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Abstract
Artificial neural network (ANN) which is an information processing technique developed by modeling the nervous system

of the human brain is one of the most powerful learning methods today. One of the factors that make ANN successful is its

training algorithm. In this paper, an improved butterfly optimization algorithm (IBOA) based on the butterfly optimization

algorithm was proposed for training the feed-forward artificial neural networks. The IBOA algorithm has the chaotic

property which helps optimization algorithms to explore the search space more dynamically and globally. In the experi-

ments, ten chaotic maps were used. The success of the IBOA algorithm was tested on 13 benchmark functions which are

well known to those working on global optimization and are frequently used for testing and analysis of optimization

algorithms. The Tent-mapped IBOA algorithm outperformed the other algorithms in most of the benchmark functions.

Moreover, the success of the IBOA-MLP algorithm also has been tested on five classification datasets (xor, balloon, iris,

breast cancer, and heart) and the IBOA-MLP algorithm was compared with four algorithms in the literature. According to

the statistical performance metrics (sensitivity, specificity, precision, F1-score, and Friedman test), the IBOA-MLP out-

performed the other algorithms and proved to be successful in training the feed-forward artificial neural networks.

Keywords Artificial neural networks � Butterfly optimization algorithm � Chaos � Multilayer perceptron � Training artificial

neural networks

1 Introduction

Today, computers and computer systems have been inter-

twined with our lives and have become an inseparable part.

Computers are used in almost every aspect of our lives.

While computers were only performing calculations or data

transfers in the past, over time they have turned into more

effective machines that can analyze large amounts of data

and make comments about events using this data. Today,

this development continues, and computers have gained the

ability to both make decisions about events and learn the

relationship between events. Thus, problems that could not

be formulated mathematically and could not be solved have

begun to be solved by computers. One of the most

important factors of this advancement in computing is the

field of artificial intelligence and artificial neural networks

(ANNs) are one of the subjects with the most research in

the field of artificial intelligence.

The first artificial neural network modeling work was

put forward by Warren McCulloch and Walter Pitts in

1943. ANN is one of the most important inventions in its

field, developed by taking the movement of the human

brain as a role model. ANN is used in many areas such as

classification, recognition, prediction (Tümer et al. 2020),

and optimization (Madenci and Gülcü 2020). ANN which

was developed by imitating the human brain has proven its

success in the field of optimization as in many other fields.

ANN, which is one of the most powerful learning

methods today, is used to predict and classify unknown

functions. The most commonly used ANN method while

performing these operations is the multilayer perceptron

(MLP). The ability of ANN to give more accurate results

and to make more successful classifications is ensured by

updating the bias and weight values in the most appropriate

way. ANN which is trained with optimum values can reach
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more accurate results in finding classification values. Many

researchers have proposed algorithms in the literature to

train multilayer perceptron. However, gradient techniques

from these proposed algorithms often encounter problems

in solving optimization problems in the real world. They

get stuck in the local optimum and produce poor-quality

solutions (Gülcü 2022b; Mirjalili 2015; Tang et al. 2018).

To overcome these difficulties, meta-heuristic algorithms

have been used to train ANNs (Gülcü 2022a; Jaddi and

Abdullah 2018). Meta-heuristic algorithms, designed by

taking the biological movements of living things as role

models such as hunting, reproduction, and feeding, aim to

find the optimum result to problems in a reasonable time.

One of these meta-heuristic algorithms is the butterfly

optimization algorithm (BOA) which is based on swarm

intelligence. The BOA algorithm was developed by Arora

and Singh (2019) inspired by nature. The BOA is a meta-

heuristic algorithm designed by modeling the mating and

foraging behaviors of butterflies that communicate with

each other through the scent they emit. The BOA is an

algorithm designed by modeling butterflies to find food and

mating mates using their senses of smell, sight, taste, touch,

and hearing. These senses are also useful for migrating

from place to place, escaping from a predator, and laying

eggs in suitable places. Among all these senses, smell is the

most important one that helps the butterfly find food, such

as nectar, even from long distances. The BOA has shown

excellent performance for several continuous, discrete,

single-objective, and multi-objective optimization prob-

lems compared to several state-of-the-art meta-heuristics

and evolutionary algorithms. Due to the success of the

BOA, it has been applied to many different optimization

problems including engineering design problems (Arora

and Anand 2018; Sharma et al. 2021), feature selection

(Long et al. 2021), power plant management (Dey et al.

2020), reliability optimization problems (Sharma 2021),

and healthcare systems (Dubey 2021). Therefore, these

motivated our attempts to improve the butterfly optimiza-

tion algorithm and to employ it for training the feed-for-

ward artificial neural networks.

In this study, the IBOA algorithm was developed for the

solution of single-objective optimization problems, which

is a sub-branch of continuous optimization problems. The

IBOA algorithm is an improved algorithm by adding

parameter analysis and chaotic maps to the BOA algorithm.

While developing the IBOA, 10 chaotic maps (Chebyshev,

Circle, Gauss, Iterative, Logistic, Piecewise, Sine, Singer,

Sinusoidal, and Tent) were used to update and optimize the

p (key probability) value, which is one of the most

important parameters of the BOA algorithm. The devel-

oped IBOA algorithm was tested on 13 benchmark func-

tions. These functions are well known to those working on

global optimization and are frequently used for testing

optimization algorithms. The results of the BOA algorithm

and the results of the IBOA algorithm with 10 different

maps were compared. According to the results, the Tent-

mapped IBOA algorithm is more successful. In the second

part of this study, the training of the ANN was carried out

using the IBOA algorithm and this proposed new algorithm

is named IBOA-MLP. The IBOA algorithm tries to find the

optimum bias and weight values of the MLP. In the

experimental study, five datasets (xor, iris, heart, balloon,

breast cancer) taken from the UCI machine learning

repository were used. The results obtained were compared

with the results of four different MLP algorithms in the

literature. According to the comparison result, it was seen

that the IBOA-MLP algorithm achieved a good

performance.

The main contributions of this article are: (1) A new

improved butterfly optimization algorithm (IBOA) is pro-

posed. (2) The IBOA algorithm is applied for training ANN

and optimizes the weights and biases of ANN. (3) The

IBOA-MLP algorithm has the ability to escape from local

optima. (4) The initial parameters and positions don’t

affect the performance of the IBOA-MLP algorithm. (5)

The features of the IBOA-MLP algorithm are simplicity,

requiring only a few parameters, solving a wide array of

problems, and easy implementation.

This study is organized as follows: In the first section,

the history of ANN is briefly explained, the problem is

explained, and the main contributions in this article are

emphasized. In the second section, the current studies in

the literature on the training of ANN are examined. In the

third section, detailed information about the ANN and

BOA algorithms is given. Then, the developed IBOA

algorithm and the training of ANN by the IBOA algorithm

(IBOA-MLP) are explained in detail. In the fourth section,

the experimental results of the developed algorithms are

presented. First of all, the benchmark functions used in

experimental studies are introduced and the experimental

results of the IBOA algorithm with 10 different maps on

these benchmark functions are given. The results of the

IBOA and BOA algorithms are compared in terms of the

success and computational time of the algorithms, and it is

shown that the IBOA algorithm is more successful. In the

second part of this section, five classification datasets are

introduced and the experimental results of the IBOA-MLP

algorithm are presented. The experiments are carried out

on the classification problems and the results of the IBOA-

MLP algorithm are compared with the results of algorithms

in the literature. It is seen that the IBOA-MLP algorithm is

more successful than other algorithms on most of the

classification problems according to the statistical perfor-

mance metrics. Finally, in the fifth section, the general

results obtained in the study are given as a summary. In

addition, suggestions for future work are given.
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2 Related works

After reviewing the literature in detail, it is seen that many

meta-heuristic algorithms have been used for the training

of ANN. For the scope of the literature research of this

article, some of the important studies were examined and

evaluated. Moreover, the summary of studies about the

training of ANN is presented in Table 1.

Zhang et al. (2007) proposed a hybrid algorithm based

on the particle swarm optimization (PSO) algorithm and

the traditional back-propagation algorithm. The proposed

algorithm was applied for the training of ANN on three bits

parity problem, function approximate problem, and clas-

sification problem. According to the experimental, the

performance of the proposed algorithm was better than the

performance of the other two algorithms used for com-

parison, and the proposed algorithm obtained satisfactory

results in terms of the convergence speed.

Özbakir et al. (2009) developed a new meta-heuristic

algorithm based on ant colony optimization (ACO) to

detect the relations among the classification data and

extract the rules. The proposed algorithm trained ANN, and

its performance was measured on the benchmark classifi-

cation data such as ECG, iris, Ljubljana breast cancer,

nursey, pima, and Wisconsin breast cancer. The algorithm

is compared with the NBTree, DecisionTable, Part, and

C4.5 approaches. The experimental results were quite

successful.

Zamani and Sadeghian (2010) used the PSO algorithm

for training artificial neural networks. The proposed

approach for classification was tested on the iris, wine,

heart, and ionosphere datasets. The effects and successes of

different parameters for PSO and ANN were investigated.

According to the experimental results, the PSO algorithm

obtained satisfactory results in training ANN.

Zanchettin et al. (2011) developed a hybrid approach

(GaTSa) consisting of the combination of the genetic

algorithm (GA), Tabu search (TS), and simulated anneal-

ing (SA) algorithms for ANN training. The performance of

the approach was compared with the performance of five

algorithms. To measure the performance of the algorithms,

an artificially obtained dataset and ten different datasets

Table 1 Summary of studies about the training of ANN

Method References Dataset(s)

Particle swarm optimization ? Back-

propagation algorithm

Zhang et al. (2007) Three bits parity problem, function approximate problem, and

classification problem

Ant colony optimization Özbakir et al. (2009) Classification problem

Particle swarm optimization Zamani and Sadeghian

(2010)

Classification problem

Genetic algorithm ? Tabu search ? simulated

annealing

Zanchettin et al. (2011) Classification problem

Harmony search algorithm Kulluk et al. (2012) Classification problem, and a real-world problem (quality defects

common in textiles)

Social spider algorithm Pereira et al. (2014) Classification problem

Particle swarm optimization ? Cuckoo search

algorithm

Chen et al. (2015) Function estimation, and classification problem

Gray wolf optimization Mirjalili (2015) Classification problem, and function approximate problem

Particle swarm optimization ? artificial bee

colony algorithm

Al Nuaimi and Abdullah

(2017)

Classification problem

Shuffled frog leaping algorithm Dash (2018) Forecast of the US dollar

Kidney-inspired algorithm Jaddi and Abdullah

(2018)

Classification problem, and a real-world problem (rainfall

forecasting)

Whale optimization algorithm Aljarah et al. (2018) Classification problem

Artificial bee colony algorithm Ghaleini et al. (2019) A real-world problem (safety factor of retaining walls)

Cuckoo search algorithm Gullipalli (2021) Classification problem

Crow search algorithm Erdogan and Gulcu

(2021)

Classification problem

Animal migration optimization Gülcü (2022a) Classification problem, and a real-world problem (civil

engineering)

Dragonfly algorithm Gülcü (2022b) Classification problem, and a real-world problem (civil

engineering)
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(iris, diabetes, thyroid, card, cancer, glass, heart, horse,

soybean, and mglass) are frequently handled in the litera-

ture were used. The author stated that their proposed

approach produced more successful and satisfactory results

than other algorithms.

Kulluk et al. (2012) discussed the application of har-

mony search (HS) algorithms for the supervised training of

feed-forward type ANNs, which are frequently used for

classification problems. In the study, special attention was

paid to the self-adaptive global best-fit search (SGHS)

algorithm and five different variants of the fit search

algorithm were examined. The proposed approach was

tested on six different benchmark classification datasets

(glass, ionosphere, iris, thyroid, wine, Wisconsin breast

cancer) and a real-world dataset based on the classification

of quality defects common in textiles. According to the

experimental results, the proposed algorithm showed a very

successful and competitive performance for the training of

ANN.

Pereira et al. (2014) trained the ANN using the social

spider algorithm. The proposed approach was used to

classify different datasets (ionosphere, satimage, diadol,

mea, and spiral) in the field of medicine. The performance

of the approach was compared with the performance of five

different algorithms (ABC, CSS, FFA, PSO, and SGHS)

and although it was not achieved high success, it showed

competitive results with most algorithms and achieved an

average level of success.

Chen et al. (2015) successfully combined PSO and

Cuckoo search (CS) algorithms to create a hybrid model

(PSOCS) and used it for ANN training. In the proposed

approach, the successful aspects of both algorithms were

combined and developed. The algorithm was applied to a

mathematical function estimation and iris classification

data. The performance of the algorithm was compared with

the performance of its components, PSO and CS algo-

rithms. According to the experimental results, the perfor-

mance success of the model surpassed the other two

algorithms.

Mirjalili (2015) used the gray wolf optimization (GWO)

algorithm for multilayer perceptron (MLP) training. The

experiments were performed on five classification datasets

(xor, balloon, iris, breast cancer, and heart) and three

standard functions (sigmoid, cosine, and sine) to measure

the performance of the proposed method. The proposed

algorithm was compared with five meta-heuristic algo-

rithms (PSO, GA, ACO, ES, and PBIL) that are frequently

used in the literature. According to the results, the algo-

rithm obtained competitive results. In addition, it achieved

a high level of success in classification.

Al Nuaimi and Abdullah (2017) proposed a new hybrid

algorithm combining PSO and ABC algorithms and applied

the proposed algorithm for the training of ANN. Four

benchmark classification datasets (iris, cancer, diabetes,

and glass) were used to evaluate the algorithms. The

approach was compared with the PSO and ABC algo-

rithms. The proposed approach achieved more successful

results than the other two algorithms.

Dash (2018) used the improved Shuffled frog leaping

algorithm (SFLA) for ANN training. The proposed algo-

rithm was applied to the datasets on the forecast of the US

dollar according to 3 different exchange rates. The per-

formance of the proposed algorithm is compared with the

performance of SFLA, PSO, and DE algorithms. According

to the results, the success of the algorithm was better than

the other algorithms.

Jaddi and Abdullah (2018) used the kidney-inspired

algorithm modeled based on the behaviors of the kidneys in

the human body to optimize the ANN parameters. With the

a value changed between the minimum and maximum

values in the developed algorithm, exploration and

exploitation capabilities were strengthened, and this had a

significant impact on ANN training. The proposed method

was applied to the different benchmark classification

datasets (iris, diabetes, thyroid, cancer, card, glass, mglass,

and gas furnace) and a real-world problem (rainfall fore-

casting). The algorithm was compared with four algorithms

and the proposed algorithm was promising according to the

results.

Aljarah et al. (2018) trained a feed-forward neural net-

work by using the whale optimization algorithm (WOA).

The proposed model was tested on twenty different

benchmark classification datasets with different difficulty

levels. The performance of the algorithm was compared

with the performance of seven different algorithms (BP,

GA, PSO, ACO, DE, ES, and PBIL) that are frequently

used in the literature. The qualitative and quantitative

results proved that the proposed trainer was able to out-

perform seven algorithms on the majority of datasets in

terms of both local optima avoidance and convergence

speed.

Ghaleini et al. (2019) proposed a model in which the

ANN was trained by the ABC algorithm to predict the

safety factors of retaining walls. The weight and bias val-

ues of the ANN were optimized by the ABC algorithm to

get higher accuracy and performance estimation in safety

factors. The proposed approach was analyzed by different

ANN models with a different number of hidden layers.

According to the results, the network performance was

strengthened with the model proposed.

Gülcü (2022a) developed a new meta-heuristic

approach, animal migration optimization with Levy flight

feature, and used it for training the ANN. The proposed

hybrid algorithm is named IAMO-MLP. Thirteen bench-

mark functions, five classification datasets, and one real-

world problem in civil engineering were used in the
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experiments. It was observed that the initial positions of the

individuals did not affect the performance of the developed

algorithm and the IAMO-MLP algorithm successfully

escaped from the local optima.

Gullipalli (2021) performed ANN training using the CS

algorithm. It was aimed to increase the convergence

capability of the algorithm by applying different modifi-

cations to the CS algorithm. The proposed approach was

tested on eight classification data (car, german-credit,

hypothyroid, mfeat, nursey, page-blocks, segment, sick)

from the UCI machine learning repository. The perfor-

mance of the proposed algorithm was compared with the

performance of the Hoeffding tree and CS forest approa-

ches. According to the experimental results, the algorithm

was sufficient and competitive in terms of performance.

Erdogan and Gulcu (2021) proposed a new hybrid

algorithm CSA-MLP for training the ANN. The algorithm

CSA-MLP was based on the crow search algorithm which

is a population-based meta-heuristic optimization inspired

by the behavior of crows to store their excess food and

retrieve it from the landfill when needed. The experimental

results showed that the crow search algorithm was a reli-

able approach in training the ANN.

Many researchers have proposed algorithms in the lit-

erature to train multilayer perceptron. However, gradient

techniques from these proposed algorithms often encounter

problems in solving optimization problems in the real

world. They get stuck in the local optimum and produce

poor-quality solutions (Gülcü 2022b; Mirjalili 2015; Tang

et al. 2018). To overcome these difficulties, meta-heuristic

algorithms have been used to train ANNs (Gülcü 2022a;

Jaddi and Abdullah 2018). Due to the success of the BOA,

it has been applied to many different optimization prob-

lems. Therefore, these motivated our attempts to improve

the butterfly optimization algorithm and to employ it for

training the feed-forward artificial neural networks.

3 Materials and methods

In this section, artificial neural networks, multilayer per-

ceptron, butterfly optimization algorithm, improved but-

terfly optimization algorithm, and training of artificial

neural networks using improved butterfly optimization

algorithm are explained in detail.

3.1 Artificial neural network

The artificial neural network is an information processing

technique developed by modeling the nervous system of

the human brain. In other words, it is the transfer of

synaptic connections between neurons in the human brain

to a digital platform. Biological nervous system elements

and their task equivalents in artificial neural networks are

shown in Table 2 (Koç et al. 2004).

An artificial nerve cell was developed by imitating the

human nerve cell. An artificial neuron is shown in Fig. 1.

To obtain the net input of the neuron, the inputs coming to

the neuron are multiplied by their connection weights and

then combined with the aggregate function. The result is

processed with the activation function and thus the net

output of the neuron is calculated.

ANNs are formed by the combination and grouping of

artificial nerve cells. This integration consists of layers, and

as a result, ANN consists of more than one interconnected

layer. ANN consists of three layers: input layer, hidden

layer, and output layer. However, in some cases, the

number of hidden layers may be more than one. In many

ANN models, processes run sequentially. In short, the

hidden layer receives the data from the previous input

layer, processes it, and forwards it to the next output layer.

The features of the three layers that make up the ANN can

be summarized as follows:

• Input layer: It is the layer where information input is

made. There is no operation in this layer, the informa-

tion coming to the layer is transmitted directly to the

hidden layers. Each node has only one input and one

output.

• Hidden layers: These are the layers where outputs will

be produced by mathematical operations according to

the inputs. They provide communication between the

input layer and the output layer and transfer informa-

tion. An ANN can have more than one hidden layer.

• Output layer: It is the layer that takes the result

produced in the hidden layers, processes it, and creates

the output by transferring it to the outside of the system.

As mentioned above, activation functions are used to

obtain the net output of the neuron. The function that maps

inputs and outputs and establishes a connection with each

other is the activation function. If the activation function is

not used, ANNs would be polynomials of one degree. Since

non-activated ANNs would be linear, their learning capa-

bilities would be very low. If the neural network is desired

Table 2 Elements in the biological nervous system and their equiv-

alents in ANN

Nervous system Artificial neural networks

Neuron Process element

Dendrite Addition function

Cell body Activation function

Axon Element output

Synapse Weights
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to learn nonlinear states, it is important to use an activation

function. There are many activation functions in the liter-

ature. Which activation function to choose is crucial for

learning ability. The mathematical representation of the

sigmoid activation function which is one of the most fre-

quently used activation functions in the literature is pre-

sented in Eq. (1).

f xð Þ ¼ r xð Þ ¼ 1

1þ e�x
: ð1Þ

The most preferred type of ANN is the multilayer per-

ceptron (MLP). A multilayer perceptron is a feed-forward

network structure with one or more hidden layers between

the input layer and the output layer. The backpropagation

algorithm is generally used as the learning algorithm in

MLP (Turkoglu and Kaya 2020). Figure 2 shows the fun-

damental structure of MLPs. Turkoglu and Kaya (2020)

stated that an MLP consists of the following components:

artificial neuron, layers, aggregate function, activation

function, error function, and learning algorithm.

The artificial nerve cell, which consists of inputs,

aggregate, and activation function, has been developed by

imitating the human nervous system. In the artificial neu-

ron, the input values are multiplied by the node weights

and sent to the aggregate function. The result returned from

the aggregate function is sent to the activation function and

thus the net output of the artificial neuron is obtained. The

function that takes the net input by combining the weights

of the incoming inputs is called the aggregate function. The

results from the aggregate function are sent to the activa-

tion function and converted to output. It is also called

compression or threshold function in the literature. This is

because the output signals are limited to the range [0, 1] or

[-1, 1]. In this study, the sigmoid function was chosen as

the activation function. The reason for this is that its

derivative can be taken and its success has been proven by

its frequent use in the literature.

It is known that ANN is a learning-based system and an

objective function is defined to find the error in this system.

In statistics, the mean squared error (MSE) of an estimator

gives the mean of the squares of the errors. That is, it

measures the mean squared difference between the esti-

mated values and the actual value. The MSE formula is

shown in Eq. (2). Since there may be more than one neuron

in the output layer of the MLP, the MSE formula used in

this study is shown in Eq. (3). MSE measures the perfor-

mance of a machine learning model. It is always positive

and it can be said that the model with an MSE value close

to zero performs better.

MSE ¼ 1

N

XN

i¼1

ðgi � tiÞ2 ð2Þ

where N stands for the number of samples. gi and ti rep-

resent the actual value and the predicted value for the

sample i, respectively.

MSE ¼ 1

N

XN

i¼1

XK

j¼1

ðgij � tijÞ
2 ð3Þ

where N stands for the number of samples, and K stands for

the number of neurons in the output layer in the MLP. gij
and tij represent the actual value and predicted value of the

neuron j in the output layer for the sample i, respectively.

Finally, to talk about the learning algorithm which is the

component of MLP, MLPs are mostly trained using the

backpropagation algorithm. Training the MLP by the

backpropagation algorithm takes place in three stages: (1)

The progression of the network input from the input layer

to the output layer, (2) the calculation of the error in the

output neurons, (3) the backpropagation, and updating the

weights according to the backward propagated error (Tur-

koglu and Kaya 2020). After the training of the network is

complete, the MLP works forward.

Fig. 1 Artificial nerve cell

Fig. 2 Structure of the multilayer perceptron (Irmak and Gülcü 2021)
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3.2 Butterfly optimization algorithm

In the Linnaean Animal Kingdom system, butterflies are in

the class Lepidoptera. There are more than 18,000 species

of butterflies in the world. The reason for their survival for

millions of years lies in their senses (Saccheri et al. 1998).

Butterflies use their senses of smell, sight, taste, touch, and

hearing to find food and mating partners. These senses also

help in migrating from one place to another, escaping from

the predator, and laying eggs in suitable places. Among all

these senses, smell is the most important sense that helps

the butterfly find food even from long distances (Blair and

Launer 1997). Butterflies use sensory receptors used for

smelling to find the source of nectar, and these receptors

are distributed over body parts such as the antennae, legs,

and fingers of the butterfly. These receptors are nerve cells

on the body surface of the butterfly and are called

chemoreceptors. These chemoreceptors guide the butterfly

to find the best mating partner to maintain a strong genetic

line. A male butterfly can identify a female by means of

pheromones which are scent secretions that the female

butterfly emits to cause certain reactions (Arora and Singh

2019). Based on scientific observations, it has been found

that butterflies have a very accurate perception of the

source of the odor (Raguso 2008). They can also distin-

guish different odors and sense their intensity (Wyatt

2003).

The butterfly optimization algorithm (BOA) which is

based on swarm intelligence was developed by Arora and

Singh (2019) inspired by nature to solve global optimiza-

tion problems. BOA is mainly based on the moving strat-

egy of butterflies which uses their sense of smell to locate

nectar or mating mates. Butterflies detect and analyze odor

with their sense sensor as noted above to determine the

potential direction of a nectar/mating mate. The BOA

mimics this behavior to find the optimum in the search

space. The BOA is an algorithm designed by modeling

butterflies to find food and mating mates using their senses

of smell, sight, taste, touch, and hearing. Among all these

senses, smell is the most important which helps the but-

terfly find food, usually nectar, even from long distances.

Butterflies are search agents for optimization in the BOA

algorithm. A butterfly will produce scent with an intensity

associated with its fitness. Namely, as a butterfly moves

from one location to another its fitness will change. The

scent spreads over the distance, other butterflies can sense

it, and butterflies can share their personal information with

other butterflies and create a collective social information

network. When a butterfly can detect the scent of another

butterfly, the butterfly will move toward it, and this step is

called global search in the proposed algorithm (Arora and

Singh 2019).

The BOA was developed by taking the following three

features as role models. (i) All butterflies are expected to

emit a scent that makes the butterflies attract each other. (ii)

Each butterfly will move randomly or toward the best

butterfly that emits more scents. (iii) The stimulus intensity

of a butterfly is affected or determined by the value of its

objective function.

In the BOA which is based on the behavior of butter-

flies, the three stages can be explained as follows: (1)

Initialization Phase: Parameters are determined, and an

initial population is generated for the algorithm. When

creating the initial population, the position of the butterflies

is randomly assigned by calculating the odor values. (2)

Iteration Phase: This is the part where the main processes

are carried out and each butterfly tries to reach the best

result with parameters specific to the BOA. At each itera-

tion, all butterflies in the search space are moved to new

positions, and then their fitness values are evaluated. (3)

The last stage: It is the part where the stopping criterion is

met and the optimum or closest to the optimum result is

reported.

Understanding the BOA modality relies on three key

concepts. These concepts are sensory method (c), stimulus

intensity (I), and power exponent (a). The sensory method

refers to the raw input used by the sensors to measure the

sensory energy form and process it in similar ways. The

stimulus intensity parameter I is limited to an exponential

value. According to previous studies by scientists, this is

because as the stimulus gets stronger, the insects go

intensely to the stimulus and eventually become less sen-

sitive to it. The parameter a is used to correct this situation.

The parameter a is the power base that is dependent on

modality (smell in BOA). If a = 1, it means that there is no

odor absorption. Namely, the amount of scent emitted by a

particular butterfly is perceived by other butterflies with the

same capacity. This brings us closer to a single solution,

usually the optimum. If a = 0, it means that the scent

emitted by any butterfly cannot be perceived by other

butterflies. This provides the local search. a and c represent

a random number between [0, 1], f represents the perceived

magnitude of the odor, and I represents the stimulus

intensity. There are two important stages in the algorithm:

local search and global search. The global search is shown

in Eq. (5) and the local search is shown in Eq. (6). In the

local search, the butterfly xi
t does not move toward the

global best (g�), but instead exhibits a random walk in the

search space.

f ¼ c� Ia ð4Þ

Xtþ1
i ¼ Xt

i þ r2 � g� � Xt
i

� �
� f i ð5Þ

where g� represents the best available solution among all

the solutions in the current iteration, Xi
t and Xk

t represent
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the butterflies in the search spaces, r represents the

parameter that provides randomness in the range [0, 1], and

fi represents the perceived scent of the butterfly.

Xtþ1
i ¼ Xt

i þ r2 � Xt
j � Xt

k

� �
� f i ð6Þ

where, unlike the global search, the butterfly xi
t does not

move toward the global best (g�), but instead exhibits a

random walk in the search space.

Searching for food and mating partners with butterflies

can occur on both the local and global scales. Thus, a

switching probability p is used in the BOA to switch

between the global search and the local search. The

switching probability decides whether a butterfly will move

to the best butterfly or randomly. The flowchart of the BOA

algorithm is shown in Fig. 3.

3.3 Improved butterfly optimization algorithm

We propose an improved butterfly optimization algorithm

using chaotic maps to solve getting stuck in local optima

and early convergence problems of the butterfly opti-

mization algorithm. There is a wide variety of chaotic maps

used in the optimization field. However, in this study, the

ten most frequently used chaotic maps in the literature were

selected and used. The origin of the word chaotic in chaotic

maps comes from the word chaos, in which the universe

was formless and disorganized, discordant and chaotic

before it came into order. The word maps here means

matching or associating with some parameters using

behavior that can be described as chaos in the algorithms

used. Therefore, chaotic maps are maps that show the

complex and dynamic behavior in nonlinear systems

(Pecora and Carroll 1990). In recent years, chaotic maps

have been widely appreciated in the optimization field for

their dynamic behavior that helps optimization algorithms

to explore the search space more dynamically and globally.

Its behavior is predictable only under initial conditions, but

then it behaves randomly.

Chebyshev map: the formula for the Chebyshev map is

shown in Eq. (7).

xkþ1 ¼ cos kcos�1 xkð Þ
� �

: ð7Þ

Circle map: the formula for the Circle map is shown in

Eq. (8).

xkþ1 ¼ xk þ 0:2� 0:5� 2pð Þsin 2pxkð Þmod 1ð Þ: ð8Þ

Gauss map: the formula for the Gauss map is shown in

Eq. (9).

xkþ1 ¼
0 xk ¼ 0
1

xkmodð1Þ
de�gilse

8
<

: : ð9Þ

Iterative map: the formula for the Iterative map is shown

in Eq. (10).

xkþ1 ¼ sin
0:7p
xk

� �
: ð10Þ

Logistic map: the formula for the Logistic map is shown

in Eq. (11).

xkþ1 ¼ 4xk 1� xkð Þ: ð11Þ

Piecewise map: the formula for the Piecewise map is

shown in Eq. (12).

Fig. 3 Flowchart of the BOA algorithm
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xkþ1 ¼

xk
P

xk � P

0:5� P

0� xk �P

P� xk � 0:5

1� P� xk
0:5� P
1� xk
P

0:5� xk � 1� P

1� P� xk � 1

:

8
>>>>>>>>><

>>>>>>>>>:

ð12Þ

where 0\P B 0.5.

Sine map: The formula for the Sine map is shown in

Eq. (13).

xkþ1 ¼
a
4
sin pxkð Þ: ð13Þ

Singer map: The formula for the Singer map is shown in

Eq. (14).

xkþ1 ¼ P 7:86xk � 23:31x2k þ 28:75x3k þ 13:302875x4k
� �

ð14Þ

where the P is the control parameter and its values are

between 0.9 and 1.08.

Sinusoidal map: The formula for the Sinusoidal map is

shown in Eq. (15).

xkþ1 ¼ sin pxkð Þ: ð15Þ

Tent map: The formula for the Tent map is shown in

Eq. (16).

xkþ1 ¼

xk
0:7

xk\0:7

10

3
1� xkð Þ xk � 0:7

8
><

>:
: ð16Þ

The key element of the BOA establishes the balance

between the equations shown in Eqs. (5)-(6) is the

parameter p. It was seen that this parameter p was set to 0.8

in the BOA algorithm. However, the parameter p in IBOA

is dynamically adjusted using chaotic maps. In the exper-

imental studies, the IBOA algorithm with 10 chaotic maps

was tested on 13 different benchmark functions and it was

seen that the IBOA was successful.

At the beginning of the IBOA algorithm, the butterfly

population is randomly generated. Each member of the

population can be represented as xi. First, butterflies need

their sense of smell to understand modality. Here, the odor

value is calculated using Eq. (4). Then, the value of the key

probability p controlling the global and the local search

capabilities is then calculated by the chaotic map. Thus, the

value of the p is changed from the fixed value of 0.8, and it

is updated by taking advantage of the chaos in each itera-

tion so that diversity is created. The flowchart and the

pseudo-code of the IBOA algorithm are shown in Figs. 4

and 5.

3.4 Training multilayer perceptron using IBOA

ANN learns from inputs and outputs. Therefore, the values

of the weights and biases in the ANN are updated

according to the inputs and outputs (Kiranyaz et al. 2009).

The ability of ANN to give accurate results and to make

successful classifications is ensured by updating the values

of the weights and biases in the most appropriate way. In

the literature, researchers have proposed various algorithms

to train the Multilayer Perceptron (MLP). Two popular

methods of them are gradient techniques and meta-

heuristic algorithms. Gradient techniques often encounter

problems in solving this optimization problem (training the

MLP). The most important ones of these problems are the

getting stuck in the local optima and the producing poor-

quality solutions. To overcome these difficulties, meta-

Fig. 4 Flowchart of the IBOA algorithm
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heuristic algorithms are used to train the MLP (Gulcu

2020). In this study, a hybrid IBOA-MLP algorithm was

developed to optimize the values of the weights and biases.

The IBOA algorithm which is a meta-heuristic algorithm

was used for the first time in MLP training. Meanwhile, the

optimization process of the weights and biases is shown in

Fig. 6. To optimize the weights and biases in MLP, the

weights and biases must first be represented by the but-

terflies in the IBOA-MLP algorithm. For this purpose, a

representation vector consisting of weights and biases is

used. This vector is shown in Eq. (17) according to the

MLP structure in Fig. 6.

Vector ¼ wi;j t wj;k t v0;j t v0;k
� �

ð17Þ

where wi;j represents the values of the weights between the

input layer and the hidden layer, and wj;k represents the

values of the weights between the hidden layer and the

output layer. v0;j represents the bias values between the

input layer and the hidden layer, and v0;k represents the bias

values between the hidden layer and the output layer. The

t notation represents the union of two sets.

At the beginning of the IBOA-MLP algorithm, the

butterfly population is randomly generated. Each butterfly

represents a different MLP, namely the representation

vector in Eq. (17). Then, using the training dataset, the

odor of each butterfly is calculated and the best butterfly in

the population is found. Then the position of each butterfly,

namely the values of the weights and biases in the MLP, is

updated using Eqs. (5)–(6) according to the parameter

p. The smaller the value of the parameter p, the more likely

Eq. (5) will be selected, and the larger the value of the

parameter p, the more Eq. (6) will be selected. The

important point here is to optimize the value of the

parameter p to ensure the balance between these two

equations. The chaotic maps were used for optimization

and the training process was started. This process continues

until the termination criteria are met.

4 Experimental results

In this section, the experimental results of the IBOA and

IBOA-MLP algorithms developed in this study are pre-

sented. The success of the IBOA algorithm was tested on

both benchmark functions and classification datasets.

Therefore, this section was divided into two parts (the

benchmark functions, and classification datasets). The

features of the hardware and software used in the experi-

ments are as follows: Microsoft Windows 10, Intel i5-3470

3.20 GHz, 6 GB memory. The algorithms were coded and

run in MATLAB R2018a. All statistical analyzes in this

study were performed with the software Microsoft Excel

2013.

4.1 Benchmark functions

In this section, the experimental results of the IBOA

algorithm on 13 benchmark functions are presented.

Table 3 shows the formulas, dimensions, global minimums,

and search range of these 13 benchmark functions. These

functions are well known to those working on global

optimization and are frequently used for testing and anal-

ysis of optimization algorithms. The f1–f5 functions are the

single-mode functions. f6 is a discontinuous step function

with a minimum. The f7 function is a noisy quadratic

function. f8–f13 are multi-mode test functions. The number

of local minimums for these functions increases exponen-

tially with the size of the problem. These functions belong

to the most difficult problem class for most optimization

Objective function f(x), x=(x1,x2, …, xdim), dim=no. of dimensions
Generate initial population of n Butterflies xi= (i=1,2, …, n)
Stimulus Intensity Ii at xi determined by f(xi) 
Define sensor modality c, power exponent α and switch probability p
While stopping criteria not met do

for each butterfly bf in population do
Calculate fragrance for bf using Eq. (4) 
end for
Find the best bf
for each butterfly bf in population do

Generate a random number r from [0,1]
Update p key using chaotic maps
İf r<p then
Move towards best butterfly/solution using Eq. (5) 
else
Move randomly using Eq. (6) 
end if

end for
Update the value of α

end while
Output the best solution found.

Fig. 5 Pseudo-code of the IBOA algorithm

Fig. 6 The optimization process of weights and bias in IBOA-MLP
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problems. The names of f1–f13 functions in the literature are

as follows, respectively: sphere, schwefel 2.22, schwefel

1.2, schwefel 2.21, rosenbrock, step, quartic with noise,

schwefel, rastrigin, ackley, griewank, penalized1, penal-

ized2. These 13 benchmark functions with different diffi-

culty levels were used in experiments to test the

performance of the IBOA algorithm and to compare the

IBOA with other algorithms. The dimension of these

benchmark functions was taken as 30. All functions except

f8 have a global minimum value of zero. Because the

functions have different difficulty levels the search inter-

vals are different as shown in Table 3.

In the experiments, the BOA algorithm and the IBOA

algorithm with 10 different maps were compared. To fairly

compare the algorithms, each algorithm performed the

same number of fitness function evaluations (FEs) on each

run: 75,000 FEs for f1, f6, f12, and f13; 100,000 FEs for f2
and f11; 150,000 FEs for f7, f8, and f9; 250,000 FEs for f3, f4,

and f5. The population size was set to 50 in the algorithms.

Algorithms were run independently 30 times on each

function.

Table 4 shows the average results of the BOA algorithm

and the IBOA algorithm with 10 different maps. The best

results in the table are shown in bold. When the results are

examined, it is seen that the IBOA algorithm with the Tent

map achieves better results than other methods. Also, in

Table 5, the average computational times of the algorithms

are shown in seconds.

According to the results of the algorithms in Table 4, it

is clear that the Tent-mapped IBOA algorithm outperforms

the other algorithms in most of the benchmark functions.

Tent-mapped IBOA algorithm achieved the best results in

seven benchmark functions. It also has the third-best result

in the benchmark function f10. According to Table 4, it is

clear that the proposed IBOA algorithm with the Tent map

has better performance than the classical BOA algorithm.

4.2 Classification datasets

To test the performance of the IBOA-MLP algorithm and

compare it with other studies, five classification datasets

with different training/test samples and different difficulty

levels were used in the experiments. These five datasets are

xor, balloon, heart, breast cancer, and iris. Balloon, heart,

breast cancer, and iris datasets were taken from the well-

known UCI repository and are widely used for testing

machine learning algorithms.

In the literature, there are some studies about dimen-

sionality reduction, and extracting the most important

features of datasets (Gundluru et al. 2022; Lakshmanna

et al. 2022). But, dimensionality reduction and feature

extraction was not applied to datasets in this study. To

fairly compare the algorithms, the algorithms used the Ta
bl
e
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same training and test subsets taken from www.seyedali

mirjalili.com. All datasets were normalized by using the

min–max normalization function given in Eq. (18) to

eliminate the effect of attributes that may have different

effective rates on the classification.

x
0 ¼ ðx� xminÞ

ðxmax � xminÞ
ð18Þ

where x0 is the normalized value of x which is in the range

[xmin, xmax]. The normalized value x0 will be in the range

[0, 1].

Table 6 shows the characteristics of the datasets. It is

seen that the xor dataset is the easiest problem with 8

training and 8 test examples, 3 attributes, and 2 classes.

The balloon dataset has 4 features, 20 training examples,

20 test examples, and 2 classes. The iris dataset has 4

features, 150 training samples, 150 test samples, and 3

classes. The breast cancer dataset includes 9 features, 599

training samples, 100 test samples, and 2 classes. In the

heart dataset, there are 22 features, 80 training samples,

187 test samples, and 2 classes. These training and testing

datasets were taken from www.seyedalimirjalili.com and

were also used in the (Mirjalili 2015) study. As can be

seen, the different training/test samples and the datasets

with different difficulty levels were selected to verify the

success of the IBOA-MLP algorithm.

To verify the success of IBOA-MLP, the IBOA-MLP

algorithm was compared with the BOA-MLP (Irmak and

Gülcü 2021) based on the butterfly optimization algorithm

(Arora and Singh 2019), BAT-MLP based on the bat

optimization algorithm (Yang 2010), SMS-MLP (Gulcu

2020) based on the states of matter optimization algorithm

Fig. 7 Convergence graphs of algorithms
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(Cuevas et al. 2014), and BP (Hecht-Nielsen 1992) algo-

rithms in the literature. For all datasets, the initial values of

biases and weights were randomly generated in the range

of [-10, 10]. The parameters (number of training/tests,

number of classes, MLP structure, and vector size) of the

algorithms used for comparison are shown in Table 6. In

this study, we did not focus on finding the optimal number

of neurons in the hidden layer. In the literature, the number

of neurons in the hidden layer is usually calculated with the

formula (2� nÞ þ 1. Therefore, in this study, we obtained

the number of neurons in the hidden layer by this formula.

In the formula, n is the number of neurons in the input

layer. Table 6 shows the MLP structure used in the data-

sets. As the activation function, the sigmoid function which

is mostly used in the literature was chosen.

In Table 7, the MSE results of the IBOA-MLP algorithm

were compared with the MSE results of four algorithms

(BOA-MLP, BAT-MLP, SMS-MLP, and BP) in the liter-

ature. The results of the BOA-MLP, BAT-MLP, SMS-

MLP, and BP algorithms were taken from the study (Irmak

Table 5 The average computational time of algorithms (in seconds)

Chebyshev Circle Gauss Iterative Logistic Piecewise Sine Singer Sinusoidal Tent BOA

f1 7.3 7.4 8.8 8.9 6.9 8.1 8.5 8.7 10.9 8.1 7.8

f2 9.8 10.3 12.2 12.0 9.6 11.3 12.1 12.5 11.0 11.5 10.8

f3 64.9 65.4 70.1 69.8 61.4 67.8 66.4 67.5 70.2 69.6 65.6

f4 25.2 24.8 29.3 28.3 23.0 26.9 28.9 29.8 29.1 29.5 25.2

f5 30.0 30.2 35.1 33.9 27.5 32.0 34.4 35.1 33.6 35.2 30.3

f6 7.6 7.7 9.1 8.5 7.0 8.8 8.9 9.1 10.8 10.4 8.0

f7 16.5 17.3 20.0 19.4 16.0 19.1 19.7 20.3 18.4 19.0 18.2

f8 17.1 17.2 20.0 19.7 16.2 18.7 20.2 20.2 19.2 19.4 18.0

f9 16.3 16.6 19.8 18.9 16.0 18.4 19.3 19.6 18.8 19.7 16.9

f10 8.3 8.4 10.0 9.5 8.4 9.4 9.6 9.9 10.0 12.5 8.8

f11 11.7 12.3 14.1 13.1 11.8 13.3 14.1 14.5 13.3 13.7 12.8

f12 13.3 13.4 14.4 14.1 12.6 14.0 14.8 14.9 14.4 19.3 13.9

f13 13.1 13.3 14.4 14.0 12.5 14.2 14.8 14.9 14.3 14.8 13.8

Table 6 Characteristics of the classification dataset

Dataset # Of features # Of training instances # Of test instances # Of classes Structure of MLP Vector size

Xor 3 8 8 2 3–7–1 36

Balloon 4 20 20 2 4–9–1 55

Iris 4 150 150 3 4–9–3 75

Breast cancer 9 599 100 2 9–19–1 210

Heart 22 80 187 2 22–45–1 1081

Table 7 Mean and standard deviation of MSE results on training data

Dataset IBOA-MLP BOA-MLP BAT-MLP SMS-MLP BP

Xor 5.24E203 – 7.95E203 7.83E-03 ± 9.62E-03 1.27E-01 ± 6.22E-02 1.33E-01 ± 3.39E-02 1.41E-01 ± 1.65E-01

Balloon 2.89E-09 ± 8.54E-09 2.79E-09 – 6.90E-09 1.07E-02 ± 2.83E-02 1.11E-02 ± 1.31E-02 1.00E-01 ± 1.51E-01

Iris 4.71E-02 – 7.91E-03 4.74E-02 ± 8.15E-03 2.10E-01 ± 1.38E-01 2.58E-01 ± 5.12E-02 5.38E-02 ± 1.30E-01

Breast

cancer

1.82E-03 ± 8.02E-05 1.78E-03 – 8.25E-05 6.83E-03 ± 7.92E-03 2.27E-02 ± 4.33E-03 2.88E-02 ± 1.21E-01

Heart 1.19E-01 ± 6.37E-03 1.15E-01 – 4.75E-03 1.51E-01 ± 3.21E-02 1.18E-01 ± 3.13E-02 2.98E-01 ± 1.32E-01
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and Gülcü 2021). While making the comparison, the Sine

map which produced the most successful results among the

ten maps was selected. When Table 7 is examined, it is

observed that the IBOA-MLP algorithm surpasses the

BAT-MLP, SMS-MLP, and BP algorithms. The IBOA-

MLP algorithm surpasses the BOA-MLP algorithm on the

xor and iris datasets and exhibits competitive results on

other datasets. The best results in the table are shown in

bold.

Table 8 shows the average classification accuracy of the

IBOA-MLP, BOA-MLP, BAT-MLP, SMS-MLP, and BP

algorithms on the test data. When the results in Table 8 are

examined, it is seen that the IBOA-MLP is successful.

Table 9 shows the average calculation times of the algo-

rithms. According to Table 9, the fastest algorithm is the

BP algorithm.

The statistical performance metrics used to measure the

success of the algorithms in the experiments are the sen-

sitivity, specificity, precision, and F1-Score metrics. The

sensitivity mathematically defines the accuracy of a test

that reports the presence of a condition and its formula is

shown in Eq. (19). Specificity mathematically defines the

accuracy of a test that reports the absence of a condition

and its formula is shown in Eq. (20). Precision shows how

many of the values we predicted as positive are positive

and its formula is shown in Eq. (21). F1-Score value shows

the harmonic mean of the values of the precision and the

sensitivity. Its formula is shown in Eq. (22).

sensitivity ¼ TP

TPþ FN
ð19Þ

specificity ¼ TN

TNþ FP
ð20Þ

precision ¼ TP

TPþ FP
ð21Þ

f1� score ¼ 2 � precision � sensitivity
precisionþ sensitivity

ð22Þ

where TP, FN, TN, and FP represent the true positive, the

false negative, the true negative, and the false positive,

respectively.

Table 10 shows the results of the sensitivity, specificity,

precision, and F1-score values obtained statistically by the

IBOA-MLP, BOA-MLP, BAT-MLP, SMS-MLP, and BP

algorithms on the xor dataset. According to Table 10, the

IBOA-MLP algorithm surpasses the BAT-MLP, SMS-

MLP, and BP algorithms and exhibits the same success rate

as the BOA-MLP algorithm.

Table 11 shows the values of the sensitivity, specificity,

precision, and F1-score obtained by the IBOA-MLP, BOA-

MLP, BAT-MLP, SMS-MLP, and BP algorithms on the

balloon dataset. When Table 11 is examined, it is observed

that the IBOA-MLP algorithm surpasses the BAT-MLP,

Table 8 Average classification

accuracy on test data
Dataset IBOA-MLP BOA-MLP BAT-MLP SMS-MLP BP

Xor 100.00 100.00 85.00 83.75 84.17

Balloon 100.00 100.00 98.83 99.17 90.00

Iris 97.18 97.18 82.91 86.78 90.82

Breast cancer 99.43 99.37 96.13 85.67 93.03

Heart 74.83 74.46 71.35 68.57 61.66

Table 9 Average calculation

times of algorithms (in seconds)
Dataset IBOA-MLP BOA-MLP BAT-MLP SMS-MLP BP

Xor 8.9 9.2 4.7 5.5 1.6

Balloon 37.9 37.0 19.4 20.2 1.7

Iris 1338.7 1408.6 775.2 881.6 9.6

Breast cancer 5035.1 5101.9 2607.3 2830.3 29.5

Heart 1686.6 1479.0 937.0 892.4 16.5

Table 10 Sensitivity,

specificity, precision, and F1-
score for the xor dataset

Algorithm Sensitivity (%) Specificity (%) Precision (%) F1-Score

IBOA-MLP 100.00 100.00 100.00 1.0000

BOA-MLP 100.00 100.00 100.00 1.0000

BAT-MLP 82.50 87.50 89.44 0.8435

SMS-MLP 81.70 86.70 88.90 0.8349

BP 84.17 84.17 85.94 0.8221
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SMS-MLP, and BP algorithms, and exhibits the same

success rate as the BOA-MLP algorithm. Another point to

note here is that the values of the sensitivity, precision, and

F1-score of the BP algorithm are low.

For the iris dataset, there are 4 neurons in the input

layer, 9 neurons in the hidden layer and 3 neurons in the

output layer in the MLP structure and the MLP structure

has 75 dimensions. The sensitivity, specificity, precision,

and F1-score values of the IBOA-MLP, BOA-MLP, BAT-

MLP, SMS-MLP, and BP algorithms on the iris dataset are

shown in Table 12. According to Table 12, the IBOA-MLP

surpasses the BAT-MLP, SMS-MLP, and BP algorithms,

and shows competitive results to the BOA-MLP algorithm.

Another challenging dataset that has an important place

in the literature is the breast cancer dataset. For the breast

cancer dataset, the MLP consists of 9 input neurons, 19

hidden layer neurons, and 1 output neuron. The vector

length has 210 dimensions. The sensitivity, specificity,

precision, and F1-score values of the IBOA-MLP, BOA-

MLP, BAT-MLP, SMS-MLP, and BP algorithms on this

dataset are shown in Table 13. According to Table 13, the

IBOA-MLP surpasses all the algorithms and is successful.

For the heart dataset, the MLP consists of 22 input

neurons, 45 hidden layer neurons, and one output neuron.

The vector length has 1081 dimensions. The sensitivity,

specificity, precision, and F1-score values of the IBOA-

MLP, BOA-MLP, BAT-MLP, SMS-MLP, and BP algo-

rithms on this dataset are shown in Table 14. When

Table 14 is examined, it is observed that IBOA-MLP sur-

passes all algorithms and is successful. In addition, the low

success of the BP algorithm on this dataset is remarkable.

Figure 7 shows the convergence graphs of the algo-

rithms. When the convergence graphs are examined, it is

seen that the IBOA-MLP and BOA-MLP algorithms give

better results on the xor and balloon datasets. It is seen that

the IBOA-MLP, BOA-MLP, and BP algorithms give better

Table 11 Sensitivity,

specificity, precision, and F1-
score for the balloon dataset

Algorithm Sensitivity (%) Specificity (%) Precision (%) F1-Score

IBOA-MLP 100.00 100.00 100.00 1.0000

BOA-MLP 100.00 100.00 100.00 1.0000

BAT-MLP 99.17 98.61 98.30 0.9859

SMS-MLP 99.20 99.20 98.80 0.9894

BP 75.00 100.00 86.67 0.7838

Table 12 Sensitivity,

specificity, precision, and F1-
score for the iris dataset

Algorithm Sensitivity (%) Specificity (%) Precision (%) F1-Score

IBOA-MLP 97.18 98.59 97.22 0.9718

BOA-MLP 97.38 98.69 97.42 0.9738

BAT-MLP 82.91 91.46 78.07 0.7883

SMS-MLP 82.10 91.10 81.00 0.8002

BP 90.82 95.41 88.43 0.8899

Table 13 Sensitivity,

specificity, precision, and F1-
score for the breast cancer

dataset

Algorithm Sensitivity (%) Specificity (%) Precision (%) F1-score (%)

IBOA-MLP 99.05 99.54 98.33 0.9866

BOA-MLP 99.05 99.45 98.02 0.9850

BAT-MLP 87.46 98.44 93.29 0.8922

SMS-MLP 50.20 95.10 83.70 0.5828

BP 85.87 94.94 81.16 0.8255

Table 14 Sensitivity,

specificity, precision, and F1-
score for the heart dataset

Algorithm Sensitivity (%) Specificity (%) Precision (%) F1-Score

IBOA-MLP 74.90 74.00 97.09 0.8446

BOA-MLP 74.71 71.56 96.79 0.8422

BAT-MLP 71.32 71.78 96.73 0.8180

SMS-MLP 68.39 70.67 96.41 0.7980

BP 62.00 57.78 88.48 0.6965
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results on the iris dataset. On the breast cancer dataset, all

algorithms show competitive results, but the IBOA-MLP,

BOA-MLP, and BAT-MLP algorithms seem to be more

insistent on seeking the global optimum. On the heart

dataset, it is seen that the IBOA-MLP and BOA-MLP

algorithms give better results. In general, it can be said that

the IBOA-MLP algorithm does not get stuck at the local

optima and insists on searching for the global optimum.

Figure 8 shows the boxplots of the classification accu-

racy results of the algorithms. According to the boxplots,

the IBOA-MLP appears to have been successful. In

Table 15, the Friedman test results of the IBOA-MLP,

BOA-MLP, BAT-MLP, SMS-MLP, and BP algorithms are

presented. The Friedman test is a statistical analysis tech-

nique used to make meaningful comparisons between

dependent groups in cases where the assumption of nor-

mality is not provided. According to Table 15, the best

result belongs to the IBOA-MLP algorithm. Another

remarkable point is the low performance of SMS-MLP and

BP algorithms. According to the Friedman test result, the

IBOA-MLP algorithm ranks higher than other algorithms

with a ranking score of 4.7. The BOA-MLP algorithm has

the second ranking with a ranking score of 4.3. The BAT-

MLP algorithm ranks third with a ranking score of 2.4. The

SMS-MLP algorithm and the BP algorithm rank fourth

with a ranking score of 1.8.

5 Conclusions

In this study, the IBOA algorithm is proposed to train the

ANN and optimize the weights and biases. The IBOA

algorithm is the improved version of the BOA algorithm by

utilizing chaotic maps. The key parameter p of the IBOA

Fig. 8 Boxplots of algorithms

Table 15 Average ranking of

algorithms according to the

classification rate (Friedman

test)

Algorithm Ranking

IBOA-MLP 4.7

BOA-MLP 4.3

BAT-MLP 2.4

SMS-MLP 1.8

BP 1.8
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algorithm, which establishes the balance between the local

search and the global search, is updated using chaotic

maps.

The main contributions of this article are: A new

improved butterfly optimization algorithm (IBOA) is pro-

posed. The IBOA algorithm is applied for training ANN

and optimizes the weights and biases of ANN. The IBOA-

MLP algorithm has the ability to escape from local optima.

The initial parameters and positions don’t affect the per-

formance of the IBOA-MLP algorithm. The features of the

IBOA-MLP algorithm are simplicity, requiring only a few

parameters, solving a wide array of problems, and easy

implementation.

In the experiments, the success of the IBOA algorithm

was verified on 13 benchmark functions. The IBOA algo-

rithm with the Tent map outperformed the other algorithms

on the benchmark functions. Afterward, the proposed

IBOA-MLP algorithm was used to optimize the values of

the biases and weights in the ANN, and it was aimed to

increase the learning ability of the ANN. In the experi-

ments, the IBOA-MLP algorithm was tested on the clas-

sification datasets (xor, iris, balloon, heart, and breast

cancer) in the literature. The IBOA-MLP algorithm was

compared with four algorithms (BOA-MLP, BAT-MLP,

SMS-MLP, and BP). According to the results, it was

observed that the IBOA-MLP algorithm outperformed the

BOA-MLP, BAT-MLP, SMS-MLP, and BP algorithms on

most of the datasets. In addition, the IBOA-MLP algorithm

had the first ranking according to the Friedman test results.

It was concluded that the IBOA algorithm was successful

in optimizing the biases and weights. Therefore, it was

proven suitable for training the MLP. In conclusion, the

IBOA and IBOA-MLP algorithms can escape from local

optima thanks to the chaotic map.

This study has some limitations. On smaller datasets, the

IBOA-MLP algorithm tends to overfit. It memorizes the

training data and does not generalize well to new examples.

The IBOA-MLP algorithm needs more extensive datasets

for training. Therefore, the IBOA-MLP algorithm requires

high computation power and computational resources.

In future work, the IBOA-MLP algorithm can be applied

to different datasets such as COVID-19. The IBOA-MLP

algorithm can be hybridized with a meta-heuristic algo-

rithm such as the particle swarm optimization or the crow

search algorithm to increase the performance of the IBOA-

MLP algorithm. Further research regarding the role of the

activation function and the parameters of the butterfly

optimization algorithm would be worthwhile.
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