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Abstract: Developing fault diagnosis for the cooling dehumidifier is very important for improving the 

equipment reliability and saving energy consumption. This paper mainly studies and explores the 

compound fault diagnosis for the cooling dehumidifier. Firstly, the dehumidifier data acquisition 

system is built, which can be applied to the data acquisition, work status simulation, and fault diagnosis. 

Secondly, a compound fault diagnosis model based on radial basis function neural network (RBFNN) 

improved by kernel principle component analysis (KPCA) and adaptive genetic algorithm (AGA) is 

proposed. Aiming at the problems that the selection of RBF width depends on expert knowledge, the 

network structure scale is large or the training speed is slow in the conventional RBFNN models, on the 

one hand, AGA and K-means clustering algorithm are employed to automatically optimize the RBF 

width, the number of hidden layer neurons and the neuron centers, which guarantees the model has 

small structure and fast computing speed on the premise of sufficient output precision; on the other 

hand, KPCA is used to reduce the dimension of the model input data, which not only effectively 

extracts the nonlinear features, but also further simplifies the network structure. Finally, the proposed 

method is validated and compared with the conventional models. The results show that this proposed 

model can not only be effectively applied to the dehumidifier compound fault diagnosis, but also has 

prominent application advantages.  

Keywords: Cooling dehumidifier; Compound fault; RBF neural network; Kernel principle component 

analysis; Adaptive genetic algorithm 

1. Introduction 

As a kind of heating, ventilating, air-conditioning and refrigeration (HVAC&R) equipment, 

the cooling dehumidifier is widely applied to the fields such as building, electronic and precision 
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instrument which need to control the environment temperature and humidity. As the same as other 

HVAC&R equipment, it’s hard to avoid faults occurring in the cooling dehumidifier refrigeration 

system. When the faults occur in the equipment, there would be some risks such as: (1) The work 

status can’t meet the technical standard so far as to lose effectiveness; (2) The work performance 

falls down and the energy consumption goes up; (3) The refrigerant leaks so that destroys 

environment; (4) The work safety is affected by the fault, e.g., refrigeration compressor suction 

pressure rise. So developing fault detection and diagnosis (FDD) for cooling dehumidifier is very 

important for improving equipment work reliability, saving energy consumption, protecting 

environment, lowering safety risk, reducing equipment maintenance cost and extending equipment 

life [1]. The involved research literatures demonstrate the HVAC&R system can save 20%-30% 

energy consumption in the operation after adopting FDD technology and optimization 

management [2]. Katipamula and Brambley [3, 4] reviewed the FDD methods for HVAC&R 

equipment, they consider these methods involve two classes, one is model based and the other is 

process history dada based. The artificial neural network (ANN) model belongs to a classical 

black model which is one of methods based on process history data.  

The cooling dehumidifier fault mainly includes electric fault and mechanical fault, and the 

latter occurrence frequency is higher than the former. The mechanical fault mainly occurs in the 

refrigeration system. The cooling dehumidifier refrigeration system fault can be basically divided 

into two classes, one is the catastrophic fault, and the other is light fault. The surveys indicate that 

the light fault frequently occurs and isn’t easily perceived although it is less serious than the 

catastrophic fault. The common light fault includes evaporator fouled, condenser fouled, 

refrigerant insufficient, expansion valve fault, air flow line fault, cooling water line fault and so on. 

Due to the powerful coupling in the inner components, the nonlinear characteristic of dehumidifier 

system is obvious, thus there is some difficulty to accurately diagnose the fault. When the 

refrigeration system faults occur, the fault symptoms and reasons are often complex, the attributes 

can be concluded as: 1) the symptoms represented by fault are complex; 2) the fault reasons are 

complex; 3) the relationship between the fault symptoms and reasons are complex, one reason can 

arouse multiple symptoms, and multiple reasons can represent the same symptom; 4) it’s hard to 

find the strict logical and quantitative relationship from the system parameters, i.e., there is some 

fuzziness in the system; 5) there are many inner parameters to be measured. From this it can be 



seen that there is some difficulty to build precise mathematic or physical model for cooling 

dehumidifier fault analysis and diagnosis. At the same time, the process complexity of fault 

occurring and developing also brings difficulty to determine the fault threshold. For the complex 

fault compounded of two or more single faults, there is even more difficulty to diagnose due to the 

parameters coupling and the more complex corresponding relationships between fault symptoms 

and reasons. It is also hard to find an effective method for diagnosing the cooling dehumidifier 

compound fault.  

As a black-box model, ANN is a kind of method for fitting training data and optimizing 

performance parameter by input and output data. Due to the merit of high parallel disposing, 

nonlinear mapping, self-adapting and fault toleration, ANN is suitable for system identification 

and pattern recognition. The fault diagnosis can be attributed to pattern recognition problem in 

final, therefore ANN is widely applied to the fault diagnosis fields such as aerospace engineering, 

chemical industry, pharmacy, petroleum, and so on. In the HVAC&R field, methods based on 

ANN for diagnosis were widely studied and applied, e.g., Peitsman and Bakker [5] employed 

ANN and autoregressive with exogenous input (ARX) model to fault diagnosis for a reciprocating 

chiller; Haves et al. [6] proposed a method based on radial basis function neural network (RBFNN) 

and gradient regressive estimation to detect coil fouled and valve leakage faults of air handing 

unite (AHU); House et al. [7] employed 7 kinds of classification methods for AHU fault diagnosis 

and these methods performance were analyzed by contrast; Lee et al. [8] proposed a method based 

on general regression neural network (GRNN) for AHU FDD, the simulation result demonstrated 

the GRNN has high precision and reliability for the application to the nonlinear system such as 

AHU; Dun et al. [9] proposed a method based on ANN for Variable Air Volume (VAV) sensor 

fault diagnosis; Dun et al. [10] developed a method based on ANN and subtractive clustering 

analysis for AHU fault FDD; Fan et al. [11] proposed a hybrid FDD strategy for local system of 

AHU based on ANN and wavelet analysis; furthermore, there are many studies [12-14] focused 

ANN methods on performance prognosis and analysis for air-conditioning and the validity is 

proved by simulation or application. Gao et al. [15] proposed a nonlinear ARX model for cooling 

dehumidifier fault detection, but the fault diagnosis need to be aided by expert knowledge and the 

fault types study only focused on single fault. 

Reviewing these literatures, in the method research aspect, the black-box model are 



employed widely, e.g., the ARX model and feed-forward ANN. The ARX model is theoretically 

suitable for dealing with linear problems, but HVAC&R system has obvious nonlinear 

characteristics; ANN has strong nonlinear processing ability, so it is more suitable for fault 

diagnosis of HVAC&R. The most used feed-forward ANN mainly includes back-propagation 

neural network (BPNN) and RBFNN, the RBFNN has higher generalization ability and learning 

efficiency than t BPNN, and it has no local minimum problem existed in BPNN[16, 17]. Although 

RBFNN has been applied relatively successfully in fault diagnosis, the conventional RBFNN 

models mainly have two problems in the training. One is the balance between network structure 

and output precision, in the condition of the RBF width is determined, the output precision will 

improve with the number of neurons increase, but the structure will become complex; when the 

number of neurons is reduced, the structure will be simplified, and the output precision will be 

decreased. The structure size will affect the RBFNN online computing speed; the other is the 

selection of model parameter, RBF width has an important impact on the performance of RBFNN, 

the conventional artificial selection method needs to be adjusted repeatedly by experiment, so the 

operation is cumbersome, if it is not selected properly, it will lead to poor application effect of 

RBFNN. To solve these problems, this paper employs adaptive genetic algorithm (AGA) and 

K-means clustering algorithm to optimize the RBFNN structure and parameter at the same time, 

which guarantees that the model has smaller structure and faster computing speed on the premise 

of sufficient output precision. 

In the fault research aspect, most studies focus on single fault. When the compound fault 

occurs on the same time, it is harder to diagnose than the single fault due to the complex 

equipment parameters coupling. In fact, the compound fault composes of single fault will occur 

for the real equipment, so research on compound fault diagnosis is necessary in despite of that this 

work would be difficult and full of challenges. Employing the powerful nonlinear processing 

ability of RBFNN, the compound fault diagnosis can be decomposed single fault diagnosis. 

Compound fault diagnosis usually requires higher sample dimension, which will increase the 

structure and computational complexity of ANN. In view of this problem, this paper employs the 

kernel principal component analysis (KPCA) method to reduce the input sample dimension, so as 

to further reduce the structure of RBFNN, remove the correlation between input variables and 

better extract the data sample feature. 



Based on the two problems of conventional RBFNN models and compound fault research in 

the HVAC&R fault diagnosis field, this paper proposed an improved RBFNN model based on 

KPCA and AGA for the cooling dehumidifier compound fault diagnosis. 

2. RBFNN 

Moody and Darken [18] developed a novelty RBFNN based on multidimensional space 

interpolation disposed by radial basis function (RBF). The RBFNN is proposed according to 

human cerebrum cortical adjustment and overlap receive field, which is also named local receive 

field neural network. It is a simplified and abstract cerebrum model. The RBFNN is superior than 

BPNN on the approximation, classification and learning speed, so it is widely applied to the fields 

such as system identification and pattern recognition, and then it gained close attentions by many 

researchers [19].  

 2.1 RBFNN structure 

The RBFNN is a kind of special three-players ANN of feed forward neural networks. The 

input player unit only transmits input signal to the hidden player; the hidden player unit 

characteristic function employs nonlinear radial function in order to make local response to the 

input stimulus signal; the output player unit makes linear combination of the hidden player unit 

function outputs. The RBFNN structure is shown as Fig.1. 

       

       Fig.1 - RBFNN structure.                   Fig.2 - Radial symmetry Guass function. 

The radial symmetry Gauss function shown as Fig.2 is usually employed for the RBFNN 

nonlinear transmission function, and the transmission function in hidden player is shown as 

               (1) 

Where  is n-dimensional input vector,  is the j-th basis function 
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center which has the same dimension with the input vector,  is the j-th perception variable 

which determines the basis function width,  is the perception unit number,  is Euclidean 

distance which is defined as follows 

 
                         (2) 

According to formula (1), when the input vector  is located in the j-th hidden player unit 

center , then  and . If  is far from ,  will be 

decrescendo. The output of hidden player unit j  reflects the distance grade from  to the 

corresponding RBF center  which can be looked as a clustering center. The transmission 

function can produce major output only when the input vector locates in the region nearby the 

clustering center. So the transmission function works as a signal detector.  is applied to adjust 

the clustering center range of action.  becomes small,  descends rapidly with 

 increasing, the RBF transmission function output curve becomes very narrow and is 

sensitive to the input change; contrarily  becomes big, the RBF transmission function output 

curve becomes gentle and is insensitive to the input change. 

Due to the mapping from hidden player to output player is linear, the RBFNN output is the 

linear weight sum of hidden player unit output, which is shown as   

                    (3) 

Converting formula (3) into matrix equation, the equation can be obtained as follows: 

                                  (4) 

Where  is l-dimensional output vector,  is 

matrix of weight from hidden player to output player,  is the k-th unit 

weight vector of output player,  is the hidden player output 

vector. 

2.2 Learning method 

Seeing the RBFNN learning process, there are two methods for training, one is the hybrid 

mode, and the other is the supervised mode. 

1. Hybrid mode 

Moody and Darken proposed a hybrid method for RBFNN learning. Firstly, the RBF center is 

determined by unsupervised method after the number of radial basis functions is specified. 
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Secondly, the output player weight is determined by supervised method. According to the hybrid 

method in unsupervised stage, there are two common methods as follows: 

(1) Random selecting RBF center  

As a simplest method, the RBF centers in hidden player are selected randomly from input 

data samples and the centers are changeless. Due to the hidden player unit output is known, the 

network connection weights can be solved by linear equations.  

If the Guass function is employed for RBF, it can be represented as follows:  

               (5) 

Where  is the number of centers (i.e., hidden player units),  is the max distance 

among the selected center. In this case, the mean square deviation (i.e., RBF width) can be 

specified as follows  

                                  (6) 

(2) Self-organization selecting RBF center 

According to the multivariable interpolation RBF methods, the center  is usually located 

in the input vector point, so the hidden player units are consistent with the input data. Considering 

the input data maybe have clustering performance especially to the pattern recognition, there will 

be so many closed RBF centers that generates redundant points, the learning time become long, 

and the over fitting appears which leads to generalization ability debased. In order to overcome 

these problems, the input data are usually disposed by clustering analysis technology for selecting 

representation points as RBF centers, so the number of hidden player units is reduced and the 

structure complexity is debased. In this method, the RBF centers can move and be located by 

self-organization learning. The K-mean clustering algorithm which belongs to unsupervised 

method is usually employed for selecting RBF centers [20], the calculation steps are as follows:  

(a) The clustering center  is initialized by selecting  samples from 

input samples . 

(b) The input samples are classified according to the nearest neighbor rule. In this way, for 

that  is distributed to input sample clustering set  whose clustering 

center is , i.e., , and the condition need to be met 
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Where  is the min Euclidean distance. 

Calculating the mean of samples in , i.e., the clustering center: 

                                 (8) 

Where  is the number of input samples in . 

After obtained the centre 
 

and RBF width , the RBFNN can be trained to adjust the 

weight matrix  for minimizing the solution object function. Due to the space mapping from hidden 

player to output player is linear, i.e., the network output is the weighted sum of hidden player unit 

output. The relationship between hidden player and output player can be represented the matrix as 

follows: 

                                    (9) 

Where  is the object vector. The weight matrix  can be calculated by linear 

optimization methods, e.g., the least square method [21]. Solving the pseudo-matrix for  in the 

formula (9), the weight matrix can be obtained: 

                               (10) 

2. Supervised mode 

The RBF centers, width and output player weight are determined by supervised learning 

mode which is the general mode for RBFNN learning. The learning algorithm can be solved by 

gradient descent algorithm. The weight matrix  can be obtained by iterative algorithm follows 

gradient descent regulation. The iterative formula is calculated as follows: 

                    (11) 

Where  is the learning factor. Due to the output is linear unit, the gradient descent 

algorithm can converge the global solution.  

In the learning process, if the central nodes are so excess that the training time will increase 

and the network will be over fitting which debases the RBFNN generalization ability; if the 

central nodes are so insufficient that the training algorithm will not converge, so the nodes need to 

increase. For the supervised mode, the number of radial basis functions need to be specified before 

training, the training time is long and the training algorithm maybe not converges, and the initial 

condition maybe lead to the training algorithm converging in local minimum. In order to dispose 

the shortages mentioned above, some improved methods are proposed by researchers, e.g., the 

hybrid method based on gradient descent and least square algorithm, orthogonal least square 
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algorithm [22]. Yet, there is local minimum problem for gradient descent method; the orthogonal 

least square is unfit for recursive calculation and the determination for RBF centers need further 

study. 

3. Data acquisition system 

According to the cooling dehumidifier work analysis, the inherent parameters such as suction 

temperature, suction pressure, discharge temperature, discharge pressure, evaporation temperature, 

evaporation pressure, condensation temperature, and condensation pressure mostly affect the 

dehumidifier work performance. In the normal condition, the evaporation temperature and 

evaporation pressure are corresponding, and this also to condensation temperature and 

condensation pressure; the evaporation pressure and suction pressure are approximate, and this 

also to condensation pressure and discharge pressure. Furthermore, extrinsic parameters also 

influence the dehumidifier work performance, and they affect the system by causing the inherent 

parameters changing. In this studied experimental system, the extrinsic parameters include air 

intake temperature, air intake humidity, air volume, compressor power, cooling water intake 

temperature and flow. According to these parameters, the dehumidifier data acquisition system is 

built by employing measurement sensors, transducers, peripheral component interconnect data 

acquisition card and upper computer. Based on the built system, the dehumidifier work status 

simulation, data acquisition, fault detection and diagnosis can be implemented.  

The data acquisition system for a tempering cooling dehumidifier is built generally shown as 

Fig.3. The illustration of measurement parameters is shown as Tab.1. For the cooling dehumidifier, 

the nominal dehumidification capacity is 21 kg/h, the refrigeration capacity is 32.9 kW, and the 

input power is 7.7 kW. The requirement environment for dehumidifier normal work is that the 

temperature is in ranges of 18-32 °C and the RH is in ranges of 45%-90%. These measurement 

sensors in the data acquisition system include temperature sensors with accuracy of ±0.1 °C, RH 

sensors with accuracy of ±2%, pressure sensors with accuracy of ±0.02 bar, air velocity sensor 

with accuracy of ±0.2 m/s, flow sensor with accuracy of ±0.15 L/min, compressor power sensor 

with accuracy of ±0.02 kW. The measurement uncertainty is as follows: temperature, ±0.06 °C; 

RH, ±1.2%; pressure, ±0.01 bar; air velocity ±0.12 m/s; flow, ±0.1 L/min; compressor power, 

±0.01 kW. All these sensors are calibrated before applications according to the requirement 

environment for dehumidifier work.  



The time-step is set as 1s. 
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Fig.3 - The dehumidifier experimenta and measurement system. 

Tab.1 - Illustration of measurement parameters. 
Symbol Measurement parameter Symbol Measurement parameter 

T1 Air intake temperature T13 Compressor suction temperature 

T2 Evaporator air exhaust temperature T14 Compressor discharge temperature 

T3 Condenser air exhaust temperature H1 Air intake relative humidity (RH) 
T4 Condenser water intake temperature H2 Evaporator air exhaust RH 

T5 Condenser water exhaust temperature H3 Condenser air exhaust RH 

T6 Condenser inlet temperature P1 Compressor suction pressure 

T7 Condensation temperature P2 Compressor discharge pressure 

T8 Condenser outlet temperature P3 Expansion valve inlet pressure 

T9 Expansion valve inlet temperature P4 Expansion valve outlet pressure 

T10 Expansion valve outlet temperature V Air velocity 

T11 Evaporation temperature Q Water flow  

T12 Evaporator outlet temperature Pw Compressor power 

After the data acquisition system has been built, the dehumidifier work statuses in that 

refrigeration system faults commonly occur can be simulated by controlling the work condition 

and introducing artificial faults. These statuses include normal work, 9 kinds of single faults and 6 

kinds of compound faults. The single faults include evaporator fouled, air cooling condenser 

fouled, air intake volume decrease, air intake filter fouled, air intake temperature lower, water 

intake volume overfull, refrigerant insufficient, expansion valve open oversize and undersize, and 

the compound faults include air cooling condenser fouled combined air intake volume decrease, 

evaporator fouled combined air intake volume decrease, air intake volume decrease combined 

water intake volume overfull, evaporator fouled combined water intake volume overfull, 

evaporator fouled combined air cooling condenser fouled and air cooling condenser fouled 



combined water intake volume overfull. 

The dehumidifier work statuses simulation can be operated by introducing artificial faults. In 

the dehumidifier work statuses simulation process, it need to determine whether the dehumidifier 

works in steady by the measurement parameters change and steady detector [8] at first. If the 

simulated status works in steady state, then the measurement data can be acquired and recorded 

for fault analysis and diagnosis. 

4. Optimization for RBFNN 

For the problem of building model, the calculation time and storage space will be increased 

by geometric progression with the sample number and dimension increasing. So effectively 

extracting feature becomes an important problem for building system model. By feature extraction, 

the complexity of learning problem can be debased, the generalization ability can be improved, 

and the learning model can be simplified. Principle component analysis (PCA) is a multivariate 

statistical analysis technology for data compression and information extraction [23, 24], it is 

suitable for analyzing multidimensional process variable and the data set composed of other 

elements which affect the process operation. Before building system model, employing PCA 

method can furthest preserve the useful information, eliminate the relationship from variables, and 

filter redundant information. Although PCA is an effective feature extraction method, it is virtually 

a linear mapping. The KPCA method combines PCA and kernel method not only fits for disposing 

the nonlinear problem but also supplies more information [25, 26]. For the HVAC&R system, the 

nonlinear characteristic is obvious, there are strong coupling among characteristic variables 

especially when the compound faults occur. KPCA can better relieve the nonlinear relevancy 

among variables so that it can better solve the compound fault problem. 

Genetic algorithm (GA) is a self-adapting global optimization and probability searching 

algorithm, which imitates the mechanism of biology evolution such as natural selection and 

genetic variation. Due to the main characteristic of GA are population searching strategy, 

information interchange and searching independent on gradient information, GA is very suitable 

for solving nonlinear problem [27-29], thus it has been applied to many fields such as machine 

learning, function optimization, pattern recognition and automatic control. Based on the merits of 

GA, it can be employed for ANN aided design and optimization which will improve the ANN 



performance [30].  

4.1 Data dimensionality reduction by KPCA 

The main idea of KPCA is that calculate the principle component in the feature space which is 

mapped from input space by nonlinear mapping. KPCA employs a simple kernel function for finding a 

countable and controllable solution, this means that construct a nonlinear mapping from input space to 

feature space. So KPCA is a nonlinear PCA accomplished in input space. If the purpose of PCA 

application is diagonalizing the covariance matrix, weakening the nonlinear relationship in the given 

data set , the covariance can be represented in linear feature but not 

nonlinear input space, i.e.,  

                          (12) 

Here, supposing , and is a nonlinear mapping function which maps the 

variable from input space to  feature space. In order to diagonalize the covariance matrix, it need to 

resolve the eigenvalue in feature space: 

                                 (13) 

The eigenvalue , and .  can be represented as follows: 
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Where  denotes inner product of  and . This indicates the solution  

corresponding to  must locate in the subspace spanned . So 

 is equivalent to  

                (15) 

and there will be factor  to make 

                                   (16) 

Synthesizing formula (12), (15) and (16), the following formula can be obtained: 

       (17) 
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The eigenvalue problem only introduces the inner product of mapping vector in feature space 

demonstrated in formula (17). 

Defining a  order kernel matrix , where matrix element ，

, . Noticing  is a symmetry matrix, formula (17) can be simplified as 

follows: 

                                (18) 

The feature vector  of  can be solved by the feature vector  of , i.e., the principle 

component direction of mapping space. 

In this way, the principle component  of test vector  in the input space is extracted by 

 mapping to feature vector  in F  space:  

                     (19) 

Where , and  is the principle component number which can be calculated 

according to the following formula: 
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Where m  is the eigenvalue number, and C  is a constant spanned 0.85-0.95, here assigned 

0.90. 

Introducing the inner product kernel function shown as the following formula to feature space can 

avoid directly calculating nonlinear mapping  

                 (21) 

Selection of kernel function entirely determines the mapping   and feature F , the 

common kernel functions [31] includes:  

(1) Guass radial basis function 

                          (22) 

(2)  order polynomial function 

                               (23) 

(3) two players perceptron function 

                        (24) 

In this paper, the Gauss radial basis function is employed for KPCA kernel function. 

4.2 Structure and parameter optimized by AGA 

In GA the possible solution of problem field is considered as one individual or chromosome, 
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and every individual is encoded in the character string form. It repeatedly operates the population 

based on genetics by imitating the process of genetic selection and nature elimination according to 

the biology evolution mechanism. Every individual is evaluated depended on the preset object 

fitness function, and the optimal population is obtained according to the principle that the 

excellent one exists and the inferior one eliminates. At the same time, the optimal individual in the 

optimal population is obtained by the global parallel search, which is the optimal solution being 

satisfied to the requirement. The standard GA flow is shown as Fig.4. 
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Fig.4 - Flow of standard GA. 

Parameter encoding, fitness function setting, genetic operating, initial population setting and 

control parameters setting are the basic components of GA, and the selection, cross and mutation 

are the basic operations of GA. 

In GA control parameters, how to select the cross probability cp  and the mutation 

probability mp  is very important, because they influence the algorithm performance. Unsuitable 

selecting for cp  and mp  will not lead to search the optimal solution. Due to control parameters 

in standard genetic algorithm are fixed, it will not make full use of the three genetic operators, 

which results in the algorithm being in premature convergence state or getting in local minimum 



state. Especially the repeating selection for cp  and 
m

p  by experiment is a fussy work, and it is 

difficult to find the optimal values for them. Based on this problem, Srinvivas and Patnaik [32] 

proposed an AGA which is improved by other researchers. According to the idea of AGA, cp  

and mp  are automatically changing along with the fitness. They are calculated as follows: 
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                     (25) 
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Where maxf  is the max value of all the population’s fitness, avgf  is the average fitness 

value of every generation population, f   is the bigger fitness value of the two crossover 

individuals, f  is the fitness value of the mutation individual; c1p  value is 0.9, c2p  value is 

0.6, m1p  value is, and m2p  value is 0.006. 

In view of the limitations in the RBFNN learning methods based on gradient descent 

algorithm, this paper employs a hybrid learning method based on K-means clustering algorithm 

for training the RBFNN. But in this conventional K-means clustering algorithm, the initial 

clustering number M  (i.e., the RBF number in hidden player) and the RBF width   need to 

be artificially specified according to the experience in advance, which implies that there would be 

some human subjectivity. When the learning effect is not ideal, these two parameters need to be 

adjusted repeatedly which leads to the fussy operation and bad practicability. For this problem, 

this study proposed a hybrid learning algorithm based on AGA which employs AGA for 

automatically selecting the parameters of M  and  , the RBF centers are determined by 

K-means clustering and the output player weights are determined by least square algorithm. This 

proposed method not only overcomes the local minimum in the conventional K-means clustering 

algorithm, but also automatically selects the RBF number and width which overcomes the 

blindness and subjectivity in the artificial selection method for these parameters in theory. 

Moreover, this method achieves a perfect balance between the RBFNN structure and output 



precision due to employing K-means clustering algorithm optimized by AGA, and the overfitting 

problem is overcame in some degrees, thus the ANN model generalization ability is improved. 

In this paper, the genetic resolving procedure is as follows: 

(1) Encoding. 

The parameters of M  and   are encoding in real form, the span of former is ]2/,1[ N  and 

the span of latter is ]5,01.0[ , where N  is the total number of samples. 

(2) Fitness function designing. 

The fitness function is designed as 
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                         (27) 

Where 
ijd  is the j-th expectation output corresponding to the i-th sample, 

ijy  is the real output 

corresponding to 
ijd ; N  is the number of learning samples and l  is the number of output player 

units. 

(3) Genetic operating. 

The selection operation employs roulette operator, and the optimal preserving strategy is 

employed. The crossover operation employs arithmetic crossover operator, and the mutation operation 

employs nonuniform mutation operator. The crossover probability cp  and mutation probability mp  

are adaptively calculated according to the AGA. 

(4) Other enactment. 

The initial population generated at random, and the scale is 40 based on considering the resolving 

speed; the algorithm is terminated until the generations achieve to 200.  

5. Application for fault diagnosis 

Firstly, the normal and fault work statuses of the dehumidifier are simulated, and the data 

under each steady state work status are collected by the data acquisition system as the fault sample 

database. Secondly, fault samples are selected to train and optimize the RBFNN model. Thirdly, 

the RBFNN model is validated until it meets the requirement of application precision. Finally, the 

model is applied to fault diagnosis, the disposed real-time data samples acquired from the 



dehumidifier are inputted into the RBFNN model for calculation, and the faults are diagnosed by 

the model output results. It should be pointed out that when the dehumidifier has new faults, the 

diagnosis result is inconsistent with the actual status, the work environment or the dehumidifier 

configuration has changed, the sample database needs to be updated and then the RBFNN model 

needs to be retrained and revalidated to ensure the effectiveness and reliability of fault diagnosis. 

The flow of RBFNN trained and employed for fault diagnosis is shown as Fig.5. 
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Fig.5 - The flow of RBFNN learning and application. 

Before the RBFNN is trained and applied, the input data sample needs to be normalized to 

the [-1, 1] span in order to decrease the computational complexity and model error to prevent the 

model oscillation. After the model finishes calculation, the output result needs to be renormalized. 

In order to eliminate the influence from outside interference to data fluctuation, the input data 

is smoothed by the moving average method for improving modeling precision and fault diagnosis 

accuracy before the data normalized.  

The normalization is calculated as: 
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Where 0k
x  is original data, 0max

k
x  is the max value of input data, and 0min

k
x  is the 

minimum value of input data, b  is the max value of normalization span, a  is the min value of 

normalization span, and 1b  , 1a   . 

The moving average is calculated as: 
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Where 
k i

x   is the original measurement data, 
i

  is the weight factor, and 1
p

i

i q


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 , 

1, 2, ,k q q N p   L , p  and q  are respectively arbitrary positive integer which is less 

than the smooth span m , and 1p q m   , N  is the number of measurement data. 

In order to correctly identify the dehumidifier work statuses mentioned above and improve 

the RBFNN generalization ability, the training sample is selected according to the rule: 100 groups 

of samples are selected corresponding to every work status; every group of sample selects 18 work 

parameters, which are compressor suction temperature, suction pressure, discharge temperature, 

discharge pressure, dehumidifier air intake velocity, air intake temperature, air exhaust 

temperature, dehumidifier air intake RH , air exhaust RH, condenser water intake flow, water 

intake temperature, water exhaust temperature, condensing temperature, expansion valve inlet 

temperature, evaporator inlet temperature, evaporating temperature, evaporator air exhaust 

temperature and compressor power.  

Obviously, if all these parameters are selected as the sample dimension, the RBFNN structure 

would be large and the training would be complex. So here employs KPCA for extracting input 

data sample feature in order to reduce the data sample dimension. According to formula (20), 

when the kernel function width σ is assigned 0.3441, the calculation result of principle 

components number is 7, i.e., the number of input player units corresponding to 7 principle 

components extracted by KPCA is 7. The output player units are 16 bits which respectively 

corresponds to the dehumidifier work statuses, i.e., if the input sample is corresponding to the i-th 

(1≤i≤16) work status, then the i-th bit value is 1 and the other bits value are 0, here the whole 

output bits can be represented as 
1 2 15 16

[0 0 1 0 0]
i

L L . The relationship of RBFNN outputs 

corresponding to work statuses is illustrated as Tab. 2. 

 

 

 



Tab. 2 - The relationship of RBFNN outputs corresponding to work statuses. 

Work 
status No. Fault mode RBFNN output 

1 Normal 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 Evaporator fouled 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 Air cooling condenser fouled 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 Air intake volume decrease 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

5 Air intake filter fouled 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

6 Air intake temperature lower 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

7 Water intake volume overfull 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

8 Refrigerant insufficient 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

9 Expansion valve open oversize 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

10 Expansion valve open undersize 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

11 
Air cooling condenser fouled + air intake 
volume decrease 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

12 
Evaporator fouled + air intake volume 
decrease 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

13 
Air intake volume decrease + water intake 
volume overfull 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

14 
Evaporator fouled + water intake volume 
overfull 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

15 
Evaporator fouled + air cooling condenser 
fouled 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

16 
Air cooling condenser fouled + water intake 
volume overfull 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Employing the hybrid learning method expounded in section 4 (i.e., Optimization for 

RBFNN) for RBFNN training and optimizing, it can obtain the RBFNN structure and parameters. 

The change of AGA fitness function value in solving process is shown as Fig.6. 

The AGA converges in the 173 generation, and the offline training time of the algorithm is 

190.3342 seconds. The best individual fitness value is 0.9953, and then the best solution can be 

obtained, where the number of radial basis functions (i.e., the hidden player neurons) M=757, and 

the RBF width σ=0.3441. The mean square error (MSE) of the RBFNN obtained is 1.8359×10-7。 

 

Fig.6 - Fitness function value change in solving process. 

Corresponding to the 16 kinds of dehumidifier work statuses, 16 groups of test samples 



besides the training samples are selected to input the trained RBFNN for model validation and 

verify the model generalization ability, the 16 groups of output results are shown as Fig.7, and the 

online running time of the trained model is 3.8150×10-3 second. As demonstrated in Fig.7, the i-th 

(1≤i≤16) bit value is 1 (rounded to integer) and other bits value are 0 (rounded to integer) in each 

output result, which indicates that the output result corresponds to the i-th work status illustrated 

in Tab. 2 and the fault modes corresponding to the input samples are correctly identified.  

 

Fig.7 - Model validation result for fault diagnosis. 

In order to verify the RBFNN application effect, corresponding to each work status, 16 

groups of fault data samples acquired from the dehumidifier data acquisition system are selected 

for inputting the RBFNN to calculate, the 16 groups of output results are shown as Fig.8. As 

demonstrated in Fig.8, each output result is consistent with the factual work status (i.e., fault mode) 

corresponding to the data sample. This indicates the RBFNN model proposed in this paper has 

favorable fault recognition ability that can correctly recognize not only the single but also the 

compound fault, and it needs to be referred that the compound fault is more difficult for fault 

diagnosis due to the close coupling of equipment status parameters, e.g., If the air intake volume 

decrease fault occurs, then the evaporation pressure drops and the condensation pressure rises. If 

the compound fault of evaporator fouled + air cooling condenser fouled occurs, then the 

evaporation pressure maybe drops and the condensation pressure maybe rises. Due to the coupling 

relationship between evaporation and condensation pressure, both the evaporation and 

condensation pressure maybe drop or rise at the same time, even one of them may be changeless. 

Therefore, it is relatively difficult for accurately discriminating the single fault of air intake 

volume decrease and the compound fault of evaporator fouled + air cooling condenser fouled. 

Moreover, it is also difficult for recognizing the compound fault of evaporator fouled + air cooling 
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condenser fouled. As can be seen, employing the common methods to diagnose these two single 

and compound faults is hard, even though these two faults are discriminated, it will need a lot of 

detailed and trustworthy expert knowledge which is not easily acquired in engineering.  

 

Fig.8 – Test of fault diagnosis for data samples. 

 

Fig.9 –Fault diagnosis test by model 1. 

 

Fig.10 –Fault diagnosis test by model 2. 

In order to further illustrate the advantages of this proposed method, here is a comparative 

analysis with the two conventional RBFNN models. The first model employs the direct creation 

method (defined as model 1), the number of neurons in the hidden layer is equal to the number of 

input samples, and the centers are the data sample points; the second model employs the 
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step-by-step creation method (defined as model 2). The number of neurons in the hidden layer 

gradually increases from zero according to the error, and the increased neuron center are the 

sample point with the maximum error, the model stops training until it meets the set accuracy 

conditions. The width of RBF in the two models is selected according to experience, and the 

parameter value is 0.25. It should be pointed out that in order to obtain the ideal RBFNN model, 

the width of RBF needs to be adjusted repeatedly according to the experiment, and the operation is 

cumbersome, which brings inconvenience to the application. The same data samples are used to 

train and validate these two models, and the validated results are respectively shown in Fig.9 and 

Fig.10. Compared with Fig.8, the classification precision of Fig.9 and Fig.10 significantly 

decreases, and even there is the phenomenon of misclassification, where these two models 

respectively classify fault mode12 and fault mode15 into fault mode 9 and fault mode 4. From the 

comparison, it can be seen that the RBFNN model proposed in this paper has prominent 

advantages in the accuracy of compound fault diagnosis than the conventional RBFNN models. 

6. Conclusions 

In this paper, the diagnosis for cooling dehumidifier compound fault is studied and explored. Due 

to the obvious nonlinear characteristics of the refrigeration system and the strong coupling between 

various components in the work, it is difficult to establish a model for compound fault diagnosis. In 

view of the strong nonlinear processing ability of ANN, this paper proposed a compound fault 

diagnosis method for cooling dehumidifier based on RBFNN improved by KPCA and AGA. On the 

one hand, AGA and K-means clustering algorithm are used to automatically optimize the RBF width, 

the number of neurons in the hidden layer and the neuron center. On the premise of ensuring that the 

RBFNN model has sufficient output accuracy, it has a smaller structure and faster online calculation 

speed, which solves the problems that the selection of RBF width depends on expert knowledge, large 

network structure or slow training speed in the traditional RBFNN method; On the other hand, KPCA 

is employed to reduce the dimension of the model input data, eliminate the correlation between 

variables, and further optimize the network structure while effectively extracting nonlinear features. In 

order to illustrate the advantages of this research method, it is compared with two traditional RBFNN 

methods for performance analysis by employing the same modeling, testing and diagnosis samples. 

The comparison results show that this proposed method can not only be effectively applied to the 



compound fault diagnosis for the cooling dehumidifier, but also has obvious application advantages 

compared with other RBFNN methods. 

7. Discussions 

Objectively speaking, the inherent problems of cooling dehumidifier lead to us working hard 

for the compound fault diagnosis, e.g., the influence of outside interference, the close coupling of 

inner parameters, the fault artificial simulation difficulty, and so on. All these factors will affect 

the reliability of fault diagnosis. This study introduces three steps for eliminating these influences 

for fault diagnosis to sum up, firstly the model built data are coming from the dehumidifier 

multiple work statuses by artificial simulation in experiment; secondly the model input data are 

coming from the steady state and smoothed by the moving average method; lastly the strong fault 

tolerant and generalization ability of RBFNN are applied to restrain the outside interference to the 

model. These measures mentioned above ensure the RBFNN model application reliability for 

dehumidifier fault diagnosis, but the problem of inner mechanism of compound fault, work status 

simulation, fault profound diagnosis and so on need to deeply research.  

The proposed RBFNN model employs AGA and K-means clustering algorithm to optimize 

the RBF width, the number of neurons in the hidden layer and the neuron center, and further 

employs KPCA to reduce the dimension of the input data, so that the model has a small structure 

on the premise of sufficient accuracy, thus ensuring the computing speed of the online application. 

By the group calculation of AGA, the best individual obtained is equivalent to performing 

multiple operations on the K-means clustering algorithm, and the optimal clustering result is 

selected as the neuron center in the network hidden layer. At the same time, it also restrains the 

problem that the K-means clustering algorithm is sensitive to the initialization value and easy to 

fall into the local minimum. 

Although this paper has made a successful exploration in dehumidifier compound fault, there 

are still some work to be carried out in the further. For the compound fault diagnosis, this paper 

mainly researches two single faults combination situation due to the objective condition such as 

work status simulation limited. Theoretically speaking, though there is the relatively lower 

probability that three or more single faults occur simultaneously, it is still need to research, and the 

faults of different magnitude also need to research in the further. 



This study mainly focuses on fault diagnosis in steady state, but the equipment work state 

maybe transform due to control, outside interference and other influence factors, although the 

equipment work parameters fluctuation and strong coupling bring more difficulties to fault 

diagnosis in unsteady state, it still needs further research. 

In recent years, the application of artificial intelligence technology has promoted the research 

and development of deep learning ANN [33-38]. Among them, convolutional neural network (CNN) 

and long short-term memory (LSTM) neural network are the most typical structures. CNN can 

effectively extract the hidden features of high-dimensional data, and its unique network structure 

can reduce the number of parameters and data complexity while retaining data features, the deep 

fault characteristics are learned through multi-level nonlinear mapping relationship. However, 

CNN was originally used to process two-dimensional image data, and its specific application in 

fault diagnosis for one-dimensional time series needs further research. Recurrent neural network 

(RNN) can learn historical information and is very suitable for dealing with time series problems. 

As an improved RNN, LSTM network makes up for the difficult training problems such as 

gradient disappearance and explosion of ordinary RNN, and its practicability is further improved. 

In the further work, these two structural ANN can be studied for applications in fault diagnosis 

and prognosis according to their characteristics. Like other network models, the optimization of 

structure and parameters of these two ANN models also need to be studied. 
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