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Abstract 

The paper presents the comparative qualitative and quantitative analysis of twelve algorithms for training 

artificial neural networks (ANN) which predict the higher heating value (HHV) of biomass based on the 

proximate analysis (fixed carbon, volatile matter, and ash percentage). The twelve networks, with the same 

structure but different training algorithm, were fed with 318 experimental data triplets from literature for 

different biomass species and trained with 318 corresponding HHV values used for the supervised learning. Our 

comparative analysis showed that several algorithms resulted in ANNs generating outputs well correlated with 

the true measured values of the biomass HHV. Of those, Levenberg-Marquardt algorithm gives the best results 

in terms of mean squared error calculated on the training set data, while Bayesian regularization gives the best 

results in terms of regression. When applied to new datasets, unknown to the ANNs trained here, the highest 

accuracy of the HHV prediction was obtained by Conjugate Gradient, Powell/Beale Restarts training function. It 

ensured prediction based on the unknown datasets better than Levenberg-Marquardt algorithm. The described 

approach can be used for predicting the calorific values of different biomass species, including newly proposed 

ones, as well as for optimizing the HHV for both pure biomass and biomass mixtures.  
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Introduction 

The biomass is usually agricultural waste or waste in the 

food and wood industry. In the paradigm of circular 

economy, it is of high importance for the environmental 

wellbeing to explore the possibilities to use the biomass 

as an alternative, non-toxic, renewable energy source. The 

main benefit from the transition from fossil fuels to 

renewable energy sources is the reduction of greenhouse 

gas emission, the most important goal in strategies for 

sustainable development (Klass 1998). The number of 

potential plant species proposed for the use as a biomass-

based energy source is growing every day and there is a 

need for the estimation of calorific values of various types 

of biomass (Channiwala et al. 2002), (Demirbaş et al. 

2004), or for the optimal design of the system with 

renewable energy sources (Krishnamoorthy et al. 2020).  
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Among biomass sources belong plant pits, shells, 

seeds, cobs, prunings, stalks, leaves, husks, grass… 

Common biomass resources considered to produce 

briquettes and pellets like corn, wheat, sunflower, barley 

and oats, are accompanied by tobacco (Mijailović et al. 

2014), (Liang et al. 2019). Most of these resources can 

also be used to produce gaseous fuels like methane (Wang 

et al. 2019). Besides methane production, biomass is also 

employed in the production of bio-adsorbents, composts, 

insecticides, land recovery of nicotine, chlorogenic acid 

and various agents, as well as in bioremediation (Alagić 
et al. 2015). The use of agricultural waste is versatile. 

Besides the mentioned use as an alternative fuel it may be 

used for other alternative energy sources also – for 

instance, cashew apple juice and many other kinds of 

agricultural waste may be used as a substrate for 

microbial fuel cells (Priya et al. 2019). However, the use 

of biomass as an alternative energy source has its 

disadvantages. Beside the lack of standardization, the 

main drawback of alternative energy sources based on the 

biomass is their low calorific value. 

The main figure of merit for the calorific value of the 

biomass is its higher heating value (HHV), defined as the 

amount of heat released by a given quantity of fuel. In 

general, regarding the production of any fuel on an 

industrial scale, for system design and analysis, for an 

efficient generation of heat and power, the knowledge on 

the HHV value is crucial. Experimental determination of 

the HHV is most reliable, however measuring of HHV is 

not always an option and there are many efforts in 
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determining HHV otherwise. There is a correlation 

between HHV and the composition of the fuel. For 

instance, it has been shown that the fraction of oxygen 

can be a predictor of HHV of gaseous, liquid, and solid 

fuels (Merckel et al. 2017). Due to the fact that HHV is 

correlated with the composition of the raw material used 

as fuel, there are numerous mathematical models for the 

estimation of calorific values of fuels based on ultimate 

analysis, proximate analysis, physical composition, 

chemical composition or structural analysis (Krishnan et 

al. 2018), (Cordero et al. 2001), (Nhuchhen et al. 2012)... 

In these papers, as well as in the references cited therein, 

it is shown that HHV can be determined based on the 

proximate analysis, i.e. using the known percentages of 

the fixed carbon (FC), volatile materials (VM) and ash 

(ASH). Naturally these percentages, residues from the 

combustion of the raw material must sum up to 1 

(FC+VM+ASH=1). Since, the proximate analysis can be 

performed by relatively simple lab equipment, in 

comparison with ultimate elemental analysis, the 

determination of HHV based on proximate analysis is 

important. 

Apart from the analytical approach to the 

determination of HHV based on the proximate analysis, 

the characterization of the biomass in terms of its HHV 

using artificial neural networks is an active field of 

research (Olatunji et al. 2020), (Abdulsalam et al. 2020), 

(Ghugare et al. 2014)... A nonlinear correlation between 

the higher heating value and the proximate, ultimate 

analysis has been proven (Aydinli et al. 2017), (Dashti et 

al. 2019). The ANNs trained on a relatively small set of 

data sets (25, referring to rice husks) outperformed 

empirical equations when compared to experimental 

HHV data (Yu et al. 2014). Compared to other soft 

computing techniques (Multilinear regression and Gene 

Expression Programming), ANN showed better results in 

predicting HHV of hydrothermally carbonized biomass 

(Abdulsalam et al. 2020). While HHV of biochar 

predictions in the quoted reference were based on 

hydrothermal carbonization temperature, biomass 

residence time in the reactor, and the composition of 

biomass as inputs, the majority of empirical and software-

assisted correlations for the estimation of biomass fuel 

HHV reported in literature were based on their proximate, 

ultimate, and chemical analysis (Boumanchar et al.2019). 

Since it has been shown that software-assisted 

solutions, particularly ANNs, often outperform empirical 

correlations in terms of the coefficient of determination, 

R, with regard to experimentally measured HHV values, 

here we explore 12 different algorithms for training the 

ANNs aimed for the prediction of HHV based on known 

results of the proximate analysis.  

Methodology 

This section introduces briefly ANN based modelling, the 

paradigm of learning, types of training algorithms and 

figures of merit of created ANNs that will be used for 

exemplary data in subsequent sections.  

In the context of the Tom Mitchell’s definition of 

machine learning (“A computer program is said to learn 

from experience E with the respect to some class of tasks 

T and performance measure P, if its performance at tasks 

in T, as measured by P, improves with experience E”), 

this method is based on the following interpretation 

E – experience of repeating determination of HHV based 

on given percentages of FC, VM and ASH, as per the 

proximate analysis of the biomass. 

T – task of computing one HHV value based on one 

triplet of input data (FC, VM and ASH). 

P – statistical performance metrics based on minimization 

of error of the computed value compared to the true value 

proved by the experiment. 

Typical ANN learning tasks are function 

approximation, selection and clustering. The ANN here 

aims to solve nonlinear regression problem. 

What we do is create a multiple-input single output 

(MISO), forward feed backward propagation multilayer 

shallow artificial neural networks by using algorithms 

with supervised learning (contrary to deep neural 

networks predominantly used for image classification). 

Supervised learning was realized by data sets based on 

experimentally obtained data from the literature, used as 

examples of proper network behaviour (proper network 

behaviour being the combination of proximate analysis 

results at the input of ANN, and corresponding measured 

HHV value at the output of ANN). In all cases the 

network was fed (supervised) with the same sets of 

input/output data.  

Forward feed refers to the direction of data 

processing: input data feed the first hidden layer where 

each neuron is calculated in a way that a sum of weighted 

input data and a bias is subjected to an activation 

function. Every subsequent hidden layer is fed with the 

neuron outputs of the previous one and the output layer is 

fed with the neuron outputs of the last hidden layer. The 

obtained output of the ANN is evaluated with regard to 

the target values in the datasets used for supervising.  

Backward propagation refers to error computation 

throughout the network. Errors are calculated with respect 

to weights and then used for optimization of network 

performances which iteratively affects the adjustment of 

weights throughout the network. The weights are updated 

after all the inputs in the training set are applied – the 

batch training mode was chosen (opposed to incremental 

training mode where weights are updated after each of 

three inputs from the input data set is applied). 

The quality of results was evaluated through MSE and 

regression values. MSE - Mean Squared Error is the 

average squared difference between outputs generated by 

the MATLAB function and the targets (true, measured 

HHV data that correspond to inputs given to the 

MATLAB functions). Lower values are obviously better. 

The algorithm with the minimal MSE was considered the 

most appropriate. Equation for the calculation of MSE is 
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N is the number of samples (input-output pairs) used 

for training the network, t , is the target value, hear it is 

the measured value for HHV of biomass, a is the value 



 

3 

 

calculated by the ANN, e is the error, i.e. the difference 

between the target and the calculated value.  

The regression values R measures the correlation 

between the obtained ANN outputs and the targets. An R 

value of 1 means a close relationship, 0 is a random 

relationship. The expression related to the calculation of R 

is  
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The notation is the same as for the calculation of MSE 

and it is the arithmetic mean of the target values.  

After training multiple ANNs and performing the 

comparative analysis, the algorithm with the highest 

correlation between the ANN output and the target values 

was considered to be the most appropriate for the 

estimation of HHV based on the known results of the 

proximate analysis of the biomass. All networks are 

cross-validated with the set of new data, unknown prior to 

the training and learning process. 

The structure of Artificial Neural Networks 

For the comparative analysis of different algorithms for 

training the ANNs the same network structure is used but 

with different training functions.  

The structure of all twelve artificial networks is the 

same. It is shown in Fig. 1. 

 

Fig. 1 The simplified presentation of the ANN structure used in 

all our algorithms for the determination of the HHV based on 

the proximate analysis of the biomass. 

 

The ANNs use backpropagation as a learning 

algorithm. There are three inputs for all networks. They 

are the same, the results of the proximate analysis: the 

percentages of the fixed carbon (FC), volatile materials 

(VM) and ash (ASH). The networks have one hidden 

layer with 20 neurons, one output layer with 1 neuron and 

one output – the predicted HHV of the biomass. The 

number of neurons in the ANN is a parameter of interest 

in the process of choosing the network structure. If it is 

too small, the generated outputs do not converge well to 

the desired targets. If it is too high, the network predicts 

well in the framework of the given training set of data but 

may be not sufficiently good in predicting the output 

when fed with new, unknown data. The number of 

neurons in the hidden layer here was chosen as one that 

gave the best results considering outputs from ANN fed 

with known and unknown data.  

The neuron values in both the hidden and the output 

layer are calculated in a similar manner: a sum of the 

weighted values provided by the previous layer and some 

bias term is passed through an activation function. Some 

common activation functions are purely linear, and two 

sigmoid functions (logistic function and hyperbolic 

tangent, defined by expressions (3), (4) and (5), 

respectively. 

     xy =    (3)  
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In the algorithms investigated in this paper the 

following sigmoid function (Sigmoid Symmetric Transfer 

Function) was used 

1
1

2
2

−
+

= − xe
y    (6)  

The sigmoid activation function is used in the hidden 

layer and linear activation function in the output layer. 

Training algorithms 

Figure 2 shows the diagram of the training process that 

includes loading the collected data, creating and 

configuring the network, initializing the weights and 

biases, training and validating the network, storing 

outputs of interest for future usage of the network.  The 

step ‘Train ANN’ refers to training by using one of 

twelve training algorithms available in MathWorks 

MATLAB or Octave environment. Short names and the 

acronyms of the training functions are given in Table 1. 

 

Fig. 2 The workflow diagram for training our ANNs. 
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 There is no simple rule to choose the best training 

algorithm. Some are better/faster in solving regression 

problems (finding optimal function approximation) and 

some show better results in pattern recognition. The speed 

of a training algorithm depends on the complexity of the 

network structure, on the complexity of the problem 

represented by datasets, on the amount of data in datasets, 

etc. The same workflow presented in Fig 2. produces 

different results if different training functions are 

employed. Moreover, due to the nature of the training 

process itself, the same workflow presented in Fig. 2 

produces different results if employed with the same 

training function repeatedly. Multiple training can be 

performed in search for the best possible outcome of each 

separate algorithm. Here, shallow learning is performed, 

multiple training is performed manually. 

 

Table 1 Short names and the acronyms of training functions 

 

# Training function Acronym 

1 Levenberg-Marquardt LM 

2 Bayesian Regularization BR 

3 Scaled Conjugate Gradient SCG 

4 Resilient Backpropagation RP 

5 One Step Secant OSS 

6 Variable Learning Rate Gradient Descent GDX 

7 Gradient Descent Momentum GDM 

8 Gradient Descent GD 

9 Polak-Ribiére Conjugate Gradient CGP 

10 Fletcher-Powell Conjugate Gradient CGF 

11 Conjugate Gradient, Powell/Beale Restarts CBG 

12 BFGS Quasi Newton BFG 

 

A special attention was given here to generating the 

output after training the network. In this work, the output 

block in Fig. 2 refers to more than the results related to 

network performances. It also refers to the functions that 

can be used for a future ANN usage on new datasets and 

also to scripts for recreating ANN functions which may 

lead to their new versions with better performances.  

 

Input data for training ANNs 
Data sets were formed on the basis of literature data on 

measured HHV of biomass characterized by the 

proximate analysis. The final set of data consisted of 318 

training input records and corresponding 318 outputs. All 

input data, used in the process of training, testing and 

validation of ANNs, are taken from the references 

(Demirbaş et al. 2004), (Krishnan et al. 2018) and 

(Nhuchhen et al. 2012) denoted in tables with i, ii and iii, 

respectively. The whole data set along with the custom 

programmed standalone MATLAB functions is published 

at Mendeley Data repository with open access (Jakšić 
2021). As for the exemplary information in this paper, 

shortened lists of data are given in Tables 2–5.  

 

Table 2 Results of proximate analysis of biomass, measured 

values for species – straws, references are given in the main text 

 

Raw materials 

straws [Reference] 

Proximate analysis HHV 

(MJ/kg) FC VM ASH 

Corn straw [iii] 19,19 73,15 7,65 17,68 

Jawar straw [iii] 

 
15,15 75,97 8,88 17,95 

Millet straw [iii] 

 
16,45 78,28 5,27 18,05 

Paddy straw [iii] 

 
11,8 72,7 15,5 14,52 

Paddy straw [ii] 

 
11,8 72,7 15,5 14,552 

Rape straw [iii] 

 
17,81 76,54 4,65 18,34 

Rice straw [iii] 

 
13,91 65,7 20,38 14,85 

Sugar cane straw [iii] 

 
14,6 76,2 9,2 17,19 

Wheat straw [iii] 19,8 71,3 8,9 17,51 

Wheat straw [i] 19,8 71,3 8,9 17,5 

Wheat straw [ii] 23,5 63 13,5 17 

 

Table 3 results of proximate analysis of biomass, measured 

values for species – wood, references are given in the main text 

Raw materials 

wood [Reference] 

Proximate analysis HHV 

(MJ/kg) FC VM ASH 

Alabama oak waste [iii] 21,9 74,7 3,3 19,23 

Alabama oak waste [ii] 21,9 74,7 3,3 19,228 

Beech wood [iii] 24,6 74 0,4 19,2 

Beech wood [i] 24,6 74 0,7 19,9 

Block wood [iii] 14,59 83,32 2,09 18,26 

Block wood [ii] 14,59 83,32 2,09 18,261 

Eucalyptus wood [iii] 15,91 78,48 4,11 16,42 

Eucalyptus wood [ii] 21,3 75,35 3,35 18,64 

Red wood [iii] 16,1 83,5 0,4 21,03 

Red wood [ii] 19,92 79,72 0,36 20,72 

Spruce wood [iii] 28,3 70,2 1,5 20,1 

Spruce wood [i] 28,3 70,2 0,5 20,3 

Subabul wood [iii] 18,52 81,02 1,2 19,78 

Subabul wood [i] 18,52 81,02 1,2 19,777 

 



 

5 

 

Table 4 Results of proximate analysis of biomass, measured 

values for species – husks, references are given in the main text 

Raw materials 

husks [Reference] 

Proximate analysis HHV 

(MJ/kg) FC VM ASH 

Olive husk [i] 26,1 70,3 3,6 19 

Paddy husk [ii] 15,1 62 16,5 17,141 

Rice husk [iii] 16,95 61,81 21,24 14,69 

Sal seed husk [iii] 28,06 62,54 9,4 20,6 

Sal seed husk [ii] 28,06 62,54 9,4 20,06 

Olive husk [iii] 26,1 70,3 3,6 19 

Coconut husk [ii] 18 71 6 15,526 

Broad bean [iii] 8,68 85,44 5,88 16,07 

Rice husk [iii] 16,3 61,2 22,5 16,47 

 

Table 5 Results of proximate analysis of biomass, measured 

values for species – leaves, references are given in the main text 

Raw materials 

leaves [Reference] 

Proximate analysis HHV 

(MJ/kg) FC VM ASH 

Casuarina equisetifolia [iii] 16,46 73,5 3,93 18,48 

Lantana camara leaf [iii] 11,83 70,46 7,26 18,5 

Moringa oleifera [iii] 10,7 67,8 21,5 14,23 

Sena leaves [iii] 25,5 57,2 17,3 18,13 

Sena leaves [ii] 25,5 57,2 17,3 18,125 

Sugar cane leaves [iii] 14,9 77,4 7,7 17,41 

Sugar cane leaves [ii] 14,9 77,4 7,7 17,41 

Tobacco leaf [iii] 11,2 72,6 17,2 15 

 

Results and discussion 

The results related to network performances allowed for 

the quantitative comparative analysis of the utilized 

training algorithms. All our scripts designed for training 

the networks, all of the generated ANN functions, all of 

the performances of the created networks and all of the 

data used for training ANNs in this paper are stored in the 

Mendeley Data, an online data repository with open 

access (Jakšić 2021).  

Table 6 presents the results related to the mean 

squared error, MSE. Table 7 presents the results related to 

the coefficient of determination, R. 

It is often convenient to normalize the input data to the 

(−1, 1) interval in order to avoid over fitting and to ensure 

dimensional uniformity. Since input data in our case are 

of the same order of magnitude, and the network contains 

only one hidden layer with 20 neurons, the normalization 

of the data was not performed. That is the reason that in 

results gathered in Table 6 MSE for some training 

functions goes as high as 278,7862 (even higher values 

were obtained during the training process). Normalizing 

input data only for training ANNs with training functions 

that showed bad results (high MSE, low R) was not an 

option either. 

 

Table 6 Mean squared error of ANNs for  various training 

functions and for training, validation and testing datasets. 

 

Training function Training Validation Testing 

Levenberg-Marquardt 0,896034 0,155095 0,969185 

Bayesian Regularization 1,025 0 0,946005 

Scaled Conjugate 

Gradient 
1,1951 1,44898 1,09353 

Resilient Backpropagation 2,1193 2,2943 1,6687 

One Step Secant 1,4843 1,1892 1,4422 

Variable Learning Rate 

Gradient Descent 
2,4725 2,0742 5,8071 

Gradient Descent 

Momentum 
202,3968 278,7862 221,7867 

Gradient Descent 181,3289 205,3820 192,3658 

Polak-Ribiére Conjugate 

Gradient 
1,9354 1,7645 1,0998 

Fletcher-Powell 

Conjugate Gradient 
3,7774 1,7271 5,9445 

Conjugate Gradient, 

Powell/Beale Restarts 
0,9472 3,0801 1,9221 

BFGS Quasi Newton 1,1067 1,0216 1,1801 

 

Table 7 The coefficient of determination of ANNs for various 

training functions and datasets (training, validation and testing)  

 

Training function \ R Training Validation Testing 

Levenberg-Marquardt 0,936368 0,919951 0,943208 

Bayesian Regularization 0,944748 1 0,956280 

Scaled Conjugate 

Gradient 
0,93724 0,898488 0,94857 

Resilient Backpropagation 0,8513 0,8378 0,8850 

One Step Secant 0,8984 0,9195 0,9015 

Variable Learning Rate 

Gradient Descent 
0,8239 0,8547 0,4955 

Gradient Descent 

Momentum 
0 + 5,03i 0 + 5,93i 0 + 5,27i 

Gradient Descent 0 + 4,74i 0 + 5,07i 0 + 4,9i 

Polak-Ribiére Conjugate 

Gradient 
0,8652 0,8779 0,9258 

Fletcher-Powell 

Conjugate Gradient 
0,7136 0,8807 0,4772 

Conjugate Gradient, 

Powell/Beale Restarts 
0,9365 0,7745 0,8662 

BFGS Quasi Newton 0,9253 0,9313 0,9202 
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The quantitative comparative analysis of all training 

functions was made so that every step in the workflow 

shown in Figure 1 is the same for all the training 

processes (loading the same set of collected data, creating 

and configuring the network with the same structure for 

all, etc.).      

In terms of MSE calculated on a set of training data, 

the best performance (minimal MSE), had the Levenberg-

Marquardt (LM) training function. For MSE calculated 

both for sets of validation and testing data, LM ranked 

second place. Since the coefficient of determination (R) is 

related to MSE, as shown in Eq. (1) and Eq. (2), the 

ranking of LM training function is also high when R is 

used as the parameter for the comparison of training 

functions performances. For R calculated on a set of 

training data, the LM training function is ranked fourth, 

after BR, SCG and CBG training functions. For R 

calculated on a set of validation data, LM training 

function is ranked third, after BR and BFG training 

functions and for R calculated on a set of testing data, LM 

training function is also ranked third, after BR and SCG 

training functions. Figure 3 shows the regression of LM 

training function. 
 

a)  

b)  

c)  

d)  
Fig. 3 The regression of LM algorithm for different sets of data 

 

Graphical representations of regressions for all twelve 

training algorithms along with the expressions for 

regression lines in the form Output = aTarget+b, (a and b 

are coefficients), for training data, validation data, test 

data and all data, are not given here, but they are freely 

available for download from the open access Mendeley 

Data repository [20], along with all input, target data, 

designed scripts and generated ANN functions. Besides 

the results presented in Tables 6 and 7, graphical 

representations of all the training functions are given in 

Fig. 4, which shows the regression lines calculated for the 

whole set of input data.  

a)  
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Fig. 4 The coefficient of determination of ANNs calculated for 

complete data sets (training, validation and testing) for: 

a) Scaled Conjugate Gradient, b) Bayesian Regularization, 

c) Resilient Backpropagation, d) One Step Secant, e) Variable 

Learning Rate Gradient Descent, f) Gradient Descent 

Momentum, g) Gradient Descent, h) Polak-Ribiére Conjugate 

Gradient, i) Fletcher-Powell Conjugate Gradient, j) Conjugate 

Gradient with Powell/Beale Restarts and k) BFGS Quasi 

Newton training function.  
 

Based on the results in Tables 6 and 7, Gradient 

Descent (GD) and Gradient Descent Momentum (DGM) 

training algorithms are disqualified from comparisons as 

unsuitable for training an ANN that solves this regression 

problem, because the training process did not converge to 

a useful ANN. In Tables 6 and 7 corresponding MSEs are 

too high, corresponding R values are complex and in 

Figure 4 e) and 4 f) the regression line deviates greatly 

from the ideal one. 

 The comparative analysis of different algorithms for 

training an ANN aimed for time series forecasting 

implemented in the MathWorks MATLAB neural 

network toolbox, performed in (Aggarwal et al. 2015) 

resulted with the conclusion that among all factors that 

affect the ANN’s performance (amount of input data, the 

network complexity, activation function, number of 

hidden layers, number of weights and biases, etc), the 

training function is the most important factor for the 

accuracy of the network. Similarly, for predicting HHV of 

the biomass, all training functions exhibited reasonable 

accuracy, while the best performance has the one based 

on the Levenberg-Marquardt algorithm.  

(Torrecilla et al. 2008) gave the comparative analysis 

of fourteen training algorithms with advantages and 

disadvantages while solving the prediction of the moisture 

value in a drying process of olive oil mill waste. The 

recommendations in previous works, related to the 

algorithm speed and the memory usage, favour LM 

training function for small datasets emphasizing that its 

performances are relatively poor on pattern recognition 

problems which can be solved faster by using Resilient 

Backpropagation (RP) algorithm. 

In this work, in terms of MSE calculated on a set of 

training data, the Resilient Backpropagation (RP) training 

function ranked eighth out of twelve. For MSE calculated 

for sets of validation data RP ranked ninth and for MSE 

calculated for sets of testing data, RP ranked seventh. For 

R calculated on a set of training data, RP training function 

ranked eighth; for R calculated on a set of validation data, 

RP training function is ranked ninth and for R calculated 

on a set of testing data, RP training function is ranked 

seventh. This result is in accord with the fact that the 

determination of HHV based on the proximate analysis of 

biomass is a regression problem.  

The training function recommended as similar to LM 

regarding the speed of the algorithm and less storage 

demanding, is BFGS Quasi Newton training function 

(BFG). It should be remarked, however, that its 

implementation gets slower with an increasing network 

complexity. In solving the problem of HHV prediction 

based on the proximate analysis of biomass, BFG 

performance was behind the performance of LM training 

function regarding the MSE calculated on a set of training 

data: the BFG training function ranked fourth, preceded 

by LM, CGB and BR training functions. For MSE 

calculated for sets of validation data BFG ranked right 

after the LM while BR was the best and for MSE 

calculated for sets of testing data, BFG was the fifth, 

preceded by BR, LM, SCG CGP training functions. For R 

calculated on a set of training data, BFG training function 

is right behind LM; for R calculated on a set of validation 

data, BFG training function is right before LM (it is 

slightly better than LM) and for R calculated on a set of 

testing data, BFG training function is slightly weaker than 

LM alongside with CGP training function. 

Functions CGP, BFG, RP, OSS, GDX, GDM, GD, 

CGP, CGF and CGB are less common in literature on the 

prediction of HHV based on the proximate analysis of 

biomass. Probably this is at least partially due to the fact 

that they are not part of the built-in application with the 

graphical user interface in MATLAB application for 

training ANNs. In this paper it is emphasized that the 

network performances may differ depending on many 

factors and that it is advisable to explore the training 

functions alternatives to the three most commonly met in 

practical situations: LM, BR and SCG.  

 As for these three most commonly used training 

functions, LM, BR and SCG, general recommendations 

are that LM is the first choice for fast prediction of 

function fitting problems (nonlinear regression) on small 

datasets and that SCG is favourable in pattern recognition 

problems because SCG algorithm is the least memory 

demanding. Training with SCG automatically stops when 

generalization stops improving, as indicated by an 
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increase in the mean square error of the validation 

samples. BR algorithm is more time consuming, but can 

result in good generalization for difficult, small, or noisy 

datasets. Training stops according to adaptive weight 

minimization (regularization). 

The quantitative comparative analysis of 

performances of the twelve training algorithms with all 

aspects identical except the training function, performed 

in this work, resulted in following conclusions: For the 

dataset used in the process of training all twelve 

networks, the best performances were shown by Bayesian 

Regularization training function in terms of R in general 

(calculated for the training, validation and testing data) 

and in terms of MSE calculated for the validation and 

testing data. LM training function had the smallest MSE 

regarding the training set of data. 

A very important figure of merit of any ANN is its 

ability to generalize the knowledge acquired in training 

process to new, completely unknown data. Since Gradient 

Descent and Gradient Descend Momentum algorithms 

were abandoned because they did not pass performance 

evaluation, ten ANN functions generated as output in the 

training process were fed with a completely new set of 

input data in order to estimate the ability of obtained 

networks to generalize the acquired knowledge. Complete 

set of new data, used for this estimation, consisted of 237 

examples gathered from the literature on experimentally 

determined values for FC, VM, ASH and HHV. The 

literature that is used comprised five papers: (Cordero et 

al. 2001), (Alaba et al. 2020), (Conag et al. 2019), 

(Lakovic et al. 2021) and (Pattanayak et al. 2020), 

denoted with I, II, III, IV and V, respectively, in the Table 

8 where the excerpt of the full data set is given. The 

complete dataset is available from (Jakšić 2021).  

The results presented in Fig. 5 show the predicted 

HHV values obtained by ten ANNs (for 237 input triplets 

with FC, VM and ASH values) over the corresponding 

measured values of HHV related to input triplets. The 

solid red line represents the idealistic response of ANN 

when the predicted and measured values coincide. 

Symbols represent the predicted data. The quality of the 

prediction of ANNs was estimated by calculating the 

mean squared error as defined by Equation (1), the mean 

of squared differences between the predicted and the 

measured HHV values. Contrary to MSE ranking based 

on calculations over data used for training validation and 

testing of different algorithms, MSE ranking based on 

calculations over data completely new to ANNs, showed 

that the Levenberg-Marquardt training function and the 

Bayesian regularization training function were not 

superior to other training functions. The algorithm that 

generated data with the greatest correlation with the 

corresponding experimentally obtained values unknown 

to the ANN was the one based on the Conjugate Gradient, 

Powell/Beale Restarts training function (CGB). In terms 

of MSE calculated over the data unknown to ANNs, the 

ranking from the best to worst is as follows: CGB, OSS, 

CGP, CGF, GDX, RP, BR, BFG, SCG and LM. In this 

work CGB training function exhibited the best 

generalization properties – the smallest MSE of predicted 

HHV based on previously unseen triplets of input data.  

 

Table 8 Excerpt of the dataset used as input for the estimation of 

the ANN ability to generalize the acquired knowledge when 

introduced to previously unknown data. The dataset is available 

from (Jakšić 2021) and I, II, III, IV and V are defined in the 

main text. 

 

Biomass [Reference] 
FC 

(%) 

VM 

(%) 

ASH(

%) 

HHV(M

J/kg) 

Sample 128 [IV] 36.1 60.5 3.30 21.4000 

SCB-300-030 [III] 
35.1

800 

57.98

00 

4.140

0 
22.4200 

Sample 129 [IV] 
34.6

000 

62.10

00 

2.800

0 
21.6000 

SCL-300-030 [III] 
31.9

500 

51.23

00 

14.78

00 
20.8000 

SCL-250-075 [III] 
28.8

900 

56.76

00 

13.57

00 
20.5700 

SCB-350-015 [III] 
31.6

900 

62.11

00 

4.710

0 
20.6500 

Sample 131 [IV] 
33.9

000 

54.70

00 

0.400

0 
21.7800 

Bambusa-mizorameana 

[V] 

5.19

00 

65.45

00 

20.06

00 
18.4600 

SCL-250-060 [III] 
27.2

500 

58.72

00 

13.06

00 
19.8700 

SCB-250-075 [III] 
31.3

000 

63.22

00 

3.670

0 
20.3800 

SCB-250-060 [III] 
31.2

000 

63.34

00 

3.640

0 
20.3900 

Dendrocalamus-

longispathus-Kurz [V] 

4.35

00 

66.85

00 

18.80

00 
17.8600 

Sample 130 [IV] 
33.9

000 

65.70

00 

0.400

0 
21.7700 

Dendrocalamus-asper [V] 
5.19

00 

62.65

00 

15.16

00 
18.4600 

Bambusa-nutans [V] 
4.85

00 

67.95

00 

16.20

00 
18.3600 

Bambusa-vulgaris-var.-

vittata [V] 

7.70

00 

65.48

00 

17.22

00 
16.7100 

Schizostachyum-

polymorphum [V] 

4.85

00 

68.57

00 

16.58

00 
18.3600 

Dendrocalamus-

giganteus-Munro [V] 

5.70

00 

68.48

00 

16.22

00 
18.5100 

Dendrocalamus-

manipureanus [V] 

6.40

00 

67.00

00 

17.60

00 
19.3300 

Lignite char [I] 72,6 13,3 14 27,371 

Rice husk [II] 13,8 62,16 24,04 15,21 
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Fig. 5 The ANNs output over the true measured value for the 

HHV for every training algorithm: a) Levenberg-Marquardt; 

b) Scaled Conjugate Gradient; c) BFGS Quasi Newton; 

d) Bayesian regularization; e) Resilient Backpropagation; 

f) Variable Learning Rate Gradient Descent; g) Fletcher-Powell 

Conjugate Gradient; h) Polak-Ribiére Conjugate Gradient; 

i) One Step Secant; j) Conjugate Gradient, Powell/Beale 

Restarts  

 

Graphical presentation of predicted HHV generated as 

outputs of ten selected ANNs showed that the cost 

function (the quality measure of ANN, here it is MSE) 

may not be informative enough when it comes to specifics 

related to data. Graphs in Figs. 5a) – 5j) show that the 

prediction of all ANNs was poor for input triplets whose 

measured HHV was high. The analysis of the datasets 

implies that the reason for such poor prediction is that 

ANNs were not taught to predict them. In the dataset that 

consisted the examples used for training, validation and 

testing of ANNs there were no example quadruplets (FC, 

VM, ASH, HHV) with HHV higher than 22.58 MJ/kg 

(soplillo biomass example in [12]). Another reason may 

be improper use of the obtained ANNs. All example 

quadruplets used for predictive HHV modelling of HHV 

for raw and torrefied sugarcane residues in [23] were used 

here for testing the generalization capability of observed 

ANNs without teaching them to treat such examples 

(some samples of torrefied biomass have higher HHV 

than raw biomass). The examples with high biomass 

HHV, used in [11] for investigation of predicting heating 

values of lignocellulosic and carbonaceous materials from 

proximate analysis, are used here for the estimation of the 

generalization capability of observed ANNs only and not 

in the process of training, validation and testing ANNs. 

Better performances of ANNs in the period of their usage 

and exploitation are the consequence of better training. 

The training is better if it is performed by using the 

examples of the data valid for the same type of the 

biomass or data obtained under the same laboratory 

conditions, etc.  

Conclusion 

The outlined research gives the comparative qualitative 

and quantitative analysis of twelve algorithms for training 

artificial neural networks which predict the higher heating 

value (HHV) of the biomass characterized by the 

proximate analysis, i.e. by the percentages of the fixed 

carbon, volatile matter and ash. Besides the analysis of 

performances of the investigated ANNs, the comparative 

qualitative and quantitative analysis of their usage, the 

prediction results of investigated ANNs when fed with the 

unknown data, are also given. All datasets with the 

examples, as well as the scripts used in this research for 

training of ANNs are published with open access, aimed 

for future training of new ANNs. ANNs in the form of 

functions that predict HHV of biomass based on the input 

triplets of data (percentages of the fixed carbon, volatile 

matter and ash in biomass) are also published with open 

access for all algorithms. 

The algorithms investigated here were based on the 

training functions known as Levenberg-Marquardt, 

Scaled Conjugate Gradient, BFGS Quasi Newton, 

Bayesian regularization, Resilient Backpropagation, 

Variable Learning Rate Gradient Descent, Fletcher-

Powell Conjugate Gradient, Polak-Ribiére Conjugate 

Gradient, One Step Secant, Conjugate Gradient, 

Powell/Beale Restarts, Gradient Descent and Gradient 

Descent Momentum.  

Besides of rankings of algorithms in terms of mean 

squared error and in terms of the coefficient of 

determination, the paper deals with the proper usage of 

the data used for the training, validation and testing of 

ANNs. The paradigm “the bigger the data set for the 

training, validation and testing of ANN, the better its 

prediction capabilities” is broadened here with the 

conclusion: a big dataset with the examples used for the 

training, validation and testing of ANN cannot guarantee 

its generalization if ANN’s usage goes beyond the 

dataset’s domain. 

The presented results are a step toward our ultimate 

goal is to design a software tool for the calorific 

characterization of the biomass, easy to use and available 

for download from an open access data repository.   
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Figures

Figure 1

The simpli�ed presentation of the ANN structure used in all our algorithms for the determination of the
HHV based on the proximate analysis of the biomass.



Figure 2

The work�ow diagram for training our ANNs.



Figure 3

The regression of LM algorithm for different sets of data



Figure 4

The coe�cient of determination of ANNs calculated for complete data sets (training, validation and
testing) for: a) Scaled Conjugate Gradient, b) Bayesian Regularization, c) Resilient Backpropagation, d)
One Step Secant, e) Variable Learning Rate Gradient Descent, f) Gradient Descent Momentum, g)
Gradient Descent, h) Polak-Ribiére Conjugate Gradient, i) Fletcher-Powell Conjugate Gradient, j) Conjugate
Gradient with Powell/Beale Restarts and k) BFGS Quasi Newton training function.



Figure 5

The ANNs output over the true measured value for the HHV for every training algorithm: a) Levenberg-
Marquardt; b) Scaled Conjugate Gradient; c) BFGS Quasi Newton; d) Bayesian regularization; e) Resilient
Backpropagation; f) Variable Learning Rate Gradient Descent; g) Fletcher-Powell Conjugate Gradient; h)
Polak-Ribiére Conjugate Gradient; i) One Step Secant; j) Conjugate Gradient, Powell/Beale Restarts
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