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Abstract Evaluating the negation of an uncertain event is an open issue. Yager[14]

suggested a transformation for evaluating the negation of a probability distribution.

He used the idea that any event whose outcome is not certain can be negated by sup-

porting the occurence of other events with no bias or prejudice for any particular out-

come. Various authors have tried to generalize the negation transformation proposed

by Yager[14]. However we need to focus on developing the basic structure of nega-

tion so that the behaviour of the process modelled by negation transformation can be

understood in detail.Yager’s negation is based on distribution of maximum entropy. If

a probability distribution is uncertain(a state other than maximum entropy), the more

iterations of negation, the more uncertain this probability event becomes eventually

converging to a homogeneous state i.e. maximum entropy. In other words, it is the

realization of the process. What is noted that during each negation, Yager’s method

ensures that the negation is intuitive, the next negation weakens the probability of the

event occuring in the previous step. Since negation involves reallocation of probabil-

ities at each step in such a way that the reallocation at each step can be determined

from the reallocation at the previous step, therefore it is clear that Yager’s negation

has various attributes similar to that of a markov chain. In the present work, we have

shown that Yager’s definition of negation can be modelled as a markov chain which

is irreducible, aperiodic with no absorbing states. Two examples has been discussed

to strengthen and support the analytical results. Also we have defined an information

generating function(IGF) whose derivative evaluated at specific points gives the mo-

ments of the self information of negation of a probability distribution. The properties

of the generating function along with its relationship with the information generating

Manpreet Kaur

E-mail: manpreet1511@rediffmail.com

Department of Mathematics, Jaypee Institute of Information Technology, Noida-201304, India.

Amit Srivastava

E-mail: amit.srivastava@jiit.ac.in *Corresponding author

Department of Mathematics, Jaypee Institute of Information Technology, Noida-201304, India.



2 1 INTRODUCTION

function proposed by S. Golomb[2] has been explored. A closer look at the properties

of IGF confirms the existence of markovian structure of Yager’s Negation.

Keywords Negation · Markov chain · Uncertainty · Probability distribution and Self

information · Information generating function(IGF)

Mathematics Subject Classification (2010) 90C70 · 90B06 · 90B50 · 90C05

1 Introduction

Affirmation and Negation are two key concepts in various forms of human commu-

nication. An affirmation form is generally used to express the validity or truth of

a assertion whereas the negative form determines its falsehood. In classical logic,

if a statement P is TRUE, then its negation ∼ P is FALSE and if a statement P

is FALSE, then its negation ∼ P is TRUE. The negation gives a different perspec-

tive for any happening in either society or nature. Two persons can examine same

situation from distinct (positive and negative) perspectives and both may have rea-

sonable justification for it. For example, various psychological studies outlines four

approaches for regulating behaviour based on the repercussions and desired objective

- positive reinforcement, negative reinforcement, positive punishment, and negative

punishment(See Table 1).

Table 1 Reinforcement vs Punishment

Reinforcement Punishment

Positive A pleasant stimulus is added to

strengthen the likelihood of a par-

ticular response.

An undesirable stimulus is added to

discourage a behaviour.

Negative An undesirable consequence is re-

moved to strengthen the likelihood

of a particular response.

A pleasant stimulus is removed to

discourage a behaviour.

Rewarding your child so that he/she performs an activity that is any case expected

from him/her is an example of positive reinforcement, whereas the seat belt reminders

installed in cars are examples of negative reinforcement(the irritating sound stops

when you perform the desired behaviour). Scolding a student when he/she misbe-

haves in school is an example of positive punishment whereas taking away privi-

leges by parents when children misbehaves proves that negative punishment can be

an effective discipline strategy. Both Reinforcement and Punishment have notable

drawbacks but it solely depends on the individual how he/she uses any of the above

approaches to his/her benefit. Anything negative doesn’t necessarily mean unpleas-

ant or unacceptable, it represents the opposite side of different aspects of life. This

opposite side of life may be fascinating, annoying and it will have lots of uncertainty

inherent in it. Also the whole idea of any assertion being either true or false is very re-

strictive. In our daily lives, we experience situations which are neither true nor false,



3

in fact we come across so many events which has uncertainty inherent in it. An event

or a sequence of events whose occurrence is not guaranteed cannot be expressed via

True false logic. The probability theory has been quite effective in handling such sit-

uations. How to express the negation(opposite side) of an uncertain event has been

a matter of discussion for so many years. If the happening of an event is uncer-

tain, then we can oppose(negate) it by using its probability. Keeping this in mind,

Yager[14] gave the basic framework of negation of a probability distribution. The

negation proposed by Yager is basically an unbiased reallocation of probabilities.

Many studies focus on determining how much uncertainty/knowledge is embedded

in negation of a probability distribution. Various authors [9], [10], [11] have shown

that more uncertainty(information) is embedded in the negation of a probability dis-

tribution. However we need to focus more on the underlying mathematical structure

of negation and its properties which can increase its applicability in various domains.

We consider the probability distribution P(3)= (p1, p2, p3) such that p1+ p2+ p3 = 1

and 0 ≤ pi ≤ 1; i = 1,2,3. For simplicity we consider the degenerate distribution

P(3) = (1,0,0). The negation of P(3) is given as P(3) = (0,0.5,0.5)(See Figure 1).

While determining the negation, p1 = 1 is equally distributed among the second and

third components which signifies that by negating(opposing) the occurrence of first

event(with probability 1), we are supporting the occurrence of second and third event

without any bias. Therefore the probability p1 = 1 is equally distributed among the

probability of second and third event. The second and third probabilities p2 = 0 and

p3 = 0, could not contribute anything to the negation. In other words, the support that

the occurrence of first event had in the original distribution has been equally divided

among the second and the third event. Applying the negation transformation again,

we obtain p(3) = (0.5,0.25,0.25). Here the first entry p1 is a result of equal contri-

butions of 0.25 and 0.25 from p2 and p3 respectively. Again the second entry p2 is a

result of equal contributions of 0 and 0.25 from p1 and p3 respectively. Similar is the

case with the third entry. Here it is interesting to note that whatever support we have

for P(3) = (p1, p2, p3) is a result of redistribution of entries of P(3) = (p1, p2, p3).
Similarly whatever support we have for p(3) = (p1, p2, p3) is a result of redistribution

of entries from P(3) = (p1, p2, p3). But the support for P(3) can be easily determined

from the support for P(3) ignoring the support for various events in P(3). Therefore

for determining the distribution at the second iteration, one needs knowledge of dis-

tribution at first iteration only(and not of the original distribution). Similar will be the

case for further iterations of the negation transformation. This shows that the negation

transformation proposed by Yager has various attributes identical to that of a markov

chain. One more question that immediately arises is that whether there exists any

generating function associated with the negation transformation. For a discrete finite

complete probability distribution P(n) = (p1, p2, . . . , pn), S. Golomb[2] introduced

the information generating function(IGF) given as

It(P(n)) =
n

∑
i=1

pt
i , t ≥ 1 (1)



4 1 INTRODUCTION

1

p1 = 1

2

p2 = 0

3

p3 = 0

1

p1 = 0

2

p2 =
1
2

3

p3 =
1
2

1

p1 =
1
2

2

p2 =
1
4

3

p3 =
1
4

1
2

12

1
4

1
4

1 4

1
4

Fig. 1 Reallocation of probabilities in (1, 0, 0)

Differentiating (1.2) at point t = 1 gives

−

(
∂

∂t
It(P(n))

)

t = 1

= −
n

∑
i=1

p
i
ln p

i
= H (P(n)) (2)

where H (P(n)) is the well known shannon entropy function[7],[8]. On further differ-

entiating (k−1) times, we will get the kth moment of the self information embedded

in P(n).
Various authors have tried to generalize the negation transformation proposed by

Yager[14]. [16], proposed negation of probability distribution based on Tsallis en-

tropy that degenerates into Yager’s negation. The concept of negation is widely ap-

plied in various fields. In [3], negation of Z-numbers is proposed. Researchers ap-

plied concept of negation in D-S evidence theory also by defining negation of BPA

based on pythagorean fuzzy numbers[5], maximum uncertainty allocation[1], real-

location[15], matrix method[4] and belief interval approach[6] and applied that in

service supplier selection system[5], medical pattern recognition[6], decision mak-

ing[13] and many more. In the present work, we have investigated the properties of

markov chain that is embedded in the negation of a probability distribution. Some

illustrative examples have been considered which shows obvious correlation between

the markov chain and negation transformation. Also we have proposed an informa-

tion generating function whose derivatives at specific points gives the moments of

the self information(information content) embedded in the negation of a probability

distribution. The discussed examples clearly indicate that the proposed generating

function has evident connection with the information generating function proposed

by S. Golomb [2].
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2 Preliminaries

2.1 Negation of a Probability distribution

Let X = {X1,X2, . . . ,Xm} be the frame of discernment(FOD), the set of all possible

hypothesis under consideration and let, P(n) = (p1, p2, . . . , pn) be a discrete finite

complete probability distribution defined on X with pi ∈ [0,1] for i = 1,2, . . . ,n and
n

∑
i=1

pi = 1. The negation of probability distribution proposed by Yager can be written

as the set P(n) = (p1, p2, . . . , pn), where

p1 =
1− p1

n−1
= 0.p1 +

1

n−1
.p2 +

1

n−1
.p3 + ....+

1

n−1
.pn

p2 =
1− p2

n−1
=

1

n−1
.p1 +0.p2 +

1

n−1
.p3 + ....+

1

n−1
.pn

.

.

.

pn =
1− pn

n−1
=

1

n−1
.p1 +

1

n−1
.p2 +

1

n−1
.p3 + ....+0.pn

which can be further written in matrix form as

P(n) =











p1

p2

.

.

.
pn











=











0 1
n−1

. . . 1
n−1

1
n−1

0 . . . 1
n−1

. . . . . .

. . . . . .

. . . . . .
1

n−1
1

n−1
. . . 0











.











p1

p2

.

.

.
pn











Here the probabilities in the set P(n) satisfies 0 ≤ pi ≤ 1 and ∑
n
i=1 pi = 1. Yager[14]

specified that there can be many distinct negations embedded in a probability distri-

bution and the above is the one that has the maximum entropy allocation among all

the possible negations. In particular let Q(n) = (N(p1),N(p2), . . . ,N(pn)) denote the

unbiased rearrangement of probabilities P(n) = (p1, p2, . . . , pn) with N(pi) ∈ [0,1]

for i = 1,2, . . . ,n and
n

∑
i=1

N(pi) = 1. Then Q(n) is called negation of P(n) if

1. pi ≤ p j gives N(pi)≥ N(p j) for all i, j = 1,2, . . . ,n
2. If the probabilities in P(n) are all equal, then all entries of Q(n) are also equal.

Further the pooled opinion of P(n) and Q(n)(Convex combination of P(n) and

Q(n)) should not reflect any additional knowledge about the occurrence of events.

3. The set Q(n) = {N(p1),N(p2), . . . ,N(pn)} should preserve the underlying math-

ematical structure of the probability distribution P.
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For better understanding of third condition,

consider a random variable X = (x1,x2,x3,x4,x5) = (10,11,12,13,14) with proba-

bilities P(5) = (p1, p2, p3, p4, p5) = (0.1,0.2,0.4,0.2,0.1).
The expectation of X is given as

EP(5)(X) =
5

∑
i=1

pixi = 10(0.1)+11(0.2)+12(0.4)+13(0.2)+14(0.1) = 12 =

x1 + x2 + x3 + x4 + x5

5
.

The Yager’s negation of P(5) is

P(5) = (p1, p2, p3, p4, p5) = (0.225,0.2,0.15,0.2,0.225) and

EP(5)(X) =
n

∑
i=1

pixi = 10(0.225)+11(0.2)+12(0.15)+13(0.2)+14(0.225) = 12 =

x1 + x2 + x3 + x4 + x5

5
.

Here the negation transformation has preserved the symmetry of P(5) since the prob-

abilities are redistributed among all the alternatives equally(basic structure of P(5)
remains unaltered). If the rearrangement is biased i.e. we distribute more to some and

less to others, then the symmetry may get disturbed. Repeatedly applying the negation

transformation on P(n) will yield the probability distribution (0.2,0.2,0.2,0.2,0.2).

2.2 Markov Chain

Markov chain gives a mathematical framework which characterizes transitions from

one state to another using some probabilistic rules. Markov chains are the stochastic

processes for which the description of the present state fully captures all the informa-

tion that could influence the subsequent developments of the process. Mathematically

a stochastic process X = {Xn : n ≥ 0} on a countable set S is a Markov Chain if, for

any i, j,k1,k2, . . .kn−1 ∈ S and n ≥ 0,

P(Xn+1 = j|Xn = i,Xn−1 = k1,Xn−2 = k2, . . . ,X0 = kn−1) = P(Xn+1 = j|Xn = i) = pi j

Here pi j is the probability representing transitions from state i to state j. These tran-

sition probabilities sum up to 1 i.e.

n

∑
j=1

pi j = 1.

for each i ∈ S. In general, we list all the transition probabilities in a matrix. This

matrix is called the stochastic matrix or state transition matrix or transition probability

matrix. For n states, the transition probability matrix is a n×n square matrix given as

P =











p11 p12 . . . p1n

p21 p22 . . . p2n

. . . . . .

. . . . . .

. . . . . .
pn1 pn2 . . . pnn










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The above matrix can be right stochastic(each row summing to one) or doubly stochas-

tic(each row and each column summing to 1). Moreover the above matrix represent

one step transitions only. The probability of transition from state i to state j in m steps

is represented as pm
i j = P(Xn+m = j/Xn = i). The m step transition probabilities can

be evaluated by multiplying P with itself m times.Further a markov chain is said to be

irreducible if transitions are possible between every pair of states(in a finite number

of steps) with positive probability. Also if the return to a particular state occurs at

equal intervals of time, then that state is said to be periodic otherwise aperiodic. A

markov chain is said to be aperiodic if all its states are aperiodic. Here it is worth

mentioning that if one of the states in an irreducible markov chain is aperiodic, then

all the other states are also aperiodic. Irreducibility and aperiodicity properties are

important for characterizing the ergodicity of a Markov chain. There is possibility

that once we reach any particular state in a markov process,then it is impossible to

leave that state i.e. pii = P(Xn+i = i/Xn = i) = 1. Such states are called absorbing

states. A markov chain is an absorbing markov chain if(a)there is atleast one absorb-

ing state among all the states characterizing the markov chain; and(b)it is possible to

go from any state to at least one absorbing state in a finite number of steps. A state

which is not absorbing is called a transient state. Further as the time index approaches

infinity, some markov chain may exhibit steady state behaviour. The steady state dis-

tribution of a markov chain is generally represented as a row vector π whose entries

sum to one and satisfies πP = π, P being the transition probability matrix. The stabil-

ity of a random process can be determined using steady state distribution and in some

cases, it describes the limiting behaviour of the markov chain. An example of doubly

stochastic matrix is permutation matrix which is very important from combinatorial

point of view. Given a permutation f of k elements, f : {1,2, . . . ,k} → {1,2, . . . ,k}
which can be represented as

(
1 2 · · · k

f (1) f (2) · · · f (k)

)

,

a permutation matrix is a k×k matrix Pf = (pi j); i, j = 1,2, . . . ,n obtained by setting

pi j = 1 if j = f (i) and pi j = 0 otherwise for all i = 1,2, . . . ,n ; or alternatively pi j = 1

if i = f ( j) and pi j = 0 otherwise for all j = 1,2, . . . ,n. It is possible to define the

negation of a probability distribution via the entries of a doubly stochastic matrix.

Consider a n×n doubly stochastic matrix A = (ai j) i.e.

n

∑
i=1

ai j =
n

∑
j=1

ai j = 1.

In particular if aii = 0 for all i = 1,2, . . . ,n and if ai j =
1

n−1
for all i 6= j; i, j =

1,2, . . . ,n, then given a probability distribution P(n) = (p1, p2, . . . , pn), we can define

its negation P(n) = (p1, p2, . . . , pn) as

pi =
n

∑
j=1

ai j pi (3)
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for all i = 1,2, . . . ,n. Since the elements in negation of a probability distribution can

be represented in terms of entries of a doubly stochastic matrix and there are many

markov chains where the transition probability matrix is doubly stochastic, it is clear

that the underlying mathematical structure of negation can be modelled in a markov

chain. In the next section, we will discuss some examples which will validate the

above discussion.

3 Negation and Markov chain

Let Yn represents the sum of n independent rolls of a fair die and Oi be the outcome on

ith die, i = 1, . . . ,n. Further let Xn denote the remainder when Yn is divided by 7. Then

Yn = O1+O2+ . . .+On =Yn−1+On and Xn = (Xn−1+Onmod7)mod7 will represent

a Markov chain with states 0,1,2,3,4,5,6. As On can take values 1,2, . . . ,6; Onmod7

can’t be zero. So transition from one state to itself is not possible and thus proba-

bility of transition from a state to itself is always zero. The probability of transition

from state any state i to state j, j = 0,1, . . . ,6, j 6= i is same as probability of get-

ting outcome On as 1,2, . . . , or 6 i.e., 1
6
. Thus transition probability matrix is given by

P =
















0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0
















Now suppose we obtain a 3 in first roll of the die. Then the initial distribution is given

by

P(1) =
(

P(X1 = 0) P(X1 = 1) P(X1 = 2) P(X1 = 3) P(X1 = 4) P(X1 = 5) P(X1 = 6)
)

=
(

0 0 0 1 0 0 0
)

Here P(1) represents the initial probability vector. The probability distribution after

one transition is given as

P(2) =
(

P(X2 = 0) P(X2 = 1) P(X2 = 2) P(X2 = 3) P(X2 = 4) P(X2 = 5) P(X2 = 6)
)

= P(1).P

=
(

0 0 0 1 0 0 0
)
















0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

0
















=
(

1
6

1
6

1
6

0 1
6

1
6

1
6

)
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It is clear that P(2) is the negation of P(1). Similarly P(3) will be the negation of P(2)
and so on. It is interesting to note that the transition probability matrix P in the above

example basically represents the negation transformation proposed by Yager. The ma-

trix P is a doubly stochastic transition probability matrix on seven states 0,1,2,3,4,5,6

and since it is regular( P2 has only strictly positive entries), the limiting distribution

is given as
(

1
7

1
7

1
7

1
7

1
7

1
7

1
7

)

For a probability distribution P(n) = (p1, p2, . . . , pn), we have 0 ≤ pi ≤ 1 ∀ i =
1,2, . . . ,n
⇒ 0 ≤ 1− pi ≤ 1

⇒ 0 ≤ 1−pi

n−1
≤ 1

n−1

⇒ 0 ≤ pi ≤
1

n−1
∀ i = 1,2, . . . ,n

Therefore

0 ≤ P(X2 = j)≤
1

6
; j = 0,1,2,3,4,5,6

i.e. all the probabilities after the second roll of the die are bounded in the interval

[0, 1
6
]. Similarly we have

pi =
pi +n−2

(n−1)2
∀ i = 1,2, . . . ,n

and
1

n−1
−

1

(n−1)2
≤ pi ≤

1

n−1
∀ i = 1,2, . . . ,n

which gives
5

36
≤ P(X3 = j)≤

1

6
; j = 0,1,2,3,4,5,6

i.e. all the probabilities after the third roll of the die are bounded in the interval [ 5
36
, 1

6
].

Similarly we can obtain bounds for further probabilities. Uncertainty increases on

repeatedly applying the negation i.e., uncertainty embedded in P(n)= (p1, p2, . . . , pn)
is less than the uncertainty embedded in P(n) = (p1, p2, . . . , pn) and so on. Therefore

using the well known Shannon entropy function

H(P(Xn)] =−
6

∑
j=0

P(Xn = j) log[P(Xn = j)] ∀ n

H[P(X1)]≤ H[P(X2)]≤ H[P(X3)]≤ . . .≤ H[P(Xn)] . . . ; ∀ n

As the time index approaches infinity, uncertainty also approaches its maximum [9],

[10], [11] and the probabilities gets constrained in intervals that keep on shrinking.

Figure 2 shows after every transition, the process appears to move on the opposite

side of the limiting distribution i.e. it flips back and forth in orientation. This is ob-

vious because every transition is actually representing the negation of the probability

vector at each step. For better understanding, we take another example. Consider an

ant performing a random walk on vertices of a complete graph K4(vertices of a tetra-

hedron). We assume that the ant begins at any of the four vertices taken at random

(say A) and at each time step moves to another vertex. Also we assume that amount



10 3 NEGATION AND MARKOV CHAIN

of time ant takes in turning is negligible as compared to the time ant takes travelling

between the vertices. Considering the graph as undirected and unweighted,the vertex

the ant moves to is chosen uniformly at random among the neighbours of the present

vertex.This random walk can be modelled as a markov chain which is irreducible,

aperiodic and whose transition probability matrix(TPM) can be written as

P =







0 1
3

1
3

1
3

1
3

0 1
3

1
3

1
3

1
3

0 1
3

1
3

1
3

1
3

0







Whatever vertex the ant starts from, it can move to any of the neighbouring vertices

with probability 1
3
. The matrix P clearly represents the transitions associated with the

negation transformation. If the ant starts at vertex A(say), then the initial probability

vector is P(1) = (1,0,0,0) and probability vector at the next step is the negation of

P(1) i.e. P(2) = P(0).P = (0, 1
3
, 1

3
, 1

3
). Similarly we can obtain P(2),P(3)... by ap-

plying the negation transformation again and again. Here P(2) can be viewed as how

one can opppose the event of ant being at vertex A(In the absence of any external

information, we can assume ant being at vertices B, C and D with equal probabili-

ties). Also the above random walk has a stationary distribution(in this case limiting

also) given as ( 1
4
, 1

4
, 1

4
, 1

4
). Here stationary distribution indicate that as the number of

transitions approach infinity, the probability of the ant being at vertices A,B,C and D

becomes identical. Clearly the movements in the random walk are uncorrelated and

unbiased. Unbiased means that the ant explores every possible direction with equal

probability i.e. there is no preferred direction. Further uncorrelated means that the

direction of movement at each step is independent of the previous directions moved;

the location at each step is dependent only on the location in the previous step. We

now summarize as follows.

The markov chain used to characterize negation of a probability distribution typically

have the following attributes.

1. The transition probability matrix used to represent negation of

P(n)= (p1, p2, . . . , pn) is a n×n doubly stochastic matrix with all diagonal entries

0 and all off - diagonal entries equal to 1
n−1

.

2. All the states are transient(no absorbing state)so that pi j < 1 for all i and j.

3. There exists a positive integer N such that PN has no zero entries, which implies

that each state may be reached from every other state in N transitions indicating

that the markov chain is regular.

4. The stationary distribution is uniform, since the markov chain is irreducible and

aperiodic.

5. If we alter any two(or more than two) entries of the initial probability vector, then

the probability vector at the subsequent iterations will get altered at those two

positions only, rest will remain unchanged. In the above example if

P(1) =
(

0−δ 0+δ 0 1 0 0 0
)

then

P(2) =
(

1
6
−δ 1

6
+δ 1

6
0 1

6
1
6

1
6

)
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(0, 16 , 16 , 16 , 16 , 16 , 16) 

(1,0,0,0,0,0,0)
 

(56 , 31216 , 31216 , 31216 , 31216 , 31216 , 31216) 

(16 , 56 , 56 , 56 , 56 , 56 , 56) 

(17 , 17 , 17 , 17 , 17 , 17 , 17) 

Fig. 2 Negation converging to uniform distribution

and so on. Mathematically we can represent negation by the recurrence relation

P(Xk+1 = j) = 1
n−1

− P(Xk= j)
n−1

;k = 1,2, . . ..

4 IGF without any bias

We again consider a discrete finite complete probability distribution

P(n) = (p1, p2, . . . , pn) and its negation P(n) = (p1, p2, . . . , pn). Then the information

generating function(IGF) corresponding to P(n) can be defined as

It(P(n)) =
n

∑
i=1

pt
i ; t ≥ 1 (4)

Here t is a real(or complex variable). Clearly I1(P(n)) = 1 and since 0 ≤ pi ≤ 1 for

all i ⇒ 0 ≤ 1−pi

n−1
≤ 1

n−1
⇒ 0 ≤ pi ≤

1
n−1

for all i therefore (4) is convergent for all

t ≥ 1.

Further we can write

It(P(n)) =
n

∑
i=1

(1−pi

n−1
)t = ( 1−p1

n−1
)t +( 1−p2

n−1
)t + ...+( 1−pn

n−1
)t ; t ≥ 1

Differentiating (4.1) at t = 1 gives

−

(
∂

∂t
It(P(n))

)

t = 1

= −
n

∑
i=1

p
i
log p

i
= H

(
P(n)

)
(5)

where H
(
P(n)

)
is the Shannon entropy of negation of a probability distribution. On

further differentiating (k−1) times, we obtain
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(−1)k
(

∂k

∂tk It(P(n))
)

t = 1
= (−1)k

n

∑
i=1

p
i
logk p

i

which represents the kth moment of the self information embedded in P(n).
Using (3), we can write (4) in terms of entries of a doubly stochastic matrix as

It(P(n)) =
n

∑
i=1

(
n

∑
j=1

ai j pi)
t ; t ≥ 1 (6)

which gives

It(P(n)) =
n

∑
i=1

(ai1 pi+ai2 pi+ ...+ain pi)
t =(a11 p1+a12 p1+ ...+a1n pn)

t +(a21 p1+

a22 p2 + ...+a2n pn)
t + ...+(an1 p1 +an2 p1 + ...+ann pn)

t ; t ≥ 1.

We now list some properties of IGF given by (4) as follows.

1. If all the entries of P(n) = (p1, p2, . . . , pn) are equal then all the entries of P(n) =
(p1, p2, . . . , pn) are also equal i.e. if pi =

1
n
∀i then pi =

1
n
∀i. In this case

It(P(n)) = n1−t = It(P(n)) ; t ≥ 1

which gives

−
(

∂
∂t

It(P(n))
)

t = 1
= log n =−

(
∂
∂t

It(P(n))
)

t = 1

2. Suppose we add k events with zero probability in the probability distribution

P(n) = (p1, p2, . . . , pn), then the revised probability distribution is P(n + k) =
(p1, p2, ..., pn,0,0, ...,0

︸ ︷︷ ︸

k−times

). In this case, the IGF given by (1) remains unaltered

since events with zero probability does not provide any information regarding

the occurrence of events[7], [8]. However the revised negation in this case is

P(n+ k) =







1−p1
n+k−1

, 1−p2
n+k−1

, ..., 1−pn

n+k−1
,

1

n+ k−1
, ...,

1

n+ k−1
︸ ︷︷ ︸

k−times







and the corresponding IGF can be written as

It(P(n+ k)) =
n+k

∑
i=1

pt
i =

pt
1 + pt

2 + ...+ pt
n +(

1

n+ k−1
)t +(

1

n+ k−1
)t + ...+(

1

n+ k−1
)t

︸ ︷︷ ︸

k−times

; t ≥ 1;k ≥ 1

= ( 1−p1
n+k−1

)t +( 1−p2
n+k−1

)t + ...+( 1−pn

n+k−1
)t + k( 1

n+k−1
)t ; t ≥ 1;k ≥ 1

The negation transformation defined by Yager[14] equally redistribute the proba-

bilities among events with zero and non zero probabilities. Here It(P(n+k)) has k

additional terms(identical also) which signifies that P(n+k) has more uncertainty

inherent in it than P(n+ k). In fact

−
(

∂
∂t

It(P(n))
)

t = 1
= −

n

∑
i=1

p
i
log p

i
=−

(
∂
∂t

It(P(n+ k))
)

t = 1
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and

−
(

∂
∂t

It(P(n+ k))
)

t = 1
= −

n+k

∑
i=1

p
i
log p

i
=

−
n

∑
i=1

p
i
log p

i
− (

1

n+ k−1
)log

1

n+ k−1
︸ ︷︷ ︸

k−times

3. Suppose we alter any two(or more) entries of P(n) = (p1, p2, . . . , pn), then only

the corresponding entries in P(n) = (p1, p2, p3, . . . , pn) will change, rest will re-

main the same. For e.g. if we alter the first and last entries in P(n) with resulting

distribution as P∗(n) = (p1−ϑ, p2, , p3, . . . , pn+ϑ), then the revised negation can

be written as

P
∗
(n) =

(
1−p1+ϑ

n−1
, 1−p2

n−1
, 1−p3

n−1
, ..., 1−pn−ϑ

n−1

)

Similar will be the case with the IGF of P(n) and its negation. In fact we can write

It(P
∗
(n)) − It(P

∗(n)) = ( 1−p1+ϑ
n−1

)t +( 1−p2+ϑ
n−1

)t − pt
1 − pt

2

4. The IGF corresponding to P(n) is given by (4). The IGF corresponding to P(n)(negation

transformation applied two times on P(n)) can be defined as

It(P(n)) =
n

∑
i=1

pi ; t ≥ 1 (7)

Here the IGF given by (4) can be determined from the redistribution of entries

in P(n). Similarly IGF given by (7) can be determined from the redistribution

of entries in P(n). Same applies for further iterations of negation transformation.

Therefore the uncertainty(information) embedded in P(n) depends solely on the

entries of P(n), uncertainty(information) embedded in P(n) depends solely on

the entries of P(n)(and not on the entries of P(n)) and so on. It is clear that the

IGF given by (4) and (7) exhibits markovian behaviour. We take an example.

Consider a random variable X = (x1,x2,x3,x4,x5) with corresponding probabili-

ties P(5) = (p(x1), p(x2), p(x3), p(x4), p(x5)) = (0.1,0.2,0.4,0.2,0.1). The IGF

corresponding to P(5) can be written as

It(P(5)) =
5

∑
i=1

pt
i = (0.1)t +(0.2)t +(0.4)t +(0.2)t +(0.1)t , t ≥ 1.

Also

It(P(5)) =
5

∑
i=1

pt
i = (0.225)t +(0.2)t +(0.15)t +(0.2)t +(0.225)t , t ≥ 1.

and

It(P(5)) =
5

∑
i=1

p
t
i = (0.19375)t +(0.2)t +(0.2125)t +(0.2)t +(0.19375)t , t ≥ 1.

In fact after applying 10 iterations of negation transformation on P(5), we will

obtain

It(P(5)) =
5

∑
i=1

p
t
i = (0.2)t +(0.2)t +(0.2)t +(0.2)t +(0.2)t , t ≥ 1.

Clearly the IGF defined by (4) and (7) has preserved the symmetry of P(5).
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5 Conclusion

In the present work, we have shown that the underlying mathematical structure of

negation of a probability distribution has many(if not all) properties identical to

that of a markov chain. In Yager’s definition, we actually redistribute the number

of cases favouring a particular outcome equally among all the other outcomes.

One disadvantage that the yager model has that it does not allow any compo-

nent of the probability distribution to retain something. Retainment is essential

in many processes and it is possible to define an unbiased model which includes

both retainment and redistribution. Suppose half of each probability is retained

and the remaining is equally distributed among the other alternatives, then the

revised probabilities are

p1 =
p1

2
+

p2 + p3 + ...+ pn

2(n−1)
=

p1

2
+

p1

2

p2 =
p2

2
+

p1 + p3 + ...+ pn

2(n−1)
=

p2

2
+

p2

2

.

.

.

pn =
pn

2
+

p1 + p2 + ...+ pn−1

2(n−1)
=

pn

2
+

pn

2

Here the set (p1, p2, . . . , pn) again satisfies 0 ≤ ∑
n
i=1 pi ≤ 1 and ∑

n
i=1 pi = 1.

The above model is totally unbiased since the amount retained and redistributed

is exactly identical for all components. Also the above model can be character-

ized by a markov chain which is irreducible, aperiodic and has a unique stationary

distribution. The only difference is that all outgoing probabilities have been di-

chotomized, while the probability of staying at the same state has been increased.

The chain performs identical transitions as the original one but stays longer at

each state. The above model can be interpreted as slowing down of the original

one. Finally we can also investigate of behaviour of underlying markov chain

when we negate any particular outcome by giving preference to some or a group

from the remaining set of outcomes. Work on these extensions of negation is in

progress and will be communicated elsewhere.
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