � s1�Gq
j

s1�Gq
j � 1

� �

0

@

1

A

0

BBB@

1

CCCA

1
q

0

BBBB@

e

i2p 1� lim
s!þ1

Qn

j¼1

s
1� WGjð Þq�1

� �wj

1þ
Qn

j¼1

s
1� WGjð Þq�1

� �wj
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j¼1

wj 1� WGjð Þqð Þ s
1� WGjð Þq

s
1� WGjð Þq�1

� �

0

@

1

A

0

B@

1
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1
q

;

lim
s!þ1

Qn

j¼1

s
H
q
j �1

� �wj

1þ
Qn

j¼1

s
H
q
j �1

� �wj
� � Pn
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wjH
q
j s

H
q
j
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s
H
q
j �1

� �

0

@

1

A

1
s

0
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1
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0
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1
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1
s
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¼ 1 �
Xn

j¼1

wj 1 � Gq
j

� �
 !1

q
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Pn

j¼1

wj 1� WGjð Þqð Þ
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This completes the proof.

Theorem 7 Let Cj j ¼ 1; 2; :::; nð Þ be a set of be a family of

Cq-ROFNs, w ¼ ðw1;w2; . . .;wnÞT is the weight vector of

Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same time,Pn
j¼1 wj ¼ 1, then

Cq - ROFFWAðC1 � C;C2 � C; . . .;Cn � CÞ
¼ Cq - ROFFWAðC1;C2; . . .;CnÞ � C

The proof of Theorem 7 is given in ‘‘Appendix.’’

Theorem 8 Let Cj j ¼ 1; 2; :::; nð Þ be a set of be a family of

Cq-ROFNs, w ¼ ðw1;w2; . . .;wnÞTis the weight vector of

Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same time,Pn
j¼1 wj ¼ 1, then

Cq - ROFFWAðk � C1 � C; k � C2 � C; . . .; k � Cn � CÞ
¼ kCq - ROFFWAðC1;C2; . . .;CnÞ � C

The proof of Theorem 8 is given in ‘‘Appendix.’’

Theorem 9 Let Cj j ¼ 1; 2; :::; nð Þ be a set of be a family of

Cq-ROFNs, w ¼ ðw1;w2; . . .;wnÞTis the weight vector of

Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same time,Pn
j¼1 wj ¼ 1 and k[ 0, then

Cq - ROFFWA kC1; kC2; :::; kCnð Þ
¼ kCq - ROFFWA C1;C2; :::;Cnð Þ

The proof of Theorem 9 is given in ‘‘Appendix.’’

Theorem 10 Let Cj j ¼ 1; 2; :::; nð Þ be a set of be a family

of Cq-ROFNs, w ¼ ðw1;w2; . . .;wnÞT is the weight vector

of Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same time,Pn
j¼1 wj ¼ 1, then

Cq - ROFFWAðC1 � C0
1;C2 � C0

2; . . .;Cn � C0
nÞ

¼ Cq - ROFFWA C1;C2; :::;Cnð Þ � Cq - ROFFWA C0
1;C

0
2; :::;C

0
n

� �

Definition 6 Let Cj ¼ Gje
i2pWGj ;Hje

i2pWHj
� �

j ¼ 1; 2; :::; nð Þ
be a family of Cq-ROFNs.wj be the weight of Cj, meeting

wj 2 0; 1½ �; and
Pn

j¼1

wj ¼ 1: The complex q-rung orthopair

fuzzy Frank weighted geometric (Cq-ROFFWG) operator

is initiated by
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In particular, if w ¼ ð1
n ;

1
n ; :::;

1
nÞ

T
, the Cq - ROFFWG

operator will be simplified to Cq - ROFFG operator, that is

Cq - ROFFG C1;C2; :::Cnð Þ¼ �
n

j¼1
C

1
n
j

¼
logs 1 þ

Qn

j¼1

s Gjð Þq � 1
� �1

n

 ! !1
q

e
i2p logs 1þ

Qn

j¼1

s
WGjð Þq�1

� �1
n

� �� �1
q

;

1 � logs 1 þ
Qn

j¼1

s1� Hjð Þq � 1
� �1

n

 ! !1
q

e
i2p 1�logs 1þ

Qn

j¼1

s
1� WHjð Þq�1

� �1
n

� �� �1
q

0

BBBBBBBB@

1

CCCCCCCCA

Theorem 11 Let aj j ¼ 1; 2; :::; nð Þ; a0j j ¼ 1; 2; :::; nð Þ be

two set of Cq-ROFNs, w ¼ ðw1;w2; . . .;wnÞT is the weight

vector of Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same

time,
Pn

j¼1 wj ¼ 1, then

1. Cq - ROFFWA ac1; a
c
2; :::; a

c
n

� �
¼

Cq - ROFFWG a1; a2; :::; anð Þc

2. Cq - ROFFWG ac1; a
c
2; :::; a

c
n

� �
¼

Cq - ROFFWA a1; a2; :::; anð Þc

Similar to the Cq - ROFFWA operator, the

Cq - ROFFWG operator also has bounded, monotonic and

idempotent properties, and we can obtain the following

properties of Cq - ROFFWG operator as follows.

Lemma 1 [73]. Let xj [ 0,kj [ 0, j = 1,2,…,n, andPn
j¼1 kj ¼ 1, then

Yn

j¼1

x
kj
j �

Xn

j¼1

kjxj

with equality if and only if x1 ¼ x2 ¼ � � � ¼ xn.

Theorem 12 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, w ¼ ðw1;w2; . . .;wnÞT is the weight vector of

Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same time,Pn
j¼1 wj ¼ 1, then

Cq - ROFFWG C1;C2; :::Cnð Þ
�Cq - ROFFWA C1;C2; :::Cnð Þ

The proof can be shown in appendix.

Theorem 13 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, let C is a Cq-ROFN, w ¼ ðw1;w2; . . .;wnÞT is the

weight vector of Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the

same time,
Pn

j¼1 wj ¼ 1, then

Cq - ROFFWGðCk
1 � C;Ck

2 � C; . . .;Ck
n � CÞ

¼ Cq - ROFFWG C1;C2; :::Cnð Þð Þk�C

Theorem 14 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, w ¼ ðw1;w2; . . .;wnÞT is the weight vector of

Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the same time,Pn
j¼1 wj ¼ 1,k[ 0, then

Cq - ROFFWGðCk
1;Ck

2; . . .;Ck
nÞ

¼ Cq - ROFFWGðC1;C2; . . .;CnÞð Þk

Theorem 15 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, and C is a Cq-ROFN, w ¼ ðw1;w2; . . .;wnÞT is the

Cq - ROFFWG C1;C2; :::Cnð Þ ¼ �
n

j¼1
C
wj

j

¼
logs 1 þ

Qn

j¼1

s Gjð Þq � 1
� �wj

 ! !1
q

e
i2p logs 1þ

Qn

j¼1

s
WGjð Þq�1

� �wj
� �� �1

q

1 � logs 1 þ
Qn

j¼1

s1� Hjð Þq � 1
� �wj

 ! !1
q

e
i2p 1�logs 1þ

Qn

j¼1

s
1� WHjð Þq�1

� �wj
� �� �1

q

0

BBBBBBBB@

1

CCCCCCCCA

ð4Þ
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weight vector of Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the

same time,
Pn

j¼1 wj ¼ 1,k[ 0,then

Cq - ROFFWGðC1 � C;C2 � C; . . .;Cn � CÞ
¼ Cq - ROFFWGðC1;C2; . . .;CnÞ � C

Theorem 16 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, and C is a Cq-ROFN, w ¼ ðw1;w2; . . .;wnÞT is the

weight vector of Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1. At the

same time,
Pn

j¼1 wj ¼ 1,k[ 0,then

Cq - ROFFWGðC1 � C;C2 � C; . . .;Cn � CÞ
¼ Cq - ROFFWGðC1;C2; . . .;CnÞ � C

Theorem 17 Let Cj j ¼ 1; 2; :::; nð Þ and Bj j ¼ 1; 2; :::; nð Þ
be two collections of Cq-ROFNs, then

Cq - ROFFWGðC1 � B1;C2 � B2; . . .;Cn � BnÞ
¼ Cq - ROFFWGðC1;C2; . . .;CnÞ
� Cq - ROFFWGðB1;B2; . . .;BnÞ

By discussing different values of the parameters, the

following special cases are given in the follows.

Theorem 18 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, w ¼ ðw1;w2; . . .;wnÞT is the weight vector of

Cj j ¼ 1; 2; :::; nð Þ, and 0�wj � 1, then

1. If s ! 1, the Cq - ROFFWG operator is reduced to a

complex q-rung orthopair fuzzy averaging operator,

which is given as:

lim
s!1

Cq - ROFFWG C1;C2; :::Cnð Þ

¼
Yn

j¼1

Gj

� �wje
i2p
Qn

j¼1

W
wj
Gj

; 1 �
Yn

j¼1

1 � Hq
j

� �wj
� �

 !1
q

0

@

e
i2p 1�

Qn

j¼1

1�Wq
Hj

� �wj
� �� �1

q
1

CCA

2. If s ! þ1, then Cq - ROFFWG operator is reduced

to the traditional arithmetic weighted average operator,

which is given as:

lim
s!þ1

Cq - ROFFWG

¼
Xn

j¼1

wjG
q
j

 !1
q

e
i2p

Pn

j¼1

wjW
q
Gj

� �1
q

;
Xn

j¼1

wj Hj

� �q
 !1

q

e
i2p

Pn

j¼1

wjW
q
Hj

� �1
q

0

BB@

1

CCA

3.2 Complex q-rung orthopair fuzzy Frank
ordered weighted aggregation operators

Definition 7 Let Cj j ¼ 1; 2; :::; nð Þ be a collection of Cq-

ROFNs, and x ¼ ðx1;x2; :::;xnÞT be the aggregation-as-

sociated vector of Cj j ¼ 1; 2; :::; nð Þ, and xi 2 ½0; 1�, at the

same time
Pn

i¼1 xi ¼ 1.Then, the complex q-rung ortho-

pair fuzzy Frank ordered weighted average

(Cq - ROFFOWA) operator is a mapping

Cq - ROFFOWA:Xn ! X, if

Cq - ROFFOWA C1;C2; :::Cnð Þ ¼ �
n

j¼1
xjCr jð Þ

¼
1 � logs 1 þ

Qn

j¼1

s1�Gq

r jð Þ � 1
� �xj

 ! !1
q

e

i2p 1�logs 1þ
Qn

j¼1

s
1� WGr jð Þ

� �q

�1

 !xj ! !1
q

;

logs 1þ
Qn

j¼1

sH
q

rðjÞ � 1
� �xj

 ! !1
q

e

i2p logs 1þ
Qn

j¼1

s
WHr jð Þ

� �q

�1

 !xj ! !1
q

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA
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where X is the set of complex q-rung orthopair fuzzy

variables, CrðjÞ is the jth largest element in

Cj j ¼ 1; 2; . . .; nð Þ, and Crðj�1Þ �CrðjÞ; then, the aggregated

value by the Cq - ROFFOWA operator is still a Cq-ROFE.

Similar to the Cq - ROFFWA operator, the

Cq - ROFFOWA operator also has the properties of

boundedness, idempotency and monotonicity, and the

Cq - ROFFOWA operator also has the commutativity

property.

Theorem 19 (Commutativity) Let Cj j ¼ 1; 2; :::; nð Þ be a

collection of Cq-ROFNs, and x ¼ ðx1;x2; :::;xnÞT be the

aggregation-associated vector of Cj j ¼ 1; 2; :::; nð Þ, and

xi 2 ½0; 1�, at the same time
Pn

i¼1 xi ¼ 1. If

ðC0
1;C

0
2; :::;C

0
nÞ is any permutation of ðC1;C2; :::;CnÞ, then

Cq - ROFFOWA C1;C2; :::Cnð Þ
¼ Cq� ROFFOWA C0

1;C
0
2; :::C

0
n

� �

4 MADM approach based on proposed
operators

In this section, we propose the MAGDM technique based

on complex q-rung orthopair fuzzy Franks operators. Let

A ¼ A1;A2; :::;Amf g is a set of m alternatives, C ¼
C1;C2; :::;Cnf g is the set of n attributes, with the attribute

weight vector w ¼ w1;w2; :::;wnð ÞT , satisfying wj 2 ½0; 1�
with

Pn
j¼1 wj ¼ 1. Suppose that D ¼ ðdijÞm	n is a complex

q-rung orthopair fuzzy decision matrix, where Cij takes the

form of the complex q-rung orthopair fuzzy number given

for the alternative Ai i ¼ 1; 2; :::;mð Þ with respect to attri-

bute Cj.

Step 1 complex q-rung orthopair fuzzy number-based

decision matrix D ¼ ðdijÞm	n is established.

Step 2 Use Eqs. (3) and (4) to aggregate the decision

matrix.

Cj = Cq - ROFFWA Cj1;Cj2; :::Cjn

� �
; j ¼ 1; 2; 3; :::;m

ð5Þ

or

Cj = Cq - ROFFWG Cj1;Cj2; :::Cjn

� �
; j ¼ 1; 2; 3; :::;m

ð6Þ

Step 3 Use Eq. (1) to calculate the score value of

Cj j ¼ 1; 2; :::;mð Þ obtained in Step (2).

Step 4 Rank the feasible alternatives Ai i ¼ 1; 2; :::mð Þ
based on their score value. If there is equal between two

score values SðaiÞ and SðakÞ, then we need to compute the

degree of accuracy values HðaiÞ and HðakÞ of the

alternatives Ai and Ak (i, k = 1,2,…,m), respectively, by

Eq. (2), and select the best one.

Step 5 End.

5 Applications based on Frank aggregation
operators for Cq-ROFNs

5.1 An application for emergency management
system

Numerical Example 1: In order to minimize the impact of

public health emergencies on the society and the country,

strengthening emergency management capacity and effec-

tively controlling the disaster effect of public health

emergencies are important issues to all countries. How to

evaluate the current public crisis emergency response

capacity and optimize the emergency management system

have always been the focus of various countries.

This example is based on Cq-ROFNs which is adapted

from Ref Liu et al. (2021c), Du et al. (2017). There are five

possible emerging technology companies in a panel;

Ai i ¼ 1; 2; 3; 4; 5ð Þ, the experts need to give an evaluation

according to four attributes: (1)C1 is the emergency fore-

casting capability; (2)C2 is the emergency process capa-

bility; (3)C3 is the after-disaster loss evaluation capability;

(4)C4 is the emergency support capability; (5)C5 is the

after-disaster reconstruction capability. The important

degree of the attribute is w ¼ ð0:28; 0:35; 0:16; 0:21ÞT .

The assessment values of each alternative are given in the

form of Cq-ROFNs. Then the proposed approach is utilized

in the following matrix (Table 1):

1. The method of using the Cq-ROFFWA operator in

Eq. (5) to aggregate all complex q-rung orthopair fuzzy

assessment values of the alternativeAi i ¼ 1; 2; 3; 4; 5ð Þ, and

we choose q ¼ 1:5 and s ¼ 3 to study the final ranking

results, which is shown in Table 2.

Hence, the best alternative is A5, which represents the

emerging technology company (Table 3).

6 The method of using the Cq-ROFFWA
or Cq-ROFFWA operator

Utilize the Cq-ROFFWA operator or Cq-ROFFWG oper-

ator in Eqs. (5) and (6) to aggregate all complex q-rung

orthopair fuzzy assessment values of the alternative

Ai i ¼ 1; 2; 3; 4; 5ð Þ on the attributes Cj j ¼ 1; 2; 3; 4ð Þ shown

in Table 1 into the overall assessment values

hi i ¼ 1; 2; 3; 4ð Þ. In order to check the effect of the

parameters q and s for this example, we choose different q
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and s a to study the final ranking results of this example,

which is shown below.

(1) Effect of parameter q.

In this subsection, we examine the effect of the

parameter d on the ranking results. We obtained the

ranking results for different values of the parameter d, as

shown in Table 4 (s¼3). As shown in Tables 4 and 5, the

parameter q affected the ranking results. However, the best

alternative did not change.

(2) Effect of parameter s.

In this subsection, we examine the effect of the

parameter q on the ranking results. We obtained the

ranking results for different values of q, as shown in

Tables 6 and 7 (q ¼ 4). As indicated in Tables 6 and 7, the

parameter q affected the ranking results. However, the best

alternative did not change.

Further, whenq ¼ 4, we select different s to study the

ranking of enterprises, as shown in Tables 6 and 7.

From Tables 4, 5, 6 and 7, we can find that the given

approaches like Cq - ROFFWA operator,Cq - ROFFWG

operator is giving the same ranking values, and A5 is found

to be the best one.

7 Comparison analyses

To elaborate the effectiveness and practicability of the

created method, we give a comparative analysis of the

developed operators with several previous decision

methods, including Mahmood’ approach (2021) based on

Hamacher aggregation operators for Cq - ROFS. Liu’

approach (2021c) is based on Einstein operator for

Cq - ROFS, Liu’ approach (2020b) for Cq - ROFS and

Garg’ approach (2021b) based on Hamy Mean Operators

for Cq - ROFS, and we will discuss this example in the

following three parts.

(1) Cq-ROFHWA operator and Cq-ROFHWG operator.

To facilitate the comparative analysis, we give the

complex q-rung orthopair fuzzy Hamacher weighted

average (Cq-ROFHWA) (Mahmood and Ali 2021a, 2021b)

and Cq-ROFHWG operators to deal with this example.

From Tables 8 and 9, it is clear that for the different values

of parameter q, the same ranking results are obtained, and

A5 is found to be the best one.

(2) Cq-ROFEWA operator and Cq-ROFEWG operator.

In a comparison analysis with existing complex q-rung

orthopair fuzzy Einstein weighted average (Cq-ROFEWA)

operator (Liu et al. 2021c) and Cq-ROFEWG operator, we

can obtain the ranking result as follows:

From Tables 10 and 11, it is obvious that the ranking

results are the same for diverse parameter q by utilizing

Cq - ROFEWG operator or Cq - ROFEWG operator, and

A5 is found to be the best one.

(3) Cq-ROFWHM operator.

Compared with Cq-ROFWHM (Garg et al. 2021b)

operator, the results are shown below.

(4) Cq - ROFWA operator and Cq - ROFWG operator.

Table 2 When s ¼ 3; q ¼ 1:5,

aggregation values of the Cq-

ROFNs

Method Getting values

A1 = Cq—ROFFWA(C11, C12,..., C1n) 0:69529ei2p 0:60063ð Þ; 0:24194ei2p 0:26170ð Þ� �

A2 = Cq—ROFFWA(C21, C22,..., C2n) 0:71346ei2p 0:63352ð Þ; 0:23070ei2p 0:31533ð Þ� �

A3 = Cq—ROFFWA(C31, C32,..., C3n)
0:42029ei2p 0:73058

� �
; 0:28455ei2p 0:40195ð Þ

� �

A4 = Cq—ROFFWA(C41, C42,..., C4n)
0:47127ei2p 0:68224ð Þ; 0:29565ei2p 0:28599

� �� �

A5 = Cq—ROFFWA(C51, C52,..., C5n) 0:78165ei2p 0:67476ð Þ; 0:32359ei2p 0:32251ð Þ� �

Table 1 Complex q-rung orthopair fuzzy decision matrix R ¼ ðaijÞm	n

C1 C2 C3 C4

A1 0:7ei2p 0:65ð Þ; 0:2ei2p 0:3ð Þ� �
0:6ei2p 0:6ð Þ; 0:3ei2p 0:31ð Þ� �

0:8ei2p 0:5ð Þ; 0:2ei2p 0:11ð Þ� �
0:73ei2p 0:6ð Þ; 0:25ei2p 0:31ð Þ� �

A2 0:6ei2p 0:66ð Þ; 0:21ei2p 0:32ð Þ� �
0:7ei2p 0:71ð Þ; 0:2ei2p 0:33ð Þ� �

0:83ei2p 0:7ð Þ; 0:3ei2p 0:2ð Þ� �
0:75ei2p 0:3ð Þ; 0:27ei2p 0:4ð Þ� �

A3 0:4ei2p 0:68ð Þ; 0:22ei2p 0:35ð Þ� �
0:41ei2p 0:68ð Þ; 0:3ei2p 0:4ð Þ� �

0:45ei2p 0:8ð Þ; 0:4ei2p 0:5ð Þ� �
0:44ei2p 0:8ð Þ; 0:28ei2p 0:41ð Þ� �

A4 0:3ei2p 0:64ð Þ; 0:26ei2p 0:31ð Þ� �
0:5ei2p 0:65ð Þ; 0:31ei2p 0:2ð Þ� �

0:6ei2p 0:6ð Þ; 0:3ei2p 0:34ð Þ� �
0:5ei2p 0:81ð Þ; 0:32ei2p 0:4ð Þ� �

A5 0:73ei2p 0:67ð Þ; 0:3ei2p 0:35ð Þ� �
0:8ei2p 0:65ð Þ; 0:45ei2p 0:2ð Þ� �

0:86ei2p 0:7ð Þ; 0:2ei2p 0:41ð Þ� �
0:76ei2p 0:7ð Þ; 0:29ei2p 0:51ð Þ� �
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Compared with Cq - ROFWA (Liu et al.2020b) opera-

tor and Cq - ROFWG operator the results are shown in

Tables 13 and 14.

From Tables 13 and 14, the ranking results are similar to

our proposed method, which proves the authenticity and

the rationality of the given method.

In this article, firstly, we compared the proposed meth-

ods with each other based on different parameters. Sec-

ondly, we make a comparison between the proposed and

existing methods. As can be seen from Tables 4, 5, 6, 7, 8,

9, 10, 11, 12, 13 and 14, by comparing the proposed

method with the Cq-ROFHWA, Cq-ROFHWG, Cq-

ROFEWA, Cq-ROFHWG, Cq-ROFWA, Cq-ROFWG and

Cq-ROFWHM operators, the conclusion is the same and is

the best desirable alternative, which shows the rationality

of the defined method in this article. Thirdly, the proposed

method is more flexible and universal than the methods

based on the Cq-ROFWA operator and the Cq-ROFWG

operator in dealing with the MADM problems according to

different parameters, and the calculation amount of Mah-

mood’ method (Mahmood and Ali2021a, 2021b), Liu’

methods (Liu et al. 2020b, 2021c) and Garg H’ approach

(2021b) is very higher than that of our created method, and

our methods can reflect the decision makers preferences

more flexible based on the parameter. According to the

analysis above, the proposed methods are better than the

other approaches.

7.1 An application choosing veil for COVID-19

Numerical Example 2: The MCDM issue is cited from

Ref Yang et al. (2021). In the current extreme situation of

the spread of COVID-19, six types of veils are commonly

available in the market, including clinical careful covers,

particulate respirators (N95/KN95 or more), clinical

defensive covers, clinical defensive covers, dispensable

clinical covers, conventional non-clinical covers and gas

covers. Individuals need to buy the antivirus veil from six

rising star antivirus products. In addition, individuals

Table 5 When s ¼ 3, ranking results based on Cq - ROFFWG operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.383397 0.37087 0.228081 0.26568 0.393402 A5
A1
A2
A4
A3

1.5 0.37759 0.369112 0.234322 0.261309 0.412969 A5
A1
A2
A4
A3

2 0.341045 0.33702 0.222729 0.234767 0.402898 A5
A1
A2
A4
A3

5 0.111429 0.115601 0.097802 0.073698 0.202971 A5
A2
A1
A3
A4

10 0.014045 0.016209 0.019398 0.009223 0.050005 A5
A3
A2
A1
A4

30 0.013957 0.016017 0.019076 0.009124 0.049503 A5
A3
A2
A1
A4

50 0.013952 0.013925 0.018914 0.009002 0.049526 A5
A3
A1
A2
A4

60 0.00000000006 0.00000000023 0.00000000165 0.00000000002 0.00000013 A5
A3
A2
A1
A4

Table 4 When s ¼ 3, ranking results based on Cq - ROFFWA operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.400405 0.404738 0.237438 0.287663 0.416741 A5
A2
A1
A4
A3

1.5 0.396189 0.4095 0.245152 0.28667 0.439054 A5
A2
A1
A4
A3

2 0.359788 0.383096 0.234496 0.262104 0.429349 A5
A2
A1
A4
A3

10 0.021947 0.034676 0.026826 0.018283 0.056009 A5
A2
A3
A1
A4

30 0.000111 0.00033 0.000232 0.000189 0.00069 A5
A2
A3
A4
A1

50 0.000209 0.000636 0.000341 0.000352 0.001001 A5
A2
A4
A3
A1

100 0.00000000001 0.00000000064 0.00000000003 0.00000000007 0.00000000217 A5
A2
A4
A3
A1

Table 3 Score values of the alternatives

Method Score values

A1 = Cq—ROFFWA(C11, C12,..., C1n) S(A1Þ ¼ 0:39618

A2 = Cq—ROFFWA(C21, C22,..., C2n) S(A2Þ ¼ 0:4095

A3 = Cq—ROFFWA(C31, C32,..., C3n) S(A3Þ ¼ 0:24515

A4 = Cq—ROFFWA(C41, C42,..., C4n) S(A4Þ ¼ 0:28667

A5 = Cq—ROFFWA(C51, C52,..., C5n) S(A5Þ ¼ 0:439054
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consider four criteria to decide their choice: (1)C1 is the

spillage rate that is the adhesiveness of the veil structure

configuration to cover the human face; (2)C2 is the

reusability; (3)C3 is the nature of crude materials; (4)C4 is

the filtration productivity. All criteria values are benefit

type. The weight vector of the criteria is

w ¼ 0:15; 0:15; 0:2; 0:5ð ÞT
. The five potential options are

assessed regarding the four criteria by CQROFSs, and

complex q-rung orthopair fuzzy decision matrix R is listed

in Table 15.

Because the proposed MADM based on CQROFSs with

its Cq - ROFFWA operator has different q values, it gen-

erates some usefully special cases. To examine the use-

fulness and proficiency of the proposed approach, we next

Table 6 If q ¼ 4, ranking

results based on the

Cq - ROFFWA operator by

using the different s

s S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.184625 0.223135 0.145845 0.136866 0.282018 A5
A2
A1
A3
A4

2 0.183882 0.221653 0.145196 0.135849 0.281551 A5
A2
A1
A3
A4

6 0.182834 0.219548 0.144253 0.134434 0.280845 A5
A2
A1
A3
A4

10 0.182471 0.218817 0.143915 0.13395 0.280579 A5
A2
A1
A3
A4

30 0.181907 0.217679 0.143366 0.133198 0.280124 A5
A2
A1
A3
A4

60 0.181671 0.2172 0.143121 0.132882 0.279905 A5
A2
A1
A3
A4

80 0.181594 0.217044 0.143038 0.132779 0.279826 A5
A2
A1
A3
A4

100 0.181541 0.216937 0.14298 0.132708 0.27977 A5
A2
A1
A3
A4

1000 0.18124 0.216323 0.142612 0.132296 0.279364 A5
A2
A1
A3
A4

10,000 0.181152 0.216138 0.142461 0.132167 0.279134 A5
A2
A1
A3
A4

1,000,000 0.181108 0.216047 0.14232 0.132095 0.278821 A5
A2
A1
A3
A4

Table 7 If q ¼ 4, ranking

results based on Cq - ROFFWG

operator by using the different s

s S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.166435 0.167829 0.132488 0.110833 0.264624 A5
A2
A1
A3
A4

2 0.167176 0.169836 0.133075 0.111543 0.265112 A5
A2
A1
A3
A4

6 0.168469 0.173413 0.134075 0.112814 0.265899 A5
A2
A1
A3
A4

10 0.169039 0.175018 0.134504 0.113386 0.266219 A5
A2
A1
A3
A4

30 0.170192 0.178329 0.135347 0.114566 0.266819 A5
A2
A1
A3
A4

60 0.170868 0.18031 0.135824 0.115273 0.26714 A5
A2
A1
A3
A4

80 0.171137 0.181107 0.13601 0.115557 0.267261 A5
A2
A1
A3
A4

100 0.171341 0.181714 0.13615 0.115773 0.267351 A5
A2
A1
A3
A4

1000 0.173203 0.187428 0.137356 0.117796 0.268082 A5
A2
A1
A3
A4

10,000 0.17466 0.192152 0.138196 0.119443 0.268537 A5
A2
A1
A3
A4

1,000,000 0.176611 0.199047 0.139116 0.121791 0.26898 A5
A2
A1
A3
A4

Table 8 When k ¼ 3, ranking results based on the Cq-ROFHWA operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.437597 0.434858 0.129117 0.210158 0.462234 A5
A1
A2
A4
A3

1.5 0.435419 0.433218 0.142457 0.220977 0.46033 A5
A1
A2
A4
A3

5 0.433038 0.440938 0.202252 0.278003 0.451915 A5
A2
A1
A4
A3

10 0.026639 0.038981 0.016673 0.011672 0.06849 A5
A2
A1
A3
A4

20 0.001668 0.003386 0.001502 0.001061 0.007026 A5
A2
A1
A3
A4

80 0.0000000018 0.000000035847 0.000000002179 0.000000003341 0.000000097571 A5
A2
A4
A3
A1
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present ranking results based on Cq - ROFFWA operator

when s ¼ 3; six cases of q = 1, q = 1.1, q = 2, q = 3,

q = 5, and q = 10. These decision matrix items are shown

in Table 16.

If q ¼ 1, then the Cq - ROFFWA operator is reduced to

the complex intuitionistic fuzzy Frank aggregation

(CIFWA) operator.

If q ¼ 2, then the Cq - ROFFWA operator is reduced to

the complex Pythagorean fuzzy Frank aggregation

(CPFWA) operator.

If q ¼ 3, then the Cq - ROFFWA operator is reduced to

the complex Fermatean fuzzy Frank aggregation (CPFFA)

operator.

From Table 16, we can get that A6 is the best one. The

prominent characteristic of the Cq - ROFFWA operator is

that the decision makers can choose the appropriate

parameter value q and s by their preferences. The defined

method has an ideal property about the parameter value q

and s which provides people to choose appropriate values

on the basis of risk preferences. If the decision maker is

risk averse, we can select the parameter s as large as

possible, and if the decision maker is risk loving, we can

choose the parameter s as small as possible. Since Frank

t-norm and t-conorm are a generalization of algorithms

such as Algebra, Einstein and Hamacher’s t-norm and

t-conorm, it is more general in dealing with multi-attribute

decision-making problems. Further, the complex q-rung

orthopair fuzzy Frank aggregation operators consider the

rejection level when they are compared with complex

intuition fuzzy Frank aggregation operator, complex

Pythagorean fuzzy Frank aggregation operator and com-

plex q-rung orthopair fuzzy Frank aggregation operators.

Table 9 When k ¼ 3, ranking results based on the Cq-ROFHWG operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.38628 0.37738 0.22993 0.26927 0.39799 A5
A1
A2
A4
A3

1.5 0.38012 0.37535 0.23632 0.26455 0.41757 A5
A1
A2
A4
A3

5 0.11182 0.11648 0.09826 0.07409 0.20348 A5
A2
A1
A3
A4

10 0.01407 0.01626 0.01944 0.00925 0.05008 A5
A3
A2
A1
A4

20 0.00026 0.00040 0.00075 0.00016 0.00345 A5
A3
A2
A1
A4

50 0.0000000027 0.0000000084 0.0000000427 0.0000000009 0.0000017088 A5
A3
A2
A1
A4

Table 10 When k ¼ 2, ranking results based on the Cq - ROFEWA operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.441705 0.439769 0.118027 0.203928 0.466271 A5
A1
A2
A4
A3

1.5 0.440447 0.439108 0.129267 0.213466 0.464914 A5
A1
A2
A4
A3

5 0.442137 0.447826 0.187336 0.267599 0.460177 A5
A2
A1
A4
A3

10 0.029347 0.041919 0.012811 0.00937 0.074812 A5
A2
A1
A3
A4

20 0.001872 0.00376 0.001131 0.000802 0.007875 A5
A2
A1
A3
A4

80 0.0000000021 0.0000000403 0.0000000016 0.0000000025 0.0000001098 A5
A2
A4
A1
A3

100 0.000000000024 0.000000000971 0.000000000019 0.000000000037 0.0000000032 A5
A2
A4
A1
A3

Table 11 When k ¼ 2, ranking results based on the Cq - ROFEWG operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.38446 0.37314 0.22877 0.26691 0.39511 A5
A1
A2
A4
A3

1.5 0.37848 0.37108 0.23506 0.26235 0.41470 A5
A1
A2
A4
A3

5 0.11145 0.11561 0.09787 0.07373 0.20309 A5
A2
A1
A3
A4

10 0.01404 0.01620 0.01939 0.00922 0.05000 A5
A3
A2
A1
A4

20 0.00026 0.00040 0.00074 0.00016 0.00345 A5
A3
A2
A1
A4

50 0.000000002 0.00000000838 0.00000004267 0.00000000095 0.00000170878 A5
A3
A2
A1
A4
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To sum up, two practical examples are given in the

paper to illustrate the application of the defined method and

to demonstrate its effectiveness and practicality.

The key advantages of the method defined in the paper

are as follows:

1. The complex q-rung orthopair fuzzy Frank aggrega-

tion operators generalize the existing Frank aggregation

operators, the complex q-rung orthopair fuzzy Einstein

aggregation operators, the complex q-rung orthopair fuzzy

weighted averaging operators, the complex intuitionistic

fuzzy Frank aggregation operator, the complex Pythagor-

ean fuzzy Frank aggregation operator, the complex Fer-

matean fuzzy Frank aggregation operator. It is clear that

the Cq - ROFFWA operator in this paper has more general

Table 12 When q ¼ 3, ranking

results based on the Cq-

ROFWHM operator by using

the different x

x S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

2 0.718563 0.721737 0.649679 0.648689 0.779716 A5
A2
A1
A3
A4

3 0.712878 0.71244 0.643013 0.639795 0.775243 A5
A1
A2
A3
A4

4 0.708174 0.705694 0.635857 0.633196 0.768629 A5
A1
A2
A3
A4

Table 13 Ranking results based

on the Cq - ROFWA operator

by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.402609 0.408894 0.238689 0.290738 0.419788 A5
A2
A1
A4
A3

1.5 0.398267 0.414047 0.246492 0.289777 0.441607 A5
A2
A1
A4
A3

4 0.184755 0.223394 0.145958 0.137046 0.282098 A5
A2
A1
A3
A4

10 0.022084 0.034989 0.027026 0.018523 0.05625 A5
A2
A3
A1
A4

20 0.001274 0.002706 0.002281 0.001617 0.005407 A5
A2
A3
A4
A1

50 0.0000011 0.00000727 0.00000264 0.00000279 0.00001573 A5
A2
A4
A3
A1

Table 14 Ranking results based on the Cq - ROFWG operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ Ranking

1.1 0.381670 0.365080 0.226894 0.262694 0.390520 A5
A1
A2
A4
A3

1.5 0.375824 0.362390 0.233072 0.258312 0.410543 A5
A1
A2
A4
A3

4 0.166315 0.167506 0.132392 0.110719 0.264542 A5
A2
A1
A3
A4

10 0.013957 0.016033 0.019245 0.009141 0.049770 A5
A3
A2
A1
A4

20 0.000264 0.000397 0.000744 0.000162 0.003439 A5
A3
A2
A1
A4

50 0.00000000274 0.000000008377 0.000000042674 0.000000000946 0.000001708757 A5
A3
A2
A1
A4

Table 15 Complex q-rung orthopair fuzzy decision matrix R ¼ ðaijÞm	n

C1 C2 C3 C4

A1 0:3ei2p 0:4ð Þ; 0:2ei2p 0:1ð Þ� �
0:31ei2p 0:41ð Þ; 0:21ei2p 0:11ð Þ� �

0:32ei2p 0:41ð Þ; 0:22ei2p 0:12ð Þ� �
0:33ei2p 0:43ð Þ; 0:23ei2p 0:13ð Þ� �

A2 0:5ei2p 0:6ð Þ; 0:4ei2p 0:3ð Þ� �
0:51ei2p 0:61ð Þ; 0:41ei2p 0:31ð Þ� �

0:52ei2p 0:62ð Þ; 0:42ei2p 0:32ð Þ� �
0:53ei2p 0:63ð Þ; 0:43ei2p 0:33ð Þ� �

A3 0:4ei2p 0:68ð Þ; 0:22ei2p 0:35ð Þ� �
0:41ei2p 0:68ð Þ; 0:3ei2p 0:4ð Þ� �

0:45ei2p 0:8ð Þ; 0:4ei2p 0:5ð Þ� �
0:44ei2p 0:8ð Þ; 0:28ei2p 0:41ð Þ� �

A4 0:1ei2p 0:3ð Þ; 0:4ei2p 0:2ð Þ� �
0:11ei2p 0:31ð Þ; 0:41ei2p 0:21ð Þ� �

0:12i2p 0:32ð Þ; 0:42ei2p 0:22ð Þ� �
0:13ei2p 0:33ð Þ; 0:43ei2p 0:23ð Þ� �

A5 0:7ei2p 0:5ð Þ; 0:1ei2p 0:2ð Þ� �
0:71ei2p 0:51ð Þ; 0:11ei2p 0:21ð Þ� �

0:72ei2p 0:52ð Þ; 0:12ei2p 0:22ð Þ� �
0:73ei2p 0:53ð Þ; 0:13ei2p 0:23ð Þ� �

A6 0:8ei2p 0:7ð Þ; 0:1ei2p 0:1ð Þ� �
0:81ei2p 0:71ð Þ; 0:11ei2p 0:11ð Þ� �

0:82ei2p 0:72ð Þ; 0:12ei2p 0:12ð Þ� �
0:83ei2p 0:73ð Þ; 0:13ei2p 0:13ð Þ� �
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and more information in terms of both membership and

non-membership degrees than other above operators.

Therefore, the complex q-rung orthopair fuzzy Frank

aggregation operators can be applied to deal with more

uncertain and complicated information of real-life deci-

sion-making problems.

2. Complex q-rung orthopair fuzzy term which can solve

the uncertainty more precisely than q-rung orthopair fuzzy

set, complex fuzzy set and q-rung orthopair uncertain lin-

guistic fuzzy set in qualitative, and many fuzzy set cannot

deal with MADM under complex q-rung environment such

as the rough set and neutrosophic set, but the complex

q-rung orthopair fuzzy number can be used to deal with

such problems effectively.

3. The prominent characteristic of the proposed method

is that the parameter value q and s can be changed by their

preferences.

4. Membership and non-membership degree are com-

plements of the complex fuzzy terms, which can show us

how much degree that an attribute value belongs to or not

belongs to a complex q-rung term.

8 Conclusion

In this paper, we extended the Frank operations to the

complex q-rung orthopair fuzzy environment according to

the definition of the complex q-rung orthopair fuzzy set and

the Frank aggregation operator. To begin with, certain

Frank operational laws of complex q-rung orthopair fuzzy

set (Cq-ROFS) were introduced. Meanwhile, we developed

a family of complex q-rung orthopair fuzzy Frank aver-

aging operators, such as the Cq-ROFFWA operator, the

Cq-ROFFWG operator and the Cq-ROFFOWA operator.

Some desirable properties of the introduced operators were

given. In addition, based on the defined operators, a novel

approach for MADM was proposed under the complex

q-rung orthopair fuzzy environment. Numerical examples

were given to demonstrate the effectiveness and usefulness

of the defined method by comparison with other existing

methods.

The Frank aggregation operators based on the complex

q-rung orthopair fuzzy set are an important complement to

related research, and the method defined in this paper may

add a new direction for solving MCDM problems. We have

created a precedent to combine Frank aggregation opera-

tors with complex q-rung orthopair fuzzy set and make use

of the complex q-rung orthopair fuzzy Frank aggregation

operators to deal with decision-making problems. Since the

method proposed in this paper cannot handle multi-at-

tribute decision making in complex q-rung linguistic fuzzy

environments or complex q-rung fuzzy N-soft environ-

ments, in future work, we will extend Frank aggregation

operators under complex q-rung linguistic orthopair fuzzy

environments, complex q-rung fuzzy N-soft environments

and T-spherical fuzzy environments, or develop Frank

aggregation operators to 3, 4-quasirung fuzzy sets (Seikh

and Mandal, 2022). In addition, we shall further generalize

these defined operators to deal with Biogas plant imple-

mentation problem (Karmakar et al.2021), plastic ban

problem (Seikh et al. 2021a), market share problem (Seikh

et al.2021b), social network analysis (Liu et al. 2022a),

social trust propagation mechanism (Liu et al.2022b) and

incomplete probabilistic linguistic preference relations

(Wang et al. 2021; Liu et al.2020a, 2020b, 2020c), or

extend the aggregation operators to other domains, such as

pattern recognition, cluster analysis and investment

decisions.

Appendix

Proof of Theorem 1 We prove the parts (1, 5, 6), and the

others are similar with them.

1. Let us prove part (1), we get

Table 16 When s ¼ 3; ranking

results based on Cq - ROFFWA

operator by using the different q

q S a1ð Þ S a2ð Þ S a3ð Þ S a4ð Þ S a5ð Þ S a6ð Þ Ranking

1 0.1994 0.2003 0.2457 - 0.099 0.4505 0.6508 A6
A5
A3
A2
A1
A4

1.1 0.1917 0.2040 0.2528 - 0.095 0.4493 0.6818 A6
A5
A2
A3
A1
A4

2 0.1076 0.1885 0.2601 - 0.053 0.3638 0.5822 A6
A5
A3
A2
A1
A4

3 0.0471 0.1366 0.2208 - 0.0250 0.2516 0.4621 A6
A5
A3
A2
A1
A4

5 0.0079 0.0571 0.1383 - 0.0051 0.1163 0.2837 A6
A5
A3
A2
A1
A4

10 0.00009 0.0049 0.0410 - 0.00008 0.01979 0.0888 A6
A3
A5
A2
A1
A4
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So, k C1 � C2ð Þ ¼ kC1 � kC2:
3. The proof of part (2,4,5) is straightforward. So, it has

been omitted here.

4. Let us consider part (6), we have
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According to the definition, we have
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Therefore, we have
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Then, we can get
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Proof of Theorem 10 For the left-hand side of Theo-

rem 10, we can have
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