
Radial Basis Function Neural Network with Extreme
Learning Machine Algorithm for Solving Ordinary
Differential Equations
Min Liu

Central South University
Wenping Peng

Changsha University of Science and Technology
Muzhou Hou ( houmuzhou@sina.com)

Central South University https://orcid.org/0000-0001-6658-2187
Zhongchu Tian

Changsha University of Science and Technology

Research Article

Keywords: Radial Basis Function Network, Extreme Learning Machine, Ordinary differential equation

Posted Date: March 8th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1416056/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1416056/v1
mailto:houmuzhou@sina.com
https://orcid.org/0000-0001-6658-2187
https://doi.org/10.21203/rs.3.rs-1416056/v1
https://creativecommons.org/licenses/by/4.0/

Radial Basis Function Neural Network with Extreme Learning

Machine Algorithm for Solving Ordinary Differential Equations

Min Liu1, Wenping Peng2, Muzhou Hou3,*, Zhongchu Tian4

1 School of Mathematics and Statistics, Central South University, Changsha 410083, China

2 School of Civil Engineering, Changsha university of Science ＆ Technology, Changsha 410114,

China

Abstract: We present a novel numerical method for solving ordinary differential equations (ODEs)

using Radial Basis Function (RBF) Network with Extreme Learning Machine Algorithm. A single layer

Radial Basis Functional Link Neural Network (RBFNN) model has been developed for the proposed

method. The weight from the hidden layer to the output layer can be calculated efficiently by Extreme

Learning Machine algorithm. The experimental comparison of various methods proves that the proposed

method shows better performance than the existing methods.

Keywords: Radial Basis Function Network; Extreme Learning Machine; Ordinary differential

equation

1 Introduction

Differential equations (DEs) play an important role in various fields of science and engineering. Many

problems encountered in many fields of physics, economics, biology, chemistry, population, resources,

etc. can be solved by DEs models. Therefore, when the ODEs was put forward, they became a useful

tool for human beings to understand nature and explore the laws of motion of the material world.

However, in many cases, the analytical solution of the DEs does not exist or is difficult to obtain.

Therefore, the numerical solution of DEs becomes an important research direction. At present, there are

many numerical methods for solving DEs, such as finite difference method, finite element method, finite

volume method, Runge-Kutta method, and other methods. The computational complexity of traditional

methods increases rapidly with the increase of sampling points, while the method based on artificial

neural network (ANN) can effectively avoid this problem. In addition, the traditional methods can only

obtain numerical solutions at finite points, and it needs repeated calculation to obtain numerical solutions

at other points, while the result obtained by ANN based model is a closed analytic form. We can use this

form to get the numerical solution of any point.

In the past few decades, researchers have been devoting themselves to the study of various machine

intelligence methods, especially ANN based model for solving Des. In 1990, Lee and kang presented a

Hopfield neural network model for the solutions of DEs. In 2006, Malek and Beidokhti presented a hybrid

neural network for solving higher order differential equations. In 2016, Mall and Chakraverty introduced

Legendre Functional Link Neural Network for the solution of DEs. In 2017, Mall and Chakraverty used

Chebyshev polynomial as an activation function to construct the approximate solution of DEs.

Author :
E-mail address: liuhellomin@163.com (Min Liu).
*Corresponding author: E-mail address: houmuzhou@sina.com (Muzhou Hou).

mailto:liuhellomin@163.com
mailto:houmuzhou@sina.com

RBFNN has the advantages of simple training, fast convergence, and can overcome the local minimum

problem. It is widely used in function approximation, speech recognition, pattern recognition, image

processing and other fields. In 1991, Park and Sandberg proved that RBFNN with a hidden layer can be

effectively used for universal approximation. In 2012, Lin, Chen and Sze proposed a radial basis function

method for solving the Helmholtz problem. In 2017, Qu obtained the numerical solution of the fractional

Riccati equation and the fractional Langevin equation by applying the cosine radial basis function

network.

The rest of this paper is organized as follows. Section 2 describes the problem to be solved. Section 3

introduces the proposed RBFNN. Section 4 introduces the process of solving parameters of RBFNN

using extreme learning machine algorithm. Section 5 shows some numerical results obtained with the

RBFNN model. Finally, the last section is some conclusions.

2 Radial Basis Functional Link Neural Network Model
Single layer Radial Basis Functional Link Neural Network model has been considered for the present
problem. Fig. 1 depicts the three-layer structure of RBFNN. The first layer of the network has only one
node, the input data is the independent variable of the ordinary differential equation. The general form
of the non-linear Gaussian basis function is as follows:

 
 2

2

ix c

i x e 



 (1)

There are two parameters in the Gaussian basis function, and the choice of these two parameters has a

great influence on the construction of the model, which will eventually affect the accuracy of the

approximate solution. There are usually two ways to select the center. The first way is to select from

sample points, and the second way is to self-organize selection method, such as clustering samples,

gradient training method, etc. When solving the problem of solving differential equations, the sample

point is the independent variable x . The following method of selecting sample points is to sample

uniformly in the solution area. Therefore, whether the first method is used to select the center point or

the second method, the final center point will be uniformly sampled from the solution area. Where  is

the width parameter, which determines the shape and scope of the Gaussian basis function. This value is

chosen empirically.
i

c is the center of the i-th Gaussian basis function, x is the input of the network.

More closer the input x is to the center i
c , More larger the output of the corresponding hidden layer node

is. Finally, the output of the network can be calculated by the following formula:

    
1

z ,
n

i i

i

x x  


 (2)

Where , 1,2,
i

i n  L is the weight from the hidden layer to the output layer.

RBF is used as the base of hidden layer neurons to form the hidden layer space, so that input vectors

can be mapped directly to the hidden space (i.e., without weight connection). When the center of RBF is

determined, the mapping relationship is determined. The mapping from the hidden layer space to the

output layer space is linear, that is, the output of the network is the linear weighted sum of the output of

the hidden layer neurons, where the weight is the adjustable parameter of the network. Thus, in general,

the mapping of the network from input to output is non-linear, while the network is linear for adjustable

parameters.

x

 1 x

 2 x

 n
x

 z x

1

2

n


Fig.1 The structure of RBFNN

3 Description of the Problem

The general form of ordinary differential equations is as follows:

         2, , , , , 0,k n
G x y x y x y x y x x D R     L (3)

Where   , i 1,2 .i
y x k  L . The trial solution can be written as follows:

       , ,z ,Ty x A x F x x   (4)

The first part of the trial solution  A x ensures the trial solution satisfies the initial or boundary

conditions of the ordinary differential equation and contains no adjustable parameters. The second part

of the trial solution contains adjustable parameters. The closer the error function is to zero, the better the

parameters are.

In Section 5, Example 1, Example 2, and Example 3 show the results of RBFNN method for solving first

order ordinary differential equations. The general form of first order ordinary differential equation is as

follows:

     , ,

y x
f x y x a b

x


 


， (5)

When the initial value condition satisfies  y a A , the trial solution can be written as follows:

        , ,Ty x A x x a z x    (6)

In Section 5, Example 4 and Example 5 are two examples of solving a system of first-order ordinary

differential equations. The general form of first order system of ordinary differential equations is as

follows:

          1 2, , , , , 1,2,

i

m

y x
f x y x y x y x x a b i m

x


  


L L， (7)

When the initial value condition satisfies  i iy a A , the trial solution can be written as follows:

      , , , 1,2,iT i i iy x A x a z x i m     L (8)

Examples 6 and 7 are two second-order ordinary differential equations, the general form of second order

ordinary differential equations is as follows:

       
2

, , ,
y x y x

f x y x x a b
x x

   
    

， (9)

Second order ordinary differential equations can be divided into initial value problems and boundary

value problems. When the initial value condition satisfies    ,y a A y b B  , the trial solution can

be written as follows:

      , ,T

bA aB B A
y x x x a x b z x

b a b a
  

    
 

 (10)

When the boundary value condition satisfies    ,y a A y a A   , the trial solution can be written as

follows:

      2
, ,Ty x A A a A x x a z x       (11)

4 Extreme Learning Machine Algorithm with Proposed RBFNN Model
We minimize the error function by adjusting the parameters  . For a point x in the solution region, when

the numerical solution is equal to the exact solution, the error at this point is zero. Then the following

equation (12) can be obtained by substituting the trial solution  ,Ty x  and its derivatives of this point

into the equation to be solved.

         2, , , , , , , , , 0k

T T T TG x y x y x y x y x      L (12)

In equation (12), only  is unknown. Put the part containing  on the left side of the equation and the

other parts on the right side of the equation to get a system of linear equations H T  about  .

Let us take the following system of ordinary differential equations as an example:

           

           
 

1
1 1 2 2 1 1 0 1

2
1 1 2 2 2 2 0 2

,

, ,

,

dy
g x y x g x y x f x y x A

dx
x a b

dy
h x y x h x y x f x y x A

dx

     
    


. (13)

Selecting m sampling points and n hidden layer neurons, according to (8), the trial solutions can be

written as follows:

      0

1

, 1,2.
n

jt j ji i

i

y x A x x x j 


    (14)

By substituting (14) and m sampling points into (13), the following linear equations with respect to 

are obtained.

       

           

       

           

2

1 0 1

1

2 0 2 1 1 1 2 2

1

2

2 0 2

1

1 0 1 2 1 1 2 2

1

1
2

1
2

n

i i j j j i j

i

n

i i j j j j j j

i

n

i i j j j i j

i

n

i i j j j j j

i

x x x x c g x

x x x g x f x g x A g x A

x x x x c h x

x x x h x f x h x A h x A

 

 

 

 









             
    

     

            
    

     









, 1,2 .j m





 







L (15)

Set
11 12 21 22, , ,H H H H be matrices of size m n ,

1 2,  be matrices of size 1n ,
1 2,T T be matrices of

size 1m , and

         
2

11 0 1, 1 ,
2

i j j j i jH j i x x x x c g x


            
    

       22 0 2, ,i j j jH j i x x x g x    

       21 0 1, ,i j j jH j i x x x h x    

         
2

22 0 2, 1 ,
2

i j j j i jH j i x x x x c h x


            
    

   1 11 12 1 2 21 22 2, , , , , ,
T T

n n        L L

     
     

     

     
     

     

1 1 1 1 1 2 1 2 2 1 1 1 1 2 1 2

1 2 1 2 1 2 2 2 2 2 1 2 1 2 2 2

1 2

1 1 1 2 2 2 1 1 2 2

, ,

m m m m m m

f x g x A g x A f x h x A h x A

f x g x A g x A f x h x A h x A
T T

f x g x A g x A f x h x A h x A

       
             
            

M M

11 12

21 22 2 2m n

H H
H

H H


 
  
 

 , 1

2 2 1n







 
  
 

 , 1

2 2 1m

T
T

T


 
  
 

Then (15) can be written in the following matrix form:

.H T 

Solutions of the system of linear equation H T  is the most appropriate parameters value. When H is

a reversible matrix, 1
H T  . In many cases, if H not a reversible matrix, then †

H T  .Where †
H

is the Moore-Penrose generalized inverse of matrix. Moreover, the solution of H T  is unique.

 The steps of using Extreme Learning Machine Algorithm with Proposed RBFNN Model to solve

ODEs is as follows:

Step1: Determinate the sampling points 1 2, , mx x xL ;

Step2: Calculate network output based on sampling points  z , , 1,2,ix i m  L ；

Step3: Write the expression of the trial solution  ,Ty x  according to the initial value condition or

the boundary value condition;

Step4: substituting the trial solution  ,Ty x  and its derivatives of this point into the equation to be

solved. Then we get this equation:

        2, , , , , , , , , 0k

T T T TG x y x y x y x y x      L

Step5: Transform this formula into a matrix form H T  ;

Step6: Solving equations in Step 5 by †
H T  ;

Step7: Substitute the parameter values obtained in step 6 into the trial function. Thus, the numerical

solution of any point in the domain can be obtained by substituting the independent variable into the trial

function.

5 Numerical Examples

In this section, some examples are given to verify the effectiveness of the proposed method. To compare

the proposed method with other methods conveniently, two error functions are used in this paper. Suppose

the sampling point is 1 2, , mx x xL and the exact solution of the ordinary differential equation at ix is

 iy x .The means of average mean squared error is as follows:

      
2

1

1

1
,

m

t j j

j

E x y x y x
m




 

and the maximum absolute error is as follows:

     2 max max ,it j j
i j

E x y x y x 

We illustrate the effectiveness of the proposed method from three perspectives. The first method is to

compare the approximate solutions of sampling points (training points) and test points with their exact

solutions, namely,    ,t j jy x Y x  . The second is to compare the approximate solution obtained

by our method with that obtained by other classical methods. And the third is to compare the solutions

obtained using different numbers of hidden layer neurons and different numbers of sampling points. In

this paper, the center of the activation function RBF is obtained by uniform sampling in the solution

region, and we take the width parameter 0.8  .

Example 1 Consider the following first order ordinary differential equations:

 
 

2 2
3 2

3 3

1 3 1 3
2

1 1 , 0,1

0 1

dy x x
x y x x x

dx x x x x x

y

     
                

 

with the analytical solution    

2

2
2

3
, 0,1

1

x

e
y x x x

x x



  
 

.

The RBFNN trail solution in this case is:

   1 .ty x xz x 

 Table 1 compares the proposed algorithm with the RBF Net (Rizaner et al. 2018) that minimizes

error with the gradient descent method. When the number of hidden neurons and activation function is

the same, the solution accuracy of the proposed algorithm is higher. Table 2 compares the approximate

solutions obtained by the proposed method with other methods. It is clearly seen from the data in Table

2 that the proposed method outperforms all the other methods. Fig. 2 shows the exact solution and

approximations of example 1. The basis function of the network in RBF Net (Rizaner et al. 2018) is also

the radial basis function. When the number of hidden layer neurons is 9, the accuracy of RBF Net is the

highest with an error of 106.80 10 . When the number of hidden layer neurons in our network is 9,

the accuracy is higher than that in RBF Net, and the error function is 147.56 10 .

Table 1 Error comparison of example 1

Error1 n=3 n=5 n=7 n=9

RBF Net in Rizaner et al. 2018
053.48 10

063.54 10
107.75 10

106.80 10

RBFNN
076.35 10

092.54 10
111.76 10

147.56 10

Table 2 The exact solution and approximations for example 1

x Exact Euler Runge RBF Net in RBFNN

 solution Kutta Rizaner et al. 2018(n=9) Solution(n=9)

0.00 1.0000 1.000 1.0000 1.0000 1.0000

0.05 0.9536 0.9500 0.9536 0.9536 0.9536

0.01 0.9137 0.9072 0.9138 0.9137 0.9137

0.15 0.8798 0.8707 0.8799 0.8798 0.8798

0.20 0.8514 0.8401 0.8515 0.8514 0.8514

0.25 0.8283 0.8150 0.8283 0.8283 0.8283

0.30 0.8104 0.7953 0.8105 0.8104 0.8104

0.35 0.7978 0.7810 0.7979 0.7978 0.7978

0.40 0.7905 0.7721 0.7907 0.7905 0.7905

0.45 0.7889 0.7689 0.7890 0.7889 0.7889

0.50 0.7931 0.7717 0.7932 0.7930 0.7931

0.55 0.8033 0.7805 0.8035 0.8033 0.8033

0.60 0.8200 0.7958 0.8201 0.8199 0.8200

0.65 0.8431 0.8178 0.8433 0.8431 0.8431

0.70 0.8731 0.8467 0.8733 0.8731 0.8731

0.75 0.9101 0.8826 0.9102 0.9100 0.9101

0.80 0.9541 0.9258 0.9542 0.9540 0.9541

0.85 1.0053 0.9763 1.0054 1.0052 1.0053

0.90 1.0637 1.0342 1.0638 1.0637 1.0637

0.95 1.1293 1.0995 1.1294 1.1293 1.1293

1.00 1.2022 1.1721 1.2022 1.2021 1.2022

Error1 0
044.60 10

081.24 10
106.80 10 147.56 10

Fig.2 Exact solution and approximations of example 1.

Example 2 Next, we look at the following first order ordinary differential equations:

 

 
 

2 cos 4
, 0,3

0 3

dy
y x

xdx

y

   
 

with the analytical solution:        
2cos 4 29 sin 4

, 0,3
10 5

x
x e x

y x x


   .

The RBFNN trail solution in this case is:

   3 .ty x xz x 

Table 3 Error comparison of example 2

Error1 n=9 n=15 n=21

RBF net in [26]
026.67 10

051.96 10

-061.44 10

RBFNN
052.73 10

092.87 10
125.85 10

Table 4 The exact solution and approximations for example 2.

x Exact RBF Net in RBFNN RBFNN

 solution Rizaner et al. 2018 (n=21) (n=21) (n=90)

0.00 3.0000 3.0000 3.0000 3.0000

0.15 2.3438 2.2435 2.3438 2.3438

0.30 1.8142 1.8138 1.8142 1.8142

0.45 1.3511 1.3510 1.3511 1.3511

0.60 0.9348 0.9344 0.9348 0.9348

0.75 0.5763 0.5752 0.5763 0.5763

0.90 0.3012 0.2998 0.3012 0.3012

1.05 0.1318 0.1308 0.1318 0.1318

1.20 0.0726 0.0720 0.0726 0.0726

1.35 0.1038 0.1030 0.1038 0.1038

1.50 0.1845 0.1834 0.1845 0.1845

1.65 0.2643 0.2632 0.2643 0.2643

1.80 0.2988 0.2982 0.2988 0.2988

1.95 0.2638 0.2637 0.2638 0.2638

2.10 0.1625 0.1622 0.1625 0.1625

2.25 0.0235 0.02227 0.0235 0.0235

2.40 -0.1095 -0.1107 -0.1095 -0.1095

2.55 -0.1937 -0.1952 -0.1937 -0.1937

2.70 -0.2025 -0.2043 -0.2025 -0.2025

2.85 -0.1348 -0.1373 -0.1348 -0.1348

3.00 -0.0157 -0.0186 -0.0157 -0.0157

Error1 0
061.44 10

125.85 10
139.95 10

From Table 3, we can see clearly that our algorithm is more accurate than the algorithm in RBF Net

(Rizaner et al. 2018) when the network structure is the same. As can be seen from Table 4, with 21 RBF

basis functions, the average mean squared error of the solution obtained by extreme learning machine

method is 125.85 10 . In RBF Net (Rizaner et al. 2018), the average mean squared is
061.44 10 .When the number of hidden layer basis functions is 90, the average mean squared error

can be reduced to 139.95 10 using the proposed method. Increasing the number of neurons in the

hidden layer to more than 90 does not improve the accuracy effectively. Fig.3 shows the exact solution

and approximations of example 2.

Fig.3 Exact solution and approximations of example 2.

Example 3 Consider the following first order ordinary differential equations:

 
 

2 1
, 0,2

0 0.5

dy
y x

xdx

y

    
 

Its exact solution is    2
1 0.5 x

y x x e   .

 The number of hidden layer neurons is 20, and 30 points are sampled equidistantly at interval [0, 2].

The maximum absolute error of the numerical solution is 62.20 10 . Fig.4 shows the maximum

absolute error. By comparison, the maximum absolute error of the BeNN method (Sun et al. 2018) is
32.7 10 , and the maximum absolute error in [30] is 21.9 10 .

Fig.4 The maximum absolute error of example 3.

Example 4 Next, consider the following system of ordinary differential equations:

   

 
 

1
1

2
1 2

cos , 0 0

, 0,1

, 0 1

dy
x y

dx
x

dy
y y

dx

   
   


The exact solution of is
   
     1

2

sin
, 0,1 .

cos

y x x
x

y x x

   

 The RBFNN trail solution in this case can be written as

   
   
1

2

.
1

y x xz x

y x xz x

 
  

Fig. 5(a) and Fig. 5(b) compared the exact solution with the approximate solution obtained by the

proposed method. Fig. 5(c) and Fig. 5(d) show the maximum absolute error. Table 5 shows the effect

of the number of sampling points and hidden layer neurons on the approximate solution. When there

are more than 10 sampling points, the maximum absolute error function is less than 079.85 10 . When

20 sampling points and 60 hidden layer neurons are selected, the maximum absolute error is 085.84 10 .

Continuing to increase the number of sampling points or hidden layer neurons can only slightly improve

the accuracy of the solution.

Fig.5 Solutions and maximum absolute error of example 4.

Table 5 The maximum absolute error for example 4

Error2 m=5 m=10 m=15 m=20

n=10 044.26 10
079.85 10

075.42 10
077.08 10

n=20 044.28 10
075.30 10

073.40 10
071.77 10

n=30 044.30 10
074.25 10

088.67 10
071.30 10

n=40 044.31 10
061.06 10

071.71 10
071.93 10

n=50 044.32 10
073.52 10

072.91 10
072.35 10

n=60 044.33 10
072.66 10

089.23 10
085.84 10

Example 5 One more problem is given by

   

      
 

1
1 2 1

2
1 2 2

2 2sin , 0 2

0,2

2 2 cos sin , 0 3

dy
y y x y

dx
x

dy
y y x x y

dx

     
     


，

The corresponding exact solution is
 
   1

2

2 sin
, 0,2

2 cos

x

x

y e x
x

y e x





     
.

In this case, the RBFNN trail solution can be written as:

   
   

1

2

2
.

3

y x xz x

y x xz x

 
  

Using 40 hidden neurons and 40 points sampled equidistantly from interval [0, 2], the maximum

absolute error of the numerical solution is 62.15 10 . Fig. 6(a) and Fig. 6(b) compared the exact

solution with the approximate solution obtained by the proposed method. Fig. 6(c) and Fig. 6(d) shows

the maximum absolute error.

Fig.6 Solutions and maximum absolute error of example 5.

Example 6 Next, consider a second-order ordinary differential boundary value problem.

   
 

2

2
2

, 0,1 ,

0 1, 1 0

d y
y

xdx

y y


  

  

the analytical solution is:    
       cos 1 2

sin cos 2, 0,1
sin 1

y x x x x


    .

In this case, the RBFNN trail can be written as:

     21 .ty x x x x z x   

Take 50 equidistant points from interval [0,1] as sampling points. The maximum absolute error of the

solution obtained by the proposed method is 088.55 10 . In unsupervised version of kernel least mean

square (KLMS) algorithm (Yazdi et al. 2011) the maximum absolute error with 50 points from interval

[0,1] is 023.5 10 . The numerical solution obtained by the constructed neural networks (CNN)

(Tsoulos et al. 2009) has an error of 015 10 . It can be seen that the proposed method can obtain more

accurate numerical results when the sampling points are the same. The maximum absolute error of the

proposed method can be reduced to 094.36 10 , by increasing the number of sampling points to 100.

Fig. 7 shows the maximum absolute error of example 6.

Fig.7 The maximum absolute error of example 6.

Example 7 Last, consider the following second-order ordinary differential boundary value problem.

   
 

2
24 12 3

, 0,1 ,

0 0, 1 2

d y dy
x y x x

xdx dx

y y


    

  

The corresponding exact solution is    4 , 0,1 .y x x x x  

In this case, the RBFNN trail solution can be written as:

     22 .ty x x x x z x  

Using 10 hidden neurons and 20 points sampled equidistantly from interval [0, 1], the maximum absolute

error of the numerical solution is 72.30 10 . Fig. 8 shows the maximum absolute error of example 7.

6 Conclusion

In this paper, Radial Basis Function (RBF) Network with Extreme Learning Machine Algorithm is

proposed for solving ordinary differential equations (ODEs). A single hidden layer neural network has

been used for the solution of ordinary differential equations, and the activation function of the hidden

layer is the radial basis function. By substituting the trail solutions of training points into differential

equations, a set of equations about network parameters can be obtained. Extreme Learning Machine

algorithm can be used to solve this system of equations. Experiments show that the RBFNN model can

be used to solve ordinary differential equations with good results.

Fig.8 The maximum absolute error of example 7.

Compliance with ethical standards

Funding This study was funded by the National Natural Science Foundation of China (Grant number
61375063, 61271355, 11301549 and 11271378).
Conflict of interest The authors declare that they have no conflict of interest.
Ethical approval All procedures performed in studies involving human participants were in accordance
with the ethical standards of the institutional and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards.
Human and animal rights This article does not contain any studies with animals performed by any of
the authors.
Informed consent Informed consent was obtained from all individual participants included in the study.

References

Boyce WE, DiPrima RC (2001) Elementary differential equations and boundary value problems. Wiley,

New York

Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge Kutta and general

linear methods. Math Comput 51(183):693

C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971

Jianyu L, Siwei L, Yingjian Q, and Yaping H. (2003) Numerical solution of elliptic partial differential

equation using radial basis function neural networks. Neural Networks, 16, 729–734

D. Serre, Matrices: Theory and Applications, Springer, New York, 2002

Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neuro

computing 70(1–3):489–501

Kumar M, Kumar P (2009) Computational method for finding various solutions for a quasilinear elliptic

equations with periodic solutions. Adv Eng Softw 40(11):1104–1111

Lin J, Chen W, Sze KY (2012) A new radial basis function for Helmholtz problems. Engineering Analysis

with Boundary Elements 36 ,1923–1930

Lee H, Kang I (1990) Neural algorithms for solving differential equations. J Comput Phys 91:110–117

Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial

differential equations. IEEE Trans Neural Netw 9(5):987–1000

Malek A, Beidokhti RS (2006) Numerical solution for high order differential equations using a hybrid

neural network—optimization method. Appl Math Comput 183(1):260–271

Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial

basis function networks. Neural Netw 14(2):185–199

Mall S, Chakraverty S (2016) Application of legendre neural network for solving ordinary differential

equations. Appl Soft Comput 43:347–356

Mall S, Chakraverty S (2017) Single layer chebyshev neural network model for solving elliptic partial

differential equations. Neural Process Lett 45(3):825–840

Mayne, A. J (1972) Generalized inverse of matrices and its applications. Journal of the Operational

Research Society, 23(4), 598

Nazemi A, Karami R (2017) A neural network approach for solving optimal control problems with

inequality constraints and some applications. Neural Process Lett 45(3):995–1023

Pinchover Y, Rubinsteinan J (2005) Introduction to partial differential equations. Cambridge University

Press, Cambridge

Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks.

NeuralComput 3(2), 246–257

Qu H (2017) Cosine radial basis function neural networks for solving fractional differential equations.

Adv Appl Math Mech 9(3):667–679

Ricardo HJ (2009) A modern introduction to differential equations, 2nd edn.

Rizaner FB, Rizaner A (2018) Approximate solutions of initial value problems for ordinary differential

equations using radial basis function networks. Neural Process Lett 48:1063–1071

Sun H, Hou M, Yang Y, (2018) Solving partial differential equation based on Bernstein neural network

and extreme learning machine algorithm. NeuralProcess.Lett. https://doi.org/10.1007/s11063-018-

9911-8

ThomeeV(2001)Fromfinitedifferencetofiniteelements:ashorthistoryofnumericalanalysisofpartial

differential equations. J Comput Appl Math 128(1–2):1–54

https://doi.org/10.1007/s11063-018-9911-8
https://doi.org/10.1007/s11063-018-9911-8

Tseng AA, Gu SX (1989) A finite difference scheme with arbitrary mesh system for solving high order

partial differential equations. ComputStruct 31(3):319–328

Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks.

Neuro computing 72(10–12):2385–2391

Verwer JG (1996) Explicit Runge–Kutta methods for parabolic partial differential equations. Appl Numer

Math 22(1–3):359–379

WuB, WhiteRE (2004) One implementation variant of finite difference method for solving ODEs/DAEs.

Comput ChemEng 28(3):303–309

Xu, L.Y., Hui, W., Zeng, Z.Z. :The algorithm of neural networks on the initial value problems in ordinary

differential equations .In :Industrial Electronics and Applications. 2007. Iciea 2007. IEEE Conference

on, pp.813–816 IEEE New York (2007)

Yang Y, Hou M, Luo, J, (2018). A novel improved extreme learning machine algorithm in solving

ordinary differential equations by legendre neural network methods. Advances in Difference

Equations, 2018(1)

Yazdi HS, Pakdaman M, Modaghegh H (2011) Unsupervised kernel least mean square algorithm for

solving ordinary differential equations. Neurocomputing 74(12–13):2062–2071

