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Abstract
Butterfly Optimization Algorithm (BOA) is a recent metaheuristic that has been used in several optimization problems. In
this paper, we propose a new version of the algorithm (xBOA) based on the crossover operator and compare its results to
the original BOA and 3 other variants recently introduced in the literature. We also proposed a framework for solving the
unknown area exploration problem with energy constraints using metaheuristics in both single- and multi-robot scenarios.
This framework allowed us to benchmark the performances of different metaheuristics for the robotics exploration problem.
We conducted several experiments to validate this framework and used it to compare the effectiveness of xBOA with well-
known metaheuristics used in the literature through 5 evaluation criteria. Although BOA and xBOA are not optimal in all
these criteria, we found that BOA can be a good alternative to many metaheuristics in terms of the exploration time, while
xBOA is more robust to local optima; has better fitness convergence; and achieves better exploration rates than the original
BOA and its other variants.

Keywords Robotics · Exploration · Butterfly Optimization Algorithm · Crossover operator · Metaheuristics · Multi-robot
systems

1 Introduction

Unknown area exploration is one of the most active research
topics in robotics. The goal is to deploy an autonomous robot
inside an area to discover useful information or to locate a
certain object/person.

Using robots for this type of task creates the opportunity
to remotely study a dangerous zone without harming human
operators or to delegate tedious missions to the machines
such as creating the map of a big area, cleaning a house or a
factory, locating gas leaks, landmines, or potential intruders
inside a wide area. These kinds of tasks require decision-
making efforts when performed by humans, which might
produce different decisions according to their strategies or
their level of expertise. Consequently, it is difficult to repro-
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duce the process using traditional programming techniques
based on conditional statements or using inference-based
systems.

Robotics area exploration tasks can be divided in two
types: knownarea exploration andunknownarea exploration.
In the latter variant, the robot has no prior information about
the area to explore, which adds a level of difficulty to the task
since the robot must adapt its decisions to all situations.

The goal of robotics exploration is tomaximize the surface
of the explored area while minimizing energy consumption.
It is necessary to add some constraints in certain scenarios
like keeping a communication range with a central station,
avoiding unsafe situations (fire,water, etc.), or keeping amin-
imal distance from obstacles and humans. The whole process
is then to find the right tradeoff between these criteria, which
motivates the representation of this task as an optimization
problem.

Since the search space grows exponentially relative to the
size of the map to explore, it is not always possible to use a
deterministic algorithm for finding the exact solution to this
problem. A more practical solution is to use metaheuristics
which proved to be efficient in finding acceptable solutions
for large search spaces during a small amount of time.
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A popular approach in the literature is to model robotics
exploration problems as a traveling salesman problem where
the robot must visit all regions of the area then return to the
starting position. The solutionwill consist then of calculating
the Hamiltonian path, which is the optimal path to visit every
region once and only once. However, this requires knowing
in advance the environment’s structure and all the possible
routes, which is not the case in the unknown area exploration
missions.

Therefore, the robot has to start moving in a random
direction then keeps updating its path continuously as new
routes are discovered. It may happen that these routes change
because ofmoving obstacles in the robot’s environment (e.g.:
chairs, doors, etc.). This means that the search space is sub-
ject to modifications which may change the configuration of
the optimal solution. The proposed strategy to deal with this
dynamic context is to build an incremental process starting
with a local suboptimal solution and then refine it gradually
as new regions in the search space are observable.

Ideally, the robotmust avoid revisiting the same area twice
to optimize the exploration time and reduce energy consump-
tion, but this is not always possible. An example is when the
robot is trapped in a dead end or a closed path and must turn
back to find an alternative way. Thus, revisiting the same area
is not forbidden such as in the traveling salesman problem,
but it needs to be minimized.

In this paper, we use the ButterflyOptimizationAlgorithm
(BOA) to solve the unknown area exploration problem with
energy constraints in dynamic environments.

The motivation behind this work is the fact that BOA got
promising results in other global optimization problems and
was never used for solving robotics problems before, as far
as we know. We also propose a new version of this algorithm
called xBOA based on the crossover operator to improve the
diversity of the candidate solutions and speed up the conver-
gence of the algorithm.

In parallel with this contribution, we propose a frame-
work for solving the unknown area exploration problemwith
energy constraints in both single- and multi-robot scenarios
using metaheuristics. The primary goal of this framework is
to create a benchmarking suite adapted to dynamic incremen-
tal problems in robotics such as exploration tasks. Thus, the
framework is made in such a manner to be generic to easily
compare different metaheuristics with minimum modifica-
tions.

We used this framework to evaluate the performances of
the newly proposed algorithm xBOA and compare it with
5 other metaheuristics widely used in the literature through
different evaluation criteria. We also compared the results of
xBOA with the original version of BOA and 3 other variants
recently introduced in the literature: SABOA, mBOA, and
ABOA. Finally,we validated the adaptability of our approach
to multi-robot scenarios.

The evaluation criteria used for this work are as follows:
(1) the percentage of the exploration area reached by the
robots given a certain amount of energy, (2) the time needed
by the robots to finish the exploration mission, (3) the execu-
tion time of the metaheuristic, (4) the convergence speed of
the metaheuristic, and (5) the number of fitness evaluations
required by the metaheuristic.

To summarize, the contributions presented in this paper
are:

• Propose a new version of the Butterfly Optimization
Algorithm (named xBOA) based on the crossover opera-
tor.And compare its results towell-knownmetaheuristics
used in similar works, as well as the original BOA, and
3 other variants recently introduced in the literature.

• Propose a framework for benchmarking different tech-
niques used to solve the unknown area exploration
problem with energy constraints using metaheuristics in
both single- and multi-robot scenarios. The framework is
made in such a manner to be generic to easily compare
different metaheuristics with minimum modifications.

• Compare the performance of xBOA with well-known
metaheuristics used in the literature using 5 different
comparison criteria.

• Propose an adapted implementation of BOA and its other
variants to the Pygmo2 library.

In the following section, we present the state of the art of
robotics exploration. Section 3 describes the Butterfly Opti-
mizationAlgorithm and the proposed variant.We present our
modelization andmethodology in Sect. 4 and the experimen-
tal results in Sect. 5.

2 Related work

Many techniques have been used in robotics for area explo-
ration. These techniques can be classified according to
several criteria regarding their determinism, the necessity to
use prior information, or the adaptability to a multi-robot
context. The exploration problem consists of discovering an
area to gather information Li (2020). A variant consists of
visiting every possible point of the area; it is known as the
complete coverage problem Li (2020) and is mainly used
for cleaning robots. Another variant consists of continuously
exploring an area to detect potential intruders; this is known
in the literature as the patrolling problem or consistent cov-
erage Hoshino and Takahashi (2019).

A popular deterministic method for solving the unknown
area exploration problem has been introduced by Yamauchi
(1997) where the robot keeps moving toward the nearest
frontier point. Frontiers are the extremity lines separating
explored and unexplored regions. This technique is easy to
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implement and requires few computational resources, yet it
gives good results in practice. Many variants of the same
algorithm appear in the literature trying to find the best strat-
egy for selecting the next frontier point Holz et al. (2010).
The original authors also published the multi-robot version
of this algorithm Yamauchi (1998) where each robot moves
toward its nearest frontier; however, this strategy fails to
avoid redundancy since several robots can be assigned to the
same frontier. Bautin et al. (2012) tried resolving the prob-
lem by usingwavefront propagation to spread the robots. The
frontiers are assigned a rank according to how many robots
are close to them. Each robot is then assigned to a different
frontier that has a small rank, which allows it to get as far as
possible from the other robots andmaximizes the exploration
area.

The authors of Al khawaldah and Nuchter (2015) choose
a different strategy for indoor environments: the first robot
explores the entire corridor and detects the doorways; then,
each one of the other robots selects a different doorway and
explores the corresponding room using the frontier-based
technique. The robot does not exit a room until it explores
it entirely. This strategy encourages the robots to explore
the rooms individually and reduce the overlapping between
their assigned regions, which contributes to reducing the total
mission time. More recently, Luperto et al (2020) use incom-
plete data such as simplified evacuation maps or floor plans
as an input for a cost function to choose the best frontier
to explore. The experiments show that exploiting approxi-
mative maps can speed up the exploration mission, even if
the data are inaccurate. However, it requires the maps to be
manually cleaned and aligned by a human operator.

Another family of deterministic approaches relies on
decomposing the environment into several sub-regions and
then exploring each region independently using a simple
strategy such as a back-and-forth or a circular shape motion.
One popular technique from this family is theBoustrophedon
decomposition Choset and Pignon (1998). It decomposes the
map into polygonal regions based on the position of obsta-
cles. It was successfully used for complete coverage tasks.
However, it assumes a static environment (i.e., no moving
obstacles) and requires the map to be known in advance.
Other techniques use Voronoi diagrams to decompose the
map into more flexible regions García et al (2007); Mase-
hian and Amin-Naseri (2004).

Dakulović et al (2011) used wavefront propagation to
adapt the D* algorithm to the coverage problem. Instead of
planning a path from a starting position toward a goal loca-
tion, the modified D* successfully generated a path to visit
all the points of a given map. The fast-replanning feature of
the D* algorithm allows it to adapt to dynamic environments
by quickly modifying the path in case an obstacle changes
its position.

Song and Gupta (2018) proposed a new approach for gen-
erating effective coverage paths. It uses a multilayer maps
representation called Exploratory Turing Machine to pro-
duce a back-and-forth trajectory with an adjustable sweep
direction. This strategy results in shorter trajectory lengths
compared to classical methods based on back-and-forth
motions. Shen et al (2020) extended it recently by adding
energy constraints. The robot executes the coverage path
until its energy is low; then, it returns to the charging sta-
tion to refill its battery. After that, it restarts the coverage at
a nearby unexplored region to avoid a long travel distance to
the previous pointwhen it stopped. This ensures the complete
coverage of the environment with a reduced overlap.

Learning-based methods have also been used for the
robotics exploration problem. In the approach proposed by
Tai and Liu (2016), the robot does not rely on any map
to explore the environment. It uses an end-to-end Deep Q-
Network to choose themost suitable direction to follow using
only camera images as input. It has been tested to navigate
inside an unknown corridor environment while avoiding the
walls. On the other hand, Ström et al (2017) relies on a
database of previously seenmaps to predict unknown regions
of a partially explored map. It uses a bag-of-words inspired
technique to detect similarities between grid maps and learn
to complete the missing areas. This helps plan paths beyond
the explored region, which reduced the distance traveled by
the robot compared to the frontier-based explorationmethod.
Similarly, Shrestha et al (2019) predicts unknown regions
beyond frontiers using Variational Autoencoders and then a
cost-utility heuristic to choose which one to explore next.

In the category of stochastic methods, metaheuristics
have been widely used in different areas of robotics Fong
et al (2015) and are still widely used for both ground and
aerial robots. Ahmadi et al (2018) used a Genetic Algorithm
(GA) to monitor a known area using an aerial robot, while
satisfying some constraints such as the path’s length and
smoothness. Zhou et al (2013) used the Particle SwarmOpti-
mization (PSO) algorithm with the frontier-based strategy to
optimize the effectiveness of the exploration task. Xiao et al
(2013) usedAnt ColonyOptimization (ACO) for multi-robot
exploration. Recently, Kamalova et al (2020) usedGreyWolf
Optimizer (GWO) to select the next frontier point to explore.
They also proposed a multi-objective version of the same
algorithm to maximize the explored area and map accuracy
Kamalova et al (2019).

Although the most used metaheuristics in the robotics
field are generally the classic techniques used to solve global
optimization problems, other metaheuristics can also be
applied regarding the No-Free-Lunch theorem Wolpert and
Macready (1997)which states that no algorithm is better than
another algorithm in all types of problems. That means if one
technique shows superior results in some classes of problems,
it cannot show superior results for all other classes.
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This theorem has motivated researchers to invent new
metaheuristics and apply them to different fields, including
robotics. However, there are many new metaheuristics that
have not yet been used in the context of area exploration.
Some examples of these recently developed techniques
include, as far as we know: the Butterfly Optimization Algo-
rithm (BOA)Arora and Singh (2019), Atomic Orbital Search
Azizi (2021), Dwarf Mongoose Optimization Algorithm
Agushaka et al (2022), Arithmetic Optimization Algorithm
Abualigah et al (2021a), Tuna Swarm Optimization Xie et al
(2021), Aquila optimizer Abualigah et al (2021b), and Rep-
tile Search Algorithm Abualigah et al (2022).

We present a comparative summary between the cited
approaches in Table 1.

3 Butterfly Optimization Algorithm

3.1 Theory and biological inspiration

Butterfly Optimization Algorithm (BOA) is a recent meta-
heuristic introduced byAurora et al. Arora and Singh (2019).
It is inspired from the foraging/mating behavior of butterflies.

At the beginning of the algorithm, a population of random
solutions (i.e., butterflies) is generated and refined incre-
mentally through several iterations until a certain stopping
condition is met.

In nature, butterflies rely on smell for finding food sources
and mating partners. They use sensors in their bodies to per-
ceive these smells (fragrance) and measure their intensity
Arora and Singh (2019). The more intense the fragrance is,
the more attractive is the butterfly toward the source of this
fragrance.

The BOA algorithm models this behavior by computing a
fragrance value proportional to the fitness of the individual.
The better is the fitness, the bigger is the fragrance, and thus,
the most attractive is the butterfly. In other terms, butterflies
will move gradually toward the best butterfly in the search
space. This is known as the global search phase Arora and
Singh (2019).

In order to avoid premature convergence, a local search
phase is executed in which the butterflies move randomly
in the local region where they are located. The alternation
between the global search and local search phases is con-
trolled by using a probability parameter called the switching
probability.

In nature, the fragrance emitted by a butterfly might be
altered by weather conditions; two parameters are then intro-
duced in the algorithm tomodify the intensity of the fragrance
that will be sensed by the other butterflies. These parame-
ters are the sensor modality and power exponent. Equation 1
describes this operation: Ta
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F = c ∗ I a (1)

where I is the intensity, modelized by the fitness value of
the butterfly, c is the sensor modality, and a is the power
exponent.

The following equations describe how individuals are
updated during the global and local search phase, respec-
tively:

xt+1
i = xti + (r2 ∗ g∗ − xti ) ∗ fi (2)

xt+1
i = xti + (r2 ∗ xtj − xtk) ∗ fi (3)

where

• xi is the current butterfly
• r is a random number in the interval [0,1]
• g∗ is the best butterfly in the population
• fi is the fragrance of the i th butterfly
• x j and xk are two butterflies picked randomly from the
population

In the BOA algorithm, each butterfly moves in the search
space according to Eqs. 2 and 3, which update the fitness
value of the butterfly. Then, we compute the best solution
having the best fitness value. When this process is repeated,
the butterflies will converge toward the optimal solution in
our search space. However, a premature convergence may
lead to being trapped in a local optimum, which is why the
butterflies will move randomly during the local search phase
to explore new potential solutions.

Another important step added by the authors consists of
updating the value of the sensor modality (c) parameter at
each iteration Arora and Singh (2016). The goal is to avoid
premature convergence that might happen if we set a value
of c too big or too small. The following rule was used by the
authors and showed good results compared to the classical
BOA:

ct+1 = ct +
(

0.025

ct ∗ max_iterations

)
(4)

Algorithm 1 describes the pseudo-code of the BOA algo-
rithm.

3.2 xBOA algorithm

We propose a modified version of BOA based on the
crossover operator inspired from the genetic algorithmGold-
berg (1989). The intuition behind this proposition is the fact
that Eq. 2 moves all individuals toward the current best
solution of the population, ignoring other candidate solu-
tions having the same fitness value or having the potential to
become better individuals after few iterations.

Algorithm 1 Butterfly Optimization Algorithm (BOA)
Initialize sensor modality (c), power exponent (a), and switch prob-
ability (p)
Define the fitness function:

f (x) = (x1, x2..., xdim)

Generate the initial population of n butterflies
while stopping criteria not met do

for each butterfly b f in population do
Calculate fragrance for b f using:
F ⇐ c ∗ I a

end for
Find the best b f
for each butterfly b f in population do

Generate a random number r ∈ [0, 1]
if r < p then

Move toward best butterfly g∗:
xt+1
i ⇐ xti + (r2 ∗ g∗ − xti ) ∗ fi

else
Move randomly (local search):
xt+1
i ⇐ xti + (r2 ∗ xtj − xtk) ∗ fi

end if
Evaluate the new solution
Replace the old solution if the new solution is better

end for
Update the value of c

end while

To avoid this problem, we replace Eq. 2 with the crossover
operator during the global search phase.

Several combination strategies have been introduced in
the literature [ Pavai and Geetha (2016). For simplicity pur-
poses, we use the single-point crossover strategy. It consists
in cutting a parent individual into two sub-vectors and then
swapping them with the second parent’s sub-vectors to pro-
duce two new individuals (see Algorithm 2).

The following example shows the output of this operation
for two individuals of size 5:

Parent1 = [x1, x2‖x3, x4, x5]
Parent2 = [y1, y2‖y3, y4, y5]

Offspring1 = [x1, x2, y3, y4, y5]
Offspring2 = [y1, y2, x3, x4, x5]

Algorithm 2 Crossover operator
Select a random partner x j , where j �= i
Cut xi and x j in two parts:

xi = [xi1, xi2]
x j = [x j

1 , x j
2 ]

Swap and combine to produce new offspring:
child1 ⇐ [xi1, x j

2 ]
child2 ⇐ [x j

1 , xi2]

Creating new individuals might make the population grow
exponentially. Thus, instead of inserting the new offspring
into the population directly,we remove the parent and replace
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Algorithm 3 Crossover Butterfly Optimization Algorithm
(xBOA)
Initialize sensormodality (c), power exponent (a), and crossover prob-
ability (p)
Define the fitness function:

f (x) = (x1, x2..., xdim)

Generate the initial population of n butterflies
while stopping criteria not met do

for each butterfly b f in population do
Calculate fragrance for b f using:
F ⇐ c ∗ I a

end for
Find the best b f
for each butterfly b f in population do

Generate a random number r ∈ [0, 1]
if r < p then

Select a random partner x j

Generate two child individuals using the crossover operator
Evaluate the new individuals
Replace parent by the best child if it has a better fitness value

else
Move randomly:
xt+1
i ⇐ xti + (r2 ∗ xtj − xtk) ∗ fi

end if
end for
Update the value of c

end while

it with its best offspring. This allows us to keep a fixed pop-
ulation size during the entire process.

By using the crossover operator, we encourage the butter-
flies to move toward several candidate solutions instead of
converging only toward the best known solution. This creates
more diversity in the population and encourages the algo-
rithm to escape the trap of premature convergence toward a
local optimum. In other words, the population of butterflies
will investigate several regions of the search space simulta-
neously in order to find the global best solution faster.

However, we need to ensure keeping a good tradeoff
between the exploration and exploitation features of the algo-
rithm by balancing the global and local search phases. To do
that, we only use the crossover operator if a certain proba-
bility is met. The switch probability parameter becomes then
the crossover probability.

Another key difference with the original BOA resides in
the local search phase. In xBOA, the equation 3 is applied
even if it decreases the quality of the solution. This seems
counterproductive in the short term, but it allows the algo-
rithm to increase the diversity of the solutions by allowing
them to move randomly in the search space and explore
new regions that might contain the global optimum. In other
words, it is sometimes advantageous to lose the quality of an
individual to unlock better solutions in the next generations.

The experiment results in Sect. 5 showed that the proposed
modifications make xBOA more robust to local optima than
the original BOA and require less iterations to find the best
solution.

Algorithm 3 describes all the operations of xBOA.

3.3 Other variants of BOA

Although BOA is a recent metaheuristic, it has many variants
and has been used successfully to solve several problems.
The first version of this method was proposed by Arora
and Singh (2015) in a conference paper with a code logic
similar to Flower Pollination Algorithm Yang (2012) and
using a Lévy Flight distribution for the updating rules, in
later papers they changed the equations and added a rule
to automatically update the value of the sensor modality,
which gave better convergence rates Arora and Singh (2016,
2019); this last version was proposed as the official BOA
algorithm. In another paper, they proposed a binary variant
of the method for the features selection problematic Arora
and Anand (2019).

Other authors proposed the hybridization of the algorithm
with other methods. Jalali et al (2019) used a hybrid BOA-
MLP (Multi-Layer Perceptron) for data classification. The
MLP helped to keep a good balance between the exploration
and exploitation phases of BOA and improved the results.
Zhang et al. (2020) created a hybrid PSO-BOA approach,
coupled with the chaotic theory to get better results for high-
dimensional problems. The authors also proposed a new
non-linear updating rule for the power exponent parameter
which shows better results than the classic linear rule. Assiri
(2021) also used the chaotic theory as a local search phase
and applied it to solve a feature selection problem. Wang
et al (2021) used a hybridization with Flower Pollination
Algorithm-based on mutualism mechanism; the technique
gives good results but suffers from a long running time. The
mutualism principle was also used by Sharma et al (2021)
for hybridization with the Symbiosis Organisms Search.
Zounemat-Kermani et al (2021) combined the algorithm
with the Adaptive Neuro-Fuzzy Inference System (ANFIS)
and got better performances than the classic ANFIS and the
hybrid ANFIS-FireFly Algorithm.

Another direction toward creating new BOA variants
focuses on improving the algorithm’s logic. The authors of
the method proposed a modified version called mBOAArora
et al (2018) that includes a new step after the local/global
search phases. The goal is to add an intensive exploita-
tion search to avoid getting trapped in local optima. The
results showed faster convergence compared to the origi-
nal approach. Tubishat et al. (2020) included a local search
using the mutation operator to improve the performance of
the method. The approach outperformed the other meth-
ods used by the authors in 15 of 20 benchmark datasets,
but it also suffers from a long execution time. Li et al
(2019) used the cross-entropy method and a co-evolution
technique to successfully solve 3 classical engineering prob-
lems. Fan et al. (2020) opted for reducing the number of
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hyperparameters by introducing a new self-adaptative rule
for the fragrance formula and eliminating the sensormodality
and power exponent coefficients. The new variant is named
SABOA (Self-Adaptative BOA). On the other hand, Guo
et al (2021) used a guiding weight factor in the global search
equation for improving the convergence speed and a pop-
ulation restart strategy to avoid getting trapped into local
minima. The results of these new variants showed promising
results toward solving high-dimensional optimization prob-
lems, which is one of the areas where the classical BOA does
not perform well.

4 Modelization andmethodology

4.1 Occupancy grid maps

Unknown area exploration is closely related to the naviga-
tion and mapping problem. The robot has to move in the
environment and discover it gradually. During this operation,
it is highly probable to meet dead ends and other obstacles
blocking the way. The robot will then memorize the posi-
tion of obstacles and use them to plan alternative paths and
discover new regions.

Robots use sensors to detect walls and obstacles. Since
these sensors have a limited range, it is not possible to observe
the entire environment at once. In this case, we need to store
the positions of the detected obstacles inside a data structure
that allows the robot to easily aggregate new observations
and combine them in a way that simplifies trajectories calcu-
lation.

The Occupancy Grid Map Elfes (1989) is the most used
data structure for representing the environment in robotics.
It is a 2D matrix where each cell represents a portion of the
environment. The size of the cells influences the degree of
details shown on the grid; it is usually set to a size equal to
or lower than the robot footprint. Figure 1 shows an example
of a grid map.

The value of each cell in the grid represents the probability
that the corresponding region in the environment is empty or
occupied by an obstacle. Since the robot has no prior infor-
mation about the region to explore, all the cells have a prior
probability of occupation of 0.5, which will be updated using
the Bayes rule (Eq. 5) each time the robot’s sensors observe
the corresponding region.

p(A/B) = p(B/A) ∗ p(A)

p(B)
(5)

A is the occupancy value, and

B is the observation

Fig. 1 An example of occupancy grid maps. White pixels represent the
explored area; Gray pixels represent the unknown area; Black pixels
represent the detected obstacles; Red lines represent the Laser sensor
beams

It is a frequent practice to use the log odds representation
instead of probabilities to convert the multiplications opera-
tions into additions as in the following equations:

odds(A) = p(A)

P(¬A)

odds(A/B) = p(A/B)

P(¬A/B)
(6)

After applying Eq. 6 into the Bayes rule, we get Eq. 7.
The log odds value vary between [−∞,+∞], which is useful
for avoiding the multiplication of small numbers during the
implementation that may cause some issues because of the
limited precision of float values.

logodds(A/B) = log
p(B/A)

P(B/¬A)
+ logodds(A) (7)

As a result, we can label each cell Ci j in 3 possible cate-
gories:

Ci j is

⎧⎨
⎩
Occupied i f Occ(Ci j ) > 0
Empty i f Occ(Ci j ) < 0

Unknown i f Occ(Ci j ) = 0
(8)

where Occ(Ci j ) is the occupancy log odds from Eq. 7. We
use 0 as a threshold value because logodds(0.5) = 0.

4.2 Unknown area exploration using xBOA

Unknown area exploration is often modeled as an opti-
mization problem; the goal of this process is to assign an
occupancy probability to every cell in the map. In order to
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achieve this goal, the robot has to maximize the surface of
the explored area while minimizing energy used.

The role of the xBOA metaheuristic is essential in this
process, it starts by generating a population of random tar-
get locations to visit—which will be the butterflies, and then
enhances the position of these target locations through a suc-
cession of local search and crossover operations.

Mathematically, each candidate solution Xk in the popu-
lation represents a set of target cell locationsCi j , where (i, j)
are (x, y)-coordinates inside the grid map boundaries.

X = Ci j

Therefore, the fitness function can be modeled as a maxi-
mization of the number of newly observed cells which have
an occupancy log odds value equal to 0 (a.k.a. unexplored
cells). Equation 9 defines the mathematical formulation of
this function.

F = max(Observed Cells)

= min

⎛
⎝∑

i, j

(δ(Ci j,0))

⎞
⎠

where δ(Ci j,0) =
{
1 i f Occ(Ci j ) �= 0
0 otherwise

(9)

With the following constraint:

∑
i, j

E(Ci j ) < current battery level

where E(Ci j ) is the energy needed formoving the robot from
the actual position to cell Ci j .

Once thebest set of target locations that satisfies the energy
constraint is found, the robot calculates the shortest path that
links these target locations using the A∗ algorithm Hart et al
(1968); then, it executes this path until visiting all target
locations. After that, it repeats the optimization algorithm
to generate a new set of target locations and continues the
process until all the cells in the map have been observed (i.e.,
the robot explored the entire area).

It is important to recall that the planned path is not neces-
sarily optimal, since the robot cannot detect obstacles outside
the range of its sensors. Moreover, it has no prior informa-
tion about the region to explore. Thus, it is highly probable to
meet dead ends and other obstacles blocking the way during
the navigation. The robot is then forced to find an alternative
path to escape the impasse, even if this requires returning to
a previously visited region and consume more energy.

Consequently, the solution is built incrementally, start-
ing with a sub-optimal path and then updating it regularly
as new obstacles are observed, which also ensures that the

Fig. 2 Workflow of the unknown area exploration process

robot adapts to dynamic environments and avoids moving
obstacles.

Figure 2 summarizes the general workflow of this process.
Using Eq. 9 as fitness function means that for each can-

didate solution in the population, we will plan a path toward
the target locations defined by this solution and then esti-
mate how many new cells will be observed if this path is
executed by the robot. The complexity of this operation is
O(M2) where M is the path length.

Since thefitness value is evaluated for each candidate solu-
tion in each generation, the overall complexity becomes O(N
×K×M2)whereN is the population size, K is the number of
generations, and M is the path length. Figure 3 illustrates the
process of fitness evaluation for a population of 4 candidate
solutions.

If the population size or the number of generations is set
to a big value, the process becomes computationally expen-
sive. An alternative approach would be to compute a rough
estimate of the observed cells (using a distance vector for
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Fig. 3 An example of the fitness evaluation process for a population of 4 candidate solutions
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example) as a fitness criterion, but that would decrease the
quality of the generated solutions. Neither strategy is perfect.
In our situation, we choose to apply the first strategy while
reducing the population size to get an acceptable tradeoff
between the quality of the solutions and the execution time.
In case the algorithm has to be executed in a machine with
limited CPU resources (such as robots with small onboard
computers), we would suggest using the second solution.

5 Experiments and analysis

5.1 Simulation environment

A common practice in robotics research is to first validate
the approach in a simulation environment before switching
to real-world experiments. This allows us to safely validate
a method and avoid material damage in case of errors in the
code, while it gives the possibility of repeating an experiment
a certain number of times in the same conditions.

There are several popular 3D simulators for robotics
experimentation in the literature Dosovitskiy et al (2017);
Koenig and Howard (2004); Rohmer et al (2013). Those
simulators are highly realistic but require heavy computa-
tions and a powerful machine. Since our goal is to test the
effectiveness of the metaheuristics, we do not need all the
features provided by those kinds of simulators; consequently,
we implemented a custom simulator dedicated to benchmark
the robotics exploration techniques.

We use python for its popularity in the robotics field,
its portability to different platforms, and a large number
of libraries available for performing scientific computations,
although it presents some limitations in the threading model

because of the Global Interpreter Lock implementation Bea-
zley (2010).

To proceed successfully with our experiments, we imple-
mented a navigation model for holonomic robots based on
the most common robotics platforms used in research. The
robot observes it’s surrounding environment using a 180◦
Laser Range sensor (LIDAR) for calculating the distance
with close objects (see Figure 1). The LIDAR has a 95%
precision rate, which means that the observations are subject
to errors because of the presence of non-perfect conditions in
the real world. We simulate imprecision by adding Gaussian
noise to the measurements.

The robot can move in 8 possible directions, at each
move it turns toward the target location, then moves forward.
During the rotations, the robot continues scanning the envi-
ronment using its sensors to locate new obstacles. In the case
it detects an obstacle blocking its way, the robot stops and
then computes an alternative path based on the new informa-
tion registered in the occupancy grid map.

5.2 Experiments setup

For evaluating the efficiency of the Butterfly Optimization
Algorithm, we compare it to several metaheuristics widely
used in the literature:

• Artificial Bees Colony (ABC); Karaboga (2005)
• CovarianceMatrixAnalysisEvolutionStrategy (CMAES);
Hansen et al (2003)

• Genetic Algorithm (GA); Goldberg (1989)
• Grey Wolf Optimizer (GWO); Mirjalili et al (2014)
• Particle Swarm Optimization (PSO); Kennedy and Eber-
hart (1995)

Table 2 Best hyperparameters found after 30 execution trials

Methods Hyperparameters Values Methods Hyperparameters Values

BOA (pop size 20) Power exponent 0.547 BOA (pop size 5) Power exponent 0.73

Sensor modality 0.602 Sensor modality 0.577

Switch probability 0.395 Switch probability 0.331

xBOA (pop size 20) Power exponent 0.905 xBOA (pop size 5) Power exponent 0.994

Sensor modality 0.257 Sensor modality 0.518

Crossover probability 0.593 Crossover probability 0.583

GA Crossover probability 0.11 mBOA (pop size 5) Power exponent 0.61

Mutation probability 0.215 Sensor modality 0.356

Mutation distribution index 76.026 Switch probability 0.762

PSO Social component coef. 1.506 ABOA (pop size 5) Power exponent 0.992

Cognitive component coef. 3.379 Sensor modality 0.98

Max velocity 0.329 Switch probability 0.983

Inertia weight 0.449 μ 1.356

ABC, GWO, CMAES No parameters to optimize (auto-tuning) SABOA (pop size 5) Switch probability 0.237
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Fig. 4 Maps used during the experiments

Each one of these metaheuristics is used as an optimizer
during the exploration process. Except for BOA and xBOA,
we used the implementations provided by Pygmo2 Biscani
and Izzo (2020), which is a python library aiming to offer
a unified interface for implementing massively parallel opti-
mization algorithms.

Since these methods are based on stochastic operators, we
feed the same initial population to each optimizer and repeat
the execution 10 times.We set a stopping condition when the
energy of the robot reaches 0, or when the percentage of the
explored area reaches a rate bigger than 99%.

We conducted another set of experiments to evaluate the
performance of xBOA compared to other variants of BOA
cited in the following list:

• Self-adaptative BOA (SABOA); Fan et al. (2020)
• BOA with intensive search (mBOA); Arora et al (2018)
• BOAwith nonlinear adaptative rule (ABOA);Zhang et al.
(2020)

We reimplemented BOA and each one of these variants in
Python, and adapted them to the Pygmo2 library, to ensure
the difference in the results is not caused by different imple-
mentations techniques or different libraries.

Finally, we run a test to validate the adaptability of our
approach to multi-robot scenarios.

Figure 4 shows different environments used in the experi-
ments. The first one is an emptymapwith no obstacles except
the surrounding perimeter wall. The second one is a moder-
ately occupied scene inspired by the architecture of a house
with an obstacle presence rate of 27%. These two maps have
a size of 24 × 24 m. Note that the doors were explicitly
removed from the maps for simplifying the experiments.

For each of these maps, we conducted two types of exper-
iments varying the number of target goals generated by the
optimizer. This parameter influences the strategy of explo-
ration: a small number of goals will make the robot plan for

short-term exploration, while a bigger number will make it
plan for long-term exploration. For each strategy, we con-
ducted a set of experiments to analyze the execution time
and the performance of the optimizers. These tests have been
executed using an i7 2.8Ghz CPU laptop. Each test has been
repeated 10 times for each optimizer.

To reduce experiments variability, we set the same starting
conditions for all sessions:

• Robot starting location at position (1,1) with angle 0◦ to
the north.

• LIDAR distance range: 4m, with a 5% error rate.
• LIDAR angular range: 180◦, with 1◦ resolution.
• Population size: 20.
• Max number of generations: 30.
• Early stopping: if no improvement in the fitness value
during 10 consecutive generations.

• Initial population: same for all methods.
• The seed for random numbers generation: 25.

We used the following evaluation measures to compare the
performance of the optimizers:

• Step number: Number of moves and rotations performed
by the robot. It is proportional to the amount of energy
consumed.

• Execution time: Total duration—in seconds—since the
beginning of the mission.

• Exploration rate: Surface of the area observed by the
robot sensors and added to the map.

• The number of fitness evaluations: Number of candidate
solutions evaluated using the fitness function.

• The computation time: Amount of time required by the
metaheuristic to execute all the iterations and return the
best solution.

5.3 Hyperparameters search

Metaheuristics are known to be sensitive to parameters ini-
tialization. It is frequent in the literature to compare the
performance of the methods using the original parameters
published by the first authors Arora and Singh (2019). This
may be a good strategy if we are comparing them using
standard benchmarking functions; however, the robot explo-
ration problem is by nature an incremental partly observable
dynamic problem, which makes the standard parameters val-
ues not necessary the best possible values.

Thus,we conducted apreliminary experiment to search for
the best hyperparameters for each method according to this
problem. This will allow us to compare these metaheuristics
in their best possible performance and avoid some sensitive
methods being trapped in a local optimum because of bad
initializations.
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Fig. 5 Simulation results of the exploration mission (average results for 10 runs)

Table 2 summarizes the best parameters found for each
method after 90 trials using the Hyperopt library Bergstra
et al. (2013). Some methods such as ABC, GWO, and
CMAES require no manual tuning. The following param-
eters have been used for the other methods:

• GA: we used a Tournament selection strategy of size 2
and a polynomial mutation with a distribution index of
76.

• PSO: we used a neighborhood size of 4 with a cogni-
tive acceleration factor bigger than the social acceleration
factor, which means that the particles are more attracted
toward the best position in their neighborhood than their
previous best positions.

• The parameters of BOA-derived methods are explained
in Sect. 3.

5.4 Results and discussion

5.4.1 Comparison between different optimizers

During the first batch of experiments, we compare the dif-
ferent metaheuristics using the short-term and long-term
exploration strategies. As we can see from the results in
Figure 5 and Table 3, both xBOA, PSO, GA, and CMAES
perform similarly in most scenarios, especially when using
the short-term strategy. This means that the optimization pro-
cess successfully converged toward the optimal solution in
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Table 3 Exploration rates at the end of the mission

Method Empty map House map

Short-term exploration

Average Min Max Average Min Max

ABC 98.12 97.22 ≥ 99 90.1 88.36 92.7

BOA 96 94.79 ≥ 99 93.4 91.84 95.13

CMAES 98.49 95.66 ≥ 99 93.29 89.4 96.18

GA 97.38 82.81 ≥ 99 93 92.01 94.96

GWO 93.03 92.88 93.05 67.7 67.7 67.7

PSO 98.16 97.39 ≥ 99 93.19 88.71 94.79

xBOA 98.23 93.92 ≥ 99 91.63 82.63 94.44

Long-term exploration

Average Min Max Average Min Max

ABC 98.02 96.52 ≥ 99 86.38 80.38 92.18

BOA 93.87 91.49 97.74 84.61 73.26 92.36

CMAES 94.16 83.85 ≥ 99 82.23 77.43 86.45

GA 97.63 96.52 ≥ 99 87.67 79.86 95.48

GWO 93.4 93.4 93.4 83.68 83.68 83.68

PSO 96.44 92.88 ≥ 99 87.06 84.2 90.97

xBOA 96.37 93.57 98.61 89.9 79.16 94.1

most cases. However, we observe a decrease in the con-
vergence of BOA and GWO in certain periods when the
optimizer stuck in a local optimum, pushing the robot to
revisit an already explored region for a certain amount of
time. But it finishes by overcoming this local optimum and
catching up with the other metaheuristics after a sufficient
number of steps.

It might be important to note that the “step number” here
corresponds to the number of moves and rotations performed
by the robot. This number is correlatedwith themission dura-
tion but not necessarily in a linear fashion since the time
needed to perform a rotation is different from the time needed
for moving one meter forward.

The reason we choose to analyze the number of steps
instead of exploration time is the importance of the energy
factor in robotics applications. The number of moves that a
robot can perform is limited by the battery capacity. If in our
case, the robot had a battery capacity enough for performing
only 100 steps, for example, it would explore 80% of the
Empty Map area using BOA instead of 85% using xBOA,
PSO, or CMAES. Given this evaluation criterion, BOA is
less efficient than the other metaheuristics unless the robot
has no battery limitations.

Also, using the long-term strategy seems less efficient.
The reason is that the optimizer considers only the limited
information it has when choosing multiple goal locations,
but these locations might not be optimal, especially in the
beginning phasewhenwehave noprior information about the

position of obstacles. The short-term strategy focuses rather
on generating only one goal, then moving toward it while
updating the map, and regenerating a new goal after reaching
the previous one. The quality of the solutions is better in
that case, especially for dynamic environments where the
positions of obstacles change. However, the optimizer will
repeat the evolution process more often (i.e., at each target
location), which will slow down the mission if this process
takes a long time to execute since the robot does not move
during this operation.

The execution time recorded in Fig. 6 includes only the
computational time required for the optimization process.
Thus, the time formoving the robot is set to 0 since this opera-
tion involves moving the motors and requires very little CPU
time. However, in real-world situations, performing these
moves take a fair amount of time, especially when the speed
of the robot is reduced nearby obstacles as a safety measure,
which will increase the duration of the overall exploration
mission.

Although xBOA, PSO, ABC, and GA give better results
in terms of exploration rate compared to BOA, they require
more time for executing the optimization process. A reason
for this might be the simplicity and the reduced number of
operations in the algorithm logic of BOA compared to the
other methods. The results presented in Fig. 7 reinforce this
supposition;we clearly see that the average computation time
of BOA is lower than xBOA, PSO, and GA, even when the
number of calls to the fitness function (i.e. fitness evaluations)
is equal or bigger.

We also observe that ABC requires a considerable amount
of time in all experiments, which is twice the time required
for GA and PSO. This is caused by a large number of fitness
evaluations, which impacts the total computation time of the
algorithm making it not a suitable method to use for real-
world scenarios when the robots need to keep moving.

CMAES is dominating the other methods from the execu-
tion time perspective, but it is sometimes dominated by BOA
in terms of the total exploration rate at the end of the mis-
sion. xBOA dominates BOA in all scenarios, while GWO
dominates BOA sometimes in the amount of computation
time required but does not dominate it in the exploration rate
criteria.

From Fig. 7, we note that the average computation time
for finding the best target goal is relatively long, averaging
150∼450 seconds in which the robot is in an idle state wait-
ing for the optimization result. This is not recommended in
scenarioswhere the time factor is critical, such as inResearch
& Rescue missions. Two potential solutions are possible in
this case: either to take advantage of parallelism and evalu-
ate several candidate solutions simultaneously, or reduce the
size of the population, which means reducing the number of
candidate solutions to evaluate. In the next experiment, we
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Fig. 6 Comparison of the total execution time for the exploration mission (average results of 3 runs)

analyze the effects of this later strategy on the quality of the
generated solutions.

5.4.2 Evaluating the robustness to reduced population sizes

To study the impact of reducing the size of the population, we
conducted a set of experiments varying this parameter from
20 to 5, while keeping the number of iterations unchanged.
The results are reported in Figures 8 and 9.

We observe that using a population size of 5 individuals
has a drastic improvement on the overall mission duration.
However, it affects the quality of the exploration since the
total explored area at the end of the mission using BOA on

Table 4 Exploration rates using BOA with different population sizes

Short-term exploration - House map

Average Min Max

Pop size 05 86.11 81.77 95.13

Pop size 10 88.66 79.68 95.13

Pop size 20 92.84 89.75 94.27

the House map dropped by 6.73% as we can see in Tables
4 and 5. The average duration for computing the next goal
location is reduced to 110 s, which is acceptable for many
robotics applications in the real world.
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Fig. 7 Number of fitness evaluations and average computation time (average results of 3 runs)

Fig. 8 Comparison between different population sizes using BOA (average results of 3 runs)

We note that the PSO and GWO stopped improving after
reaching 75 and 62% of the exploration rate, respectively,
although they were showing results close to GA and ABC
near the end of the mission when the population size was
bigger. xBOA dominates all the methods in the exploration
rate and the fitness value convergence, but CMAES still dom-
inates them in the processing time; its average duration for
computing the next goal location is reduced to less than 25
seconds, while ABC requires 175 seconds to get the same
result.

All the optimizers stopped improving near the end of the
exploration mission. The small number of individuals does
not allow the algorithm to escape the local optima. One solu-
tion might be to increase the search space at the end of the
exploration mission by gradually increasing the population
size or increasing the number of iterations. That would be a

better strategy than starting the whole mission with a large
population size, which will consume a lot of time for almost
the same results as shown in the previous experiments.

5.4.3 Comparing BOA variants

The next experiment compares the results of several variants
of BOA. As we can see from Figure 10 and Table 6, introduc-
ing the crossover operator results in a better exploration rate
and fitness convergence compared to the original BOA and
its other variants. We can conclude then that the crossover
operator helps in avoiding local minima. However, by creat-
ing newoffspring the number of fitness evaluations increases,
which slows the optimization process, even if the total dura-
tion of the exploration mission is not not significantly longer
from the original BOA near the end of the mission.
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Fig. 9 Exploration results using the short-term strategy and a population size of 5 individuals (average results of 3 runs)

While xBOA outperforms the other variants, an interest-
ing alternative for emergency robotics applications would
be ABOA that gives acceptable results in less time. It is ∼
40% faster than xBOA and still gets better results than the
original BOA. On the other hand, SABOA performs poorly,
but it is easier to tune because of its auto-adaptative feature
which reduces the number of hyperparameters to one. It is
consequently more robust to bad initializations than the other
variants.

5.4.4 Testing the multi-robots scenario

The final experiment intends to validate the adaptability of
the approach for a multi-robot scenario. As we can see in
Fig. 11, the robots successfully spread in the environment
to explore the entire area although no changes have been
made to explicitly coordinate their movements. This shows

the flexibility of the proposed approach to adapt to a multi-
robot scenario without any changes in the code since the
proposed decision-making process is agnostic to the number
of robots.

Each robot has its own population of candidate solutions
and tries to maximize its own fitness reward regardless of
the other robots. They do not exchange explicit messages
between them and collaborate passively by modifying a
shared occupancy map stored in a central memory. This is
known as implicit coordination and has many advantages.
However, it is not the optimal strategy because several robots
may choose to go toward the same direction if it maximizes
their fitness reward even if the other robots has already cho-
sen it. To avoid this issue, we can modify the fitness function
in a way to penalize overlapping paths by including infor-
mation about current robots’ positions and their target goals.
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Fig. 10 Comparing BOA variants using the short-term strategy and a population size of 5 individuals (average results of 10 runs)

We leave this solution for future investigations as it is outside
the scope of our current work.

6 Conclusion

In this paper, we presented an approach for solving the
Unknown Area Exploration problem using robots with lim-
ited energy. We proposed a new framework to solve this kind
of problems incrementally using metaheuristics as optimiz-
ers for generating new target locations.

We used the Butterfly Optimization Algorithm (BOA) as
a case study and adapted it to this problematic, and proposed
a new variant called xBOA based on the crossover operator.
We compared the two variants with several metaheuristics
available in the literature through 5 different performance
measures: steps number, mission duration, exploration rate,

number of fitness evaluations, and the average computation
time of the technique.

The results showed that xBOA outperforms the original
BOA and its other variants, but requires a longer execution
time. It also performs better than other metaheuristics such
as PSO, GA, GWO, and ABC in some scenarios.

Finally, we tested our approach in a multi-robot setting
without applying any changes to the model. The results
demonstrated the adaptability of the proposed approach to
both single- and multi-robot scenarios.

In future work, we will modify the fitness function to
take advantage ofmulti-objective optimization strategies and
extend the coordination capabilities of the robots by allow-
ing them to exchange information about their positions and
goal locations. We will also test the approach on real robots
to evaluate the robustness of our simulation framework to
real-world noisy environments.
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Fig. 11 Visual progress of the multi-robot scenario using xBOA with 3 robots. Top: empty map experiment. Bottom: house map experiment

Another direction to improve thiswork is to investigate the
limitations of BOA and xBOA. We might consider changing
the switching strategy of the algorithm, testing different types
of crossover operators, or applying xBOA to other types of

global optimization problems. On another side, an extensive
study has to be done to improve the theoretical aspects of the
algorithm.
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Table 5 Exploration rates at the end of the mission using a population
size of 5 individuals

Short-term exploration

Empty map

Method Average Min Max

ABC 97.32 95.83 98.61

BOA 96.09 92.01 ≥ 99

CMAES 94.46 89.4 98.61

GA 96.09 87.5 ≥ 99

GWO 89.61 84.37 92.53

PSO 93.03 84.37 98.26

xBOA 96.14 92.88 98.26

House map

Method Average Min Max

ABC 90.59 84.72 96

BOA 87.13 83.68 95.13

CMAES 82.8 76.73 93.22

GA 92.36 89.23 96

GWO 62.03 60.76 62.32

PSO 74.9 70.83 77.6

xBOA 93.35 92.18 93.92

Bold indicates the maximum value of each column, which emphases
the best result

Table 6 Exploration rates using BOA variants with a population size
of 5 individuals

Short-term exploration - House map

Average Min Max

BOA 89.11 81.77 95.13

ABOA 90.38 81.77 95.13

mBOA 89.14 81.07 95.13

SABOA 85.13 82.98 85.93

xBOA 93.35 92.18 93.92

Bold indicates the maximum value of each column, which emphases
the best result
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