On the Genus of Reduced Cozero-divisor Graph of Commutative Rings

Jesili E
Manonmaniam Sundaranar University
Selvakumar K
Manonmaniam Sundaranar University
Tamizh Chelvam T (\triangle tamche59@gmail.com)
Manonmaniam Sundaranar University https://orcid.org/0000-0002-1878-7847

Research Article

Keywords: planar genus, reduced cozero-divisor graph, Artinian ring
Posted Date: June 23rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1603106/v1
License: (c) (i) This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

ON THE GENUS OF REDUCED COZERODIVISOR GRAPH OF COMMUTATIVE RINGS

E. Jesili •
K. Selvakumar •
T. Tamizh Chelvam
Received: date / Accepted: date

Abstract

Let R be a commutative ring with identity and let $\Omega(R)^{*}$ be the set of all nontrivial principal ideals of R. The reduced cozero-divisor graph $\Gamma_{r}(R)$ of R is an undirected simple graph with $\Omega(R)^{*}$ as the vertex set and two distinct vertices (x) and (y) in $\Omega(R)^{*}$ are adjacent if and only if $(x) \nsubseteq(y)$ and $(y) \nsubseteq(x)$. In this paper, we characterize all classes of commutative Artinian non-local rings for which the reduced cozero-divisor graph has genus at most one.

Keywords planar genus • reduced cozero-divisor graph • Artinian ring
Mathematics Subject Classification (2000) 05C10 - 05C25 - 05C75

1 Introduction

Algebraic graph theory is an interesting and an inspiring field for the researchers to study the properties of the graphs based on an algebraic structures during the past years. The study of assigning the graph to a commutative

[^0]ring was initiated by Beck[8] in the name of coloring of commutative rings and subsequently it was modified as zero-divisor graph [4]. There are many authors studied various types of algebraic graphs in the literature. For the entire literature and developments on graphs of rings, one can refer [1]. Afkhami and Khashyarmanesh [2], defined the cozero-divisor graph of commutative rings. Let R be a commutative ring with identity 1 and let $W^{*}(R)$ be the set of all non-zero non-unit elements of R. The cozero-divisor graph $\Gamma^{\prime}(R)$ of R is an undirected simple graph with $W^{*}(R)$ as the vertex set and two distinct vertices x and y in $W^{*}(R)$ are adjacent if and only if $x \notin R y$ and $y \notin R x$, where for $z \in R, R z$ is the ideal generated by z. In [3], Wilkens et al. defined the reduced cozero-divisor graph of commutative rings. For a given R, let $\Omega(R)^{*}$ be the set of all nontrivial principal ideals of R. The reduced cozero-divisor graph of R, denoted by $\Gamma_{r}(R)$, is the simple undirected graph with $\Omega(R)^{*}$ as the vertex-set and two distinct vertices (a) and (b) are adjacent in $\Gamma_{r}(R)$ if and only if $(a) \nsubseteq(b)$ and $(b) \nsubseteq(a)$. The motive of developing the reduced cozero-divisor graph of commutative ring is to reduce the complexity of the cozero-divisor graph by eliminating the multiple generators of the same ideal to portray the graph effective. Kala et al. [10] determined all the finite commutative nonlocal rings whose reduced cozero-divisor graph is planar. In this paper, we characterize all commutative Artinian non-local rings whose reduced cozero-divisor graph has genus one. Throughout this paper, we assume that R is a finite commutative non-local ring with identity. For basic definitions on rings, one may consult [6].

2 Preliminaries

Let $G=(V, E)$ be an undirected simple graph with vertex set V and edge set E. A graph in which each pair of distinct vertices is joined by the edge is called a complete graph. A complete graph with n vertices is denoted by K_{n}. An r-partite graph is the one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset of the vertex partition. A complete r-partite graph is one in which each vertex in one subset of the partition is joined to every vertex in all other subsets of the partition. The complete bipartite graph (2-partite graph) with subsets sizes m and n is denoted by $K_{m, n}$. The girth of G is the length of a shortest cycle in G and is denoted by $\operatorname{gr}(G)$. If G has no cycles, we define the girth of G to be infinite. A graph G is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph G is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}($ see [9]).

Let n be a non-negative integer and S_{n} be an orientable surface of genus n. The genus of the graph G, denoted by $g(G)$, is the smallest n such that G embeds into S_{n}. For details on the notion of embedding of a graph in a surface,
one can see [12]. Graphs of genus 0 are planar graphs and graphs of genus 1 are called toroidal graphs. If H is a subgraph of G, then $g(H) \leq g(G)$. The following results are very useful for further reference in this paper.

Lemma 1 [12, Theorem 6.37] If $m, n \geq 2$ are integers, then $g\left(K_{m, n}\right)=$ $\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$.

Theorem 1 [12, Euler Formula] If G is a finite connected graph with n vertices, m edges and genus g, then $n-m+f=2-2 g$, where f is the number of faces created when G is minimally embedded on a surface of genus g.

Lemma 2 [7, Theorem 1] Let G be a connected graph with k blocks B_{1}, \ldots, B_{k}. Then $g(G)=\sum_{i=1}^{k} g\left(B_{i}\right)$.

Lemma 3 [5, Lemma 2.1] If G is a graph with n vertices, m edges, girth $\operatorname{gr}(G)$ and genus g, then

$$
\frac{m(g r(G)-2)}{2 g r(G)}-\frac{n}{2}+1 \leq g
$$

Theorem 2 [11, Proposition 4.4.4] Let G be a connected graph with $n \geq 3$ vertices, q edges and genus g. Then

$$
g \geq\left\lceil\frac{q}{6}-\frac{n}{2}+1\right\rceil .
$$

Theorem 3 [10, Theorem 3.1] Let $R=F_{1} \times \cdots \times F_{n}$ be a finite commutative ring with identity, where each F_{j} is a field and $n \geq 2$. Then $\Gamma_{r}(R)$ is planar if and only if R is isomorphic either $F_{1} \times F_{2} \times F_{3}$ or $F_{1} \times F_{2}$.

3 Planarity of $\Gamma_{r}(R)$

The planar characterizations of the reduced cozero-divisor graph obtained by Kala et al. [10] are given below.

Theorem 4 [10, Theorem 3.2] Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity 1 , where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq(0)$ and $n \geq 2$. Then $\Gamma_{r}(R)$ is planar if and only if $R=R_{1} \times R_{2}$ such that \mathfrak{m}_{i} is the only non-zero principal ideal in R_{i} for $i=1,2$.

Theorem 5 [10, Theorem 3.3] Let $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a finite commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and $m, n \geq 1$. Then $\Gamma_{r}(R)$ is planar if and only if R satisfies the following conditions:
(i) $n+m=2$;
(ii) There exists only two non-zero principal ideals $\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle$ in R_{1} such that $\left\langle a_{1}\right\rangle \nsubseteq\left\langle a_{2}\right\rangle$ and $\left\langle a_{2}\right\rangle \nsubseteq\left\langle a_{1}\right\rangle ;$
(iii) $\mathfrak{m}_{1}=\left\langle a_{1}\right\rangle$ is a principal ideal with nilpotency at most $k=4$ and if $k=2$, then $\left\langle a_{1}\right\rangle$ is the only principal ideal in R_{1}; if $k=3$, then $\left\langle a_{1}\right\rangle$ and $\left\langle a_{1}^{2}\right\rangle$ are the only ideals in R_{1}; if $k=3$, then $\left\langle a_{1}\right\rangle,\left\langle a_{1}^{2}\right\rangle$ and $\left\langle a_{1}^{3}\right\rangle$ are the only ideals in R_{1}.
Let us have the following lemma in order to show that when the condition (ii) in Theorem 5 is true, then the reduced cozero-divisor graph is not planar. Note that the condition (1) is nothing but $n=1$ and $m=1$ and hence $R \cong R_{1} \times F_{1}$.

Lemma 4 Let $\left(R_{1}, \mathfrak{m}_{1}\right)$ be a local ring, F_{1} be a field and let $R=R_{1} \times F_{1}$. If there exist only two non-zero principal ideals $\left\langle a_{1}\right\rangle$ and $\left\langle a_{2}\right\rangle$ of R_{1} such that $\left\langle a_{1}\right\rangle \nsubseteq\left\langle a_{2}\right\rangle$ and $\left\langle a_{2}\right\rangle \nsubseteq\left\langle a_{1}\right\rangle$, then $\Gamma_{r}(R)>0$.

Proof. Assume that there exist two non-zero principal ideals $\left\langle a_{1}\right\rangle$ and $\left\langle a_{2}\right\rangle$ of the local ring $\left(R_{1}, \mathfrak{m}_{1}\right)$ such that $\left\langle a_{1}\right\rangle \nsubseteq\left\langle a_{2}\right\rangle$ and $\left\langle a_{2}\right\rangle \nsubseteq\left\langle a_{1}\right\rangle$. Then $a_{1}, a_{2} \in$ \mathfrak{m}_{1}.

Consider the ideals $I_{1}=\left\langle a_{1}\right\rangle \times\langle 1\rangle, I_{2}=\left\langle a_{2}\right\rangle \times\langle 1\rangle, I_{3}=\langle 0\rangle \times\langle 1\rangle, I_{4}=$ $\left\langle a_{1}\right\rangle \times\langle 0\rangle, I_{5}=\left\langle a_{2}\right\rangle \times\langle 0\rangle, I_{6}=\left\langle a_{1}+a_{2}\right\rangle \times\langle 0\rangle, I_{7}=R_{1} \times\langle 0\rangle$ of R and let $Z=$ $\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}\right\} \subset \Omega(R)^{*}$. One can check that the subgraph induced by Z is a subdivision of $K_{3,3}$ with partition subsets $\left\{I_{1}, I_{2}, I_{3}\right\},\left\{I_{5}, I_{6}, I_{7}\right\}$ and a subdivision of the edge joining I_{2} and I_{5} through the vertex I_{4}. Hence $g\left(\Gamma_{r}(R)>0\right.$.

Having identified a flow in Theorem 5, we state below a characterization of all finite commutative non-local rings with identity whose $\Gamma_{r}(R)$ is planar. Hence we have the following modified characterization in Theorem 5 for $\Gamma_{r}(R)$ to be planar.

Theorem 6 Let $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a finite commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ for $1 \leq i \leq n$, F_{i} is a field for $1 \leq i \leq m$ and $m, n \geq 1$. Then $\Gamma_{r}(R)$ is planar if and only if R satisfies the following conditions:
(1) $n=m=1$;
(2) $\mathfrak{m}_{1}=\left\langle a_{1}\right\rangle$ is a principal ideal with nilpotency at most $k=4$ and
(i) if $k=2$, then $\mathfrak{m}_{1}=\left\langle a_{1}\right\rangle$ is the only principal ideal in R_{1};
(ii) if $k=3$, then R_{1} contains at most three non-zero principal ideals.

Proof. Assume that $\Gamma_{r}(R)$ is planar for $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$. Suppose $n \geq 2$. Let I and J be non-trivial principal ideals in R_{1} and R_{2} respectively. Consider the ideals $I_{1}=\langle 0\rangle \times R_{2} \times \cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle$, $I_{2}=\langle 0\rangle \times J \times \cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle, I_{3}=I \times J \times \cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle$, $I_{4}=R_{1} \times J \times \cdots \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle, I_{5}=R_{1} \times R_{2} \times \cdots \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle$, $I_{6}=I \times R_{2} \times \cdots \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle$ and let $X=\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}\right\} \subset \Omega(R)^{*}$. Then the subgraph induced by X of $\Gamma_{r}(R)$ contains $K_{3,3}$ as a subgraph with vertex partition $\left\{I_{1}, I_{2}, I_{3}\right\}$ and $\left\{I_{4}, I_{5}, I_{6}\right\}$. From this, we get that $g\left(\Gamma_{r}(R)\right) \geq$ 1 , which is a contradiction to the assumption that $\Gamma_{r}(R)$ is planar. Hence $n=1$.

Suppose $m \geq 2$. Let I be a non-trivial principal ideal in R_{1}. Consider the ideals $J_{1}=R_{1} \times\langle 0\rangle \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle, J_{2}=R_{1} \times F_{1} \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle$, $J_{3}=I \times F_{1} \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle, J_{4}=I \times\langle 0\rangle \times F_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle$, $J_{5}=\langle 0\rangle \times F_{1} \times F_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle, J_{6}=\langle 0\rangle \times\langle 0\rangle \times F_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle$ and let $Y=\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}\right\}$. Then the subgraph of $\Gamma_{r}(R)$ induced by Y contains $K_{3,3}$ as a subgraph with vertex partition $\left\{J_{1}, J_{2}, J_{3}\right\}$ and $\left\{J_{4}, J_{5}, J_{6}\right\}$. From this $g\left(\Gamma_{r}(R)\right) \geq 1$, which is a contradiction to the assumption that $\Gamma_{r}(R)$ is planar. Hence $m=1$.

From the above arguments $R=R_{1} \times F_{1}$.
Since R is finite, R_{1} is an Artinian ring and so every ideal of R_{1} is finitely generated. If \mathfrak{m}_{1} is not principal, then there exist $a_{1}, a_{2} \in \mathfrak{m}_{1}$ such that $\left\langle a_{1}\right\rangle \nsubseteq$ $\left\langle a_{2}\right\rangle$. By Lemma $4, g\left(\Gamma_{r}(R)\right) \geq 0$ and so \mathfrak{m}_{1} is principal. Thus $\mathfrak{m}_{1}=\left\langle a_{1}\right\rangle$. Since R_{1} is Artinian, \mathfrak{m}_{1} is a nil-ideal with nilpotency $k>1$ and so $\mathfrak{m}_{1}^{k}=\langle 0\rangle$, $\mathfrak{m}_{1}^{k-1} \neq\langle 0\rangle$. Suppose $k \geq 5$. Then the subgraph induced by $\left\{\langle 0\rangle \times\langle 1\rangle,\left\langle a_{1}^{4}\right\rangle \times\right.$ $\left.\langle 1\rangle,\left\langle a_{1}^{3}\right\rangle \times\langle 1\rangle,\left\langle a_{1}^{2}\right\rangle \times\langle 0\rangle,\left\langle a_{1}\right\rangle \times\langle 0\rangle, R_{1} \times\langle 0\rangle\right\}$ of $\Gamma_{r}(R)$ contains $K_{3,3}$ as a subgraph. From this, we get that $g\left(\Gamma_{r}(R)\right) \geq 1$, which is a contradiction to the assumption that $\Gamma_{r}(R)$ is planar. Hence $k \leq 4$ and so $\mathfrak{m}_{1}=\left\langle a_{1}\right\rangle$ is a principal ideal of nil-potence at most 4. The other parts of condition (2) in the statement are trivially true.

Converse follows from Figure 1. In fact, rings are considered through the nilpotent index of \mathfrak{m}_{1} and planar embeddings of the corresponding reduced cozero-divisor graphs are given in Figure 1.

Figure 1: Planar Embeddings of $\Gamma_{r}\left(R_{1} \times F_{1}\right)$

4 Genus of $\Gamma_{r}(\boldsymbol{R})$

25 The main goal of this paper is to obtain a characterization of commutative ${ }_{26}$ rings R for which $\Gamma_{r}(R)$ is toroidal. Towards this attempt, in this section, we classify all finite commutative non-local rings with identity whose cozerodivisor graph $\Gamma_{r}(R)$ is of genus one. The following theorem gives a tool to identify rings R for which $\Gamma_{r}(R)$ is not toroidal.

Theorem 7 Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$ be a commutative ring with identity where each F_{i} is a field for $1 \leq i \leq n$ and $n \geq 4$. Then $g\left(\Gamma_{r}(R)\right) \geq 2$.

Proof. Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$ and $n \geq 4$. Consider the ideals $I_{1}=$ $F_{1} \times\langle 0\rangle \times\langle 0\rangle \times\langle 0\rangle, I_{2}=\langle 0\rangle \times F_{2} \times\langle 0\rangle \times\langle 0\rangle, I_{3}=F_{1} \times\langle 0\rangle \times F_{3} \times\langle 0\rangle$, $I_{4}=\langle 0\rangle \times F_{2} \times F_{3} \times\langle 0\rangle, I_{5}=F_{1} \times\langle 0\rangle \times F_{3} \times F_{4}, I_{6}=\langle 0\rangle \times F_{2} \times\langle 0\rangle \times F_{4}$, $I_{7}=F_{1} \times F_{2} \times\langle 0\rangle \times\langle 0\rangle, I_{8}=\langle 0\rangle \times\langle 0\rangle \times\langle 0\rangle \times F_{4}, I_{9}=\langle 0\rangle \times\langle 0\rangle \times F_{3} \times F_{4}$, $I_{10}=F_{1} \times F_{2} \times F_{3} \times\langle 0\rangle, I_{11}=F_{1} \times\langle 0\rangle \times\langle 0\rangle \times F_{4}$. The subgraph induced by $A=\left\{I_{1}, I_{2}, \ldots, I_{11}\right\} \subset V\left(\Gamma_{r}(R)\right)$ of $\Gamma_{r}(R)$ contains graph H given in Figure 2 as a subgraph. Since, the graph H has two blocks, both isomorphic to $K_{3,3}$ and so by Lemma $2, g\left(\Gamma_{r}(R)\right) \geq g(H) \geq 2$.

Figure 2: A graph H with $g(H)=2$

Since an Artinian ring R is not isomorphic to product of fields, it is natural to look into the genus of $\left.\Gamma_{r}(R)\right)$ where R is an Artinian ring. The following theorems attempts to find the same. In the rest of the section, we look into the characterization for toroidal reduced cozero-divisor graph of finite commutative non-local rings with identity.

Theorem 8 Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and $n \geq 2$. Let η_{i} be the nilpotent index of \mathfrak{m}_{i}. Then $g\left(\Gamma_{r}(R)\right)=1$ if and only if R satisfies the following conditions:
(1) $n=2$;
(2) $\mathfrak{m}_{1}=\left\langle a_{1}\right\rangle$ and $\mathfrak{m}_{2}=\left\langle b_{1}\right\rangle$ for some $a_{1} \in R_{1}, b_{1} \in R_{2}$ and $1<\eta_{1}, \eta_{2} \leq 3$;
(i) if $\eta_{1}=3$ and $\eta_{2}=2$, then \mathfrak{m}_{1} and \mathfrak{m}_{1}^{2} are the only non-trivial principal ideals in R_{1} and \mathfrak{m}_{2} is the only non-trivial principal ideal in R_{2}.
(ii) if $\eta_{1}=2$ and $\eta_{2}=3$, then \mathfrak{m}_{1} is the only non-trivial principal ideal in R_{1} and \mathfrak{m}_{2} and \mathfrak{m}_{2}^{2} are the only non-trivial principal ideals in R_{2}.

Proof. Assume that $g\left(\Gamma_{r}(R)\right)=1$ for $R=R_{1} \times R_{2} \times \cdots \times R_{n}$. Suppose $n \geq 3$. Let I, J and K be non-trivial principal ideals in R_{1}, R_{2} and R_{3} respectively. Consider the ideals $J_{1}=\langle 0\rangle \times R_{2} \times K \times \cdots \times\langle 0\rangle, J_{2}=\langle 0\rangle \times J \times R_{3} \times \cdots \times\langle 0\rangle$, $J_{3}=\langle 0\rangle \times R_{2} \times R_{3} \times \cdots \times\langle 0\rangle, J_{4}=I \times J \times R_{3} \times \cdots \times\langle 0\rangle, J_{5}=I \times\langle 0\rangle \times R_{3} \times$ $\cdots \times\langle 0\rangle, J_{6}=R_{1} \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle, J_{7}=R_{1} \times R_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle, J_{8}=$ $R_{1} \times\langle 0\rangle \times K \times \cdots \times\langle 0\rangle, J_{9}=I \times R_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle$. Then the subgraph induced
by $A=\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}, J_{7}, J_{8}, J_{9}\right\}$ of $\Gamma_{r}(R)$ contains $K_{5,4}$ as a subgraph with vertex partition $\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{5}\right\}$ and $\left\{J_{6}, J_{7}, J_{8}, J_{9}\right\}$. By Lemma 1, $g\left(\Gamma_{r}(R)\right)>1$ which is a contradiction. Hence $n=2$ and so $R=R_{1} \times R_{2}$.

Theorem 4 and $g\left(\Gamma_{r}(R)\right)=1$ together imply that either R_{1} or R_{2} contains at least two non-trivial principal ideals. Since R is finite, every ideal in R_{i} is finitely generated. Let $\Phi_{1}=\left\{a_{1}, a_{2}, \ldots, a_{t}: a_{i} \in R_{1}\right.$ for $\left.1 \leq i \leq t\right\}$ and $\Phi_{2}=\left\{b_{1}, b_{2}, \ldots, b_{k}: b_{i} \in R_{2}\right.$ for $\left.1 \leq i \leq k\right\}$ be minimal generating sets of \mathfrak{m}_{1} and \mathfrak{m}_{2} respectively. Then $\left\langle a_{i}\right\rangle \nsubseteq\left\langle a_{j}\right\rangle$ for all $i \neq j$ and $\left\langle b_{i}\right\rangle \nsubseteq\left\langle b_{j}\right\rangle$ for all $i \neq j$.

Suppose $t \geq 2$ and $k \geq 2$. Let $I_{1}=R_{1} \times\left\langle b_{2}\right\rangle, I_{2}=R_{1} \times\left\langle b_{1}\right\rangle, I_{3}=$ $\left\langle a_{2}\right\rangle \times\left\langle b_{2}\right\rangle, I_{4}=\left\langle a_{2}\right\rangle \times\left\langle b_{1}\right\rangle, I_{5}=\langle 0\rangle \times\left\langle b_{2}\right\rangle, I_{6}=\langle 0\rangle \times\left\langle b_{1}\right\rangle, I_{7}=\left\langle a_{2}\right\rangle \times R_{2}$, $I_{8}=\left\langle a_{1}\right\rangle \times\left\langle b_{2}\right\rangle, I_{9}=\left\langle a_{1}\right\rangle \times\left\langle b_{1}\right\rangle, I_{10}=\langle 0\rangle \times R_{2}, I_{11}=R_{1} \times\langle 0\rangle$. Then $B=\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{9}, I_{10}, I_{11}\right\} \subset \Omega(R)^{*}$ and the subgraph induced by B contains two blocks, both isomorphic to $K_{3,3}$ as in Figure 2. By Lemma $2, g\left(\Gamma_{r}(R)\right)>1$, which is a contradiction. Hence $t=1$ or $k=1$.

Without loss of generality, let us assume that $t=1$. Suppose $k \geq 2$. Let $I_{1}=R_{1} \times\langle 0\rangle, I_{2}=R_{1} \times\left\langle b_{1}\right\rangle, I_{3}=R_{1} \times\left\langle b_{2}\right\rangle, J_{1}=\langle 0\rangle \times\left\langle b_{1}+b_{2}\right\rangle, J_{2}=\langle 0\rangle \times R_{2}$, $J_{3}=\left\langle a_{1}\right\rangle \times\left\langle b_{1}+b_{2}\right\rangle, J_{4}=\left\langle a_{1}\right\rangle \times R_{2}, K_{1}=\langle 0\rangle \times\left\langle b_{1}\right\rangle, K_{2}=\left\langle a_{1}\right\rangle \times\left\langle b_{1}\right\rangle$, $K_{3}=\left\langle a_{1}\right\rangle \times\left\langle b_{2}\right\rangle, T_{1}=\langle 0\rangle \times\left\langle b_{2}\right\rangle, T_{2}=\left\langle a_{1}\right\rangle \times\langle 0\rangle, T_{3}=R_{1} \times\left\langle b_{1}+b_{2}\right\rangle$. Since $I_{i} J_{j} \in E\left(\Gamma_{r}(R)\right)$, for $1 \leq i \leq 3,1 \leq j \leq 4$ and $i \neq j$, the subgraph H of $\Gamma_{r}(R)$ induced by $\left\{I_{1}, I_{2}, I_{3}, J_{1}, J_{2}, J_{3}, J_{4}, K_{1}, K_{2}, K_{3}, T_{1}, T_{2}, T_{3}\right\}$ contains $K_{3,4}$ as a subgraph. Using Theorem $1, g(H) \geq 1$. Suppose $g(H)=1$. Let H^{\prime} be the subgraph obtained from H by deleting the vertices T_{1}, T_{2}, T_{3} and edges $J_{2} J_{3}, I_{2} I_{3}$ and $H^{\prime \prime}$ be the subgraph obtained from H^{\prime} by deleting the vertices K_{1}, K_{2}, K_{3}. Then $H^{\prime \prime} \cong K_{3,4}$ and so $\mathrm{g}\left(H^{\prime \prime}\right)=1$. Since $g(H)=1$, we have $1=g\left(H^{\prime \prime}\right) \leq g\left(H^{\prime}\right) \leq g(H)=1$ and so $g\left(H^{\prime}\right)=1$.

Note that $\left|V\left(H^{\prime}\right)\right|=10$ and one can check that $\left|E\left(H^{\prime}\right)\right|=24$. In fact, $V\left(H^{\prime}\right)=\left\{I_{1}, I_{2}, I_{3}, J_{1}, J_{2}, J_{3}, J_{4}, K_{1}, K_{2}, K_{3}\right\}$ and $E\left(H^{\prime}\right)=\left\{I_{1} J_{1}, I_{1} J_{2}, I_{1} J_{3}\right.$, $I_{1} J_{4}, I_{1} K_{1}, I_{1} K_{2}, I_{1} K_{3}, I_{2} J_{1}, I_{2} J_{2}, I_{2} J_{3}, I_{2} J_{4}, I_{2} K_{3}, I_{3} J_{1}, I_{3} J_{2}, I_{3} J_{3}, I_{3} J_{4}$, $\left.I_{3} K_{1}, I_{3} K_{2}, J_{1} K_{2}, J_{1} K_{3}, \quad J_{2} K_{2}, J_{2} K_{3}, K_{1} K_{3}, K_{2} K_{3}\right\}$. By Theorem 1, the number of faces in any embedding of H^{\prime} in the torus shall be 16. Let $\left\{F_{1}^{\prime}, \ldots, F_{16}^{\prime}\right\}$ be the set of all faces corresponding to an embedding H^{\prime} in the torus. Since $H^{\prime \prime} \cong K_{3,4}$, by Theorem 1 , we get that there are 5 faces for any embedding of $H^{\prime \prime}$ in the torus. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{5}^{\prime \prime}\right\}$ be the set of faces of $H^{\prime \prime}$ corresponding to an embedding of $H^{\prime \prime}$ on the torus. Further the faces of $H^{\prime \prime}$ can be either one octagonal face and 4 rectangular faces, or two hexagonal faces and 3 rectangular faces. Clearly, boundaries of all faces are 4 -cycles but with two 6 -cycles or one 8 -cycle. Next, we prove $g(H)>1$ by a deletion and insertion argument.

Since $K_{1} K_{3}, K_{2} K_{3} \in E\left(H^{\prime}\right), K_{1}, K_{2}, K_{3}$ should be inserted in the same face say $F_{a}^{\prime \prime}$ of $H^{\prime \prime}$ to avoid crossing. As $I_{1} K_{1}, I_{1} K_{2}, I_{1} K_{3}, I_{2} K_{3}, I_{3} K_{1}, I_{3} K_{2}$, $J_{1} K_{2}, J_{1} K_{3}, J_{2} K_{2}, J_{2} K_{3} \in E\left(H^{\prime}\right)$, one should have $I_{1}, I_{2}, I_{3}, J_{1}, J_{2}$ in the boundary of $F_{a}^{\prime \prime}$. Consider the following edges of H^{\prime}. Let $e_{1}=K_{1} K_{3}, e_{2}=$ $K_{2} K_{3}, e_{3}=J_{1} K_{2}, e_{4}=J_{1} K_{3}, e_{5}=J_{2} K_{2}, e_{6}=J_{2} K_{3}, e_{7}=I_{1} K_{1}, e_{8}=$ $I_{1} K_{2}, e_{9}=I_{1} K_{3}, e_{10}=I_{2} K_{3}, e_{11}=I_{3} K_{1}, e_{12}=I_{3} K_{2}$. From this, it is clear ${ }^{5}$ that K_{1}, K_{2}, K_{3} should be inserted into the same face.

Suppose if we try to insert K_{2} first, then we obtain the following Figure 3. It is easy to observe from the figure that we cannot insert K_{3} without edge crossings. Thus we get a contradiction.

Figure 3

Figure 4(a): $F_{a}^{\prime \prime}$

Figure 4(b): $F_{b}^{\prime \prime}$

If we insert K_{1}, K_{2}, K_{3} and $e_{i}(1 \leq i \leq 12)$ in the octagonal face $F_{a}^{\prime \prime}$, then we obtain the Figure 4(a). However from Figure 4(a), it is clear that when we insert the vertex K_{2} into the face $F_{a}^{\prime \prime}$, then we get an edge crossing. If we insert K_{1}, K_{2}, K_{3} and $e_{i}(1 \leq i \leq 12)$ in the hexagonal face $F_{b}^{\prime \prime}$, then we obtain the Figure 4(b). However from Figure 4(b), it is clear that there is no way to insert the vertex K_{2} into the face $F_{b}^{\prime \prime}$ without crossing in the embedding of H^{\prime}. Therefore we get $g(H)>1$ and hence we get that $g\left(\Gamma_{r}(R)\right)>1$, which is a contradiction. Hence $k=1$ and so \mathfrak{m}_{1} and \mathfrak{m}_{2} are principal ideals generated by a_{1} and b_{1} respectively. Since each R_{i} is Artinian, $\mathfrak{m}_{i}^{\eta_{i}}=\langle 0\rangle, \mathfrak{m}_{i}^{\eta_{i}-1} \neq\langle 0\rangle$ for $i=1,2$.

Suppose $\eta_{i} \geq 4$ for $i=1,2$. Let $L_{1}=\mathfrak{m}_{1} \times\langle 0\rangle, L_{2}=\langle 0\rangle \times \mathfrak{m}_{2}, L_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}$, $L_{4}=\langle 0\rangle \times R_{2}, L_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{3}, L_{6}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}, L_{7}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, L_{8}=R_{1} \times \mathfrak{m}_{2}^{3}$, $L_{9}=R_{1} \times\langle 0\rangle, L_{10}=\mathfrak{m}_{1} \times R_{2},{ }_{11}=R_{1} \times \mathfrak{m}_{2}^{2}$ and $C=\left\{L_{1}, L_{2}, \ldots, L_{11}\right\} \subset$ $V\left(\Gamma_{r}(R)\right)$. Note that the subgraph induced by C contains two blocks both isomorphic to $K_{3,3}$ as in Figure 2 by taking $L_{i}=I_{i}$ for $1 \leq i \leq 11$. From this, we have $g\left(\Gamma_{r}(R)\right)>1$, which is a contradiction. Hence either $\eta_{1} \leq 3$ or $\eta_{2} \leq 3$. Without loss of generality, let us take $\eta_{1} \leq 3$.

Case 1. Assume that $\eta_{1}=3$.
Suppose $\eta_{2} \geq 3$. Consider the subgraph H of $\Gamma_{r}(R)$ induced by the nontrivial principal ideals $Y_{1}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, Y_{2}=\mathfrak{m}_{1} \times R_{2}, Y_{3}=\mathfrak{m}_{1}^{2} \times R_{2}, Y_{4}=R_{1} \times \mathfrak{m}_{2}$, $X_{1}=\langle 0\rangle \times \mathfrak{m}_{2}^{2}, X_{2}=\mathfrak{m}_{1}^{2} \times\langle 0\rangle, X_{3}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}^{2}, U_{1}=\langle 0\rangle \times \mathfrak{m}_{2}, U_{2}=\langle 0\rangle \times R_{2}$, $U_{3}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}, V_{1}=\mathfrak{m}_{1} \times\langle 0\rangle, V_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, V_{3}=R_{1} \times\langle 0\rangle, V_{4}=R_{1} \times \mathfrak{m}_{2}^{2}$. Since $U_{i} V_{j} \in E\left(\Gamma_{r}(R)\right), H$ contains $K_{3,4}$ as a subgraph. Using Theorem 1, $g(H) \geq 1$. Suppose $g(H)=1$. Let $H^{\prime}=H-\left\{X_{1}, X_{2}, X_{3}\right\}-\left\{V_{2} V_{3}, U_{2} U_{3}\right\}$ and $H^{\prime \prime}=H^{\prime}-\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$. Then $H^{\prime \prime} \cong K_{3,4}$ and so $\mathrm{g}\left(H^{\prime \prime}\right)=1$. Since $\mathrm{g}(H)=1$ and $g\left(H^{\prime \prime}\right) \leq g\left(H^{\prime}\right) \leq g(H)$, we get $g\left(H^{\prime}\right)=1$.

Note that $\left|V\left(H^{\prime}\right)\right|=11,\left|E\left(H^{\prime}\right)\right|=25$. In fact, $V\left(H^{\prime}\right)=\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}, U_{2}\right.$, $\left.U_{3}, V_{1}, V_{2}, V_{3}\right\}$ and $E\left(H^{\prime}\right)=\left\{Y_{1} Y_{3}, Y_{1} U_{2}, Y_{1} V_{3}, Y_{1} V_{4}, Y_{2} Y_{4}, Y_{2} V_{3}, Y_{2} V_{4}, Y_{3} Y_{4}\right.$, $Y_{3} V_{1}, Y_{3} V_{2}, Y_{3} V_{3}, Y_{3} V_{4}, Y_{4} U_{2}, U_{1} V_{1}, U_{1} V_{2}, U_{1} V_{3}, U_{1} V_{4}, U_{2} V_{1}, U_{2} V_{2}, U_{2} V_{3}$, $\left.U_{2} V_{4}, U_{3} V_{1}, U_{3} V_{2}, U_{3} V_{3}, U_{3} V_{4}\right\}$.

Using the fact that $n-m+f=2-2 g$, there are 14 faces in any embedding of H^{\prime} on the torus. Let $\left\{F_{1}^{\prime}, \ldots, F_{14}^{\prime}\right\}$ be the set of all faces corresponding to an embedding of H^{\prime} on the torus. Since $H^{\prime \prime}$ is isomorphic to $K_{3,4}$, by Euler's formula, any embedding of $H^{\prime \prime}$ in S_{1} has 5 faces, one octagonal face and 4 rectangular faces, or two hexagonal faces and 3 rectangular faces. Hence boundaries of faces are 4 -cycles or two 6 -cycles or one 8 -cycle. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{5}^{\prime \prime}\right\}$ be the set of all faces of $H^{\prime \prime}$ obtained by deleting $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and all the edges incident with $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ from the representation of H^{\prime}. Next, we prove $g(H)>1$ by deletion and insertion argument.

Figure 5(a): $F_{m}^{\prime \prime}$

Figure 5(b): $F_{n}^{\prime \prime}$

Since $Y_{2} Y_{4}, Y_{3} Y_{4} \in E\left(H^{\prime}\right)$, vertices Y_{2}, Y_{3}, Y_{4} should be inserted in the same face say $F_{m}^{\prime \prime}$ of $H^{\prime \prime}$ to avoid crossing. Note that $Y_{1} Y_{3}, Y_{1} V_{3}, Y_{1} V_{4}, Y_{1} U_{2}, Y_{2} V_{3}$, $Y_{2} V_{4}, Y_{3} V_{1}, Y_{3} V_{2}, Y_{3} V_{3}, Y_{3} V_{4}, Y_{4} V_{2} \in E\left(H^{\prime}\right)$ and therefore $V_{1}, V_{2}, V_{3}, V_{4}, U_{2}$ are on the boundary of $F_{m}^{\prime \prime}$. The following are edges in H^{\prime}. Let $e_{1}=Y_{2} Y_{4}, e_{2}=$ $Y_{3} Y_{4}, e_{3}=Y_{1} Y_{3}, e_{4}=Y_{1} V_{3}, e_{5}=Y_{1} V_{4}, e_{6}=Y_{1} U_{2}, e_{7}=Y_{2} V_{3}, e_{8}=Y_{2} V_{4}, e_{9}=$ $Y_{3} V_{1}, e_{10}=Y_{3} V_{2}, e_{11}=Y_{3} V_{3}, e_{12}=Y_{3} V_{4}, e_{13}=Y_{4} U_{2}$. From this, it is clear that $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ should be inserted into the same face.

If we insert $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and $e_{i}(1 \leq i \leq 13)$ in the octagonal face $F_{m}^{\prime \prime}$, then we obtain the Figure 5(a). However from Figure 5(a), it is clear that, if
we insert the vertex Y_{3} into the face $F_{m}^{\prime \prime}$, then we get an edge crossing, which is a contradiction. If we insert $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and $e_{i}(1 \leq i \leq 13)$ in the hexagonal face $F_{n}^{\prime \prime}$, then we obtain the Figure 5(b). However from Figure 5(b), it is clear that there is no way to insert the vertex Y_{3} into the faces $F_{n}^{\prime \prime}$ without crossing in the embedding of H^{\prime}. Therefore we get, $g(H)>1$ and so $g\left(\Gamma_{r}(R)\right)>1$, which is a contradiction. Hence $\eta_{2}=2$ and so $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ and \mathfrak{m}_{2} are the only non-trivial principal ideals in R_{1} and R_{2} respectively.
Case 2. $\eta_{1}=2$.
Suppose $\eta_{2} \geq 4$. Let $U_{1}=\langle 0\rangle \times \mathfrak{m}_{2}, U_{2}=\langle 0\rangle \times R_{2}, U_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}$, $U_{4}=\mathfrak{m}_{1} \times R_{2}, V_{1}=R_{1} \times\langle 0\rangle, V_{2}=R_{1} \times \mathfrak{m}_{2}^{2}, V_{3}=R_{1} \times \mathfrak{m}_{2}^{3}, Y_{1}=\langle 0\rangle \times \mathfrak{m}_{2}^{2}$, $Y_{2}=\langle 0\rangle \times \mathfrak{m}_{2}^{3}, Y_{3}=\mathfrak{m}_{1} \times\langle 0\rangle, Y_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{3}, X_{1}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, X_{2}=R_{1} \times \mathfrak{m}_{2}$ and $D=\left\{U_{1}, U_{2}, U_{3}, U_{4}, V_{1}, V_{2}, V_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, X_{1}, X_{2}\right\} \subseteq \Omega(R)^{*}$. Let G be the subgraph of $\Gamma_{r}(R)$ induced by $D, G^{\prime}=G-\left\{X_{1}, X_{2}\right\}-\left\{U_{2} U_{3}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$. Then $G^{\prime \prime} \cong K_{3,4}$ and so $g\left(K_{3,4}\right)=1$. Since $V_{i} U_{j} \in$ $E\left(\Gamma_{r}(R)\right)$ and G contains $K_{3,4}$ as a subgraph, and so $g(G) \geq 1$. If $g(G)=1$, then we get that $g\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=11,\left|E\left(G^{\prime}\right)\right|=23$. By Euler's formula, there are 12 faces when embedding G^{\prime} on the torus. Let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} through a representation of G^{\prime} on the torus. Again by Theorem 1, $K_{3,4}$ has 5 faces, one octagonal face and 4 rectangular faces, or two hexagonal faces and 3 rectangular faces. Observe that $K_{3,4}$ has boundaries which are 4 -cycles or two 6 -cycles or one 8 -cycle. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{5}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting Y_{1}, Y_{2}, Y_{3} and Y_{4} and all the edges incident with Y_{1}, Y_{2}, Y_{3} and Y_{4} from the representation of G^{\prime}.

Figure 6(a): $F_{\ell}^{\prime \prime}$

Figure 6(b): $F_{s}^{\prime \prime}$

Note that $Y_{1} Y_{3}, Y_{1} Y_{4} \in E\left(G^{\prime}\right)$. Hence Y_{1}, Y_{3}, Y_{4} should be inserted in the same face say $F_{\ell}^{\prime \prime}$ of $G^{\prime \prime}$ to avoid edge crossing. Also note that $Y_{1} V_{1}, Y_{1} V_{3}, Y_{2} V_{1}$, $Y_{2} Y_{3}, Y_{3} U_{1}, Y_{3} U_{2}, Y_{4} U_{1}, Y_{4} U_{2}, Y_{4} V_{1} \in E\left(G^{\prime}\right)$ and therefore $V_{1}, U_{1}, V_{3}, U_{2}$ are boundary vertices of $F_{\ell}^{\prime \prime}$. Consider the following edges of G^{\prime}. Let $e_{1}=Y_{1} V_{1}, e_{2}=$ $Y_{1} V_{3}, e_{3}=Y_{2} V_{1}, e_{4}=Y_{3} U_{1}, e_{5}=Y_{3} U_{2}, e_{6}=Y_{4} U_{1}, e_{7}=Y_{4} U_{2}, e_{8}=Y_{4} V_{1}, e_{9}=$ $Y_{3} Y_{2}, e_{10}=Y_{3} Y_{1}, e_{11}=Y_{1} Y_{4}$. From this, it is clear that $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ should be inserted into the same face. If we insert $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and $e_{i}(1 \leq i \leq 11)$ in the octagonal face $F_{\ell}^{\prime \prime}$ then we obtain the Figure 6(a). However from Figure 6(a),
it is clear that there is no way to insert the vertex Y_{3} into the face $F_{\ell}^{\prime \prime}$ without crossings. If we insert $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and $e_{i}(1 \leq i \leq 11)$ in the hexagonal face $F_{s}^{\prime \prime}$ then we obtain the Figure 6(b). However from Figure 6(b), it is clear that there is no way to insert the vertex Y_{3} into the faces $F_{s}^{\prime \prime}$ without crossings. Therefore we get, $g(G)>1$ and hence $g\left(\Gamma_{r}(R)\right)>1$. Hence $\eta_{2} \leq 3$. Since $g\left(\Gamma_{r}(R)\right)=1$ and by Theorem $5, \eta_{2} \neq 2$. Thus, $\eta_{2}=3$ and so \mathfrak{m}_{1} and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial principal ideals in R_{1} and R_{2} respectively.

Converse follows from Figures 7(a) and 7(b).

Figure $7(\mathrm{a}): \eta_{1}=3, \eta_{2}=2$

Figure $7(\mathrm{~b}): \eta_{1}=2, \eta_{2}=3$
Embeddings of $\Gamma_{r}\left(R_{1} \times R_{2}\right)$ in S_{1}

Theorem 9 For integers $n, m \geq 1$, let $R=R_{1} \times R_{2} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)(1 \leq i \leq n)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and each $F_{j}(1 \leq j \leq m)$ is a field. Then $g\left(\Gamma_{r}(R)\right)=1$ if and only if R satisfies one of the following conditions:
(1) $R \cong R_{1} \times F_{1} \times F_{2}$ and \mathfrak{m}_{1} is the only non-trivial principal ideal in R_{1};
(2) $R \cong R_{1} \times F_{1}$ and
(i) $\mathfrak{m}_{1}=\left\langle b_{1}, b_{2}\right\rangle$, and also $\left\langle b_{1}\right\rangle,\left\langle b_{2}\right\rangle,\left\langle b_{1} b_{2}\right\rangle$ and $\left\langle b_{1}+b_{2}\right\rangle$ are the only non-trivial principal ideals of R_{1}.
(ii) $\mathfrak{m}_{1}=\left\langle b_{1}\right\rangle$ is a principal ideal in R_{1} with nilpotency $\eta=5$ or 6 ;
(a) If $\eta=5$, then $\mathfrak{m}, \mathfrak{m}^{2}, \mathfrak{m}^{3}$ and \mathfrak{m}^{4} are the only non-trivial principal ideals of R_{1}.
(b) If $\eta=6$, then $\mathfrak{m}, \mathfrak{m}^{2}, \mathfrak{m}^{3}, \mathfrak{m}^{4}$ and \mathfrak{m}^{5} are the only non-trivial principal ideals of R_{1}.

Proof. Assume that $g\left(\Gamma_{r}(R)\right)=1$ for $R_{1} \times R_{2} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$.
Suppose $n \geq 2$. Let J_{1} and J_{2} are the non-trivial principal ideals in R_{1} and R_{2} respectively and let $X_{1}=\langle 0\rangle \times R_{2} \times \cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle, X_{2}=\langle 0\rangle \times J_{2} \times$ $\cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle, X_{3}=J_{1} \times J_{2} \times \cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle, X_{4}=J_{1} \times\langle 0\rangle \times \cdots \times$ $\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle, X_{5}=\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle \times F_{1} \times \cdots \times\langle 0\rangle, Y_{1}=R_{1} \times\langle 0\rangle \times \cdots \times$ $\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{2}=R_{1} \times J_{2} \times \cdots \times\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{3}=R_{1} \times R_{2} \times \cdots \times\langle 0\rangle \times \cdots \times\langle 0\rangle$, $Y_{4}=J_{1} \times R_{2} \times \cdots \times\langle 0\rangle \times \cdots \times\langle 0\rangle$ and $A=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\} \subseteq$ $\Omega(R)^{*}$. Then the subgraph induced by A in $\Gamma_{r}(R)$ contains $K_{5,4}$ as subgraph with vertex partitions $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$ and $\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$. By Lemma $1, g\left(\Gamma_{r}(R)\right)>1$ which is a contradiction. Hence $n=1$.

Suppose $m \geq 3$. Let I be a non-trivial principal ideal in R_{1} and let $Y_{1}=$ $R_{1} \times\langle 0\rangle \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{2}=I \times\langle 0\rangle \times F_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{3}=R_{1} \times F_{1} \times\langle 0\rangle \times$ $\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{4}=\langle 0\rangle \times F_{1} \times F_{2} \times F_{3} \times \cdots \times\langle 0\rangle, Y_{5}=I \times F_{1} \times\langle 0\rangle \times F_{3} \times \cdots \times\langle 0\rangle$, $Y_{6}=I \times F_{1} \times F_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{7}=\langle 0\rangle \times F_{1} \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle$, $Y_{8}=R_{1} \times\langle 0\rangle \times\langle 0\rangle \times F_{3} \times \cdots \times\langle 0\rangle, Y_{9}=I \times\langle 0\rangle \times\langle 0\rangle \times\langle 0\rangle \times \cdots \times\langle 0\rangle$, $Y_{10}=\langle 0\rangle \times F_{1} \times F_{2} \times\langle 0\rangle \times \cdots \times\langle 0\rangle, Y_{11}=I \times\langle 0\rangle \times\langle 0\rangle \times F_{3} \times \cdots \times\langle 0\rangle$. Then the subgraph induced by $B=\left\{Y_{1}, Y_{2}, \ldots Y_{11}\right\} \subseteq \Omega(R)^{*}$ of $\Gamma_{r}(R)$ contains H as in Figure 2 as subgraph by identifying $Y_{i}=I_{i}$ for $1 \leq i \leq 11$. This gives that $g\left(\Gamma_{r}(R)\right) \geq 2$ which is a contradiction. Hence $m \leq 2$.

Assume that $n=1$ and $m=2$ and so $R=R_{1} \times F_{1} \times F_{2}$. Since R is finite and R_{1} is an Artinian, every ideal in R_{1} is finitely generated. Let $\Phi=\left\{a_{1}, a_{2}, \ldots, a_{k}: a_{i} \in R_{1}\right.$ for $\left.1 \leq i \leq k\right\}$ be a minimal generating set for \mathfrak{m}_{1} in R_{1}. Then $k \geq 1$ and $\left\langle a_{i}\right\rangle \nsubseteq\left\langle a_{j}\right\rangle$ for all $i \neq j$.

Suppose $k \geq 2$. Let $U_{1}=\left\langle a_{1}\right\rangle \times\langle 0\rangle \times\langle 0\rangle, U_{2}=\langle 0\rangle \times\langle 0\rangle \times F_{2}, U_{3}=$ $\left\langle a_{2}\right\rangle \times\langle 0\rangle \times\langle 0\rangle, U_{4}=\langle 0\rangle \times F_{1} \times\langle 0\rangle, U_{5}=R_{1} \times\langle 0\rangle \times\langle 0\rangle, U_{6}=\langle 0\rangle \times$ $F_{1} \times F_{2}, U_{7}=\left\langle a_{1}\right\rangle \times F_{1} \times\langle 0\rangle, U_{8}=\left\langle a_{1}\right\rangle \times\langle 0\rangle \times F_{2}, U_{9}=\left\langle a_{2}\right\rangle \times\langle 0\rangle \times F_{2}$, $U_{10}=\left\langle a_{2}\right\rangle \times F_{1} \times\langle 0\rangle, U_{11}=R_{1} \times\langle 0\rangle \times F_{2}$. Then the subgraph induced by $C=\left\{U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}, U_{7}, U_{8}, U_{9}, U_{10}, U_{11}\right\} \subseteq \Omega(R)^{*}$ contains two blocks, both isomorphic to $K_{3,3}$ as in Figure 2 by taking $U_{i}=I_{i}$ for $1 \leq i \leq 11$. By Lemma $2, g\left(\Gamma_{r}(R)\right)>1$, a contradiction. Hence $k=1$ and so \mathfrak{m}_{1} is a principal ideal generated by a_{1}.

Since R_{1} is Artinian, $\mathfrak{m}_{1}^{\eta}=\langle 0\rangle, \mathfrak{m}_{1}^{\eta-1} \neq\langle 0\rangle$ for some $\eta \in \mathbb{N}$. Suppose $\eta \geq 3$. Then the subgraph induced by the $I_{1}=\left\{\mathfrak{m}_{1} \times\langle 0\rangle \times\langle 0\rangle, I_{2}=\langle 0\rangle \times\langle 0\rangle \times F_{2}, I_{3}=\right.$ $\mathfrak{m}_{1}^{2} \times\langle 0\rangle \times\langle 0\rangle, I_{4}=\langle 0\rangle \times F_{1} \times\langle 0\rangle, I_{5}=R_{1} \times\langle 0\rangle \times\langle 0\rangle, I_{6}=\langle 0\rangle \times F_{1} \times F_{2}, I_{7}=$ $\mathfrak{m}_{1} \times F_{1} \times\langle 0\rangle, I_{8}=\mathfrak{m}_{1} \times\langle 0\rangle \times F_{2}, I_{9}=\mathfrak{m}_{1}^{2} \times\langle 0\rangle \times F_{2}, I_{10}=\mathfrak{m}_{1}^{2} \times F_{1} \times\langle 0\rangle, I_{11}=$ $\left.R_{1} \times\langle 0\rangle \times F_{2}\right\}$ in $\Gamma_{r}(R)$ contains H as in Figure 2 as a subgraph. By Lemma $2, g\left(\Gamma_{r}(R)\right)>1$, a contradiction. Hence $\eta=2$ and so R_{1} contains exactly one non-trivial principal ideal m_{1}.

Assume that $n=1, m=1$ and so $R=R_{1} \times F_{1}$. Consider $\Phi=\left\{b_{1}, b_{2}, \ldots, b_{t}\right.$: $b_{i} \in R_{1}$ for $\left.1 \leq i \leq t\right\}$ be a minimal generating set for \mathfrak{m} in R_{1}. Then $t \geq 1$ and $\left\langle b_{i}\right\rangle \nsubseteq\left\langle b_{j}\right\rangle$ for all $i \neq j$.

Suppose $t \geq 3$. Let $X=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}, T_{1}, T_{2}, T_{3}, U_{1}, U_{2}, U_{3}\right\}$ $\subset V\left(\Gamma_{r}(R)\right)$, where $S_{1}=(0) \times F_{1}, S_{2}=\left\langle b_{1}\right\rangle \times F_{1}, S_{3}=\left\langle b_{2}\right\rangle \times F_{1}, S_{4}=\left\langle b_{3}\right\rangle \times F_{1}$, $S_{5}=\left\langle b_{1}+b_{2}\right\rangle \times F_{1}, S_{6}=\left\langle b_{1}+b_{3}\right\rangle \times F_{1}, S_{7}=\left\langle b_{2}+b_{3}\right\rangle \times F_{1}, T_{1}=\left\langle b_{1}+b_{2}\right\rangle \times$ $(0), T_{2}=\left\langle b_{1}+b_{3}\right\rangle \times(0), T_{3}=\left\langle b_{2}+b_{3}\right\rangle \times(0), V_{1}=\left\langle b_{3}\right\rangle \times(0), V_{2}=\left\langle b_{2}\right\rangle \times(0)$, $V_{3}=\left\langle b_{1}\right\rangle \times(0)$. Then the subgraph induced by X contains a subdivision of $K_{7,3}$ with vertex partitions $\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\},\left\{T_{1}, T_{2}, T_{3}\right\}$ and the edges joining T_{1} and S_{5}, T_{2} and S_{6} and T_{3} and S_{7} through the vertices U_{1}, U_{2}, and U_{3} respectively. Applying Lemma $1, g\left(\Gamma_{r}(R)\right)>1$, a contradiction. Hence $t \leq 2$.

Case 1. $t=2$.

Assume that $\mathfrak{m}^{2} \neq 0$. Then $b_{i}^{2} \neq 0$ for some i. Without loss of generality, we assume that $b_{1}^{2} \neq 0$. Consider the non-trivial principal ideals $U_{1}=R_{1} \times\langle 0\rangle$, $U_{2}=\left\langle b_{1}+b_{2}\right\rangle \times\langle 0\rangle, U_{3}=\left\langle b_{2}\right\rangle \times\langle 0\rangle, X_{1}=\langle 0\rangle \times\langle 1\rangle, X_{2}=\left\langle b_{1}\right\rangle \times\langle 1\rangle$, $X_{3}=\left\langle b_{1}^{2}\right\rangle \times\langle 1\rangle, V_{1}=\left\langle b_{1}+b_{2}\right\rangle \times\langle 1\rangle, Y_{1}=\left\langle b_{2}\right\rangle \times\langle 1\rangle,, Y_{2}=\left\langle b_{1}\right\rangle \times\langle 0\rangle$, $Y_{3}=\left\langle b_{1}^{2}\right\rangle \times\langle 0\rangle$ of R and let $X=\left\{U_{1}, U_{2}, U_{3}, X_{1}, X_{2}, X_{3}, V_{1}, Y_{1}, Y_{2}, Y_{3}\right\} \subseteq$ $\Omega(R)^{*}$. Let H be the subgraph induced by X in $\Gamma_{r}(R), H^{\prime}=H-\left\{v_{1}\right\}$ and $H^{\prime \prime}=H^{\prime}-\left\{Y_{1}, Y_{2}, Y_{3}\right\}$. Then $H^{\prime \prime} \cong K_{3,3}$ and so $g\left(H^{\prime \prime}\right)=1$. Since $u_{i} x_{i} \in E\left(\Gamma_{r}(R)\right)$ and H contains $K_{3,3}$ as a subgraph, $g(H) \geq 1$. Suppose that $g(H)=1$. Then we get $g\left(H^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=9$ and $\left|E\left(G^{\prime}\right)\right|=20$. By Euler's formula, there are 11 faces for any embedding of H^{\prime} on the torus. Fix a representation of H^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{11}^{\prime}\right\}$ be the set of faces of H^{\prime}. Again by Theorem $1, K_{3,3}$ has 3 faces. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{3}^{\prime \prime}\right\}$ be the set of faces of $H^{\prime \prime}$ obtained by deleting Y_{1}, Y_{2}, Y_{3} and all the edges incident with Y_{1}, Y_{2}, Y_{3} from the representation of H^{\prime}.

Note that $Y_{1} Y_{2}, Y_{1} Y_{3} \in E\left(H^{\prime}\right)$. Hence Y_{1}, Y_{2}, Y_{3} should be inserted in the same face say $F_{q}^{\prime \prime}$ of $H^{\prime \prime}$ to avoid crossing. Also note that $Y_{1} U_{1}, Y_{1} U_{2}, Y_{1} X_{2}$, $Y_{1} X_{3}, Y_{2} U_{3}, Y_{2} X_{1}, Y_{2} X_{3}, Y_{3} U_{3}, Y_{3} X_{1} \in E\left(G^{\prime}\right)$ and therefore $X_{1}, X_{3}, U_{2}, U_{3}$ are in the boundary of $F_{q}^{\prime \prime}$. Consider the edges $e_{1}=Y_{1} Y_{2}, e_{2}=Y_{1} Y_{3}, e_{3}=$ $Y_{1} U_{1}, e_{4}=Y_{1} U_{2}, e_{5}=Y_{1} X_{2}, e_{6}=Y_{1} X_{3}, e_{7}=Y_{2} U_{3}, e_{8}=Y_{2} X_{1}, e_{9}=Y_{2} X_{3}, e_{10}=$ $Y_{3} U_{3}, e_{11}=Y_{3} X_{1}$ of H^{\prime}. If we insert Y_{1}, Y_{2}, Y_{3} and $e_{i}(1 \leq i \leq 11)$ in the face $F_{q}^{\prime \prime}$, then we obtain the Figure 8. However from Figure 8, it is clear that there is no way to insert the vertex Y_{1} into the face $F_{q}^{\prime \prime}$ without crossing in the embedding of H^{\prime}. Therefore we get, $g(H)>1$. Since H is a subgraph of $g\left(\Gamma_{r}(R)\right)$, $g\left(\Gamma_{r}(R)\right)>1$, a contradiction. Therefore, $b_{i}^{2}=0$ for all i. Thus, the all nontrivial principal ideals of R_{1} are of the form: $\left\langle b_{1}\right\rangle,\left\langle b_{2}\right\rangle,\left\langle b_{1} b_{2}\right\rangle$ and $\left\langle b_{1}+\alpha b_{2}\right\rangle$, where $\alpha \in U\left(R_{1}\right)$.

Figure 8: $F_{q}^{\prime \prime}$

Note that $\left|U\left(R_{1}\right)\right| \geq 2$. Let $\alpha, \beta \in U\left(R_{1}\right)$ with $\alpha \neq \beta$. Suppose $\left\langle b_{1}+\alpha b_{2}\right\rangle \neq$ $\left\langle b_{1}+\beta b_{2}\right\rangle$. Then $\left|V\left(\Gamma_{r}(R)\right)\right|>10$ and $\left|E\left(\Gamma_{r}(R)\right)\right|>33$. By Theorem 2, $g\left(\Gamma_{r}(R)\right)>1$, a contradiction. Hence, $\left\langle b_{1}+\alpha b_{2}\right\rangle=\left\langle b_{1}+\beta b_{2}\right\rangle$ for all $\alpha \neq$ $\beta \in U\left(R_{1}\right)$ and so $\left\langle b_{1}\right\rangle,\left\langle b_{2}\right\rangle,\left\langle b_{1} b_{2}\right\rangle$ and $\left\langle b_{1}+b_{2}\right\rangle$ are only non-trivial principal ideals of R_{1}.

Case 2. $t=1$.

Suppose $\eta \geq 7$. Let $A=\left\{U_{1}, U_{2}, U_{3}, U_{4}, V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right\} \subset \Omega(R)^{*}$, where $U_{1}=\langle 0\rangle \times\langle 1\rangle,, U_{2}=\mathfrak{m}_{1}^{5} \times\langle 1\rangle,, U_{3}=\mathfrak{m}_{1}^{6} \times\langle 1\rangle,, U_{4}=\mathfrak{m}_{1}^{4} \times\langle 1\rangle,, V_{1}=\mathfrak{m}_{1} \times\langle 0\rangle$, $V_{2}=\mathfrak{m}_{1}^{2} \times\langle 0\rangle, V_{3}=\mathfrak{m}_{1}^{3} \times\langle 0\rangle, V_{4}=R_{1} \times\langle 0\rangle, V_{5}=\mathfrak{m}_{1}^{4} \times\langle 0\rangle$. Then the subgraph induced by A in $\Gamma_{r}(R)$ contains a subgraph which is isomorphic to the graph given in Figure 9. By Lemma $3, g\left(\Gamma_{r}(R)\right)>1$, a contradiction. Since $g\left(\Gamma_{r}(R)\right)=1$ and by Theorem $6, \eta>4$. Hence $\eta=5$, or 6 . If $\eta=5$, then R_{1} contains exactly four non-trivial principal ideals $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ and \mathfrak{m}_{1}^{4}.

Figure 9

If $\eta=6$, then R_{1} contains exactly five non-trivial principal ideals $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$, \mathfrak{m}_{1}^{4} and \mathfrak{m}_{1}^{5}.

Converse follows from Figure 10, 11, 12 and 13.

Figure 10: Embedding of $\Gamma_{r}\left(R_{1} \times F_{1} \times F_{2}\right)$ in S_{1}

Figure 11: Embedding of $\Gamma_{r}\left(R_{1} \times F_{1}\right)$ in S_{1} and $t=2$

Figure 12: $\eta=5$

$$
\text { Embedding of } \Gamma_{r}\left(R_{1} \times F_{1}\right) \text { in } S_{1} \text { and } t=1
$$

Figure 13: $\eta=6$

5 Acknowledgments

${ }_{6}$ This research work is supported by CSIR Emeritus Scientist Scheme (No. 21 (1123)/20/EMR-II) of Council of Scientific and Industrial Research, Govern8 ment of India through the third author.

Ethical Approval

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability Statement

The authors have not used any data for the preparation of this manuscript.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Author Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by E. Jesili and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

1. Anderson, D. F., Asir, T., Badawi, A., Tamizh Chelvam, T. : Graphs from rings, First ed., Springer Nature Switzerland (2021).
2. Afkhami, M., Khashyarmanesh, K.: The Cozero-divisor graph of a commutative ring. Southeast Asian Bull. Math. 35, 753-762 (2011).
3. Amanda Wilkens., Cain, J., Mathrwson, L.: Reduced Cozero-divisor graphs of commutative rings. Int. J. Algebra. 5 (19), 935-950 (2011).
4. Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra. 217, 434-447 (1999).
5. Archdeacon, D.: Topological graph theory: a survey. Congr. Number. 115, 5-54 (1996).
6. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra, Addison-Wesley Publishing Company (1969).
7. Battle. J., Harary. F., Kodama. Y., Youngs, J. W. T.: Additivity of the genus of a graph. Bull. Am, Math. Soc. 68, 565-568 (1962).
8. Beck, I.: Coloring of commutative rings. J. Algebra. 116 (1), 208-226 (1988).
9. Bondy, J.a., Murty, U.S.R.: Graph theory with Applications. American Elsevier, New York (1976).
10. Kavitha, S., Kala, R.: On the genus of graphs from commutative rings. AKCE Int. J. of Graphs and Combin., 14, 27-34 (2017).
11. Mohar, B., Thomaseen, C.: Graphs on Surfaces. The John Hopkins University Press, Baltimore (2001).
12. White, A.T.: Graphs, Groups and Surfaces, North Holland, Amsterdam (1973).

[^0]: This research work is supported by CSIR Emeritus Scientist Scheme (No. 21 (1123)/20/EMR-II) of Council of Scientific and Industrial Research, Government of India through the third author.
 E. Jesili

 Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
 E-mail: jesiliedward@gmail.com
 K. Selvakumar

 Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
 E-mail: selva_158@yahoo.co.in
 T. Tamizh Chelvam

 Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India.
 ORCID: 0000-0002-1878-7847
 E-mail: tamche59@gmail.com

