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Abstract: We present a novel numerical method for solving ordinary differential equations (ODEs) 

using Radial Basis Function (RBF) Network with Extreme Learning Machine Algorithm. A single layer 

Radial Basis Functional Link Neural Network (RBFNN) model has been developed for the proposed 

method. The weight from the hidden layer to the output layer can be calculated efficiently by Extreme 

Learning Machine algorithm. The experimental comparison of various methods proves that the proposed 

method shows better performance than the existing methods. 

Keywords: Radial Basis Function Network; Extreme Learning Machine; Ordinary differential 

equation 

1 Introduction 

Differential equations (DEs) play an important role in various fields of science and engineering. Many 

problems encountered in many fields of physics, economics, biology, chemistry, population, resources, 

etc. can be solved by DEs models. Therefore, when the ODEs was put forward, they became a useful 

tool for human beings to understand nature and explore the laws of motion of the material world. 

However, in many cases, the analytical solution of the DEs does not exist or is difficult to obtain. 

Therefore, the numerical solution of DEs becomes an important research direction. At present, there are 

many numerical methods for solving DEs, such as finite difference method, finite element method, finite 

volume method, Runge-Kutta method, and other methods. The computational complexity of traditional 

methods increases rapidly with the increase of sampling points, while the method based on artificial 

neural network (ANN) can effectively avoid this problem. In addition, the traditional methods can only 

obtain numerical solutions at finite points, and it needs repeated calculation to obtain numerical solutions 

at other points, while the result obtained by ANN based model is a closed analytic form. We can use this 

form to get the numerical solution of any point. 

In the past few decades, researchers have been devoting themselves to the study of various machine 

intelligence methods, especially ANN based model for solving Des. In 1990, Lee and kang presented a 

Hopfield neural network model for the solutions of DEs. In 2006, Malek and Beidokhti presented a hybrid 

neural network for solving higher order differential equations. In 2016, Mall and Chakraverty introduced 

Legendre Functional Link Neural Network for the solution of DEs. In 2017, Mall and Chakraverty used 

Chebyshev polynomial as an activation function to construct the approximate solution of DEs. 

                                

Author : 
E-mail address: liuhellomin@163.com (Min Liu). 
*Corresponding author: E-mail address: houmuzhou@sina.com (Muzhou Hou). 

mailto:liuhellomin@163.com
mailto:houmuzhou@sina.com


RBFNN has the advantages of simple training, fast convergence, and can overcome the local minimum 

problem. It is widely used in function approximation, speech recognition, pattern recognition, image 

processing and other fields. In 1991, Park and Sandberg proved that RBFNN with a hidden layer can be 

effectively used for universal approximation. In 2012, Lin, Chen and Sze proposed a radial basis function 

method for solving the Helmholtz problem. In 2017, Qu obtained the numerical solution of the fractional 

Riccati equation and the fractional Langevin equation by applying the cosine radial basis function 

network. 

The rest of this paper is organized as follows. Section 2 describes the problem to be solved. Section 3 

introduces the proposed RBFNN. Section 4 introduces the process of solving parameters of RBFNN 

using extreme learning machine algorithm. Section 5 shows some numerical results obtained with the 

RBFNN model. Finally, the last section is some conclusions.  

2 Radial Basis Functional Link Neural Network Model 
Single layer Radial Basis Functional Link Neural Network model has been considered for the present 
problem. Fig. 1 depicts the three-layer structure of RBFNN. The first layer of the network has only one 
node, the input data is the independent variable of the ordinary differential equation. The general form 
of the non-linear Gaussian basis function is as follows: 
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There are two parameters in the Gaussian basis function, and the choice of these two parameters has a 

great influence on the construction of the model, which will eventually affect the accuracy of the 

approximate solution. There are usually two ways to select the center. The first way is to select from 

sample points, and the second way is to self-organize selection method, such as clustering samples, 

gradient training method, etc. When solving the problem of solving differential equations, the sample 

point is the independent variable x . The following method of selecting sample points is to sample 

uniformly in the solution area. Therefore, whether the first method is used to select the center point or 

the second method, the final center point will be uniformly sampled from the solution area. Where  is 

the width parameter, which determines the shape and scope of the Gaussian basis function. This value is 

chosen empirically. 
i

c is the center of the i-th Gaussian basis function, x is the input of the network. 

More closer the input x is to the center i
c , More larger the output of the corresponding hidden layer node 

is. Finally, the output of the network can be calculated by the following formula: 

                                  
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Where , 1,2,
i

i n  L  is the weight from the hidden layer to the output layer.  

RBF is used as the base of hidden layer neurons to form the hidden layer space, so that input vectors 

can be mapped directly to the hidden space (i.e., without weight connection). When the center of RBF is 

determined, the mapping relationship is determined. The mapping from the hidden layer space to the 

output layer space is linear, that is, the output of the network is the linear weighted sum of the output of 

the hidden layer neurons, where the weight is the adjustable parameter of the network. Thus, in general, 



the mapping of the network from input to output is non-linear, while the network is linear for adjustable 

parameters.  
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Fig.1 The structure of RBFNN 

 

3 Description of the Problem 

The general form of ordinary differential equations is as follows: 

                           2, , , , , 0,k n
G x y x y x y x y x x D R     L             (3) 

Where   , i 1,2 .i
y x k  L . The trial solution can be written as follows: 

                                 , ,z ,Ty x A x F x x                           (4) 

The first part of the trial solution  A x  ensures the trial solution satisfies the initial or boundary 

conditions of the ordinary differential equation and contains no adjustable parameters. The second part 

of the trial solution contains adjustable parameters. The closer the error function is to zero, the better the 

parameters are. 

In Section 5, Example 1, Example 2, and Example 3 show the results of RBFNN method for solving first 

order ordinary differential equations. The general form of first order ordinary differential equation is as 

follows: 

        
     , ,

y x
f x y x a b

x


 


，                            (5) 

When the initial value condition satisfies  y a A , the trial solution can be written as follows: 

                            , ,Ty x A x x a z x                            (6) 

In Section 5, Example 4 and Example 5 are two examples of solving a system of first-order ordinary 



differential equations. The general form of first order system of ordinary differential equations is as 

follows: 
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x


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When the initial value condition satisfies  i iy a A , the trial solution can be written as follows: 

                     , , , 1,2,iT i i iy x A x a z x i m     L                     (8) 

Examples 6 and 7 are two second-order ordinary differential equations, the general form of second order 

ordinary differential equations is as follows: 

       
2
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y x y x

f x y x x a b
x x

   
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，                     (9) 

Second order ordinary differential equations can be divided into initial value problems and boundary 

value problems. When the initial value condition satisfies    ,y a A y b B  , the trial solution can 

be written as follows: 

      , ,T

bA aB B A
y x x x a x b z x

b a b a
  

    
 

             (10) 

When the boundary value condition satisfies    ,y a A y a A   , the trial solution can be written as 

follows: 

                       2
, ,Ty x A A a A x x a z x                          (11) 

4 Extreme Learning Machine Algorithm with Proposed RBFNN Model 
We minimize the error function by adjusting the parameters  . For a point x in the solution region, when 

the numerical solution is equal to the exact solution, the error at this point is zero. Then the following 

equation (12) can be obtained by substituting the trial solution  ,Ty x   and its derivatives of this point 

into the equation to be solved. 

           2, , , , , , , , , 0k

T T T TG x y x y x y x y x      L           (12) 

In equation (12), only  is unknown. Put the part containing  on the left side of the equation and the 

other parts on the right side of the equation to get a system of linear equations H T  about  .                                                      

Let us take the following system of ordinary differential equations as an example: 
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

.       (13) 

Selecting m sampling points and n hidden layer neurons, according to (8), the trial solutions can be 

written as follows: 

                0
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By substituting (14) and m sampling points into (13), the following linear equations with respect to 

are obtained.             
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Set 
11 12 21 22, , ,H H H H be matrices of size m n ,

1 2,  be matrices of size 1n ,
1 2,T T be matrices of 

size 1m , and 
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Then (15) can be written in the following matrix form: 

.H T   

Solutions of the system of linear equation H T  is the most appropriate parameters value. When H is 

a reversible matrix, 1
H T  . In many cases, if H not a reversible matrix, then †

H T  .Where †
H

is the Moore-Penrose generalized inverse of matrix. Moreover, the solution of H T  is unique. 

  The steps of using Extreme Learning Machine Algorithm with Proposed RBFNN Model to solve 

ODEs is as follows: 

Step1: Determinate the sampling points 1 2, , mx x xL ; 

Step2: Calculate network output based on sampling points  z , , 1,2,ix i m  L ； 

Step3: Write the expression of the trial solution  ,Ty x  according to the initial value condition or 



the boundary value condition; 

Step4: substituting the trial solution  ,Ty x  and its derivatives of this point into the equation to be 

solved. Then we get this equation: 

        2, , , , , , , , , 0k

T T T TG x y x y x y x y x      L  

Step5: Transform this formula into a matrix form H T  ; 

Step6: Solving equations in Step 5 by †
H T  ; 

Step7: Substitute the parameter values obtained in step 6 into the trial function. Thus, the numerical 

solution of any point in the domain can be obtained by substituting the independent variable into the trial 

function. 

5 Numerical Examples 

In this section, some examples are given to verify the effectiveness of the proposed method. To compare 

the proposed method with other methods conveniently, two error functions are used in this paper. Suppose 

the sampling point is 1 2, , mx x xL  and the exact solution of the ordinary differential equation at ix  is

 iy x .The means of average mean squared error is as follows: 

      
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,
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j
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
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and the maximum absolute error is as follows: 

     2 max max ,it j j
i j

E x y x y x   

We illustrate the effectiveness of the proposed method from three perspectives. The first method is to 

compare the approximate solutions of sampling points (training points) and test points with their exact 

solutions, namely,    ,t j jy x Y x  . The second is to compare the approximate solution obtained 

by our method with that obtained by other classical methods. And the third is to compare the solutions 

obtained using different numbers of hidden layer neurons and different numbers of sampling points. In 

this paper, the center of the activation function RBF is obtained by uniform sampling in the solution 

region, and we take the width parameter 0.8  . 

Example 1 Consider the following first order ordinary differential equations: 
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with the analytical solution    

2

2
2

3
, 0,1

1

x

e
y x x x

x x



  
 
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The RBFNN trail solution in this case is: 

   1 .ty x xz x   

  Table 1 compares the proposed algorithm with the RBF Net (Rizaner et al. 2018) that minimizes 

error with the gradient descent method. When the number of hidden neurons and activation function is 



the same, the solution accuracy of the proposed algorithm is higher. Table 2 compares the approximate 

solutions obtained by the proposed method with other methods. It is clearly seen from the data in Table 

2 that the proposed method outperforms all the other methods. Fig. 2 shows the exact solution and 

approximations of example 1. The basis function of the network in RBF Net (Rizaner et al. 2018) is also 

the radial basis function. When the number of hidden layer neurons is 9, the accuracy of RBF Net is the 

highest with an error of 106.80 10 . When the number of hidden layer neurons in our network is 9, 

the accuracy is higher than that in RBF Net, and the error function is 147.56 10 . 

 

Table 1 Error comparison of example 1 

Error1 n=3 n=5 n=7 n=9 

RBF Net in Rizaner et al. 2018    
053.48 10   

063.54 10  
107.75 10  

106.80 10  

RBFNN 
076.35 10   

092.54 10  
111.76 10  

147.56 10  

 

Table 2 The exact solution and approximations for example 1 

x   Exact Euler  Runge RBF Net in  RBFNN 

 solution      Kutta Rizaner et al. 2018(n=9) Solution(n=9) 

0.00 1.0000 1.000 1.0000 1.0000 1.0000 

0.05 0.9536 0.9500 0.9536 0.9536 0.9536 

0.01 0.9137 0.9072 0.9138 0.9137 0.9137 

0.15 0.8798 0.8707 0.8799 0.8798 0.8798 

0.20 0.8514 0.8401 0.8515 0.8514 0.8514 

0.25 0.8283 0.8150 0.8283 0.8283 0.8283 

0.30 0.8104 0.7953 0.8105 0.8104 0.8104 

0.35 0.7978 0.7810 0.7979 0.7978 0.7978 

0.40 0.7905 0.7721 0.7907 0.7905 0.7905 

0.45 0.7889 0.7689 0.7890 0.7889 0.7889 

0.50 0.7931 0.7717 0.7932 0.7930 0.7931 

0.55 0.8033 0.7805 0.8035 0.8033 0.8033 

0.60 0.8200 0.7958 0.8201 0.8199 0.8200 

0.65 0.8431 0.8178 0.8433 0.8431 0.8431 

0.70 0.8731 0.8467 0.8733 0.8731 0.8731 

0.75 0.9101 0.8826 0.9102 0.9100 0.9101 

0.80 0.9541 0.9258 0.9542 0.9540 0.9541 

0.85 1.0053 0.9763 1.0054 1.0052 1.0053 

0.90 1.0637 1.0342 1.0638 1.0637 1.0637 

0.95 1.1293 1.0995 1.1294 1.1293 1.1293 



1.00 1.2022 1.1721 1.2022 1.2021 1.2022 

Error1 0 
044.60 10   

081.24 10  
106.80 10  147.56 10  

 

 

Fig.2 Exact solution and approximations of example 1. 

 

Example 2 Next, we look at the following first order ordinary differential equations: 

 

 
 

2 cos 4
, 0,3

0 3

dy
y x

xdx

y

   
 

 

with the analytical solution:        
2cos 4 29 sin 4

, 0,3
10 5

x
x e x

y x x


   . 

The RBFNN trail solution in this case is: 

   3 .ty x xz x   

 

Table 3 Error comparison of example 2 

Error1 n=9 n=15 n=21 

RBF net in [26] 
026.67 10

 
051.96 10  

-061.44 10  

RBFNN 
052.73 10  

092.87 10  
125.85 10  

 



Table 4 The exact solution and approximations for example 2. 

x   Exact   RBF Net in RBFNN RBFNN 

 solution Rizaner et al. 2018 (n=21) (n=21) (n=90) 

0.00 3.0000 3.0000 3.0000 3.0000 

0.15 2.3438 2.2435 2.3438 2.3438 

0.30 1.8142 1.8138 1.8142 1.8142 

0.45 1.3511 1.3510 1.3511 1.3511 

0.60 0.9348 0.9344 0.9348 0.9348 

0.75 0.5763 0.5752 0.5763 0.5763 

0.90 0.3012 0.2998 0.3012 0.3012 

1.05 0.1318 0.1308 0.1318 0.1318 

1.20 0.0726 0.0720 0.0726 0.0726 

1.35 0.1038 0.1030 0.1038 0.1038 

1.50 0.1845 0.1834 0.1845 0.1845 

1.65 0.2643 0.2632 0.2643 0.2643 

1.80 0.2988 0.2982 0.2988 0.2988 

1.95 0.2638 0.2637 0.2638 0.2638 

2.10 0.1625 0.1622 0.1625 0.1625 

2.25 0.0235 0.02227 0.0235 0.0235 

2.40 -0.1095 -0.1107 -0.1095 -0.1095 

2.55 -0.1937 -0.1952 -0.1937 -0.1937 

2.70 -0.2025 -0.2043 -0.2025 -0.2025 

2.85 -0.1348 -0.1373 -0.1348 -0.1348 

3.00 -0.0157 -0.0186 -0.0157 -0.0157 

Error1 0 
061.44 10  

125.85 10  
139.95 10  

 

From Table 3, we can see clearly that our algorithm is more accurate than the algorithm in RBF Net 

(Rizaner et al. 2018) when the network structure is the same. As can be seen from Table 4, with 21 RBF 

basis functions, the average mean squared error of the solution obtained by extreme learning machine 

method is 125.85 10  . In RBF Net (Rizaner et al. 2018), the average mean squared is
061.44 10 .When the number of hidden layer basis functions is 90, the average mean squared error 

can be reduced to 139.95 10  using the proposed method. Increasing the number of neurons in the 

hidden layer to more than 90 does not improve the accuracy effectively. Fig.3 shows the exact solution 

and approximations of example 2. 



 

Fig.3 Exact solution and approximations of example 2. 

 

Example 3 Consider the following first order ordinary differential equations: 

 
 

2 1
, 0,2

0 0.5

dy
y x

xdx

y

    
   

Its exact solution is    2
1 0.5 x

y x x e   . 

  The number of hidden layer neurons is 20, and 30 points are sampled equidistantly at interval [0, 2]. 

The maximum absolute error of the numerical solution is 62.20 10  . Fig.4 shows the maximum 

absolute error. By comparison, the maximum absolute error of the BeNN method (Sun et al. 2018) is 
32.7 10 , and the maximum absolute error in [30] is 21.9 10 . 



 

Fig.4 The maximum absolute error of example 3. 
 

Example 4 Next, consider the following system of ordinary differential equations:   

   

 
 

1
1

2
1 2

cos , 0 0

, 0,1

, 0 1

dy
x y

dx
x

dy
y y

dx

   
   


 

The exact solution of is
   
     1

2

sin
, 0,1 .

cos

y x x
x

y x x

   
  

  The RBFNN trail solution in this case can be written as 

   
   
1

2

.
1

y x xz x

y x xz x

 
  

 

Fig. 5(a) and Fig. 5(b) compared the exact solution with the approximate solution obtained by the 

proposed method. Fig. 5(c) and Fig. 5(d) show the maximum absolute error. Table 5 shows the effect 

of the number of sampling points and hidden layer neurons on the approximate solution. When there 

are more than 10 sampling points, the maximum absolute error function is less than 079.85 10 . When 

20 sampling points and 60 hidden layer neurons are selected, the maximum absolute error is 085.84 10 . 

Continuing to increase the number of sampling points or hidden layer neurons can only slightly improve 

the accuracy of the solution. 

 



 

Fig.5 Solutions and maximum absolute error of example 4. 
 

Table 5 The maximum absolute error for example 4 

Error2 m=5 m=10 m=15 m=20 

n=10 044.26 10  
079.85 10  

075.42 10  
077.08 10  

n=20 044.28 10  
075.30 10  

073.40 10  
071.77 10  

n=30 044.30 10  
074.25 10  

088.67 10  
071.30 10  

n=40 044.31 10  
061.06 10  

071.71 10  
071.93 10  

n=50 044.32 10  
073.52 10  

072.91 10  
072.35 10  

n=60 044.33 10  
072.66 10  

089.23 10  
085.84 10  

 

Example 5 One more problem is given by 

   

      
 

1
1 2 1

2
1 2 2

2 2sin , 0 2

0,2

2 2 cos sin , 0 3

dy
y y x y

dx
x

dy
y y x x y

dx

     
     


，

 

The corresponding exact solution is
 
   1

2

2 sin
, 0,2

2 cos

x

x

y e x
x

y e x





     
. 

In this case, the RBFNN trail solution can be written as: 

   
   

1

2

2
.

3

y x xz x

y x xz x

 
  

  



Using 40 hidden neurons and 40 points sampled equidistantly from interval [0, 2], the maximum 

absolute error of the numerical solution is 62.15 10  . Fig. 6(a) and Fig. 6(b) compared the exact 

solution with the approximate solution obtained by the proposed method. Fig. 6(c) and Fig. 6(d) shows 

the maximum absolute error. 

 

Fig.6 Solutions and maximum absolute error of example 5. 

Example 6 Next, consider a second-order ordinary differential boundary value problem. 

   
 

2

2
2

, 0,1 ,

0 1, 1 0

d y
y

xdx

y y


  

  

 

the analytical solution is:    
       cos 1 2

sin cos 2, 0,1
sin 1

y x x x x


    . 

In this case, the RBFNN trail can be written as: 

     21 .ty x x x x z x     

Take 50 equidistant points from interval [0,1] as sampling points. The maximum absolute error of the 

solution obtained by the proposed method is 088.55 10 . In unsupervised version of kernel least mean 

square (KLMS) algorithm (Yazdi et al. 2011) the maximum absolute error with 50 points from interval

[0,1]  is 023.5 10  . The numerical solution obtained by the constructed neural networks (CNN) 

(Tsoulos et al. 2009) has an error of 015 10 . It can be seen that the proposed method can obtain more 

accurate numerical results when the sampling points are the same. The maximum absolute error of the 



proposed method can be reduced to 094.36 10 , by increasing the number of sampling points to 100. 

Fig. 7 shows the maximum absolute error of example 6. 

 

Fig.7 The maximum absolute error of example 6. 

 

Example 7 Last, consider the following second-order ordinary differential boundary value problem. 

   
 

2
24 12 3

, 0,1 ,

0 0, 1 2

d y dy
x y x x

xdx dx

y y


    

  

 

The corresponding exact solution is    4 , 0,1 .y x x x x     

In this case, the RBFNN trail solution can be written as: 

     22 .ty x x x x z x    

Using 10 hidden neurons and 20 points sampled equidistantly from interval [0, 1], the maximum absolute 

error of the numerical solution is 72.30 10 . Fig. 8 shows the maximum absolute error of example 7. 

6 Conclusion 

In this paper, Radial Basis Function (RBF) Network with Extreme Learning Machine Algorithm is 

proposed for solving ordinary differential equations (ODEs). A single hidden layer neural network has 

been used for the solution of ordinary differential equations, and the activation function of the hidden 

layer is the radial basis function. By substituting the trail solutions of training points into differential 

equations, a set of equations about network parameters can be obtained. Extreme Learning Machine 



algorithm can be used to solve this system of equations. Experiments show that the RBFNN model can 

be used to solve ordinary differential equations with good results. 

 

Fig.8 The maximum absolute error of example 7. 
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