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Abstract: As one of the evolutionary algorithms, firefly algorithm (FA) has been widely used to solve various complex 

optimization problems. However, FA has significant drawbacks in slow convergence rate and is easily trapped into local 

optimum. To tackle these defects, this paper proposes an improved FA combined with extremal optimization (EO), 

named IFA-EO, where three strategies are incorporated. First, to balance the tradeoff between exploration ability and 

exploitation ability, we adopt a new attraction model for FA operation, which combines the full attraction model and the 

single attraction model through the probability choice strategy. In the single attraction model, small probability accepts 

the worse solution to improve the diversity of the offspring. Second, the adaptive step size is proposed based on the 

number of iterations to dynamically adjust the attention to the exploration model or exploitation model. Third, we 

combine an EO algorithm with powerful ability in local-search into FA. Experiments are tested on two group popular 

benchmarks including complex unimodal and multimodal functions. Our experimental results demonstrate that the 

proposed IFA-EO algorithm can deal with various complex optimization problems and has similar or better 

performance than the other eight FA variants, three EO-based algorithms, and one advanced differential evolution 

variant in terms of accuracy and statistical results.  

Keywords: Firefly algorithm; extremal optimization; probability choice strategy; adaptive step size; continuous 

optimization problems. 

1. Introduction 

Most real-life engineering problems are the optimization problems in essence, such as production scheduling, 

investment portfolio, and vehicle routing problems, which can save resources and improve work efficiency. Recently, 

optimization methods for solving various optimization problems have attracted much attention in academia and 

engineering domain. As one of the main optimization branches, the concept of swarm intelligence was first proposed in 

[1]. Later, biologists and bionic algorithm experts proposed a swarm intelligence optimization algorithm based on 

swarm intelligence’s concept. It is a bio-inspired group intelligent optimization algorithm whose idea is to draw on and 

simulate the functions, features, phenomena, and behaviors of natural organisms [2]. At present, the main swarm 

intelligence optimization algorithms include particle swarm optimization (PSO) [3], genetic algorithm (GA) [4], cuckoo 

search algorithm (CS) [5], bat algorithm (BA) [6], grey wolf optimization algorithm (GWO)[7], [8], flower pollination 

algorithm [9], firefly algorithm (FA) [10] and so on. 

FA was first proposed by Yang [10]. It is a biological feature that simulates fireflies, and fireflies with high 

luminance attract fireflies with low brightness. Due to its simplicity in implementation and simplicity in concept, FA 

and its modified versions have been widely used in diverse optimization problems over the past decade [11], [12], such 

as demand estimation of water resources [13], path planning in uncertain environment [14], classification problems [15], 

image compression [16], stock forecasting [17], multimodal dynamic optimization problems [18], and RFID network 

planning [19]. Although FA works well for solving many optimization problems, there are still some drawbacks. In 

standard FA, the brighter firefly algorithm attracts all fireflies that are less bright than it. Therefore, the attractions force 

between fireflies is too much, resulting in oscillation and the computational time is high [20]. In order to handle such 

problems, many modified FAs have been introduced, such as random attraction FA [21], neighborhood attraction FA 

[20], switch-mode FA [22], etc. Furthermore, the standard FA uses a fixed randomization parameter during the 

optimization process which leads to emphasize exploration and reduces the positive attitude of exploitation [23]. 
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Therefore, its convergence speed is not fast and can be fell into local optimums [22]. Many methods in the literature 

have been presented to copy with this problem, such as variable step size FA (VSSFA) [24], wise step strategy for FA 

(WSSFA) [25], FA with chaos (CFA) [26], memetic FA (MFA) [27], etc. These methods modify corresponding control 

parameter step size α or attractiveness coefficient β, which are the key control parameters to determine the performance 

of FA. Although these algorithms have achieved significant results, there are still some drawbacks in convergence speed 

and search ability. Also, the “No Free Lunch” theorem [28] illustrates that it is not possible to design one algorithm 

being better in solving all the optimization problems. This is one of the motivations of this work to improve the current 

FA for solving optimization problems.  

As a novel optimization framework, extremal optimization (EO) [29], [30] is inspired by the far-from-equilibrium 

dynamics of self-organized criticality (SOC). EO is based on a process where the bad species is always forced to mutate 

according to a uniform random or power-law probability distribution. Due to its characteristics, EO has a strong ability 

in local search and eliminates bad components. Therefore, EO and its variations have been successfully used in a wide 

variety of optimization problems such as optimal controller design [31]-[33]. It is worth mentioning that EO as an 

ancillary technique with the exploitation ability has largely improved the performance PSO [34] and ABC [35]. A 

natural idea is to introduce EO in FA and test whether the performance of the improved algorithm can be enhanced. 

Inspired by the aforementioned descriptions, this paper proposes an IFA-EO algorithm, which hybridizes the 

advantages of FA and EO to reduce the computation time, improve convergence speed and prevent falling into local 

optimum. 

Note that in [34], the authors combined PSO with EO and proposed a novel hybrid algorithm called PSO-EO. The 

weakness of PSO in premature convergence is compensated by introducing the EO with strong local search capability. 

Compared with PSO-EO, the proposed IFA-EO firstly improves the exploration ability by using single attraction model 

through the probability choice strategy and then combines IFA with EO. Also, in [35], the authors proposed ABC-EO, 

which makes full use of exploration capability of ABC and the exploitation capability of EO. Compared with ABC-EO, 

the proposed IFA-EO considers an adaptive step size based on the number of iterations to dynamically adjust the 

attention to the exploration model or exploitation model. 

 The main new contributions can be summarized below: 

(1) It is a vital role in an optimization algorithm to keep the balance between exploration ability and exploitation 

ability. The traditional FA uses a full attraction model focusing on global search, which causes the low convergence 

speed. To balance between exploration ability and exploitation ability, we adopt a novel model that combines the full 

attraction model and the single attraction model through a probability choice strategy. In the single attraction model, 

small probability accepts the worse solution to improve the diversity of the offspring. 

(2) The standard FA adopts a fixed step size, that is, each iteration step is equal. Different from this operation, the 

adaptive step size is proposed based on the number of iterations. As the number of iterations increases, the step size 

decreases gradually. When the time is big, the step size is close to zero. 

(3) EO algorithm has only one mutation operation, which is simple and easy to implement. In this paper, we 

introduce EO algorithm to FA, in order to better prevent FA algorithm from trapping into the local optimum. 

(4) To illustrate the performance of the IFA-EO in this paper, we use two sets of unimodal/multimodal benchmark 

functions to assess the performance of IFA-EO by comparing with thirteen successful swarm intelligence algorithms. 

We also discuss the impact of different strategies and different populations on IFA-EO. The thirteen competitors 

include eight variants of FA, three EO-based algorithms, and one advanced DE variant. To be more specific, the eight 

variants of FA are new and efficient FA (NEFA) [36], FA with adaptive control parameters (ApFA) [11], FA with 

neighborhood attraction (NaFA) [20], VSSFA [24], WSSFA [25], CFA [26], MFA [27], standard FA (FA) [10] and an 

adaptive logarithmic spiral-Levy FA (AD-IFA) [37]. Three EO-based algorithms are population-based EO (PEO) [38], 

PSO hybridized with EO (PSO-EO) [34], real-coded PEO algorithm with polynomial mutation (RPEO-PLM) [39]. 

Besides, one advanced competitor is linear population size reduction technique of success history-based adaptive 

differential evolution (L-SHADE) [40]. From the experimental results, we can see that IFA-EO has similar or better 

performance than the other thirteen optimization algorithms in terms of accuracy and statistical results.  
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This paper is arranged as follows. We briefly introduce the standard FA in Section 2. Section 3 describes the 

proposed IFA-EO algorithm with three strategies in detail. In Section 4, the proposed IFA-EO algorithm is employed to 

handle two groups of unconstrained continuous benchmark functions by comparing with other competitors. 

Furthermore, we investigate the effects of different strategies and population size on the performance of IFA-EO. 

Finally, Section 5 concludes this paper and gives the future work. 

2. Firefly algorithm  

FA is a meta-heuristic algorithm derived from swarm intelligence. The basic idea of FA is to simulate the firefly 

flashing behavior in nature, search for a brighter one around. It gradually moves toward the better position and gathers 

to the brightest position, i.e., achieving the best solution. FA has a simple concept, clear process, few parameter settings, 

no mutation, crossover, and other complex operations, so it is easier to operate. Here, we assume that [10]: 

(1) In the algorithm, the gender difference of firefly individuals is not considered, that is, all firefly individuals are 

considered to be of the same sex. 

(2) The attraction of fireflies is based on their light intensity. Consider two fireflies, the brighter firefly will attract 

the weaker firefly, and the attraction will reduce as the distance between them increases.  

(3) In practical application, the light intensity of firefly individuals is generally associated with objective function 

value, and usually objective function value is considered to be the light intensity of the firefly at that point. 

Algorithm 1 gives the pseudo-code of FA [10]. 

Algorithm 1: FA 

Objective function f(x), x=(x1, x2, ..., xd)T
; 

Initialize population xi (i=1, 2, ..., n) //the number of fireflies is n; 

Light intensity Ii at xi is depended on f(xi); 

Determinate the coefficient of light absorption γ; 

While (t < MaxIter) // MaxIter means the maximum number of iterations; 
For  i=1 : n     // n means the population size 

    For  j=1 : n     
       If ( Ii<Ij )     

Move firefly i toward j;  

End if 

          Vary attractiveness with distance r via exp(-γr). Evaluate new solution and then update light intensity; 
    End For 

  End For 

  Rank all the fireflies and search the current best solution Ig found so far; 

End While 

The light intensity of firefly usually reduces with the increase of distance. The light intensity I is given below [10]: 
2

0( ) r
I r I e

                                               (1) 

where I0 denotes the original light intensity of the firefly, r means the distance between two fireflies. γ is called light 

absorption factor.  

The attractiveness β is defined as follows [10]: 
2

0= e r                                                    (2) 

where β0 means the attractiveness when r=0. The distance between fireflies i and j at the spatial coordinates, i.e., xi and 

xj , can be expressed as the Cartesian distance below [10]: 

2
, , ,1

( )
D

i j i j i k j kk
r x x x x


                                 (3) 

where D denotes the number of dimension. xi,k and xj,k represent the k-th components of xi and xj, respectively. In the 

2-dimensional case, the distance can be described as follows [10]: 

2 2
, ( ) ( )

i j i j i j
r x x y y                                      (4) 

The movement of a firefly i attracting to another more attractive firefly j is defined as the following equation [10]: 
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2
,( 1)

0 ( )i jrt t

i i j i i
x x e x x

                                     (5) 

where α is step size, and εi means a vector of random numbers from a Gaussian distribution or uniform distribution. α 

ranges from 0 to 1, εi is usually replaced by (rand − 0.5) where rand is a random number uniformly distributed in [0,1].  

3. The proposed approach 

The traditional FA has a slow convergence speed, premature convergence, and easily falling in the local optimum, 

which leads to low solution accuracy [44]-[46]. To deal with these problems, this study presents an improved FA called 

IFA-EO. In IFA-EO, three improvement strategies are adopted. Firstly, a probability choice strategy and small 

probability acceptance of the worse solution are used to improve the diversity of offspring. Secondly, adaptive step size is 

adopted to keep the balance between exploration ability and exploitation ability. Thirdly, extremal optimization (EO) [34] 

is suggested to enhance the local search capability of FA. 

3.1 An attraction with probability choice strategy 

Owing to the merits such as simple concept, clear process, no complexity operations, FA has attracted much 

attention from many scholars. Thus, many modified versions of FA have been presented in recent decades. These 

versions of FA are essential to strengthen the search ability and improve the accuracy of FA. On the one hand, if we pay 

too much attention to exploration, the convergence speed of the algorithm will slow at the end of the searching phase; on 

the other hand, if too much attention is paid to the exploitation process, the algorithm will easily prematurely converge. 

Therefore, how to balance exploration ability and exploitation ability is very important. In general, at the beginning of 

optimization, exploration operation is more important because we need quickly and roughly search the entire search 

space to find the most potential areas. To tackle this problem, we propose an attraction model with a probability choice 

strategy. The attraction model is described as follows. 

The probability is calculated by using Eq. (6) [47]: 

min max min

1
+1( )

MaxIter

MaxIter tP P P P e


                                        (6) 

where Pmin is the minimum value of attraction probability, Pmax means the maximum value of attraction probability, 

MaxIter means the maximum iteration number, and t denotes the current iteration number. Pmax, Pmin range from 0 to 1, 

Pmax, Pmin usually set as 0.9, 0.05, respectively. As the number of iterations increases, P will gradually decrease from 

Pmax to Pmin. 

In each iteration, a random number q is obtained between 0 and 1. If q < P, we adopt a full attraction model [10], as 

shown in Fig. 1. We can see that the ith firefly is attracted to other fireflies. It is beneficial to perform exploration at an 

early stage. Otherwise, if q > P, single attraction model is used, as shown in Fig. 2. In the single attraction model, the ith 

firefly is attracted to only one neighbor i-1th firefly, which is a better solution than the ith firefly. Emphasize that xi-1 in 

Fig. 2 is i-1th firefly sorted according to the descending order of light intensity. It makes the convergence speed very fast 

at the later period.  

xi

              

xi-1

xi

 

Fig. 1. Full attraction model [10]                             Fig. 2. Single attraction model 

 

In the single model, it may only focus on local search, leading to premature convergence. In order to jump out of 

local optimum, inspired by the basic idea of simulated annealing, we accept some worse solutions with a small 
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probability in the single model, that is, fireflies have chances to move towards darker fireflies to avoid falling into local 

optimum. 

3.2 Adaptive step size 

In the standard FA, using a fixed step size is not conducive to balancing exploration and exploitation. When the step 

size is set too large, the search at the later stage may skip the optimal solutions, otherwise, the convergence speed is too 

slow. The steps size of FA should be tuned according to actual conditions. To solve this problem, Yu et al. [24] proposed 

VSSFA and WSSFA, respectively. Furthermore, in [11], Wang et al. discussed the relationship between the rate of 

convergence and step size α. If FA is convergent, the parameter α will satisfy the condition as follows [11]: 

lim 0
t




                                                       (7) 

Inspired by Eq. (7), we propose an adaptive step size α by using a nonlinear equation. The ability to balance 

exploration and exploitation will be beneficial, and it should also focus on its current iterations. The adaptive step size α 

is updated as follows: 

( 1) ( )
t

MaxItert t  
 
                                               (8) 

where α(t) is the value of α at the current iteration, α ranges from 0 to 1. Dynamic step size α convergence curve is given 

in Fig. 3. From Fig. 3, it can be seen that the step is large at an early phase, and then reduces when iteration increases. It 

is evident that our adaptive step satisfies the convergence condition Eq. (7) [11]. 

 

Fig. 3. The change of step size in 1000 iteration 

Table 1: Comparative performance for test functions f1-f13 with different θ values. 

Function 
θ=200/1013 θ=500/1013 θ=800/1013 θ=1000/1013 

fm SD fm SD fm SD fm SD 

f1 5.84E-06 1.12E-05 5.37E-10 2.33E-09 2.27E-32 6.91E-32 1.10E-108 5.73E-108 

f2 7.57E-03 5.81E-03 6.63E-04 6.38E-04 4.88E-05 7.95E-05 3.11E-42 9.18E-42 

f3 8.43E+02 3.92E+02 3.86E+02 1.61E+02 5.32E+01 4.23E+01 4.93E-34 2.59E-33 

f4 5.98E-01 5.01E-01 1.42E-02 1.00E-02 9.43E-04 1.14E-03 7.39E-35 3.81E-34 

f5 4.45E+01 2.73E+01 4.48E+01 2.73E+01 4.16E+01 2.69E+01 2.80E+01 1.58E+01 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 5.81E-01 2.86E-01 5.56E-01 2.65E-01 5.45E-01 2.97E-01 4.45E-01 2.86E-01 

f8 6.00E+03 8.46E+02 5.33E+03 6.30E+02 4.80E+03 8.15E+02 3.56E+03 6.95E+02 

f9 1.08E-01 1.01E-01 1.65E-01 2.44E-01 1.42E-01 1.49E-01 1.33E+00 1.01E+00 

f10 5.22E-03 1.22E-02 6.32E-07 1.05E-06 5.10E-14 1.95E-14 2.76E-14 7.13E-15 

f11 4.87E-03 6.87E-03 2.05E-03 4.89E-03 1.31E-03 2.97E-03 2.59E-17 6.20E-17 

f12 7.10E-03 2.59E-02 7.02E-08 1.87E-07 7.72E-16 2.87E-15 1.64E-32 2.20E-33 

f13 9.09E-04 2.81E-03 6.09E-04 2.08E-03 2.23E-15 1.04E-14 3.13E-32 9.70E-33 
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From Eq. (8), we can see that the size of θ and λ are important factors for α. The empirical value of λ is 0.1. In Eq. 

(8), if lim 0
t




 , the parameter θ should satisfy 0< θ<1. Different θ values will obtain different results. We adopt 

thirteen well-known benchmark functions from the literature [20] to test different θ values. In this experiment, MaxIter 

and population size are set as 5000 and 20, respectively. The parameter θ is set as 200/1013, 500/1013, 800/1013, and 

1000/1013, respectively. Table 1 lists the compared results for different θ values, where fm denotes the mean of best 

function values and SD represents standard deviation. From Table 1, we can see that θ=1000/1013 obtains better 

solutions than those with other θ values on thirteen functions. Thus, θ=1000/1013 is considered in all the following 

experiments.  

3.3 Hybridized with Extremal Optimization (EO) algorithm   

Compared with other swarm intelligent algorithms, EO algorithm exist form is not a population but exists as a 

single individual. An individual can be made up of many components. For instance, if X= (x1, x2, x3), then x1, x2, and x3 

are named components of X. Additionally, the basic EO does not need to adjust any parameters when searching, and 

there is only a mutation operator. Although FA offers fast exploration and exploitation, the exploitation ability of FA can 

be further strengthened by EO with the merits in local search ability. However, if EO is added into FA in every 

generation, it will slow down the convergence speed of FA and needs more computational cost. Thus, EO is introduced 

into FA at INV-iteration intervals. The parameter INV means the obtained global optimal solution is unchanged for 

INV-iterations. For a simple benchmark function, the INV range can be larger, with a range of 50-100 being more 

appropriate. For complex benchmark functions, the range of INV should be small, and the value range should be between 

1 and 50 [34]. 

Due to only mutation operator in EO, it plays a vital role in the whole procedure. In this study, we use the 

hybrid Gaussian-Cauchy mutation operator [34]. The EO introduced in FA for a minimization problem is given in 

Algorithm 2 [34] and Fig. 4 gives the corresponding process. 

 

Algorithm 2: EO algorithm 

1. Obtain the i-th firefly to be mutated by EO operation; 

2. For Xi=(xi1, xi2, …, xiD) 

  (a) Perform the mutation operation: mutate each component in Xi one by one and keep other components unchanged. 

Then D new positions Xik (k=1, 2, …, D) can be obtained; 

  (b) Evaluate the local fitness δik =f(Xik)-f(Xi) of each component xik,k∈{1, …, D}; 

  (c) Rank all the fitness and find the component xj with the worst fitness, i.e., δij ≤ δik for all k; 

  (d) Select one solution Xij = (xi1, xi2, …, xij…, xiD), where xij is the mutated component;  

  (e) Accept Xi = Xij unconditionally; 

3. Return Xi and f(Xi). 

Step 1: Obtain the i-th firefly to 

be updated by EO operation;

:mutated component

:original component

...

...

...

...

...

Keep others unchanged






Obtain D 
new 

positions

Evaluate the 
local fitness 

δi1

δi2

δiD

δi3

δi1

δi2

δij

δi3

Rank and find 
the worst 

component

...

Select one solution

The j-th component is mutated

Worst local 
fitness

Step 2:

xij

Step 3: return Xi

Solution Xij

Solution Xi1

Solution Xi2

Solution XiD

 

Fig. 4 The process of EO 
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3.4 Framework of IFA-EO  

The proposed IFA-EO uses MFA’s movement formula [27]. In memetic FA, the movement formula is redefined. 

The movement formula is defined as follows [27]. 

 2

, ( )i j
r

i i j i d i
x x e x x s

       (9) 

 2

min 0 min
( ) ij

r

e
        (10) 

where βmin means the minimum value of β, and sd means the length scale of each designed variable. The values of βmin 

and β0 range from 0 to 1. From Eq. (10), the range of attractiveness β is βmin to β0.  

Firefly operatorsFirefly operators

m=m+1m=m+1

Stop criteria?Stop criteria?

Y

N

Output optimal solutionOutput optimal solution

Initialization of firefly position with size N and 
evaluate fitness function, t=0, m=0

Initialization of firefly position with size N and 
evaluate fitness function, t=0, m=0

StartStart

EndEnd

Best optimal change?Best optimal change?

m=IVN?m=IVN?

EO operatorsEO operators

t=t+1t=t+1 m=0m=0
N

N

Y

Y

 

Fig. 5. Flowchart of IFA-EO algorithm. 

The IFA-EO algorithm flowchart is illustrated in Fig. 5, and corresponding framework of IFA-EO is described 

in Algorithm 3. 
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Algorithm 3: IFA-EO algorithm 

Objective function f(X); X = (x1, x2, ..., xd)T 

Define light absorption coefficient γ, initial step size α, original light intensity β0, minimum light intensity βmin; 

Define populations number of firefly n, the maximum number of iterations MaxIter,; 

Define the maximum number of selective probability Pmax, the minimum number of selective probability Pmin; 

Generate an initial population of firefly Xi (i=1, 2, ..., n); 

Light intensity Ii at Xi is depended on f(Xi); 

While (t < MaxIter)  

Random generate q∈(0,1); 

Calculate P according to Eq. (6); 

  Calculate step size α according to Eq. (8) 

For  i=1 : n     //all n fireflies 

If (q < P) 

        For  j=1 : n    //all n fireflies (inner loop) 

           If ( Ii<Ij ),    

              Calculate ri,j, β according to Eq. (3), Eq. (10); 

Move firefly i toward j according to Eq. (9); 

Assess new solution and update light intensity; 

           End If 

        End For 

Else 

For  j=i-1 : i 

            j=(j+n)% n 

If ( Ii<Ij )  

Calculate ri,j, β according to Eq. (3), Eq. (10); 

Move firefly i toward j according to Eq. (9); 

Assess new solution and update light intensity; 

Else 

Random generate η∈(0,1); 

If (η<0.01) 

Calculate ri,j, β according to Eq. (3), Eq. (10); 

Move firefly i toward j according to Eq. (9); 

Assess new solution and update light intensity; 

End If 

End If 

         End For 

End If 

   End For 

If the best solution is unchanged for INV-generations, then EO procedure is introduced 

  Rank all the fireflies and find the current best solution Ig found so far. 

End While 

3.5 Computational complexity of our algorithms 
According to the pseudo-code of FA [10], it can be found that the computational complexity of FA is 

O(N2MaxIter). Compared to other intelligent optimization algorithms, including PSO, ABC, and BA, standard FA has 

higher complexity. In one iteration, the algorithm complexity of PSO, ABC, and BA are both O(N). Since the attracting 

model of our algorithm adopts the probability choice strategy and introduces the EO algorithm, our algorithm complexity 

is divided into the following situations. We only study the computational complexity at one iteration of IFA-EO. 
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When using a single attraction mode and not introducing EO, the algorithm complexity is O(N), where N means 

the population size, and D means the number of dimensions. 

When using a single attraction mode and introducing EO, the algorithm complexity is O(ND). 

When using a full attraction mode and not introducing EO, the algorithm complexity is O(N2). 

When using a full attraction mode and introducing EO, the algorithm complexity is O(N2D).  

From the above analysis, we can see the complexity of IFA-EO is O(N) in the best case and O(N2D) in the worst 

case. From the above analysis, we can summarize as follows, compared to the FA, in the worst case, IFA-EO has a 

slightly higher computational complexity. But in the best case, the computational complexity of IFA-EO is very low. 

Remark 1: Computational complexity is also important in the evolutionary algorithm domain. To achieve a 

reasonable level of optimization, the smaller computational complexity of evolutionary algorithm will save more 

computational resources. Also, there are many works in discussing in computational complexity of evolutionary 

algorithms, e.g., Ref.[48]. 

4. Experimental results and discussion 

4.1 Summary of experimental conditions 

Table 2: Summary of experimental conditions 

Experiment Test problem Dimension Algorithm Population size MaxIter/MaxFEs Number of runs 

Exp. 1 f1-f13 30 

IFA-EO 

ApFA [11] 

NaFA [20] 

VSSFA [24] 

WSSFA [25] 

CFA [26] 

MFA [27] 

FA [10] 

20 5.0E+05   30 

Exp. 2 h1-h8 100 

IFA-EO 

RPEO-PLM [39] 

PSO-EO [34] 

PEO [38] 

30 

MaxIter 

5000 (IFA-EO) 

12000 (Others) 

30 

Exp. 3 f1-f13 50 

IFA-EO 

AD-IFA[37] 

L-SHADE [40] 

20 3.0E+05 30 

Exp. 4 f1-f13 30 

FA 

FA-A 

FA-EO 

FA-PA 

IFA-EO 

20 5.0E+05   30 

Exp. 5 f1-f13 30 IFA-EO 

10 

20 

30 

40 

5.0E+05  30 

In this section, we illustrate the performance of the proposed IFA-EO algorithm according to five experiments. 

Table 2 presents conditions of each experiment including dimension, the competitors, population size, the maximum 

number of fitness evaluations, and the number of runs. Five experiments are designed for different purposes. To be more 

specific, in the first experiment (Exp. 1), the aim is to verify that the proposed IFA-EO as a kind of FA variant can 
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realize better performance than other FA variants. Thus, seven FA variants, i.e., ApFA [11], NaFA [20], VSSFA [24], 

WSSFA [25], CFA [26], MFA [27] and FA [10] are viewed as the competitors. Considering the IFA-EO is efficiently 

using EO mechanism, EO-based algorithms are needed to compare. Here, we choose three recently related methods i.e., 

PEO [38], PSO-EO [34], and RPEO-PLM [39] as comparisons in the second experiment (Exp. 2). To further prove the 

performance of IFA-EO, the third experiment is devoted to comparing IFA-EO algorithm with other two 

well-recognized algorithms. These two competitors are AD-IFA [37] and L-HSADE [40]. In the fourth experiment (Exp. 

4), FA with different modified strategies is shown to demonstrate the performance of different strategies. In addition, to 

investigate the impact of population size on the performance of IFA-EO, we design the fifth experiment (Exp. 5).  

It is worth mentioning that different adjustable parameters may influence the performance of IFA-EO. Here, the 

related parameters are determined by the trial-and-error method. In all the following experiments, the initial parameters 

λ, α, γ, β0, and βmin are set as 0.1, 0.2, 1.0, 1.0 and 0.2, respectively. The minimum and maximum attraction probability 

Pmin, Pmax are set to 0.05 and 0.8, respectively. The considered functions are all minimized problems. Experiments 1-5 of 

IFA-EO are performed in JAVA software on a 3.20 GHz computer with processor i5-6500U and 8 GB RAM. 

4.2 Exp. 1: Comparison with FA variants  

Table 3: Benchmark functions f1-f13 with D=30. 

Problem Function expression Search space Global minimum 

f1 
2

1
1

( )
D

i

i

f x x


  [-100,100] 0 

f2 2
1 1

( )
D D

i i

i i

f x x x
 

    [-10,10] 0 

f3 
2

3
1 1

( ) ( )
D i

j

i j

f x x
 

   [-100,100] 0 

f4 4 max{ ,1 }( )
i

f x i Dx     [-100,100] 0 

f5     1 2 22
5 1

1

( ) 100 1
D

i i i

i

f x x x x





     [-30,30] 0 

f6 
2

6
1

( ) ( 0.5 )
D

i

i

f x x


     [-100,100] 0 

f7 
4

7
1

( ) [0,1)
D

i

i

f x ix random


   [-1.28,1.28] 0 

f8 8
1

( ) 418.9829 sin( )
D

i i

i

f x D x x


    [-500,500] 0 

f9 
2

9
1

( ) [ 10cos2 10]
D

i i

i

f x x x


    [-5.12,5.12] 0 

f10 
1 1

10

1 1
-20 exp( 0.2 ) exp( cos(2 )) 20( )=

D D

i i

i i

f x x e
D D

x 
 

      [-32,32] 0 

f11 

2

11
1 1

( ) cos( ) 1
4000

D D
i i

i i

x x
f x

i 

   
 

[-600,600] 0 

f12 

1
2 2 2 2

12 1 1
1

1

{( 1) 10sin ( ) ( 1) [1 10sin ( )]}

1
     ( ,10,100,4),     y 1

4

( ) ,        

     ( , , , ) 0,                     

( ) ,      

D

D i i

i

D
i

i i

i

m

i i

i i

m

i i

f y y y y
D

x
u x

k x a x a

u x a k m a x a

k x a x a

  







     


  

  
   
    




 [-50,50] 0 
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f13 

1
2 2 2

13 1 1
1

2 2

1

0.1{sin (3 ) ( 1) [1 sin (3 )]

      +( 1) [1 sin (2 )]} ( ,5,100,4)

D

i i

i

D

D D i

i

f x x x

x x u x

 










   

  



  

[-50,50] 0 

 This group of well-known benchmark functions shown in Table 3 is selected from the literature [20]. For these test 

functions in Table 3, since the f1, f2, f4, f6, f10, f12, f13 are simple test functions, the firefly procedures can find a better 

solution, so when the optimal solution does not change for 500 generations, we introduce EO. For f3, the value of INV is 

100. For complex test functions, the f11, we set INV as 10 and the f7, INV=50. Since the f5, f8, f9 function is easy to trap 

into the local optimums, we introduce EO when the optimal solution does not change in five generations. Recently, 

some FA variants, e.g., ApFA [11], NaFA [20], VSSFA [24], WSSFA [25], CFA [26], MFA [27] and FA [10] have 

been proposed. Due to the improvement on standard FA, these FA variants have been proved their performance through 

various optimization problems. The main framework of IFA-EO algorithm is FA, which can be viewed as another FA 

variant. Thus, it is necessary to compare with the above seven FA variants to verify that IFA-EO is another efficient FA 

variant. Table 4 presents average results fm of these eight FA variants for thirteen benchmark test functions on 30 run 

times. The experimental results of algorithms FA, VSSFA, WSSFA, MFA, CFA, and NaFA are excerpted from the 

literature [20]. The results of ApFA are taken from reference [11]. Note that bold values in the table of this paper mean 

the best unless otherwise stated. For Table 5, it can be seen that IFA-EO algorithm performs the best in 8 out of 13 test 

functions f1-f13, the same as f6 for MFA, CFA, NaFA, and ApFA, and the same as NafA for function f11. For some 

low-dimensional problems, VSSFA and WSSFA have good performance [24], [25], but they fail to obtain well 

solutions compared to other FA variants on 30-dimensional problems. The comparison results of IFA-EO and the other 

seven FA variants are denoted by w/t/l, which indicates that IFA-EO has better performance in w functions, similar 

performance in t functions, and worse performance in l functions. Thus, compared to the other seven competitors, 

IFA-EO can achieve almost the same or better performance on the considered functions f1-f13. 

In addition, we use two non-parametric statistic tests [49], i.e., Friedman test and Quade test to further compare all 

eight FA variants and the Bonfreeoni-Dunn method is selected as the post-hoc test performed by the KEEL [50]. Table 

5 presents ranks, statistics, and p-values achieved by two non-parametric statistic tests for IFA-EO and other seven FAs. 

It is obvious that IFA-EO ranks the first in Quade tests with a level of significance α=0.05. NaFA and IFA-EO obtains 

similar performance in terms of Friedman test. Note that IFA-EO achieves better performance than NaFA in terms of fm. 

Table 4: Comparative performances for test functions f1-f13 with D=30. 

Function FA[10] MFA[27] CFA[26] WSSFA[25] VSSFA[24] NaFA[20] ApFA[11] IFA-EO 

f1 5.67E-02 4.07E-06 3.27E-06 6.34E+04 5.84E+04 4.43E-29 2.02E-44 1.10E-108 

f2 1.00E+00 9.16E-04 8.06E-04 1.35E+02 1.13E+02 2.98E-15 1.83E-12 3.11E-42 

f3 1.23E-01 1.96E-05 1.24E-05 1.10E+05 1.16E+05 2.60E-28 1.01E+01 4.93E-34 

f4 1.01E-01 8.69E-04 8.98E-04 7.59E+01 8.18E+01 3.43E-15 1.30E-07 7.39E-35 

f5 8.42E+01 2.38E+01 2.06E+01 2.49E+08 2.16E+08 2.39E+01 2.81E+01 2.80E+01 

f6 5.30E+03 0.00E+00 0.00E+00 6.18E+04 5.48E+04 0.00E+00 0.00E+00 0.00E+00 

f7 6.74E-02 8.80E-02 9.03E-02 3.24E-01 4.43E+01 2.91E-02 2.76E-03 4.45E-01 

f8 8.14E+03 6.09E+03 4.36E+03 1.06E+04 1.07E+04 6.86E+03 6.42E+03 3.56E+03 

f9 4.49E+01 3.65E+01 5.27E+01 3.61E+02 3.12E+02 2.09E+01 1.21E+01 1.33E+00 

f10 1.25E+01 4.49E-04 4.02E-04 2.05E+01 2.03E+01 3.02E-14 2.55E-14 2.76E-14 

f11 2.94E-02 2.47E-03 7.91E-06 6.09E+02 5.47E+02 0.00E+00 3.33E-16 2.59E-17 

f12 1.25E+01 1.02E-08 8.28E-09 6.18E+08 3.99E+08 1.36E-31 1.23E-16 1.64E-32 

f13 5.28E+01 1.49E-07 1.69E-07 9.13E+08 8.12E+08 2.13E-30 4.64E-16 3.13E-32 

W/t/l 12/0/1 10/1/2 10/1/2 12/0/1 13/0/0 9/1/3 10/1/2 - 
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Table 5: Friedman and Quade tests of Exp. 1 

Algorithm Friedman ranking Quade ranking 

IFA-EO 2.4615 2.3681 

ApFA [11] 2.8462 3.1868 

NaFA [20] 2.4615 2.5549 

VSSFA [24] 7.3077 7.2418 

WSSFA [25] 7.6154 7.7363 

CFA [26] 3.7308 3.3901 

MFA [27] 3.9615 3.7527 

FA [10] 5.6154 5.7692 

Statistic 66.647436 19.524242 

p-value 0 0 

 

Remark 2: Although the value 1.10E-108 and 1.64E-32 in Table 4 is very close, any improved performance may 

mean the improvements of exploration ability and exploitation ability. For example, Fig. 6 gives an example. The term 

“A” means the global optimum and the term “B” means the local optimum. In some real applications, it is difficult to 

know how many local optimums in the optimization function. If the algorithm can find “A” rather than “B”, the 

algorithm may have good exploration ability. Similarly, the term “C” is close to global optimum, but is fails to find the 

global optimum “A”. If the algorithm can find “A” rather than “C”, the algorithm may have good exploitation ability. 

Due to lack of knowledge of real-world optimization function, we cannot ensure every “B” or “C” is very close to “A”. 

Thus, we report these errors. For some real-world cases, below a threshold (e.g.,1.0E-8) the error can be considered as 

zero. In this paper, we test the exploration ability and exploitation ability of IFA-EO, thus the errors below 1.0E-8 are 

not considered as zero.  

1.64E-32

1.10E-108
A

B
1.64E-32

1.10E-108
A

C

(a) (b)  

Fig. 6: Two cases of small error.  

4.3 Exp. 2: Comparison with EO-based algorithms  

This group of well-known benchmark functions shown in Table 6 is selected from the literature [20]. In this 

experiment, we choose three recently published related EO variants i.e., PEO [38], PSO-EO [34], and RPEO-PLM [39] 

as comparisons to demonstrate the effectiveness of combination of EO mechanism in FA. The experimental results of 

four algorithms, i.e., IFA-EO, PEO, PSO-EO, and RPEO-PLM for eight test functions are presented in Table 7. fm 

represents the average results of run 30 times. The results of RPEO-PLM are taken from the reference [39]. Table 7 

implies that the proposed IFA-EO algorithm performs the best in 4 out of 8 test functions h1-h8, the same as PSO-EO 

for functions h2 and h7, and the same as RPEO-PLM for function h7. Therefore, IFA-EO algorithm has a more powerful 

ability to solve such high-dimension test functions h1-h8 than these three compared algorithms. 

To further compare four EO-based swarm intelligence algorithms, we use KEEL [50] software to conduct the 

Friedman test and Quade test and the Bonfreeoni-Dunn method is selected as the post-hoc test. Table 8 gives the 

rankings obtained by IFA-EO and other EO-based algorithms. Based on the Friedman rankings, IFA-EO achieves the 

best performance. We can see that IFA-EO is obviously better than PEO and is significantly better than RPEO-PLM. 

Compare IFA-EO with PSO-EO, they achieve similar results. 
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Table 6: Benchmark functions h1-h8 with D=100 

Problem Function expression Search space Global minimum 

h1 
1

1

sin(10 )

10

D

i

i i

x
h

x





  [-0.5,0.5] 0 

h2 
2

1

2 [ 0.5]
D

i

i

h x


   [-100,100] 0 

h3 
2

1

3 [ 10 cos(2 ) 10]
D

i i

i

h x x


    [-5.12,5.12] 0 

h4 
2

1

4

D

i

i

h x


  [-5.12,5.12] 0 

h5 
2

1 1

5

1 1
20 exp( 0.02 ) exp( cos(2 )) 20

D D

i i

i i

h x x e
D D


 

        [-30,30] 0 

h6 
1

6 418.9828 sin( )
D

i i

i

h D x x


   [-500,500] 0 

h7  
1

7 6
D

i

i

h D x


   [-5.12,5.12] 0 

h8 
2

1

1

8

1
1 cos( )

4000

D
D

i

i i

i

x
h x

i




     [-600,600] 0 

 

Table 7: Comparative results on test functions h1-h8 with D=100. 

Function 

IFA-EO PEO [38] RPEO-PLM [39] PSO-EO [34] 

Mean rank Mean rank Mean rank Mean rank 

h1 3.53E-07 2 2.62E-03 4 1.89E-06 3 0.00E+00 1 

h2 0.00E+00 1 1.62E-06 3 1.66E-05 4 0.00E+00 1 

h3 6.85E-05 3 1.26E+01 4 2.76E-06 2 0.00E+00 1 

h4 1.62E-111 1 3.60E-10 3 1.39E-08 4 2.15E-11 2 

h5 1.07E-13 1 2.04E+01 4 6.98E-08 2 5.02E-05 3 

h6 8.01E+03 3 7.52E+04 4 1.38E-03 1 8.62E+00 2 

h7 0.00E+00 1 3.02E+00 4 0.00E+00 1 0.00E+00 1 

h8 6.62E-16 2 0.00E+00 1 5.01E-06 3 9.27E-04 4 

Average rank 1.75 3.375 2.5 1.875 

Final rank 1 4 3 2 

 

Table 8: Friedman and Quade tests of Exp. 2 

Algorithm Friedman ranking Quade ranking 

IFA-EO 1.875 2.0972 

RPEO-PLM [39] 3.4375 3.7083 

PEO [38] 2.625 2.1389 

PSO-EO [34] 2.0625 2.0556 

Statistic 7.0875 6.1719 

p-value 0.0692 0.00355 

 

4.4 Exp. 3: Comparison with L-SHADE and AD-IFA 

 In Exp. 3, the performance of the IFA-EO is compared with recently improved FA, called an adaptive logarithmic 

spiral-levy FA (AD-IFA) and advanced DE variant, called linear population size reduction technique of success history 
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based adaptive differential evolution (L-SHADE). AD-IFA uses the logarithmic-spiral guidance the paths of fireflies 

and considers an adaptive switching to keep the suitable balance between exploration ability and exploitation ability. 

The effectiveness of AD-IFA has been illustrated by solving various test functions and real-life engineering problems. 

Thus, as one of the improved version of FA, the performance of IFA-EO can be further testified by comparing with this 

state-of-the-art FA algorithm. Furthermore, as an advanced DE variant, L-SHADE is considered as the competitor to 

show the performance of IFA-EO. The adjustable parameters of AD-IFA and L-SHADE are suggested by the 

corresponding references. The thirteen test functions are given in Table 3 with D=50. The NP is set as 20 and the 

FESmax is set as 300,000 as the stop criterion. Other parameters are the same as suggested in [37], [40]. Table 9 presents 

the comparative performances of IFA-EO with above two algorithms on test functions f1-f13 in terms of fm and SD. 

Symbol “(1)”~“(5)” implies the rank of algorithms in terms of fm and SD achieved from 30 independent runs. In 

addition, Table 10 gives the Friedman and Quade rankings. From Tables 9 and Table 10, we can see the following 

observation: 

(1) Through comparing IFA-EO with AD-IFA, it can be clearly observed that IFA-EO achieves all better 

performance than AD-IFA in solving f1-f13 in terms of fm and SD except the SD of f1 and f2.  

(2) By comparing IFA-EO and L-SHADE, it is clear that IFA-EO wins in seven test functions. Also, L-SHADE 

achieves better performance than IFA-EO in other six functions. They achieve similar performance for f1-f13. 

(3) IFA-EO obtains better ranks than AD-IFA and has similar performance with L-SHADE in the view of 

nonparametric statistics test. 

L-SHADE is an improved version of DE and achieves better performance than various DE algorithms. Although 

the proposed IFA-EO achieves similar performance with L-SHADE, it significantly outperforms the recently improved 

version of FA, i.e., AD-IFA [37]. Thus, as one kind of FA variant, IFA-EO may be considered as a potential algorithm 

in evolutionary algorithms. From Table 9, it can be found the L-SHADE performs worse performance in f4, f9, f10, f12, 

and f13 while IFA-EO performs well in solving these functions. Thus, the improvements in IFA-EO may further enhance 

the performance of L-SHADE.  

Table 9: Comparative experimental results of f1-f13 obtained by IFA-EO, AD-FIA and L-SHADE 

Test function Optimum Algorithm fm (rank) SD (rank) Final rank 

f1 0 (min) IFA-EO 5.68E-09(2) 1.02E-08(3) 2 

  AD-IFA 3.91E-08(3) 9.42E-09(2) 3 

  L-SHADE 4.87E-23(1) 2.46E-22(1) 1 

f2 0(min) IFA-EO 4.58E-04(2) 1.26E-03(3) 2 

  AD-IFA 2.00E-03(3) 5.78E-04(2) 3 

  L-SHADE 2.74E-21(1) 9.60E-21(1) 1 

f3 0(min) IFA-EO 7.77E-04(1) 3.21E-03(1) 1 

  AD-IFA 6.22E+00(3) 8.88E+00(3) 3 

  L-SHADE 2.29E-02(2) 5.56E-02(2) 2 

f4 0(min) IFA-EO 7.12E-02(1) 5.18E-02(1) 1 

  AD-IFA 1.43E+01(2) 5.97E+00(3) 2 

  L-SHADE 3.18E+01(3) 4.12E+00(2) 3 

f5 0(min) IFA-EO 9.12E+01(2) 4.41E+01(2) 2 

  AD-IFA 1.06E+02(3) 9.54E+01(3) 3 

  L-SHADE 8.77E+01(1) 4.21E+01(1) 1 

f6 0(min) IFA-EO 2.27E-08(2) 5.39E-08(3) 2 

  AD-IFA 4.15E-08(3) 1.26E-08(2) 3 

  L-SHADE 3.53E-22(1) 1.30E-21(1) 1 

f7 0(min) IFA-EO 4.45E-01(2) 2.86E-01(3) 2 

  AD-IFA 5.45E-01(3) 1.60E-01(2) 3 

  L-SHADE 1.31E-01(1) 1.03E-01(1) 1 
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f8 -20949(min) IFA-EO -1.64E+04(2) 8.01E+02(2) 2 

  AD-IFA -1.33E+04(3) 1.35E+03(3) 3 

  L-SHADE -2.03E+04(1) 2.86E+02(1) 1 

f9 0(min) IFA-EO 4.30E-08(1) 1.57E-07(1) 1 

  AD-IFA 9.02E+01(3) 2.36E+01(3) 3 

  L-SHADE 9.62E-01(2) 1.47E+00(2) 2 

f10 0(min) IFA-EO 1.66E-05(1) 1.63E-05(1) 1 

  AD-IFA 9.73E-01(2) 1.02E+00(2) 2 

  L-SHADE 7.88E+00(3) 1.16E+00(3) 3 

f11 0(min) IFA-EO 5.09E-03(1) 6.75E-03(1) 1 

  AD-IFA 6.89E-03(2) 1.02E-02(2) 2 

  L-SHADE 1.04E-01(3) 1.58E-01(3) 3 

f12 0(min) IFA-EO 1.64E-32(1) 2.20E-33(1) 1 

  AD-IFA 2.77E+00(3) 1.59E+00(2) 3 

  L-SHADE 2.20E+00(2) 2.21E+00(3) 2 

f13 0(min) IFA-EO 9.70E-33(1) 3.13E-32(1) 1 

  AD-IFA 2.50E+00(3) 9.63+E00(3) 3 

  L-SHADE 1.39E+00(2) 2.44E+00(2) 2 

 

Table 10: Friedman and Quade tests of Exp. 3 

Algorithm Friedman ranking Quade ranking 

IFA-EO 1.4615 1.3736 

AD-IFA [37] 2.7692 2.7363 

L-SHADE [40] 1.7692 1.8901 

Statistic 12.15 6.99 

p-value 0.002295 0.00405 

 

4.5 Exp. 4: Effects of different strategies  

From the above first three experiments, we have shown the superiority of the proposed IFA-EO algorithm for two 

well-known benchmark functions. As described in Section 3, IFA-EO employs three strategies: a probability choice 

for combination of full attraction model and the single attraction model, and acceptance of some worse solutions 

through small probability in the single attraction model; an adaptive step with iterations; and the combination of 

EO procedure. To assess the performance of these three strategies, we compare five FAs equipped with different 

strategies in the fourth experiment to verify the influence on the performance of the IFA-EO algorithm. The considered 

algorithms are given as follows. 

 FA + Beta (termed as FA-B) 

 FA + Beta + adaptive step (termed as FA-A) 

 FA + Beta + EO procedure (termed as FA-EO) 

 FA + Beta + probability choice + adaptive step (termed as FA-PA) 

 FA + Beta + probability choice + adaptive step + EO procedure (i.e., IFA-EO) 

In this experiment, all algorithms use the same parameter settings as described in Sec. 4.1. And INV set as 5 

in the FA-EO for all test functions. 

Table 11: Comparative results for test functions f1-f13 with D=30 

Function IFA-EO FA-PA FA-A FA-EO FA-B 

f1 

fb 3.81E-14 1.95E-14 2.97E-04 2.75E-02 4.08E-02 

fw 4.16E-10 1.97E-08 8.12E-04 5.38E-02 6.66E-02 

fm 5.66E-11 7.49E-10 5.10E-04 3.74E-02 5.49E-02 
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f2 

fb 8.81E-06 5.96E-06 7.66E-03 4.66E-01 9.27E-01 

fw 1.07E-03 3.48E-03 1.46E-02 8.47E-01 1.08E+00 

fm 2.40E-04 3.90E-04 1.15E-02 6.57E-01 1.01E+00 

f3 

fb 1.24E+01 1.86E+01 2.68E+00 1.83E-01 1.54E-01 

fw 2.10E+02 3.35E+02 9.62E+01 1.49E+00 2.05E+00 

fm 8.02E+01 1.14E+02 2.51E+01 6.36E-01 5.35E-01 

f4 

fb 2.27E-04 4.66E-04 1.89E-02 1.30E+00 6.66E-01 

fw 3.69E-03 2.58E-03 3.70E-02 1.01E+01 1.03E+01 

fm 1.18E-03 1.23E-03 2.90E-02 5.00E+00 5.34E+00 

f5 

fb 2.58E+01 2.53E+01 2.52E+01 2.81E+01 2.95E+01 

fw 1.38E+02 1.24E+03 4.21E+02 1.66E+02 1.45E+02 

fm 4.99E+01 1.36E+02 6.61E+01 4.36E+01 3.97E+01 

f6 

fb 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.23E+03 

fw 1.00E+00 2.00E+00 1.00E+00 2.30E+01 8.02E+03 

fm 6.67E-02 1.67E-01 1.67E-01 5.60E+00 4.82E+03 

f7 

fb 3.06E-03 9.64E-02 3.43E-02 1.77E-02 1.74E-01 

fw 9.93E-01 9.78E-01 9.56E-01 9.75E-01 9.54E-01 

fm 4.82E-01 5.31E-01 4.89E-01 4.31E-01 5.64E-01 

f8 

fb 3.07E+03 4.26E+03 3.14E+03 5.84E+03 5.23E+03 

fw 6.59E+03 6.61E+03 6.99E+03 9.64E+03 1.02E+04 

fm 5.02E+03 5.33E+03 5.06E+03 7.79E+03 7.92E+03 

f9 

fb 1.20E+01 1.59E+01 1.79E+01 8.80E+00 2.25E+01 

fw 5.37E+01 5.27E+01 4.38E+01 2.64E+01 4.67E+01 

fm 2.86E+01 2.91E+01 2.95E+01 1.71E+01 3.39E+01 

f10 

fb 1.42E-07 4.20E-08 3.99E-03 5.00E+00 9.20E+00 

fw 1.90E-05 4.17E-05 6.17E-03 8.59E+00 1.45E+01 

fm 2.00E-06 2.63E-06 4.96E-03 6.72E+00 1.14E+01 

f11 

fb 4.37E-10 4.54E-10 1.21E-03 3.54E+00 4.75E+00 

fw 3.23E-06 1.12E-06 1.18E-02 2.49E+01 2.98E+01 

fm 2.41E-07 2.13E-07 2.58E-03 1.48E+01 1.55E+01 

f12 

fb 1.66E-12 8.30E-12 6.12E-06 2.00E+00 1.49E+00 

fw 2.36E-09 2.94E-09 2.12E-05 5.44E+00 1.78E+01 

fm 5.93E-10 7.64E-10 1.33E-05 4.24E+00 9.33E+00 

f13 

fb 4.30E-12 2.98E-12 6.19E-05 8.81E+00 3.97E+01 

fw 1.57E-08 1.75E-08 1.85E-04 3.53E+01 7.68E+01 

fm 3.64E-09 4.30E-09 1.05E-04 1.82E+01 5.31E+01 

Table 11 gives the competitive results of compared five algorithms. Table 12 lists the mean ranks and the results of 

Friedman and Quade tests, respectively. In addition, Figs.7-12 show the convergence curves of FA-B, FA-A, FA-EO, 

FA-PA, and IFA-EO on the selected functions. From Tables 11-12 and Figs.7-12, we can see the following observations: 

(a) Through comparing IFA-EO with FA-PA, it can be clearly observed that combination of EO procedure can 

improve the accuracy of FA-B. 

(b) By comparing FA-B with FA-A, FA-PA and IFA-EO, it can be found that the three considered strategies play a 

vital role in improving the performance of FA-B. The adaptive step strategy can significantly improve FA’s performance, 
combination with probability choice and adaptive step strategy or hybrid three strategies can better enhance the ability 
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of FA-B.  

(c) From Table 11 and Table 12, IFA-EO achieves the best rank in terms of Friedman test and Quade test and is 

significantly better than other four compared algorithms. 

(d) From Figs. 7-12, we can see that the accuracy of IFA-EO and FA-PA methods is higher than other different 

strategies. And IFA-EO is better than FA-PA method on the whole. In addition, the convergences of IFA-EO and FA-PA 

are faster than other compared methods. 

Overall, each strategy has different impacts and plays a vital role in the algorithm, and IFA-EO can be considered 

the best method among the all different strategies in terms of Friedman and Quade tests, convergence speed, and global 

minimum value. 

 

     
    Fig. 7. Convergence curves of different FAs for f1 test function. 

 

  Fig. 8. Convergence curves of different FAs for f2 test function. 
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Fig. 9. Convergence curves of different FAs for f9 test function. 

 

 Fig. 10. Convergence curves of different FAs for f10 test function. 

 

   Fig. 11. Convergence curves of different FAs for f12 test function. 
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   Fig. 12. Convergence curves of different FAs for f13 test function. 

 

Table 12: Friedman and Quade tests of Exp. 4 

Algorithm Friedman ranking Quade ranking 

IFA-EO 1.6154 1.7692 

FA-PA 2.7308 2.9505 

FA-A 3.0385 2.9945 

FA-EO 3.2308 3.2088 

FA-B 4.3846 4.0769 

Statistic 20.6 3.2207 

p-value 0.00038 0.02021 

 

4.6 Exp. 5: Effects of population size 

 

Table 13: Result achieved by IFA-EO under different population sizes. 

Function 
IFA-EO 

10 20 30 40 

f1 1.38E-96 1.10E-108 2.77E-15 6.42E-02 

f2 6.67E-06 3.11E-42 1.97E-08 1.31E-01 

f3 3.45E-01 4.93E-34 6.13E-05 3.88E+01 

f4 1.49E-05 7.39E-35 2.52E-07 1.32E-01 

f5 3.75E+01 2.80E+01 3.69E+01 3.39E+01 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 5.57E-01 4.45E-01 5.69E-01 5.67E-01 

f8 2.17E+03 3.56E+03 3.47E+03 3.53E+03 

f9 4.74E-02 1.33E+00 2.12E+01 1.61E+01 

f10 4.80E-14 2.76E-14 5.30E-09 8.84E-02 

f11 1.40E-03 2.59E-17 1.10E-13 1.75E-01 

f12 3.63E-06 1.64E-32 1.35E-15 3.22E-04 

f13 2.42E-06 3.13E-32 1.48E-14 4.35E-03 
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This experiment is devoted to investigating the impacts of population size on the performance of our algorithm 

IFA-EO. The population size is set to 10, 20, 30, and 40, respectively, while other adjustable parameters are the same as 

those in previous experiments. 

Table 13 gives the mean best fitness values obtained by IFA-EO under different population sizes. It can see that 

the population size has a large impact on the precision of the final solutions on test functions. When the population size 

is set 20, IFA-EO can achieve better comprehensive solutions than other population size settings. Thus, in FA, we 

usually set the population size as 20.  

5. Conclusions and future work 

In this paper, we present an improved firefly algorithm, namely IFA-EO, which uses three improved strategies. 

First of all, we use the probability choice strategy to select the attractive model of firefly, which can be divided into two 

models: full attraction and single attraction. Full attraction needs to be compared with all fireflies, which indicates the 

convergence speed is slow and it takes more time. The single attraction mode is fast, but easy to fall into local optimum. 

Therefore, these two models are combined by the probability formula to achieve complementarity, and in the single 

attraction mode, the small probability accepts the worse solution. This method can dynamically balance exploration and 

exploitation, which speeds up convergence and saves time. Second, instead of using a fixed step size, this paper uses an 

adaptive step size related to the number of iterations. The value of the previous step is relatively large and is almost zero 

near the end. Third, EO algorithm is considered in this paper to enhance the local search ability, and solution accuracy. 

When the optimal solution is unchanged continuously for INV-iterations remain unchanged, EO algorithm is introduced. 

In the experimental part, we use two group well-known test functions to compare IFA-EO with the other thirteen 

algorithms. It can be seen that the IFA-EO algorithm has better performance in terms of convergence speed, solution 

accuracy and statistical tests. In future research work, we will try to apply the modified algorithm to some constrained 

continuous optimization problems and multi-objective combination optimization problems, binary optimization 

problems, and fuzzy clustering problems [51], [52]. 
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