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Abstract Let R be a commutative ring with identity and let Ω(R)∗ be the set9

of all nontrivial principal ideals of R. The reduced cozero-divisor graph Γr(R)10

of R is an undirected simple graph with Ω(R)∗ as the vertex set and two11

distinct vertices (x) and (y) in Ω(R)∗ are adjacent if and only if (x) * (y) and12

(y) * (x). In this paper, we characterize all classes of commutative Artinian13

non-local rings for which the reduced cozero-divisor graph has genus at most14

one.15

Keywords planar genus · reduced cozero-divisor graph · Artinian ring16
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1 Introduction18

Algebraic graph theory is an interesting and an inspiring field for the re-19

searchers to study the properties of the graphs based on an algebraic struc-20

tures during the past years. The study of assigning the graph to a commutative21
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ring was initiated by Beck[8] in the name of coloring of commutative rings and1

subsequently it was modified as zero-divisor graph [4]. There are many au-2

thors studied various types of algebraic graphs in the literature. For the entire3

literature and developments on graphs of rings, one can refer [1]. Afkhami and4

Khashyarmanesh [2], defined the cozero-divisor graph of commutative rings.5

Let R be a commutative ring with identity 1 and let W ∗(R) be the set of all6

non-zero non-unit elements of R. The cozero-divisor graph Γ ′(R) of R is an7

undirected simple graph with W ∗(R) as the vertex set and two distinct ver-8

tices x and y in W ∗(R) are adjacent if and only if x /∈ Ry and y /∈ Rx, where9

for z ∈ R, Rz is the ideal generated by z. In [3], Wilkens et al. defined the10

reduced cozero-divisor graph of commutative rings. For a given R, let Ω(R)∗11

be the set of all nontrivial principal ideals of R. The reduced cozero-divisor12

graph of R, denoted by Γr(R), is the simple undirected graph with Ω(R)∗ as13

the vertex-set and two distinct vertices (a) and (b) are adjacent in Γr(R) if14

and only if (a) * (b) and (b) * (a). The motive of developing the reduced15

cozero-divisor graph of commutative ring is to reduce the complexity of the16

cozero-divisor graph by eliminating the multiple generators of the same ideal17

to portray the graph effective. Kala et al. [10] determined all the finite com-18

mutative nonlocal rings whose reduced cozero-divisor graph is planar. In this19

paper, we characterize all commutative Artinian non-local rings whose reduced20

cozero-divisor graph has genus one. Throughout this paper, we assume that21

R is a finite commutative non-local ring with identity. For basic definitions on22

rings, one may consult [6].23

2 Preliminaries24

Let G = (V,E) be an undirected simple graph with vertex set V and edge25

set E. A graph in which each pair of distinct vertices is joined by the edge26

is called a complete graph. A complete graph with n vertices is denoted by27

Kn. An r-partite graph is the one whose vertex set can be partitioned into r28

subsets so that no edge has both ends in any one subset of the vertex par-29

tition. A complete r-partite graph is one in which each vertex in one subset30

of the partition is joined to every vertex in all other subsets of the partition.31

The complete bipartite graph (2-partite graph) with subsets sizes m and n32

is denoted by Km,n. The girth of G is the length of a shortest cycle in G33

and is denoted by gr(G). If G has no cycles, we define the girth of G to be34

infinite. A graph G is said to be planar if it can be drawn in the plane so35

that its edges intersect only at their ends. A subdivision of a graph is a graph36

obtained from it by replacing edges with pairwise internally-disjoint paths. A37

remarkably simple characterization of planar graphs was given by Kuratowski38

in 1930. Kuratowski’s Theorem says that a graph G is planar if and only if it39

contains no subdivision of K5 or K3,3(see [9]).40

Let n be a non-negative integer and Sn be an orientable surface of genus41

n. The genus of the graph G, denoted by g(G), is the smallest n such that G42

embeds into Sn. For details on the notion of embedding of a graph in a surface,43
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one can see [12]. Graphs of genus 0 are planar graphs and graphs of genus 11

are called toroidal graphs. If H is a subgraph of G, then g(H) ≤ g(G). The2

following results are very useful for further reference in this paper.3

Lemma 1 [12, Theorem 6.37] If m,n ≥ 2 are integers, then g(Km,n) =4
⌈

(m−2)(n−2)
4

⌉

.5

Theorem 1 [12, Euler Formula] If G is a finite connected graph with n ver-6

tices, m edges and genus g, then n−m+ f = 2− 2g, where f is the number7

of faces created when G is minimally embedded on a surface of genus g.8

Lemma 2 [7, Theorem 1] Let G be a connected graph with k blocks B1, . . . ,9

Bk. Then g(G) =
∑k

i=1 g(Bi).10

Lemma 3 [5, Lemma 2.1] If G is a graph with n vertices, m edges, girth gr(G)
and genus g, then

m(gr(G)− 2)

2gr(G)
−

n

2
+ 1 ≤ g.

Theorem 2 [11, Proposition 4.4.4] Let G be a connected graph with n ≥ 3
vertices,q edges and genus g. Then

g ≥
⌈q

6
−

n

2
+ 1

⌉

.

Theorem 3 [10, Theorem 3.1] Let R = F1 × · · · ×Fn be a finite commutative11

ring with identity, where each Fj is a field and n ≥ 2. Then Γr(R) is planar12

if and only if R is isomorphic either F1 × F2 × F3 or F1 × F2.13

3 Planarity of Γr(R)14

The planar characterizations of the reduced cozero-divisor graph obtained by15

Kala et al. [10] are given below.16

Theorem 4 [10, Theorem 3.2] Let R = R1 ×R2 × · · · ×Rn be a commutative17

ring with identity 1, where each (Ri,mi) is a local ring with mi 6= (0) and18

n ≥ 2. Then Γr(R) is planar if and only if R = R1 × R2 such that mi is the19

only non-zero principal ideal in Ri for i = 1, 2.20

Theorem 5 [10, Theorem 3.3] Let R = R1 × · · · × Rn × F1 × · · · × Fm be a21

finite commutative ring with identity, where each (Ri,mi) is a local ring with22

mi 6= {0} and m,n ≥ 1. Then Γr(R) is planar if and only if R satisfies the23

following conditions:24

(i) n+m = 2;25

(ii) There exists only two non-zero principal ideals 〈a1〉 , 〈a2〉 in R1 such that26

〈a1〉 * 〈a2〉 and 〈a2〉 * 〈a1〉;27
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(iii) m1 = 〈a1〉 is a principal ideal with nilpotency at most k = 4 and1

if k = 2, then 〈a1〉 is the only principal ideal in R1;2

if k = 3, then 〈a1〉 and
〈

a21
〉

are the only ideals in R1;3

if k = 3, then 〈a1〉,
〈

a21
〉

and
〈

a31
〉

are the only ideals in R1.4

Let us have the following lemma in order to show that when the condition5

(ii) in Theorem 5 is true, then the reduced cozero-divisor graph is not planar.6

Note that the condition (1) is nothing but n = 1 and m = 1 and hence7

R ∼= R1 × F1.8

Lemma 4 Let (R1,m1) be a local ring, F1 be a field and let R = R1 × F1.9

If there exist only two non-zero principal ideals 〈a1〉 and 〈a2〉 of R1 such that10

〈a1〉 * 〈a2〉 and 〈a2〉 * 〈a1〉, then Γr(R) > 0.11

Proof. Assume that there exist two non-zero principal ideals 〈a1〉 and 〈a2〉 of12

the local ring (R1,m1) such that 〈a1〉 * 〈a2〉 and 〈a2〉 * 〈a1〉 . Then a1, a2 ∈13

m1.14

Consider the ideals I1 = 〈a1〉 × 〈1〉, I2 = 〈a2〉 × 〈1〉, I3 = 〈0〉 × 〈1〉, I4 =15

〈a1〉×〈0〉, I5 = 〈a2〉×〈0〉, I6 = 〈a1 + a2〉×〈0〉, I7 = R1×〈0〉 of R and let Z =16

{I1, I2, I3, I4, I5, I6, I7} ⊂ Ω(R)∗. One can check that the subgraph induced17

by Z is a subdivision of K3,3 with partition subsets {I1, I2, I3}, {I5, I6, I7}18

and a subdivision of the edge joining I2 and I5 through the vertex I4. Hence19

g(Γr(R) > 0.20

Having identified a flow in Theorem 5, we state below a characterization21

of all finite commutative non-local rings with identity whose Γr(R) is planar.22

Hence we have the following modified characterization in Theorem 5 for Γr(R)23

to be planar.24

Theorem 6 Let R = R1×· · ·×Rn×F1×· · ·×Fm be a finite commutative ring25

with identity, where each (Ri,mi) is a local ring with mi 6= {0} for 1 ≤ i ≤ n,26

Fi is a field for 1 ≤ i ≤ m and m,n ≥ 1. Then Γr(R) is planar if and only if27

R satisfies the following conditions:28

(1) n = m = 1;29

(2) m1 = 〈a1〉 is a principal ideal with nilpotency at most k = 4 and30

(i) if k = 2, then m1 = 〈a1〉 is the only principal ideal in R1;31

(ii) if k = 3, then R1 contains at most three non-zero principal ideals.32

Proof. Assume that Γr(R) is planar for R = R1 × · · · × Rn × F1 × · · · × Fm.33

Suppose n ≥ 2. Let I and J be non-trivial principal ideals in R1 and R234

respectively. Consider the ideals I1 = 〈0〉 × R2 × · · · × 〈0〉 × F1 × · · · × 〈0〉,35

I2 = 〈0〉× J × · · · × 〈0〉×F1 × · · · × 〈0〉, I3 = I × J × · · · × 〈0〉×F1 × · · · × 〈0〉,36

I4 = R1×J×· · ·×〈0〉×〈0〉×· · ·×〈0〉, I5 = R1×R2×· · ·×〈0〉×〈0〉×· · ·×〈0〉,37

I6 = I×R2×· · ·×〈0〉×〈0〉×· · ·×〈0〉 and letX = {I1, I2, I3, I4, I5, I6} ⊂ Ω(R)∗.38

Then the subgraph induced by X of Γr(R) contains K3,3 as a subgraph with39

vertex partition {I1, I2, I3} and {I4, I5, I6}. From this, we get that g(Γr(R)) ≥40

1, which is a contradiction to the assumption that Γr(R) is planar. Hence41

n = 1.42
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Suppose m ≥ 2. Let I be a non-trivial principal ideal in R1. Consider the1

ideals J1 = R1×〈0〉× 〈0〉× 〈0〉× · · ·× 〈0〉, J2 = R1×F1×〈0〉× 〈0〉× · · ·× 〈0〉,2

J3 = I × F1 × 〈0〉 × 〈0〉 × · · · × 〈0〉, J4 = I × 〈0〉 × F2 × 〈0〉 × · · · × 〈0〉,3

J5 = 〈0〉×F1×F2×〈0〉× · · ·× 〈0〉, J6 = 〈0〉× 〈0〉×F2×〈0〉× · · ·× 〈0〉 and let4

Y = {J1, J2, J3, J4, J5, J6}. Then the subgraph of Γr(R) induced by Y contains5

K3,3 as a subgraph with vertex partition {J1, J2, J3} and {J4, J5, J6}. From6

this g(Γr(R)) ≥ 1, which is a contradiction to the assumption that Γr(R) is7

planar. Hence m = 1.8

From the above arguments R = R1 × F1.9

Since R is finite, R1 is an Artinian ring and so every ideal of R1 is finitely10

generated. If m1 is not principal, then there exist a1, a2 ∈ m1 such that 〈a1〉 *11

〈a2〉 . By Lemma 4, g(Γr(R)) ≥ 0 and so m1 is principal. Thus m1 = 〈a1〉 .12

Since R1 is Artinian, m1 is a nil-ideal with nilpotency k > 1 and so m
k
1 = 〈0〉,13

m
k−1
1 6= 〈0〉. Suppose k ≥ 5. Then the subgraph induced by {〈0〉 × 〈1〉 ,

〈

a41
〉

×14

〈1〉 ,
〈

a31
〉

× 〈1〉 ,
〈

a21
〉

× 〈0〉 , 〈a1〉 × 〈0〉 , R1 × 〈0〉} of Γr(R) contains K3,3 as a15

subgraph. From this, we get that g(Γr(R)) ≥ 1, which is a contradiction to16

the assumption that Γr(R) is planar. Hence k ≤ 4 and so m1 = 〈a1〉 is a17

principal ideal of nil-potence at most 4. The other parts of condition (2) in18

the statement are trivially true.19

Converse follows from Figure 1. In fact, rings are considered through the20

nilpotent index of m1 and planar embeddings of the corresponding reduced21

cozero-divisor graphs are given in Figure 1.22

R1 × 〈0〉

〈0〉 × 〈1〉 m1 × 〈0〉 m1 × 〈1〉

k = 2

m1
3 × 〈0〉

〈0〉 × 〈1〉 m1
2 × 〈0〉

R1 × 〈0〉 m1 × 〈1〉

m1
2 × 〈1〉

m1 × 〈0〉
m1

3 × 〈1〉

k = 4

Figure 1: Planar Embeddings of Γr(R1 × F1)

m1 × 〈0〉 〈0〉 × 〈1〉

m1
2 × 〈0〉

m1 × 〈1〉

m1
2 × 〈1〉 R1 × 〈0〉

k = 3

23

4 Genus of Γr(R)24

The main goal of this paper is to obtain a characterization of commutative25

rings R for which Γr(R) is toroidal. Towards this attempt, in this section,26

we classify all finite commutative non-local rings with identity whose cozero-27

divisor graph Γr(R) is of genus one. The following theorem gives a tool to28

identify rings R for which Γr(R) is not toroidal.29
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Theorem 7 Let R = F1 × F2 × · · · × Fn be a commutative ring with identity1

where each Fi is a field for 1 ≤ i ≤ n and n ≥ 4. Then g(Γr(R)) ≥ 2.2

Proof. Let R = F1 × F2 × · · · × Fn and n ≥ 4. Consider the ideals I1 =3

F1 × 〈0〉 × 〈0〉 × 〈0〉, I2 = 〈0〉 × F2 × 〈0〉 × 〈0〉, I3 = F1 × 〈0〉 × F3 × 〈0〉,4

I4 = 〈0〉 × F2 × F3 × 〈0〉, I5 = F1 × 〈0〉 × F3 × F4, I6 = 〈0〉 × F2 × 〈0〉 × F4,5

I7 = F1 × F2 × 〈0〉 × 〈0〉, I8 = 〈0〉 × 〈0〉 × 〈0〉 × F4, I9 = 〈0〉 × 〈0〉 × F3 × F4,6

I10 = F1 ×F2 ×F3 × 〈0〉, I11 = F1 × 〈0〉 × 〈0〉 ×F4. The subgraph induced by7

A = {I1, I2, . . . , I11} ⊂ V (Γr(R)) of Γr(R) contains graph H given in Figure8

2 as a subgraph. Since, the graph H has two blocks, both isomorphic to K3,39

and so by Lemma 2, g(Γr(R)) ≥ g(H) ≥ 2.10

I1

I3

I5

I2

I4

I6

I8

I9

I11

I7

I10

Figure 2: A graph H with g(H) = 2
11

Since an Artinian ring R is not isomorphic to product of fields, it is natural12

to look into the genus of Γr(R)) where R is an Artinian ring. The following13

theorems attempts to find the same. In the rest of the section, we look into the14

characterization for toroidal reduced cozero-divisor graph of finite commuta-15

tive non-local rings with identity.16

Theorem 8 Let R = R1 ×R2 × · · · ×Rn be a commutative ring with identity17

where each (Ri,mi) is a local ring with mi 6= {0} and n ≥ 2. Let ηi be the18

nilpotent index of mi. Then g(Γr(R))=1 if and only if R satisfies the following19

conditions:20

(1) n = 2;21

(2) m1 = 〈a1〉 and m2 = 〈b1〉 for some a1 ∈ R1, b1 ∈ R2 and 1 < η1, η2 ≤ 3;22

(i) if η1 = 3 and η2 = 2, then m1 and m
2
1 are the only non-trivial principal23

ideals in R1 and m2 is the only non-trivial principal ideal in R2.24

(ii) if η1 = 2 and η2 = 3, then m1 is the only non-trivial principal ideal in25

R1 and m2 and m
2
2 are the only non-trivial principal ideals in R2.26

Proof. Assume that g(Γr(R)) = 1 for R = R1×R2×· · ·×Rn. Suppose n ≥ 3.27

Let I, J and K be non-trivial principal ideals in R1, R2 and R3 respectively.28

Consider the ideals J1 = 〈0〉×R2×K×· · ·×〈0〉, J2 = 〈0〉×J×R3×· · ·×〈0〉,29

J3 = 〈0〉×R2×R3×· · ·× 〈0〉, J4 = I×J ×R3×· · ·× 〈0〉, J5 = I×〈0〉×R3×30

· · · × 〈0〉, J6 = R1 × 〈0〉 × 〈0〉 × · · · × 〈0〉, J7 = R1 ×R2 × 〈0〉 × · · · × 〈0〉, J8 =31

R1×〈0〉×K×· · ·×〈0〉, J9 = I×R2×〈0〉×· · ·×〈0〉 . Then the subgraph induced32



Title Suppressed Due to Excessive Length 7

by A = {J1, J2, J3, J4, J5, J6, J7, J8, J9} of Γr(R) contains K5,4 as a subgraph1

with vertex partition {J1, J2, J3, J4, J5} and {J6, J7, J8, J9}. By Lemma 1,2

g(Γr(R)) > 1 which is a contradiction. Hence n = 2 and so R = R1 ×R2.3

Theorem 4 and g(Γr(R)) = 1 together imply that either R1 or R2 contains4

at least two non-trivial principal ideals. Since R is finite, every ideal in Ri is5

finitely generated. Let Φ1 = {a1, a2, . . . , at : ai ∈ R1 for 1 ≤ i ≤ t} and6

Φ2 = {b1, b2, . . . , bk : bi ∈ R2 for 1 ≤ i ≤ k} be minimal generating sets of m17

and m2 respectively. Then 〈ai〉 * 〈aj〉 for all i 6= j and 〈bi〉 * 〈bj〉 for all i 6= j.8

Suppose t ≥ 2 and k ≥ 2. Let I1 = R1 × 〈b2〉, I2 = R1 × 〈b1〉, I3 =9

〈a2〉 × 〈b2〉, I4 = 〈a2〉 × 〈b1〉, I5 = 〈0〉 × 〈b2〉, I6 = 〈0〉 × 〈b1〉, I7 = 〈a2〉 × R2,10

I8 = 〈a1〉 × 〈b2〉, I9 = 〈a1〉 × 〈b1〉, I10 = 〈0〉 × R2, I11 = R1 × 〈0〉. Then11

B = {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11} ⊂ Ω(R)∗ and the subgraph induced12

by B contains two blocks, both isomorphic to K3,3 as in Figure 2. By Lemma13

2, g(Γr(R)) > 1, which is a contradiction. Hence t = 1 or k = 1.14

Without loss of generality, let us assume that t = 1. Suppose k ≥ 2. Let15

I1 = R1×〈0〉, I2 = R1×〈b1〉, I3 = R1×〈b2〉, J1 = 〈0〉×〈b1 + b2〉, J2 = 〈0〉×R2,16

J3 = 〈a1〉 × 〈b1 + b2〉, J4 = 〈a1〉 × R2, K1 = 〈0〉 × 〈b1〉, K2 = 〈a1〉 × 〈b1〉,17

K3 = 〈a1〉 × 〈b2〉, T1 = 〈0〉 × 〈b2〉, T2 = 〈a1〉 × 〈0〉, T3 = R1 × 〈b1 + b2〉.18

Since IiJj ∈ E(Γr(R)), for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4 and i 6= j, the subgraph H19

of Γr(R) induced by {I1, I2, I3, J1, J2, J3, J4,K1,K2,K3, T1, T2, T3} contains20

K3,4 as a subgraph. Using Theorem 1, g(H) ≥ 1. Suppose g(H)=1. Let H ′
21

be the subgraph obtained from H by deleting the vertices T1, T2, T3 and edges22

J2J3, I2I3 and H ′′ be the subgraph obtained from H ′ by deleting the vertices23

K1,K2,K3. Then H ′′ ∼= K3,4 and so g(H ′′)=1. Since g(H) = 1, we have24

1 = g(H ′′) ≤ g(H ′) ≤ g(H) = 1 and so g(H ′)=1.25

Note that |V (H ′)| = 10 and one can check that |E(H ′)| = 24. In fact,26

V (H ′) = {I1, I2, I3, J1, J2, J3, J4,K1,K2,K3} and E(H ′) = {I1J1, I1J2, I1J3,27

I1J4 , I1K1, I1K2, I1K3, I2J1, I2J2, I2J3, I2J4, I2K3, I3J1, I3J2, I3J3, I3J4,28

I3K1, I3K2, J1K2, J1K3, J2K2, J2K3, K1K3, K2K3}. By Theorem 1,29

the number of faces in any embedding of H ′ in the torus shall be 16. Let30

{F ′

1, . . . , F
′

16} be the set of all faces corresponding to an embedding H ′ in the31

torus. Since H ′′ ∼= K3,4, by Theorem 1, we get that there are 5 faces for any32

embedding of H ′′ in the torus. Let {F ′′

1 , . . . , F
′′

5 } be the set of faces of H ′′
33

corresponding to an embedding of H ′′ on the torus. Further the faces of H ′′
34

can be either one octagonal face and 4 rectangular faces, or two hexagonal35

faces and 3 rectangular faces. Clearly, boundaries of all faces are 4-cycles but36

with two 6-cycles or one 8-cycle. Next, we prove g(H) > 1 by a deletion and37

insertion argument.38

Since K1K3,K2K3 ∈ E(H ′), K1,K2,K3 should be inserted in the same39

face say F ′′

a of H ′′ to avoid crossing. As I1K1, I1K2, I1K3, I2K3, I3K1, I3K2,40

J1K2, J1K3, J2K2, J2K3 ∈ E(H ′), one should have I1, I2, I3, J1, J2 in the41

boundary of F ′′

a . Consider the following edges of H ′. Let e1 = K1K3, e2 =42

K2K3, e3 = J1K2, e4 = J1K3, e5 = J2K2, e6 = J2K3, e7 = I1K1, e8 =43

I1K2, e9 = I1K3, e10 = I2K3, e11 = I3K1, e12 = I3K2. From this, it is clear44

that K1,K2,K3 should be inserted into the same face.45
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Suppose if we try to insert K2 first, then we obtain the following Figure1

3. It is easy to observe from the figure that we cannot insert K3 without edge2

crossings. Thus we get a contradiction.3

I3

J1

J2I2

I1

K1

K2

Figure 3
4

I3

J1

J2I2

I1

K1

K3

Figure 4(a): F ′′

a Figure 4(b): F ′′

b

I3

I1

J2

I2

J1

K3

K1

5

If we insert K1,K2,K3 and ei (1 ≤ i ≤ 12) in the octagonal face F ′′

a , then6

we obtain the Figure 4(a). However from Figure 4(a), it is clear that when7

we insert the vertex K2 into the face F ′′

a , then we get an edge crossing. If we8

insert K1,K2,K3 and ei (1 ≤ i ≤ 12) in the hexagonal face F ′′

b , then we obtain9

the Figure 4(b). However from Figure 4(b), it is clear that there is no way to10

insert the vertex K2 into the face F ′′

b without crossing in the embedding of11

H ′. Therefore we get g(H) > 1 and hence we get that g(Γr(R)) > 1, which is12

a contradiction. Hence k = 1 and so m1 and m2 are principal ideals generated13

by a1 and b1 respectively. Since each Ri is Artinian, mηi

i = 〈0〉, mηi−1
i 6= 〈0〉14

for i = 1, 2.15

Suppose ηi ≥ 4 for i = 1, 2. Let L1 = m1×〈0〉, L2 = 〈0〉×m2, L3 = m1×m
2
2,16

L4 = 〈0〉 × R2, L5 = m1 × m
3
2, L6 = m

2
1 × m2, L7 = m1 × m2, L8 = R1 × m

3
2,17

L9 = R1 × 〈0〉, L10 = m1 × R2, 11 = R1 × m
2
2 and C = {L1, L2, . . . , L11} ⊂18

V (Γr(R)). Note that the subgraph induced by C contains two blocks both19

isomorphic to K3,3 as in Figure 2 by taking Li = Ii for 1 ≤ i ≤ 11. From this,20

we have g(Γr(R)) > 1, which is a contradiction. Hence either η1 ≤ 3 or η2 ≤ 3.21

Without loss of generality, let us take η1 ≤ 3.22
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Case 1. Assume that η1 = 3.1

Suppose η2 ≥ 3. Consider the subgraph H of Γr(R) induced by the non-2

trivial principal ideals Y1 = m1×m2, Y2 = m1×R2, Y3 = m
2
1×R2, Y4 = R1×m2,3

X1 = 〈0〉 ×m
2
2, X2 = m

2
1 × 〈0〉, X3 = m

2
1 ×m

2
2, U1 = 〈0〉 ×m2, U2 = 〈0〉 ×R2,4

U3 = m
2
1 × m2, V1 = m1 × 〈0〉, V2 = m1 × m

2
2, V3 = R1 × 〈0〉, V4 = R1 × m

2
2.5

Since UiVj ∈ E(Γr(R)), H contains K3,4 as a subgraph. Using Theorem 1,6

g(H) ≥ 1. Suppose g(H)=1. Let H ′ = H − {X1, X2, X3} − {V2V3, U2U3} and7

H ′′ = H ′ − {Y1, Y2, Y3, Y4}. Then H ′′ ∼= K3,4 and so g(H ′′)=1. Since g(H)=18

and g(H ′′) ≤ g(H ′) ≤ g(H), we get g(H ′)=1.9

Note that |V (H ′)|=11, |E(H ′)|=25. In fact, V (H ′) = {Y1, Y2, Y3, Y4, U1, U2,10

U3, V1, V2, V3} and E(H ′) = {Y1Y3, Y1U2, Y1V3, Y1V4, Y2Y4, Y2V3, Y2V4, Y3Y4,11

Y3V1, Y3V2, Y3V3, Y3V4, Y4U2, U1V1, U1V2, U1V3, U1V4, U2V1, U2V2, U2V3,12

U2V4, U3V1, U3V2, U3V3, U3V4}.13

Using the fact that n−m+f = 2−2g, there are 14 faces in any embedding14

of H ′ on the torus. Let {F ′

1, . . . , F
′

14} be the set of all faces corresponding15

to an embedding of H ′ on the torus. Since H ′′ is isomorphic to K3,4, by16

Euler’s formula, any embedding of H ′′ in S1 has 5 faces, one octagonal face17

and 4 rectangular faces, or two hexagonal faces and 3 rectangular faces. Hence18

boundaries of faces are 4-cycles or two 6-cycles or one 8-cycle. Let {F ′′

1 , . . . , F
′′

5 }19

be the set of all faces of H ′′ obtained by deleting Y1, Y2, Y3, Y4 and all the20

edges incident with Y1, Y2, Y3, Y4 from the representation of H ′. Next, we prove21

g(H) > 1 by deletion and insertion argument.22

V3

V4

V1U2

V2

Figure 5(a): F ′′

m

Y2

Y4

Y2

Y1

V1

Y4

V3

V4 U2

Y1

Figure 5(b): F ′′

n

23

Since Y2Y4, Y3Y4 ∈ E(H ′), vertices Y2, Y3, Y4 should be inserted in the same24

face say F ′′

m of H ′′ to avoid crossing. Note that Y1Y3, Y1V3, Y1V4, Y1U2, Y2V3,25

Y2V4, Y3V1, Y3V2, Y3V3, Y3V4, Y4V2 ∈ E(H ′) and therefore V1, V2, V3, V4, U2 are26

on the boundary of F ′′

m. The following are edges in H ′. Let e1 = Y2Y4, e2 =27

Y3Y4, e3 = Y1Y3, e4 = Y1V3, e5 = Y1V4, e6 = Y1U2, e7 = Y2V3, e8 = Y2V4, e9 =28

Y3V1, e10 = Y3V2, e11 = Y3V3, e12 = Y3V4, e13 = Y4U2. From this, it is clear29

that Y1, Y2, Y3, Y4 should be inserted into the same face.30

If we insert Y1, Y2, Y3, Y4 and ei (1 ≤ i ≤ 13) in the octagonal face F ′′

m,31

then we obtain the Figure 5(a). However from Figure 5(a), it is clear that, if32
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we insert the vertex Y3 into the face F ′′

m, then we get an edge crossing, which is1

a contradiction. If we insert Y1, Y2, Y3, Y4 and ei (1 ≤ i ≤ 13) in the hexagonal2

face F ′′

n , then we obtain the Figure 5(b). However from Figure 5(b), it is clear3

that there is no way to insert the vertex Y3 into the faces F ′′

n without crossing4

in the embedding of H ′. Therefore we get, g(H) > 1 and so g(Γr(R)) > 1,5

which is a contradiction. Hence η2 = 2 and so m1,m
2
1 and m2 are the only6

non-trivial principal ideals in R1 and R2 respectively.7

Case 2. η1 = 2.8

Suppose η2 ≥ 4. Let U1 = 〈0〉 × m2, U2 = 〈0〉 × R2, U3 = m1 × m2,9

U4 = m1 × R2, V1 = R1 × 〈0〉, V2 = R1 × m
2
2, V3 = R1 × m

3
2, Y1 = 〈0〉 × m

2
2,10

Y2 = 〈0〉 × m
3
2, Y3 = m1 × 〈0〉, Y4 = m1 × m

3
2, X1 = m1 × m

2
2, X2 = R1 × m211

and D = {U1, U2, U3, U4, V1, V2, V3, Y1, Y2, Y3, Y4, X1, X2} ⊆ Ω(R)∗. Let G12

be the subgraph of Γr(R) induced by D, G′ = G − {X1, X2} − {U2U3} and13

G′′ = G′ − {Y1, Y2, Y3, Y4}. Then G′′ ∼= K3,4 and so g(K3,4) = 1. Since ViUj ∈14

E(Γr(R)) and G contains K3,4 as a subgraph, and so g(G) ≥ 1. If g(G) = 1,15

then we get that g(G′)=1. Note that |V (G′)| = 11, |E(G′)| = 23. By Euler’s16

formula, there are 12 faces when embedding G′ on the torus. Let {F ′

1, . . . , F
′

12}17

be the set of faces of G′ through a representation of G′ on the torus. Again18

by Theorem 1, K3,4 has 5 faces, one octagonal face and 4 rectangular faces, or19

two hexagonal faces and 3 rectangular faces. Observe that K3,4 has boundaries20

which are 4-cycles or two 6-cycles or one 8-cycle. Let {F ′′

1 , . . . , F
′′

5 } be the set21

of faces of G′′ obtained by deleting Y1, Y2, Y3 and Y4 and all the edges incident22

with Y1, Y2, Y3 and Y4 from the representation of G′.23

Y2

V3

V2

U2

Y1

U3V1

U4

Y4

U1

Figure 6(a): F ′′

ℓ

U1

U2

V2

U3

V1

V3

Y1

Y2

Y4

Figure 6(b): F ′′

s

24

Note that Y1Y3, Y1Y4 ∈ E(G′). Hence Y1, Y3, Y4 should be inserted in the25

same face say F ′′

ℓ of G′′ to avoid edge crossing. Also note that Y1V1, Y1V3, Y2V1,26

Y2Y3, Y3U1, Y3U2, Y4U1, Y4U2, Y4V1 ∈ E(G′) and therefore V1, U1, V3, U2 are27

boundary vertices of F ′′

ℓ . Consider the following edges ofG
′. Let e1 = Y1V1, e2 =28

Y1V3, e3 = Y2V1, e4 = Y3U1, e5 = Y3U2, e6 = Y4U1, e7 = Y4U2, e8 = Y4V1, e9 =29

Y3Y2, e10 = Y3Y1, e11 = Y1Y4. From this, it is clear that Y1, Y2, Y3, Y4 should be30

inserted into the same face. If we insert Y1, Y2, Y3, Y4 and ei (1 ≤ i ≤ 11) in the31

octagonal face F ′′

ℓ then we obtain the Figure 6(a). However from Figure 6(a),32
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it is clear that there is no way to insert the vertex Y3 into the face F ′′

ℓ without1

crossings. If we insert Y1, Y2, Y3, Y4 and ei (1 ≤ i ≤ 11) in the hexagonal face2

F ′′

s then we obtain the Figure 6(b). However from Figure 6(b), it is clear that3

there is no way to insert the vertex Y3 into the faces F ′′

s without crossings.4

Therefore we get, g(G) > 1 and hence g(Γr(R)) > 1. Hence η2 ≤ 3. Since5

g(Γr(R)) = 1 and by Theorem 5, η2 6= 2. Thus, η2 = 3 and so m1 and m2, m
2
26

are the only non-trivial principal ideals in R1 and R2 respectively.7

Converse follows from Figures 7(a) and 7(b).8

〈0〉 × R2

m
2
1

× 〈0〉 m1 × 〈0〉

〈0〉 × m2

m
2
1

× m2

R1 × 〈0〉

m1 × R2

R1 × m2

m
2
1

× R2

〈0〉 × R2

m1 × m2

Figure 7(a): η1 = 3, η2 = 2

9

〈0〉 × R2 〈0〉 × R2

〈0〉 × R2 〈0〉 × R2

R1 × 〈0〉

〈0〉 × m
2
2

R1 × m
2
2

R1 × m2

m1 × R2

〈0〉 × m2

m1 × m
2
2

m1 × m2

m1 × 〈0〉

Figure 7(b): η1 = 2, η2 = 3

Embeddings of Γr(R1 ×R2) in S1

10
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Theorem 9 For integers n,m ≥ 1, let R = R1×R2×· · ·×Rn×F1×· · ·×Fm1

be a commutative ring with identity where each (Ri,mi) (1 ≤ i ≤ n) is a local2

ring with mi 6= {0} and each Fj (1 ≤ j ≤ m) is a field. Then g(Γr(R)) = 1 if3

and only if R satisfies one of the following conditions:4

(1) R ∼= R1 × F1 × F2 and m1 is the only non-trivial principal ideal in R1;5

(2) R ∼= R1 × F1 and6

(i) m1 = 〈b1, b2〉, and also 〈b1〉, 〈b2〉, 〈b1b2〉 and 〈b1 + b2〉 are the only7

non-trivial principal ideals of R1.8

(ii) m1 = 〈b1〉 is a principal ideal in R1 with nilpotency η = 5 or 6;9

(a) If η = 5, then m, m2, m3 and m
4 are the only non-trivial principal10

ideals of R1.11

(b) If η = 6, then m, m
2, m

3, m
4 and m

5 are the only non-trivial12

principal ideals of R1.13

Proof. Assume that g(Γr(R)) = 1 for R1 ×R2 × · · · ×Rn × F1 × · · · × Fm.14

Suppose n ≥ 2. Let J1 and J2 are the non-trivial principal ideals in R1 and15

R2 respectively and let X1 = 〈0〉×R2×· · ·×〈0〉×F1×· · ·×〈0〉, X2 = 〈0〉×J2×16

· · ·×〈0〉×F1×· · ·×〈0〉,X3 = J1×J2×· · ·×〈0〉×F1×· · ·×〈0〉,X4 = J1×〈0〉×· · ·×17

〈0〉×F1×· · ·×〈0〉, X5 = 〈0〉×〈0〉×· · ·×〈0〉×F1×· · ·×〈0〉, Y1 = R1×〈0〉×· · ·×18

〈0〉×· · ·×〈0〉, Y2 = R1×J2×· · ·×〈0〉×· · ·×〈0〉, Y3 = R1×R2×· · ·×〈0〉×· · ·×〈0〉,19

Y4 = J1×R2×· · ·×〈0〉×· · ·×〈0〉 and A = {X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4} ⊆20

Ω(R)∗. Then the subgraph induced by A in Γr(R) contains K5,4 as subgraph21

with vertex partitions {X1, X2, X3, X4, X5} and {Y1, Y2, Y3, Y4}. By Lemma22

1, g(Γr(R)) > 1 which is a contradiction. Hence n = 1.23

Suppose m ≥ 3. Let I be a non-trivial principal ideal in R1 and let Y1 =24

R1×〈0〉×〈0〉×〈0〉×· · ·×〈0〉, Y2 = I×〈0〉×F2×〈0〉×· · ·×〈0〉, Y3 = R1×F1×〈0〉×25

〈0〉×· · ·×〈0〉, Y4 = 〈0〉×F1×F2×F3×· · ·×〈0〉, Y5 = I×F1×〈0〉×F3×· · ·×〈0〉,26

Y6 = I × F1 × F2 × 〈0〉 × · · · × 〈0〉, Y7 = 〈0〉 × F1 × 〈0〉 × 〈0〉 × · · · × 〈0〉,27

Y8 = R1 × 〈0〉 × 〈0〉 × F3 × · · · × 〈0〉, Y9 = I × 〈0〉 × 〈0〉 × 〈0〉 × · · · × 〈0〉,28

Y10 = 〈0〉×F1×F2×〈0〉× · · ·× 〈0〉, Y11 = I ×〈0〉× 〈0〉×F3×· · ·× 〈0〉 . Then29

the subgraph induced by B = {Y1, Y2, . . . Y11} ⊆ Ω(R)∗ of Γr(R) contains H30

as in Figure 2 as subgraph by identifying Yi = Ii for 1 ≤ i ≤ 11. This gives31

that g(Γr(R)) ≥ 2 which is a contradiction. Hence m ≤ 2.32

Assume that n = 1 and m = 2 and so R = R1 × F1 × F2. Since R33

is finite and R1 is an Artinian, every ideal in R1 is finitely generated. Let34

Φ = {a1, a2, . . . , ak : ai ∈ R1 for 1 ≤ i ≤ k} be a minimal generating set for35

m1 in R1. Then k ≥ 1 and 〈ai〉 * 〈aj〉 for all i 6= j.36

Suppose k ≥ 2. Let U1 = 〈a1〉 × 〈0〉 × 〈0〉, U2 = 〈0〉 × 〈0〉 × F2, U3 =37

〈a2〉 × 〈0〉 × 〈0〉, U4 = 〈0〉 × F1 × 〈0〉, U5 = R1 × 〈0〉 × 〈0〉, U6 = 〈0〉 ×38

F1 × F2, U7 = 〈a1〉 × F1 × 〈0〉, U8 = 〈a1〉 × 〈0〉 × F2, U9 = 〈a2〉 × 〈0〉 × F2,39

U10 = 〈a2〉 × F1 × 〈0〉, U11 = R1 × 〈0〉 × F2. Then the subgraph induced by40

C = {U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11} ⊆ Ω(R)∗ contains two blocks,41

both isomorphic to K3,3 as in Figure 2 by taking Ui = Ii for 1 ≤ i ≤ 11. By42

Lemma 2, g(Γr(R)) > 1, a contradiction. Hence k = 1 and so m1 is a principal43

ideal generated by a1.44
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Since R1 is Artinian, mη
1 = 〈0〉, mη−1

1 6= 〈0〉 for some η ∈ N. Suppose η ≥ 3.1

Then the subgraph induced by the I1 = {m1×〈0〉×〈0〉 , I2 = 〈0〉×〈0〉×F2, I3 =2

m
2
1×〈0〉×〈0〉 , I4 = 〈0〉×F1×〈0〉 , I5 = R1×〈0〉×〈0〉 , I6 = 〈0〉×F1×F2, I7 =3

m1×F1×〈0〉 , I8 = m1×〈0〉×F2, I9 = m
2
1×〈0〉×F2, I10 = m

2
1×F1×〈0〉 , I11 =4

R1 × 〈0〉 × F2} in Γr(R) contains H as in Figure 2 as a subgraph. By Lemma5

2, g(Γr(R)) > 1, a contradiction. Hence η = 2 and so R1 contains exactly one6

non-trivial principal ideal m1.7

Assume that n = 1,m = 1 and soR = R1×F1. Consider Φ = {b1, b2, . . . , bt :8

bi ∈ R1 for 1 ≤ i ≤ t} be a minimal generating set for m in R1. Then t ≥ 19

and 〈bi〉 * 〈bj〉 for all i 6= j.10

Suppose t ≥ 3. Let X = {S1, S2, S3, S4, S5, S6, S7, T1, T2, T3, U1, U2, U3}11

⊂ V (Γr(R)), where S1 = (0)×F1, S2 = 〈b1〉×F1, S3 = 〈b2〉×F1, S4 = 〈b3〉×F1,12

S5 = 〈b1 + b2〉×F1, S6 = 〈b1 + b3〉×F1, S7 = 〈b2 + b3〉×F1, T1 = 〈b1 + b2〉×13

(0), T2 = 〈b1 + b3〉 × (0), T3 = 〈b2 + b3〉 × (0), V1 = 〈b3〉 × (0), V2 = 〈b2〉 × (0),14

V3 = 〈b1〉 × (0). Then the subgraph induced by X contains a subdivision15

of K7,3 with vertex partitions {S1, S2, S3, S4, S5, S6, S7}, {T1, T2, T3} and the16

edges joining T1 and S5, T2 and S6 and T3 and S7 through the vertices U1,17

U2, and U3 respectively. Applying Lemma 1, g(Γr(R)) > 1, a contradiction.18

Hence t ≤ 2.19

Case 1. t = 2.20

Assume that m2 6= 0. Then b2i 6= 0 for some i. Without loss of generality, we21

assume that b21 6= 0. Consider the non-trivial principal ideals U1 = R1 × 〈0〉,22

U2 = 〈b1 + b2〉 × 〈0〉 , U3 = 〈b2〉 × 〈0〉 , X1 = 〈0〉 × 〈1〉 , X2 = 〈b1〉 × 〈1〉 ,23

X3 =
〈

b21
〉

× 〈1〉 , V1 = 〈b1 + b2〉 × 〈1〉 , Y1 = 〈b2〉 × 〈1〉 ,, Y2 = 〈b1〉 × 〈0〉,24

Y3 =
〈

b21
〉

× 〈0〉 of R and let X = {U1, U2, U3, X1, X2, X3, V1, Y1, Y2, Y3} ⊆25

Ω(R)∗. Let H be the subgraph induced by X in Γr(R), H ′ = H − {v1}26

and H ′′ = H ′ − {Y1, Y2, Y3}. Then H ′′ ∼= K3,3 and so g(H ′′) = 1. Since27

uixi ∈ E(Γr(R)) and H contains K3,3 as a subgraph, g(H) ≥ 1. Suppose that28

g(H)=1. Then we get g(H ′)=1. Note that |V (G′)| = 9 and |E(G′)| = 20. By29

Euler’s formula, there are 11 faces for any embedding of H ′ on the torus. Fix30

a representation of H ′ and let {F ′

1, . . . , F
′

11} be the set of faces of H ′. Again31

by Theorem 1, K3,3 has 3 faces. Let {F ′′

1 , . . . , F
′′

3 } be the set of faces of H ′′
32

obtained by deleting Y1, Y2, Y3 and all the edges incident with Y1, Y2, Y3 from33

the representation of H ′.34

Note that Y1Y2, Y1Y3 ∈ E(H ′). Hence Y1, Y2, Y3 should be inserted in the35

same face say F ′′

q of H ′′ to avoid crossing. Also note that Y1U1, Y1U2, Y1X2,36

Y1X3, Y2U3, Y2X1, Y2X3, Y3U3, Y3X1 ∈ E(G′) and therefore X1, X3, U2, U337

are in the boundary of F ′′

q . Consider the edges e1 = Y1Y2, e2 = Y1Y3, e3 =38

Y1U1, e4 = Y1U2, e5 = Y1X2, e6 = Y1X3, e7 = Y2U3, e8 = Y2X1, e9 = Y2X3, e10 =39

Y3U3, e11 = Y3X1 of H ′. If we insert Y1, Y2, Y3 and ei (1 ≤ i ≤ 11) in the face40

F ′′

q , then we obtain the Figure 8. However from Figure 8, it is clear that there41

is no way to insert the vertex Y1 into the face F ′′

q without crossing in the em-42

bedding of H ′. Therefore we get, g(H) > 1. Since H is a subgraph of g(Γr(R)),43

g(Γr(R)) > 1, a contradiction. Therefore, b2i = 0 for all i. Thus, the all non-44

trivial principal ideals of R1 are of the form: 〈b1〉, 〈b2〉, 〈b1b2〉 and 〈b1 + αb2〉,45

where α ∈ U(R1).46
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U3

X1
Y3

Y2

X3

Figure 8: F ′′

q
1

Note that |U(R1)| ≥ 2. Let α, β ∈ U(R1) with α 6= β. Suppose 〈b1 + αb2〉 6=2

〈b1 + βb2〉. Then |V (Γr(R))| > 10 and |E(Γr(R))| > 33. By Theorem 2,3

g(Γr(R)) > 1, a contradiction. Hence, 〈b1 + αb2〉 = 〈b1 + βb2〉 for all α 6=4

β ∈ U(R1) and so 〈b1〉, 〈b2〉, 〈b1b2〉 and 〈b1 + b2〉 are only non-trivial principal5

ideals of R1.6

Case 2. t = 1.7

Suppose η ≥ 7. Let A = {U1, U2, U3, U4, V1, V2, V3, V4, V5} ⊂ Ω(R)∗, where8

U1 = 〈0〉×〈1〉 ,, U2 = m
5
1×〈1〉 ,, U3 = m

6
1×〈1〉 ,, U4 = m

4
1×〈1〉 ,, V1 = m1×〈0〉,9

V2 = m
2
1 × 〈0〉, V3 = m

3
1 × 〈0〉, V4 = R1 × 〈0〉, V5 = m

4
1 × 〈0〉. Then the10

subgraph induced by A in Γr(R) contains a subgraph which is isomorphic to11

the graph given in Figure 9. By Lemma 3, g(Γr(R)) > 1, a contradiction.12

Since g(Γr(R)) = 1 and by Theorem 6, η > 4. Hence η = 5, or 6. If η = 5,13

then R1 contains exactly four non-trivial principal ideals m1, m
2
1, m

3
1 and m

4
1.14

V1 V2 V3 V4 V5

U1 U2 U3 U4

Figure 9

15
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If η = 6, then R1 contains exactly five non-trivial principal ideals m1, m
2
1, m

3
1,1

m
4
1 and m

5
1.2

Converse follows from Figure 10, 11, 12 and 13.3

4

〈0〉 × 〈0〉 × 〈1〉 , 〈0〉 × 〈0〉 × 〈1〉 ,

〈0〉 × 〈0〉 × 〈1〉 , 〈0〉 × 〈0〉 × 〈1〉 ,

m1 × 〈0〉 × 〈1〉 ,

m1 × 〈0〉 × 〈0〉

〈0〉 × 〈1〉 ,×〈0〉

R1 × 〈0〉 × 〈0〉

〈0〉 × 〈1〉 ,×〈1〉 ,

m1 × 〈1〉 ,×〈0〉

R1 × 〈0〉 × 〈1〉 ,

R1 × 〈1〉 ,×〈0〉

m1 × 〈1〉 ,×〈1〉 ,

Figure 10: Embedding of Γr(R1 × F1 × F2) in S1

5

6

Figure 11: Embedding of Γr(R1 × F1) in S1 and t = 2

〈0〉 × 〈1〉 , 〈0〉 × 〈1〉 ,

〈0〉 × 〈1〉 ,〈0〉 × 〈1〉 ,

〈b2〉 × 〈0〉

〈b1b2〉 × 〈1〉 ,

〈b1b2〉 × 〈1〉 ,

〈b2〉 × 〈0〉

〈b1〉 × 〈1〉 , 〈b1〉 × 〈1〉 ,

〈b2〉 × 〈1〉 , 〈b2〉 × 〈1〉 ,

〈b1b2〉 × 〈0〉

〈b1 + b2〉 × 〈1〉 ,

〈b1 + b2〉 × 〈0〉

R1 × 〈0〉

〈b1〉 × 〈0〉

7
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1

〈0〉 × 〈1〉 ,

m × 〈0〉

m × 〈1〉 ,

m
2 × 〈0〉

m
2 × 〈1〉 ,

m
3 × 〈0〉

m
3 × 〈1〉 ,

m
4 × 〈0〉

m
4 × 〈1〉 ,

R1 × 〈0〉

Figure 12: η = 5

Embedding of Γr(R1 × F1) in S1 and t = 1

2

m × 〈1〉 ,

〈0〉 × 〈1〉 ,

R1 × 〈0〉 R1 × 〈0〉

R1 × 〈0〉R1 × 〈0〉

m
4 × 〈0〉

m
2 × 〈0〉

m
5 × 〈1〉 ,

m × 〈0〉

m
4 × 〈1〉 ,

m
3 × 〈0〉

m
2 × 〈1〉 ,

m
3 × 〈1〉 ,

m
5 × 〈0〉

Figure 13: η = 6

3

4
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