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Abstract
This paper proposes an intelligent attendance monitoring system based on spatio-temporal human action recognition,

which includes human skeleton gait recognition, multi-action body silhouette recognition and face recognition. Our system

solves several problems, for example, when a mask is worn to conceal the face, which leads to a decrease in recognition

accuracy performance, and when a 3D face mask is used to fake an identity. The skeleton gait feature of our intelligent

attendance monitoring system uses a temporal weighted K-nearest neighbours algorithm to train the recognition model and

carry out identification, while the multi-action body silhouette feature uses a multiple K-nearest neighbours algorithm to

train the recognition model, identify the person and vote on the outcome. Using the proposed system, which integrates

skeleton gait features, action silhouette features and face features, more effective recognition can be achieved. When the

system encounters a situation with feature masking, such as when an individual is wearing a mask or has changed their

clothes, or when the viewing angle is masked, it can continue to deliver good recognition ability through multi-angle

skeleton synthesis gait recognition. Our experimental results show that the recognition accuracy of the system is 83.33%

when a specific person wears a mask and passes through a monitored area. The intelligent attendance monitoring system

uses a LINE messaging API as the access control notification function and provides a responsive web platform that allows

managers to perform follow-up management and monitoring.

Keywords Intelligent attendance monitoring � Skeleton gait recognition � Silhouette recognition � Face recognition

1 Introduction

An access control system can efficiently manage the entries

and exits of specific people within a given area, as it can

identify a person in real time and record information in a

cloud database system, which allows for the analysis of the

huge amounts of data that can be collected in this way. This

means that managers are able to fully understand the

changes in the movements of specific people and track the

movements of a specific person entering and exiting an

area through the realisation of an intelligent attendance

monitoring system for accurate personnel identification.

Traditional access control systems use radio frequency

identification to identify a specific person entering and

exiting an area. In recent years, in order to effectively solve

the problem of using radio frequency identification tech-

nology as a substitute for check-in, access control systems

were designed that used deep learning face recognition

technology to identify a specific person entering and exit-

ing a given area. To construct and implement an access

control system based on deep learning face recognition

technology, the facial image features of the specific people

entering and exiting the area must be obtained in advance

as the basis for classification. Related studies have used the

Faster R-CNN deep learning object detection model to

train the face recognition model and identify people (Tsai

and Li 2021; Ren et al. 2017). This approach uses a camera

device to capture images of specific people entering the

monitored area in real time, to enable a fast identification

process. Not only can this effectively solve the problem of

check-in as a substitute for a physical radio frequency

identification card, but it can also prevent the risk of

infection by a bacteria or virus due to contact with the radio
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frequency identification card reader when entering and

exiting an area. A related study proposed a multi-angle

facial feature classification and recognition method to solve

the problem of occlusion of the viewing angle arising from

image capture by a single camera (Shakhnarovich et al.

2001). A multi-angle flat face image was projected onto a

3D head cylinder, and the rigid body motion theorem was

then applied to handle the deformation problem of stitching

together multiple multi-angle face images (Kong et al.

2005). A multi-angle flat face image stitching technique

was used to improve the recognition accuracy of the access

control system based on deep learning face recognition.

However, due to the recent rapid developments in deep

learning face recognition technology, this approach

remains vulnerable to people who aim to fake identities by

re-photographing facial images to pass through the access

control system, even if subtle, multi-angle human facial

features are used for feature classification and recognition.

The use of a 3D face mask to fake an identity is a problem

that has yet to be solved in the context of access control

systems. At the same time, as the COVID-19 pandemic

rages around the world, the wearing of masks has become

one way to avoid the spread of infection. Access control

systems based on deep learning face recognition technol-

ogy often have reduced performance in terms of recogni-

tion accuracy due to the problem of masks covering faces

(Cheema and Moon 2021).

With an access control system based on the above-

mentioned deep learning face recognition technology, it is

easy to use 3D printing technology to copy and simulate a

face in order to bypass an identity authentication check.

One study (Wang et al. 2004) has proposed that the way in

which the human body moves and walks, otherwise known

as gait, is a more difficult aspect of identity to replicate

than fingerprints and iris recognition features and that

capturing the gait of the human body can allow dynamic

identification feature recognition to be performed in a long-

distance and non-invasive way. A previous study (Wang

et al. 2003) proposed an identification model training

sample set for human gait identification, using gait sil-

houette map information. However, this information is

susceptible to changes in the shape of the human body,

which makes it impossible to recognise the identity fea-

tures. For example, the gait silhouette map of a person

wearing a heavy coat and carrying hand luggage will show

a large difference from the normal silhouette. Hence,

improving the gait silhouette map information can be

treated as a dynamic identification feature recognition

problem. In previous research, human skeleton key point

detection and drawing technology has been used to obtain

dynamic human posture information. In addition, in order

to obtain dynamic identification feature information for

human movement and walking gait recognition, one study

(Yan et al. 2018) has proposed a Spatial Temporal Graph

Convolutional Networks (ST-GCN) model that can be used

to train and identify the human motion state recognition

model. In this approach, OpenPose technology is used to

process the continuous images of the states of human

motion and to generate skeleton key point information for

posture recognition. The ST-GCN model uses the key point

information of the human skeleton to perform convolution

calculations in the spatial and temporal dimensions. The

changes in the skeleton key point information over con-

secutive frames in the space and time dimensions are used

for deep learning of the state of motion of the human body.

The Graph Convolutional Network (GCN) and Temporal

Convolution Network (TCN) convolutional neural network

architectures are integrated to form a deep learning

recognition model training and identify with spatial and

temporal. Since the ST-GCN model is manually adjusted to

the topology of the human skeleton using a graph convo-

lutional neural network, this reduces the recognition

accuracy of the deep learning recognition model, and the

Two-Stream Adaptive Graph Convolutional Networks (2S-

AGCN) (Shi et al. 2019) model was therefore proposed to

allow for deep learning of the state of motion of the human

body. This model applies the concept of negative feedback

to the deep learning process to achieve dynamic adjustment

effects and uses J-stream to process the key points of the

human skeleton and B-stream to process the connection

information between them. Consider the vector change of

the above-mentioned two-stream information as the train-

ing and identify of the human body motion state deep

learning recognition model. In another paper, the ST-GCN

system was introduced to perform GCN processing, which

provides an embedding matrix to encode the connection

relationships between the key points of the human skeleton

and is suitable for all graph convolutional neural network

layers. The Graph Convolutional Network Neural Archi-

tecture Search (GCN-NAS) (Peng et al. 2020) system was

proposed in one study to dynamically adjust the embedding

matrix, and this model uses multiple embedding matrices

in each layer of the convolutional neural network to obtain

the best training results. In order to reduce the number of

calculations involved, the Neural Architecture Search

(NAS) algorithm was developed with the aim of rapidly

obtaining the best solution.

However, the use of only a single camera for continuous

image shooting and framing will cause problems in terms

of the viewing angle and body occlusion, which will reduce

the accuracy of the dynamic posture information used in

the detection and drawing of the key points of the human

skeleton, thereby reducing the training and identification

accuracy of the motion state recognition model. In this

paper, we therefore propose an intelligent attendance

monitoring system that can recognise both facial images
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(static) and motion (dynamic) using spatial and temporal

information. It uses multiple cameras for multi-directional

continuous image capture to avoid problems with the

viewing angle and body occlusion and relies on multi-di-

rectional facial images to perform face recognition to

prevent people from using single face images to fake

identities and to bypass the access control system. Multi-

directional continuous images are used to detect the key

points of the human skeleton, and this information is then

fused into the multi-directional synthetic dynamic human

posture information to train the recognition model and

identify the state of motion of the human body. This

approach prevents people from using 3D printing tech-

nology to fake an identity. At the same time, it is possible

to obtain good recognition accuracy regardless of whether

the people entering or exiting the monitored area are

wearing masks. Moreover, when the silhouette changes,

such as when the individual is wearing a jacket, this leads

to abnormal features; however, the skeleton can be effec-

tively identified without being affected.

The proposed intelligent attendance monitoring system

with spatio-temporal human action recognition is based on

the continuous changes in the spatial and temporal features

of the key points of the skeleton and integrates gait features

with human body silhouette feature recognition technol-

ogy. Multiple cameras are used for information fusion to

ensure that the key points of the human skeleton do not

cause masking errors due to the natural swing due to

walking. Our approach is mainly based on the following

two aspects for the extraction of the human body skeleton

key point information feature:

• Against human body skeleton 17 key points for

continuous time perform spatial relative change feature

extraction. We treat each set of three key points of the

skeleton as a unit to relative angle information formed

plural continuous angle changes as specific action

feature information. We also treat each pair of key

points of the skeleton as a unit to relative distance

information formed plural continuous distance changes

as specific action feature information. The above-

mentioned multiple continuous relative angle and

distance information is used by the K-Nearest Neigh-

bours (KNN) algorithm recognition model with tempo-

ral and spatial weight to training and identify.

• Against the above-mentioned plural continuous angle

changes as the specific motion feature information,

when the system determines that the key points of the

human body skeleton are carrying out a specific motion,

a Mask R-CNN is applied to capture multiple forms of

continuous body silhouette information from the con-

tinuous motion. The system separately trains and

identifies the KNN algorithm recognition model for

the multiple continuous human silhouette information

of the specific action. The spatio-temporal human

action recognition system generates the final recogni-

tion result by voting, based on the above-mentioned

multiple recognition model. Our approach extends

previous related work in which face recognition was

carried out by an attendance monitoring system based

on a Faster R-CNN deep learning object detection

model. Change to the continuous human body gait

features recognition model of specific actions and the

integration of multiple human body silhouette feature

recognition model, voting on plural recognition models

to obtain the final recognition results. This approach

solves several problems such as the use of a 3D face

mask to fake an identity and the reduction in the

accuracy of the recognition model due to a mask

covering the face. An access control notification

function based on a LINE messaging API has also

been added to our intelligent attendance monitoring

system, with a responsive web page display.

• The following section presents background information

and a review of related work. Section 3 introduces the

proposed intelligent attendance monitoring system with

face (static) and motion (dynamic) recognition based on

spatial and temporal information, which integrates both

gait and silhouette feature recognition technology.

Section 4 describes the experimental method used in

the paper and presents the experimental results and a

performance analysis, while Sect. 5 contains the con-

clusion and suggestions for future work.

2 Background and related work

In this section, we describe the relevant technologies

required for the proposed system. We discuss the Posenet

architecture (Papandreou et al. 2018) and the Faster

R-CNN (Ren et al. 2017) and Mask R-CNN (He et al.

2017) deep learning object detection models and review

prior technologies that are similar to the proposed system.

We also review the STV-GCN (Tsai and Chen 2021),

GCN-NAS (Peng et al. 2020) and 2S-AGCN (Shi et al.

2019) deep learning motion detection systems, which are

used in our performance analysis and experimental

comparison.

2.1 Posenet skeleton key point detection

Our system applies Posenet (Papandreou et al. 2018)

detection technology for the key points of the human

skeleton, as proposed in a previous study. A total of 17 key

points on the skeleton are used to carry out the human
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action detection and action pose drawing functions. The

key point detection method uses a GCN model for training

and identification, and a CNN is used to capture the heat-

map information for each skeleton key point in the image.

The possible positions and a short-range offset feature are

used to calculate the heatmap error, and Hough voting is

then applied via an integrated voting function to obtain the

lowest distortion of the skeleton key points stored in Hough

arrays, based on the Hough score. The heatmap process

divides the image into a 28 9 28 grid, calculates the

probability of key points in each area and accurately cor-

rects the coordinates through the use of a short-range off-

set. This approach is supplemented by the use of a mid-

range offset feature to detect the links between the key

points on the skeleton in order to reduce the distortion in

the key points and improve the recognition accuracy, as

shown in Fig. 1.

2.2 Faster R-CNN deep learning object detection
model

The Faster R-CNN (Ren et al. 2017) deep learning object

detection model includes Region Proposal Network (RPN)

as the recognition box capture architecture, which gener-

ates detection box ranges of different proportions and sizes

for different anchors and classifies the content of multiple

detection boxes to obtain a detection box with high relia-

bility, which is output as the recognition result. As shown

in Fig. 2, RPN will be performed to generate region pro-

posals after the image has been convolved. Based on the

output region, the bounding box will be generated, and

then, multiple identification boxes of different sizes will be

generated in the middle of the box to obtain the correct

identification target. Region of interest pooling is applied

to the frame selection target to obtain the identification

result. Faster R-CNN uses parallel processing via the

Convolutional Neural Network (CNN) and RPN and

combines them to form the object recognition model. For

example, the access control system produces the recogni-

tion results based on face recognition and face box

selection.

2.3 Mask R-CNN deep learning object detection
model

Our scheme uses the Mask R-CNN (He et al. 2017) deep

learning object detection model proposed in related work to

identify the silhouette features of the human body. We use

the semantic segmentation technology of the Mask R-CNN

deep learning target detection model to obtain information

on the silhouette. Our Mask R-CNN deep learning object

detection model is based on a traditional Faster R-CNN

model and combines the semantic segmentation algorithm

with the FCN architecture. The first stage of the model uses

a standard CNN to learn the image features; in the second

stage, deconvolution feedback is applied to dynamically

adjust the learning parameters, and the feature maps that

have been classified are interpolated to achieve deconvo-

lution learning. The final output of the system is a semantic

segmentation map that is classified for each pixel. The use

of semantic segmentation to give silhouette information

allows us to obtain a silhouette map of the human body, as

shown in Fig. 3. For the region of interest, a branch is

generated for the segmentation mask. Each branch uses a

small fully convolutional network to predict the segmen-

tation mask in a pixel-to-pixel manner.

Fig. 1 Pose estimation based on detection of human skeleton key points
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2.4 STV-GCN deep learning action detection
system

The STV-GCN (Tsai and Chen 2021) deep learning action

detection system was developed in a prior study to train

and identify human motion recognition models in the form

of non-traditional image files. The information used for

training and identification by the deep learning motion

detection system is the key point features of the human

body skeleton. STV-GCN is a human motion recognition

system that combines the KNN algorithm with an ST-GCN

deep learning motion detection system. The GCN used in

the ST-GCN model performs pattern recognition that is not

limited to traditional two-dimensional graphs: it can be

trained to recognise topological graphs or three-dimen-

sional graphs composed of points and lines. The recogni-

tion model applies graph convolutional neural network

learning to the spatial and temporal changes in the key

points of the human skeleton. Its architecture relies on

spatial GCN and TCN. The graph convolutional neural

network uses nine alternately overlapping spatial and

temporal feature extraction layers for computational

learning, and a fully connected layer is finally applied to

classify the action features of the key points of the human

skeleton. In a prior study, human actions were classified

based on different emotions and different speeds of motion,

and good recognition accuracy was obtained. Our access

control system involves the application of deep learning

motion detection technology to the recognition of human

gait. That is, the training of the recognition model and

identification are carried out based on the spatial and

temporal changes in the key points of the skeleton gener-

ated by walking and other types of movement. However,

the recognition accuracy of the recognition model that the

current deep learning motion detection system performs the

same motion on different human bodies still needs to be

strengthened.

2.5 GCN-NAS deep learning action detection
system

In order to strengthen the recognition performance of the

ST-GCN deep learning action detection model, a prior

study added a NAS function in the model training stage,

with the main aim of optimising the learning network

structure. In the search space stage, reinforcement learning

was used to find the model with the highest recognition

accuracy. Traditional GCN convolution operations all use a

Fig. 2 Facial recognition architecture based on Faster R-CNN

Fig. 3 Silhouette recognition architecture using Mask R-CNN
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stable embedding matrix (a first-order Chebyshev polyno-

mial) to control the correlation between the nodes of the

topology graph. The developers of GCN-NAS used multi-

order Chebyshev polynomials to generate multiple

embedding matrices for convolution operations. The use of

a neural architecture search function to find the best solu-

tion in the search space stage can avoid long learning and

calculation times. It was shown in one study that GCN-

NAS (Peng et al. 2020) still exceeded the ST-GCN deep

learning motion detection system in terms of the training

time of the model. This motion detection model can be

applied to identify different types of motion and has

achieved good recognition accuracy. However, the recog-

nition accuracy of the recognition model that the current

deep learning motion detection system performs the same

motion on different human bodies still needs to be

strengthened.

2.6 2S-AGCN deep learning action detection
system

The 2S-AGCN (Shi et al. 2019) deep learning action

detection system was developed with the aim of strength-

ening the GCN convolution operation weight of ST-GCN.

In order to improve the traditional GCN convolution

operation, which uses a stable embedding matrix to control

the correlation between the nodes of the topology graph, a

two-stream convolutional network architecture was devel-

oped. One of the streams used three embedding matrices as

the weight change of the convolution operation: the first

had the original form, the second was used to strengthen

the learning of the correlations between nodes, and the last

used a Gaussian embedding function to capture the rela-

tionships between nodes. These three different embedding

matrices were used to perform an integrated calculation,

and obtained the convolution operation weights more

efficiently. The other stream focused on learning the con-

nection relationships between nodes and use motion

detection model training input the connections between the

topological graph nodes to perform convolution operations,

with the final output being the correlation features. The

training time for 2S-AGCN in a motion detection model

has been shown in prior work to be longer than for GCN-

NAS. This motion detection model can be applied to

identify different types of motion and obtains good

recognition accuracy. However, the recognition accuracy

of the recognition model of the current deep learning action

detection system performing the same action on different

human bodies still needs to be strengthened. The system

proposed in this paper can effectively address the problems

identified in the above-mentioned related work.

2.7 Human emotion recognition using ST-GCN

One study (Tsai and Chen 2022) in the literature proposed

an emotional action recognition system in which ST-GCN

was applied to the human skeleton to achieve recognition

of different emotional actions. However, due to the loss of

subtle features caused by the use of convolutional neural

network technology in the training process, it is proposed

to extract facial action features to further improve the

recognition effect. The swing and degree of change in the

characteristics of the human face are analysed. As shown in

Fig. 4, we record the change in the up-down and left–right

swings of the face, capture the continuous changes along

the two axes of the face and use the K-nearest neighbours

classifier for classification and identification, combining

the two identification results to achieve better identifica-

tion. However, for the recognition of human walking

movements, the scheme in the literature cannot distinguish

the subtle differences between different people with the

same emotion, resulting in a low recognition ability for

gait, and it cannot analyse facial changes when a person is

wearing a mask.

2.8 Human action recognition system using
skeleton point correction

When using a skeleton for human action recognition, a

system is often limited by the image shooting angle and

visual occlusion, which leads to misjudgement of the key

points of human skeleton and affects the accuracy of action

recognition. The study in Tsai and Huang (2022) proposed

an action recognition system that included key point cor-

rection of the human skeleton, and the recognition accu-

racy was improved by corrections to the skeleton. A basic

correction algorithm is used to correct points based on the

symmetry of the human body, as shown on the left of

Fig. 5, while an advanced correction algorithm is used to

correct keypoints based on the range of the human shield

map, as shown on the right of Fig. 5. In view of the

problems with skeleton masking, in this paper, we use

skeletons from different perspectives for synthesis and

obtain the correct continuous changes in the skeleton

positions by synthesising the skeleton. Compared with

Fig. 4 Schematic diagram of face swing
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prior schemes, we use skeleton features from different

perspectives with higher correlation and achieve a better

identification effect.

3 Using spatio-temporal human action
recognition in an intelligent attendance
monitoring system

We propose an intelligent attendance monitoring system

that combines continuous human gait features with sil-

houette feature recognition technology to perform plural

recognition model voting. We also use multiple cameras

for multi-directional continuous image capture to avoid

problems associated with the angle of view and body

occlusion, to improve the overall recognition accuracy. In

this section, we describe the system architecture, the data

collection process, the training of the recognition model

and the overall process of the proposed system.

3.1 System architecture

In view of the fact that training of our human movement

recognition model and identification of a specific person is

based on gait and silhouette features, the image frame of

the human body movement process must reduce the

problems related to viewing angle and body occlusion. Our

system uses multiple cameras to capture image frames

representing the motion of the human body. We use real-

time images captured by multiple cameras to position the

human body, to ensure that a specific person is located in

the correct recognition area. The images captured by

multiple cameras are also used to draw the key points of the

human skeleton and to synthesise the gait or action based

on these key points. We can use a dual camera as an

example. This system captures dynamic images of the user

while walking: the left camera captures dynamic images of

the left side of the face and body, while the right camera

captures images of the right side. The skeleton key points

in the left body image are combined with those in the

images of the right side, and the system identifies the key

points of the synthesised skeleton to carry out motion

recognition for a specific person. The motion recognition

process can be divided into the following three main

actions:

• The system performs specific identification of human

body gait features, uses the Posenet human body

skeleton key point detection model to obtain the

skeleton key point information from each image and

calculates the continuous angle and distance changes

based on the key point information from the continuous

image. This information is used as an identification

feature for the time-sequenced gait of a specific person

and to carry out classification training of the KNN

recognition model and identification with weighted

parameters.

• The system recognises a specific person based on the

silhouette features of the human body and uses the

continuous changes in the angles of the skeleton key

points to determine the periodicity of the gait of the

person. Multiple time points of the same angle are used

as the basis of sampling for a time-sequenced gait. The

Mask R-CNN deep learning object detection model is

used to generate time-sequenced multiple silhouette

feature information and then to perform classification

training of the KNN recognition models and identifica-

tion of the silhouette features. Finally, the identification

results from the multiple KNN recognition models are

submitted to a voting process to determine the predic-

tion results for a specific person.

• The system recognises a specific person based on the

symmetry features of the human face and carries out

face recognition from the face images captured by the

multiple cameras. It then confirms that the angle and

position state of the face recognition result conform to

the principle of the left–right symmetry characteristic of

the human face. The Haar facial feature cascade

classifier is applied to determine whether a human face

exists, and this stage uses a Faster R-CNN deep

learning object detection model as the network archi-

tecture. In future work, this module will be replaced by

a new network architecture or deep learning object

detection model with higher recognition accuracy and

will be supplemented by the use of continuous human

gait and silhouette feature recognition technology for

specific actions to obtain the final recognition result.

Fig. 5 Schematic diagram of skeleton point correction
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The proposed intelligent attendance monitoring system

uses the above-mentioned three types of recognition pro-

cess to identify a specific person based on their actions, and

will then allow them to enter the monitored area. The

system can perform access control system management

actions when a specific person has been successfully

identified. A LINE messaging API is used to notify specific

personnel that they have clocked in or out of work, and a

responsive web platform can display historical information

related to attendance or absence, as shown in Fig. 6.

A flowchart for the proposed intelligent attendance

monitoring system is shown in Fig. 7. A flowchart is given

and supplemented with pseudocode (number of lines).

First, left and right cameras (1) capture left and right videos

of people walking. Pose estimation (4) and a Haar cascade

(5) are then used to identify and generate skeleton and face

data representing human actions. We calculate the multiple

camera positions (6) from the two pieces of data, measure

the distance and map the pixels of the video in equal

proportions, and judge the position based on the coordinate

pixels of the data. We then use skeleton synthesis (16) to

create the coordinates of the left and right skeletons. At the

angle/distance calculation stage (22), we calculate the

angle and distance of the skeleton by using three-point

Fig. 6 Overview of the architecture of the proposed system

Fig. 7 Flowchart for the proposed system
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coordinates to calculate the angle (23) and two-point

coordinates to calculate the distance (32). We perform

action selection using the skeleton angle (40) according to

the skeleton angle data, mainly bend the left and right

elbows by 150–170� and then input the selected action into

a Mask R-CNN (55) to obtain the silhouette. We use the

skeleton gait KNN (57) to identify the angle distance data

and the silhouette action KNN (62) to identify silhouette

data. Faster R-CNN (72) is applied to identify the face data,

and we then calculate the final results (73) and upload them

(74).

When the position of the person is outside the maximum

range for image capture, no motion processing will be

performed. When the position is between the maximum

and minimum ranges for image capture, the system will

recognise the skeleton key points and convert them into

angle and distance data. The silhouette information is also

recognised and processed based on the angle information.

When the person’s position is below the minimum range

for image capture, calculation of the skeleton key points

and silhouette recognition are stopped in order to perform

face recognition processing. Based on the above-mentioned

gait and silhouette features and face recognition technol-

ogy, information fusion is performed to give the recogni-

tion result, as shown in Fig. 8.

3.2 Sensing and positioning using multiple
cameras

Image capture with a single camera is likely to cause

problems associated with the viewing angle and body

occlusion, and we can illustrate this by taking as an

example the Posenet skeleton key point detection model,

which is used to obtain the key point information on the

skeleton in each image. Continuous walking behaviour will

cause the body to swing, with the front half of the body

covering the back half, meaning that the key points of the

skeleton cannot be identified and leading to a

misjudgement.

The design of the system relies on two cameras to

capture images from multiple angles. The left and right

facial dynamic images captured by the two cameras are

used for face recognition, to confirm that the angle and

position of the face recognition results match the principle

of left–right symmetry for a human face. The system

applies the Posenet skeleton key point detection model to

the continuous images captured by the two cameras to

obtain the key point information of the human body

skeleton. The information on the position of the face is

used to synthesise the skeleton key points from the con-

tinuous images on both sides, to avoid problems arising

from the viewing angle and body occlusion and the feature

point information that strengthens the recognition of

human action state, as shown in Fig. 9. The image captured

by the left camera locates the position of the face in the

image, such as the upper right quarter, while the image

captured by the right camera locates the position of the face

in the image, such as the upper left quarter. The position of

the face on the actual level is determined by combining the

positions of the left and right faces to locate the test

subject.

3.3 Gait and contour characteristics

The Posenet skeleton key point detection model is used to

obtain the key point information from each image, and the

key points of the ears, eyes and nose are used as positioning

reference points for the synthesis location of the key points

of the continuous human skeleton. The key points of the

left and right shoulders, left and right elbows, left and right

wrists, left and right arms, left and right knees and left and

right ankles are synthesised with the key points of the left

and right skeleton to recognise an action by a specific

person, as shown in Fig. 10.

The system calculates the changes in the continuous

angles and distances based on the synthesised skeleton key

point information. The angle information refers to the

angles formed between the key points of the skeleton and

the joints. The change in the angle of the skeleton key

points is used as the basis for calculating the continuous

change in an action by a specific person. For example, the

key points of the left and right shoulders, elbows and wrists

of the human body can be used to generate eight sets of

angle information. The distance information relates to the

relative change in distance between the left and right joints

of the skeleton. The changes in distance between the key

points of the continuous skeleton are used to calculate the

change in walking frequency of a specific person. For

example, the key points of the left and right elbows and

wrists of the human body can be used to generate four sets

of distance information. The system is supplemented by the

recognition of body silhouette features, in order to improve

the accuracy of action recognition for a specific person.

The system uses the continuous changes in angle as a basis

for judging the periodic actions of the gait and takes the

plural same angle time points for completing a time

sequential gait action as the sampling basis. At the same

time, the time-sequenced changes in the gait are used to

classify training and identify using a multiple recognition

model, and the movement far and near zooming of human

action must be considered to normalise the images captured

by the cameras. The system therefore uses the changes in

the distances between the key points of the skeleton as the

basis for normalisation of the image. A Mask R-CNN deep

learning object detection model is used to generate time-

sequenced multiple human silhouette feature information
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Fig. 8 Pseudocode for the proposed algorithm
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and then to perform time-sequenced multiple KNN

recognition model classification training and identify for

multiple human silhouette. Finally, multiple KNN algo-

rithms are used to identify the results of the recognition

model and to vote on the final prediction result. The lower

part of Fig. 10 shows how the timing changes of the joint

angles are calculated, and how the action pictures are

captured at different time points. The top part of Fig. 10

shows how a Mask R-CNN is used to generate the action

silhouette data from the action pictures. The action sil-

houette data at similar time points are collected together

and used for KNN image recognition. A KNN identifica-

tion model is generated at each time point. The final con-

tinuous action silhouette identification result can be

obtained by voting on the identification results from all the

KNN identification models.

3.4 Data preprocessing

The system uses eight sets of angle information, based on

the key points of the left and right shoulders, elbows and

wrists of the human body, and four sets of distance infor-

mation based on the key points of the left and right elbows

and wrists, as data for preprocessing. Angle–time and

distance–time relationship diagrams of the above infor-

mation show that the human walking gait takes the form of

a sine wave with a fixed cycle and maintains a certain

degree of symmetry between the left and right sides. The

system therefore uses a single period of this sine wave as

the gait feature. When the key points of the right and left

hands of the human body are at a particular angle, these

become the starting point of a single cycle, and when they

return to the same angle, this indicates the end of the cycle.

As a piece of human gait feature data. In order to avoid

misjudging the key points of the skeleton due to noise,

Gaussian filtering is applied to remove the noise from the

preprocessed data. For each human body, gait feature data

to classification and judgment are performed to filter the

Fig. 9 Sensing and positioning using multiple cameras

Fig. 10 Synthesis of the key points of the skeleton

Fig. 11 Fixed cyclic sine wave

Fig. 12 Action silhouette training process
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incomplete, off-peak and irregular feature data for a second

time. The system finally obtains human gait feature data in

the form of eight sets of continuous angle changes and four

sets of continuous distance change information.

The above-mentioned gait feature data include contin-

uous time changes that are equivalent to the walking speed,

as shown in Fig. 11. The X axis shows the joint angle, the

Y axis represents time, and the blue line indicates the

continuous changes in the joint angle of the left skeleton,

while the red line shows the continuous changes in the joint

angle of the right skeleton. The joint angle gait data from

the starting points of the left and right skeleton joint angles

being the same to the next time the left and right skeleton

joint angles are the same as the end point. The purple block

shows the gait data after filtering. A complete walk con-

tains four to six sets of gait data, and the figure shows the

process for five sets of data.

3.5 Action silhouette and face recognition

Our system uses the KNN algorithm to train the network to

identify the body motion of a specific person. The recog-

nition model distributes the feature data on the feature

plane, calculates the closest K data feature classification

results of the feature data to be measured and uses a

majority decision method to obtain the final classification.

The recognition model described above is used to classify

the gait and body silhouette features. The system includes

angle and distance features in the training of the gait

recognition model and adds time-sequenced weight

changes. That is to say, weights are set in sequence for the

time of human silhouette gait actions to strengthen feature

learning and improve recognition accuracy. The system is

designed to recognise the body silhouette features and uses

multiple sequential KNN recognition models for classifi-

cation training and identification. It uses a single cycle of a

continuous silhouette gait action to sample multiple points

at the same angle over time, and the KNN recognition

model is applied for classification training and identifica-

tion based on the silhouette features of each human body at

the same angle. The system therefore generates a classifier

based on multiple-KNN recognition model, and then adds

the gait sequence to generate the weight settings, in order

to strengthen the feature learning and improve the recog-

nition accuracy. Finally, the recognition results of the

multiple-KNN recognition model are subjected to a vote, to

give the final prediction result in terms of identifying a

specific person.

As illustrated in Fig. 12, the silhouette features of the

test subject are extracted at different time points, and the

silhouette features at the same feature time points are put

together for KNN training and identification. At each time

point, a set of KNN silhouette identification models is

generated, and the identification results from all KNN

identification models are voted on to give the continuous

silhouette identification results for the complete walking

gait. The system design combines the face recognition

method of a traditional intelligent attendance monitoring

system with Haar features, which are used in image pro-

cessing and recognition technology, to extract non-specific

Fig. 13 Diagram showing the

experimental setup and example

images from the two cameras
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features of human faces, where the range is obtained using

a cascade classifier. The system also uses the Faster

R-CNN deep learning object detection model, as used in

deep learning recognition, to perform specific face recog-

nition for the above non-specific human face range. In

future work, this part of the model will be replaced by a

new network architecture or a deep learning object detec-

tion model with higher recognition accuracy. The system

can therefore prevent problems such as the use of a 3D face

mask to fake an identity and the reduction in accuracy due

to a mask covering a face. The recognition system is

supplemented by the use of continuous silhouette gait

features for specific actions and the body silhouette fea-

tures, meaning that the final results will have higher

accuracy in terms of the recognition of a specific person.

3.6 Intelligent attendance monitoring system

This paper proposes an intelligent attendance monitoring

system, based on temporal and spatial face (static) and

motion (dynamic) recognition. It uses the LINE messaging

API as the communication medium between system

administrators and employees. When the system success-

fully recognises a specific person entering or exiting the

monitored area, it will use the human–computer interaction

API to notify the person of the check-in, via a confirmation

message for commuting. At the same time, the user can

also communicate with the management system via the

human–computer interaction API and can carry out actions

such as adding and deleting users, uploading images for

face recognition training and viewing attendance manage-

ment information. The intelligent attendance monitoring

system is built using an Apache Web Server and a MySQL

database and provides a background management web

interface that allows administrators to control related

information such as the user LINE display name, API

transmission ID, user avatar, images for face recognition

training and work records.

4 Experimental results

In this chapter, we describe the experimental environment

and parameter settings, and analyse the experimental per-

formance in comparison with three alternative deep

learning motion detection systems: ST-GCN, GCN-NAS

and 2S-AGCN.

4.1 Experimental environment and parameter
settings

We use a dual camera system based on Logitech C925e

webcams as the image sensing devices, and the system is

implemented in Python development software in the Ana-

conda environment. We use TensorFlow, an open-source

software library developed by Google, as a deep learning

runtime package. The Posenet skeleton key point detection

architecture, the Faster R-CNN deep learning object

detection model and the Mask R-CNN deep learning object

detection model all use the TensorFlow package. The KNN

algorithm recognition model is based on the Scikit-learn

Fig. 14 Images from the dataset

Fig. 15 Data collection for the gait recognition system

Table 1 Accuracy of the proposed gait and action silhouette recog-

nition system

Accuracy of all data

Distance data Angle data Combined data Final accuracy

Skeleton recognition

73.42% 79.83% 83.33% 83.33%

Left

hand

150�
data

Left

hand

160�
data

Left

hand

170�
data

Right

hand

150�
data

Right

hand

160�
data

Right

hand

170�
data

Final

accuracy

Silhouette recognition

61.79% 63.98% 65.98% 63.50% 63.79% 67.65% 72.38%
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open-source machine learning software library, which is

used as a training package, and the access control human–

computer interaction API relies on the messaging API

officially provided by the LINE developers to communi-

cate with users. The intelligent attendance monitoring

system platform uses an Apache Web Server and a MySQL

database system.

As shown in Fig. 13, the spatiotemporal human action

recognition training system used two cameras that were set

up on a six-metre-long walkway. The test subjects con-

sisted of seven people, who walked from a distance of six

metres from the dual camera setup to one metre away. This

gave a total walking distance of five metres for each test

subject, which was used as a training sample. Each subject

walked this distance 350 times, giving 1292 gait features

and 14,536 body silhouette data points. Figure 14 shows

walking data for a total of eight people from the left and

right cameras. The left and right silhouettes of testers who

are 6 m, 3.5 m and 1 m away from the camera are used as a

demonstration.

4.2 Performance results

In this section, we analyse the recognition accuracy of our

gait feature recognition system. This experiment used a

total of 1292 gait features generated from seven people.

The gait features included the angle and distance

information, as shown in Fig. 15. The angle data for the

skeleton were based on eight sets of key points: the left and

right shoulders, the left and right elbows, the left and right

hips, and the left and right knees. The distance data for the

skeleton were based on four sets of key points: the left and

right elbows, the left and right wrists, the left and right

knees, and the left and right ankles. The angles and dis-

tances between the pairs of key points of the skeleton were

used as the feature recognition data, and the KNN algo-

rithm was used for training of the recognition model and

identification based on the spatio-temporal weight

characteristics.

As shown in Table 1, the experimental results show that

the recognition accuracy is 73.42% when the distances

between the key points of the skeleton are used as features,

and the recognition accuracy is 79.83% when the angles

between the key points of the skeleton are used as features.

The overall recognition accuracy of the system when both

the angles and the distances are used as recognition fea-

tures is 83.33%. Finally, for recognition situations where

the subject is wearing a mask and a jacket, our skeleton

synthesis gait recognition system has a recognition accu-

racy of 83.33%.

We now analyse the recognition accuracy of the action

feature recognition system. The experiment used a total of

14,536 human silhouette feature data points drawn from

seven people, and the recognition results from the multiple-

Fig. 16 Data collection for the

action silhouette recognition

system

Fig. 17 Identification accuracy for specific people under various

conditions

Fig. 18 Action recognition accuracy of our model and alternative

schemes based on skeleton key point information
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KNN recognition model were subjected to a voting process

to generate the final prediction results in terms of identi-

fying specific people. The action feature information was

based on the angles between the key points of the skeleton

as the basis for classification, as shown in Fig. 16. Six

actions were identified: the left hand bending forward by

150, 160 and 170�, and the right hand bending forward by

150, 160 and 170�. The systems are, respectively, multiple

KNN recognition model is trained based on the above six

actions. As shown in Table 1, the experimental results

show that the values of the recognition accuracy for the

multiple-KNN recognition model were 61.79, 63.98, 65.98,

63.50, 63.79 and 67.65%, respectively, for these six

actions. An additional 20 untrained human gait sample data

points were used to vote to generate the final results of the

multiple-KNN recognition model in terms of predicting

specific persons. A total of 1469 silhouette feature data

points were generated through information processing, and

based on these, the system was able to predict and recog-

nise specific individuals with a recognition accuracy of

72.38% when each one was wearing a mask and jacket.

We now analyse the performance of our model in

comparison to similar action recognition schemes based on

the key point information of the human skeleton. The state-

of-the-art STV-GCN, GCN-NAS and 2S-AGCN systems

use continuous key point information of the human skele-

ton as training data for the action recognition model. In this

experiment, we used gait data samples from 20 people

wearing masks and jackets to train our action recognition

model based on the Posenet skeleton key point detection

framework and trained the action recognition model for

5000 epochs. We obtained values for the recognition

accuracy of 10% for STV-GCN, 17.91% for 2S-AGCN and

20.9% for GCN-NAS as shown in Fig. 17. Our approach

uses a Faster R-CNN deep learning object detection model

as the basic face recognition function, for which the

recognition accuracy will be reduced when a mask is worn

over the face. The face recognition part of our intelligent

attendance monitoring system has a recognition accuracy

of 45.97% and an average confidence level of only 0.0441

when a mask is worn. When the Mask R-CNN deep

learning object detection model is used in the face recog-

nition function, its recognition accuracy when a specific

person is wearing a mask is 74.17%. Based on these

experimental results, it can be seen that the Faster R-CNN

and Mask R-CNN deep learning target detection models

cannot deal with a situation in which a person is wearing a

mask, as this leads to a decrease in the recognition accu-

racy. In our system, the silhouette feature recognition

system has a recognition accuracy of only 72.38% when

the subject is wearing a jacket. Therefore, the continuous

gait features of specific actions and a body silhouette fea-

ture recognition model are integrated to create a multiple

recognition model, which uses voting to generate the final

recognition result. Our intelligent attendance monitoring

system is able to carry out gait feature recognition when a

specific person is wearing a mask and jacket, and its

recognition accuracy is 83.33%. The main reason for this is

that the STV-GCN, GCN-NAS and 2S-AGCN deep

learning recognition model systems have a high level of

recognition accuracy for different human actions, but do

not give good recognition accuracy for the same actions

carried out by different people. Through the use of multi-

view features, our scheme not only avoids the problem of

occlusion caused by actions, but also has the effect of

feature amplification, and thus a higher recognition

accuracy.

We now compare the performance of our model to

similar action recognition schemes based on the key point

information of the human skeleton. As shown in Fig. 18,

the related work provides a database of action recognition,

which includes the action data on the human body during a

Fig. 19 Access control

notification in our intelligent

attendance monitoring system
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golf swing. Using the feature extraction technology pre-

sented in this article, a total of 135 pieces of motion data

were captured. The proposed KNN human skeleton gait

recognition system with temporal weights was used for

training, and an accuracy rate of 93% was obtained. The

limitations on the features used in the alternative

scheme results in an accuracy of only 88%, which is about

5% lower than the skeleton merge feature zoom proposed

in this paper. Traditional skeleton recognition technologies

such as ST-GCN, GCN-NAS and 2S-AGCN have a

recognition accuracy of only 20% and cannot handle the

problem of skeleton occlusion at all, resulting in very low

recognition performance. Our system offers access control

based on the identification results of the specific person in

the monitored area, and uses the LINE messaging API to

send attendance-related information messages to specific

personnel, as shown in Fig. 19. At the same time, the

system saves attendance-related information to a cloud

database and the responsive web platform to allow man-

agers to track the footprints of specific personnel and

monitor changes in personnel flow.

5 Conclusions

Our intelligent attendance monitoring system can effi-

ciently manage the attendance, absence and time records of

specific personnel, thus allowing managers to understand

the changes in the flow of people and the footprints of

specific personnel entering and exiting a given area. This

makes it possible to conduct data analysis and manage the

flow of people within the scope of safety considerations for

various attendance and absence records. Existing atten-

dance monitoring systems based on face recognition tech-

nology cannot handle the problem that arises when masks

are worn over the face, as this leads to a reduction in the

performance accuracy; in addition, the use of a 3D face

mask to fake an identity poses a problem. At the same time,

the silhouette features cannot be effectively identified in

the case where the subject has changed their clothes.

In this paper, we therefore propose an intelligent atten-

dance monitoring system with spatio-temporal human

action recognition, which combines the use of skeleton gait

features, body action silhouette features and facial feature

recognition technology. Faced with feature masking, such

as wearing a mask, changes in clothes and viewing angle

masking, good recognition ability can also be obtained

through multi-angle skeleton synthesis gait recognition.

Our experimental results show that the proposed intelligent

attendance monitoring system has an accuracy of 93.33%

in terms of identification when a mask is worn by a specific

person in the monitored area. In future work, we will take

into account the success of most recognition technologies

and the failure of a single recognition technology to auto-

matically collect samples and will retrain and identify the

automatic recognition model to improve the recognition

accuracy of the overall intelligent attendance monitoring

system. At the same time, research on multi-target recog-

nition is carried out, aiming at the skeleton formed by

multiple people walking with different perspectives at the

same time. In future work, when the same person is dis-

tinguished, the skeleton will be merged, which is expected

to solve the problem of angle offset caused by different

walking positions.
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