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Abstract

This paper proposes a method to mitigate two major issues of Adversarial Transformation Networks
(ATN) including the low diversity and the low quality of adversarial examples. In order to deal with the
first issue, this research proposes a stacked convolutional autoencoder based on pattern to generalize
ATN. This proposed autoencoder could support different patterns such as all-feature pattern, border
feature pattern, and class model map pattern. In order to deal with the second issue, this paper presents
an algorithm to improve the quality of adversarial examples in terms of L0-norm and L2-norm. This
algorithm employs an adversarial feature ranking heuristics such as JSMA and COI to prioritize adver-
sarial features. To demonstrate the advantages of the proposed method, comprehensive experiments
have been conducted on the MNIST dataset and the CIFAR-10 dataset. For the first issue, the pro-
posed autoencoder can generate diverse adversarial examples with the average success rate above 99%.
For the second issue, the proposed algorithm could not only improve the quality of adversarial examples
significantly but also maintain the average success rate. In terms of L0-norm, the proposed algorithm
could decrease from hundreds of adversarial features to one adversarial feature. In terms of L2-norm,
the proposed algorithm could reduce the average distance considerably. These results show that the
proposed method is capable of generating high-quality and diverse adversarial examples in practice.

Keywords: adversarial example, robustness, stacked convolutional autoencoder, targeted attack

1 Introduction

Convolutional Neural Networks (CNNs) are usu-
ally applied to classify images (Sultana et al.,
2019). From a labeled dataset consisting of images
and their labels, CNNs would be trained to learn
important features on this dataset. The trained

CNNs are able to predict the label of new images
in the same category as the labeled dataset. How-
ever, even CNNs achieve high accuracy on the
training set and the test set, the resulting models
could be failed when applied in practice (Moosavi-
Dezfooli et al., 2015; Pei et al., 2017; Su et al.,
2017). A reasonable explanation for this issue
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is that the training process only focuses on the
correctness of the CNNs in terms of accuracy,
precision, or F1-score. Meanwhile, inputs from
real-world situations could contain perturbation,
which can be rarely existed on the training set
and the test set. An attacker could create pertur-
bational inputs to interfere the trained models to
behave unexpectedly. Therefore, it is important to
evaluate the behaviors of CNNs in the presence of
perturbation.

Robustness is one of the popular measure-
ments to evaluate the quality of CNNs in the
presence of perturbation (Zhang et al., 2019;
IEEE, 1990; Carlini and Wagner, 2016; Baluja
and Fischer, 2017). To ensure the robustness of
CNNs, adversarial example generation is a pop-
ular approach. There are two main types of this
approach including untargeted attack and tar-
geted attack (Carlini and Wagner, 2016; Akhtar
et al., 2021). These two types of attacks aim to
modify a correctly predicted input intentionally.
For simplicity, this research names this correctly
predicted input attacking image. The output of
an attack is an adversarial example classified as a
target label. The target label is any label except
for the ground truth label. The main difference
between the untargeted attack and the targeted
attack is the target label. While the target label
is not fixed in the untargeted attack, the target
label is a specific label in the targeted attack.

In the targeted attack, autoencoder-based
attack is a promising approach to generate adver-
sarial examples. This approach was firstly pro-
posed in Adversarial Transformation Networks
(ATN) (Baluja and Fischer, 2017). The general
idea is that an autoencoder is trained from an
attacked model, a set of attacking images, and
a target label. The main advantage of ATN is
that the trained autoencoder could be reused for
generating adversarial examples from new attack-
ing images with extremely low computational
cost. However, ATN has two major disadvantages
including the low diversity of adversarial examples
and the low quality of adversarial examples.

Firstly, ATN usually generates adversarial
examples with low diversity. In particular, this
method only modifies all features to produce
adversarial examples from attacking images.
However, some specific regions of attacking
images could be modified to generate adver-
sarial examples while keeping the remaining

regions unchanged. For example, on the MNIST
dataset (Lecun et al., 1998b), some regions of the
attacking images may contain small noises due to
the low quality of cameras. These noises could look
like dust in human eyes. In DeepXplore (Pei et al.,
2017), they claim that testing domain-specific con-
straints is important. They could add some black
rectangles to any regions of the attacking images
to generate adversarial examples.

Secondly, ATN usually generates low-quality
adversarial examples. The purpose of ATN is to
generate adversarial examples close to the attack-
ing images. Their differences are measured by
using L2-norm. These distances are small if the
adversarial examples are close to their correspond-
ing attacking images. A stacked convolutional
autoencoder can be utilized to generate adversar-
ial examples from the attacking images. However,
some layers on the stacked convolutional autoen-
coder may be non-linear such as ReLU activation.
The adversarial examples may be significantly dif-
ferent from their corresponding attacking images.
In the worst case, perturbations are added to all
features of attacking images. As a result, the cor-
responding adversarial examples could be very dif-
ferent from their corresponding attacking images.
Therefore, it is worthwhile to improve the quality
of adversarial examples generated by ATN.

This paper proposes a method named Pattern-
based Adversarial Tranformation Autoencoder
(pbATN) to address the two issues. Firstly, to deal
with the low diversity of adversarial examples, a
pattern-based stacked convolutional autoencoder
named pbATNG is proposed in pbATN. pbATNG is a
generalization of ATN. Similarly to ATN, the gen-
erated adversarial examples should be close to the
attacking images in terms of L2-norm. The pro-
posed pbATNG aims to modify a set of specific fea-
tures, which is defined by a pattern. This research
suggests several patterns including all-feature pat-
tern, border feature pattern, and class model map
pattern. Among these patterns, all-feature pattern
is used in ATN. Secondly, to improve the quality of
adversarial examples, an improvement algorithm
named pbATNI is proposed in pbATN. pbATNI is
able to improve the quality of adversarial exam-
ples in terms of both L0-norm and L2-norm. The
main idea of pbATNI is to restore redundantly
adversarial features in an adversarial example to
the original values in the corresponding attack-
ing image. An adversarial feature is redundant
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if it does not contribute to the decision of the
attacked model, which is a predicted label. This
research proposes to use JSMA (Papernot et al.,
2015) and COI (Gopinath et al., 2019) to rank
features in terms of their impact on the deci-
sion of the attacked model. As a result, L0-norm
and L2-norm between the improved adversarial
example and its attacking image could be reduced
significantly.

The rest of this paper is organized as follows.
Section 2 delivers the overview of related research
on adversarial example generation. Section 3 pro-
vides the background of CNNs and the tar-
geted attack. The overview of pbATN is shown in
Section 4. Next, Section 5 presents the experi-
ment to demonstrate the advantages of pbATN.
The discussion is presented in Section 6. Finally,
the conclusion is described in Section 7.

2 Related Works

This section presents an overview of related
researches as follows. Firstly, some well-known
adversarial example generation methods for CNNs
are presented. Secondly, outstanding researches on
finding saliency map of CNNs are discussed.

Adversarial example generation: Many
adversarial example generation methods are pro-
posed to evaluate the robustness of CNNs. These
methods would modify an attacking image to gen-
erate an adversarial example. In the case of the
targeted attack, the label of this adversarial exam-
ple is a specific label differing from the ground
truth label of the attacking image. In the case of
the untargeted attack, the label of this adversar-
ial example is any label except the ground truth
label of the attacking image.

In order to evaluate the quality of an
adversarial example, L0-norm, L2-norm, and
L∞-norm are commonly used. Several pop-
ular methods using these metrics could be
referred to box-constrained L-BFGS (Szegedy
et al., 2014), DeepFool (Moosavi-Dezfooli et al.,
2015), targeted FGSM (Goodfellow et al., 2015),
Carnili-Wagner (Carlini and Wagner, 2016),
BIS (Kurakin et al., 2016), ATN (Baluja and
Fischer, 2017), MI-FGSM (Dong et al., 2017),
and DeepCheck (Gopinath et al., 2019). Apart
from DeepCheck, the other methods could mod-
ify any features of attacking images to generate
adversarial examples. The attacked CNNs would

predict these adversarial examples incorrectly. In
the worst case, perturbations are added to all fea-
tures of attacking images. Concerning DeepCheck,
this method focuses on modifying the top-n most
important features of attacking images to gen-
erate adversarial examples. DeepCheck is capa-
ble of modifying top-1 feature on the attacking
image to produce adversarial examples success-
fully. Inspired by the mentioned methods, our
proposed pbATN uses L0-norm and L2-norm met-
ric to evaluate the quality of adversarial examples.
To generate diverse and high-quality adversar-
ial examples, pbATN includes two phases named
pbATNG and pbATNI . pbATNG is used to generate
diverse adversarial examples. pbATNG generalizes
ATN to modify a set of specific features on
the attacking image. The experiments show that
pbATNG could generate adversarial examples with
high average success rate. pbATNI is employed
to improve quality of adversarial examples. The
experiments show that pbATNI could help to mod-
ify one feature on attacking images to generate
adversarial examples. This result is competitive
to DeepCheck. Additionally, pbATNI could be
used to improve the adversarial quality of adver-
sarial examples generated by targeted FGSM,
box-constrained L-BFGS, and Carnili-Wagner.

Besides these aforementioned distance metrics,
some other works propose additional metrics to
generate adversarial examples. These metrics use
the internal states of CNNs (i.e., state of neu-
rons, state of layers, etc.). This research calls
them state-based metric. These state-based met-
rics could be combined with Lp-norm. Several
state-based metrics could be referred to adver-
sarial distance (Papernot et al., 2015), average
robustness (Moosavi-Dezfooli et al., 2015), adver-
sarial severity (Bastani et al., 2016), adversar-
ial frequency (Bastani et al., 2016), point-wise
robustness (Bastani et al., 2016), local/global
adversarial robustness (Katz et al., 2017), neu-
ron coverage (Pei et al., 2017), a set of multi-
granularity testing criteria (Ma et al., 2018),
Lipschitz continuity (Sun et al., 2018b), sign-sign
coverage (Sun et al., 2018a), and probabilistic
robustness (Mangal et al., 2019).

Some other works do not use Lp-norm or state-
based metric to generate adversarial examples.
Instead, these works focus on generating natural
adversarial examples. They argue that in real-
ity, many natural adversarial examples could be



very different from their corresponding attacking
images. Using Lp-norm or state-based metric usu-
ally do not satisfy this argument. Brown et al.
(2018) firstly propose an approach to generate
unrestricted adversarial examples. Their approach
does not consider Lp-norm to generate adversarial
examples. Alcorn et al. (2018) apply natural trans-
formation such as changing viewpoint, lighting,
coloring. Naderi et al. (2021) propose a method
based on geometric transformations to gener-
ate natural perturbations. Their transformations
include scaling, rotation, shear, and translation
which are performed on the attacking image.

Saliency map generation: Saliency map
generation draws a great interest from research
groups. Saliency map describes the impact of fea-
tures on the classification of a CNN (Simonyan
et al., 2013; Gu and Tresp, 2019). The saliency
map usually has the same size as the input of
the CNN.

Simonyan et al. (2013) clarify two main types
of saliency map known as image-specific class
saliency map and class model map. An image-
specific class saliency map represents the influence
of features of a specific image on the classifica-
tion of the CNN. Differing from image-specific
class saliency map, a class model map could be
used to explain how the CNN classifies a set of
images as a specific label. Similarly to the idea of
Simonyan et al. (2013), Zeiler and Fergus (2013)
use a multi-layered deconvolutional network to
produce a saliency map. Springenberg et al. (2014)
propose guided backpropagation, which is bet-
ter than gradient-based technique proposed in
Simonyan et al. (2013). Papernot et al. (2015)
propose Jacobian-based saliency map attack to
construct image-specific class saliency map of an
input image. Cao et al. (2015) present a novel
feed-back convolutional neural network architec-
ture to capture the high-level semantic concepts of
an image, then project the obtained information
into salience maps. Zhang et al. (2016) introduce
excitation backprop to enhance the limitation
of gradient-based technique. Fong and Vedaldi
(2017) attempt to find the portion of an image,
which has the largest impact on the decision of the
CNN. Unlike other saliency map generation meth-
ods, their method explicitly modifies the attacking
image to generate an adversarial example. The
modification of this attacking image could be
interpretable to human observers. Dabkowski and

Gal (2017) develop a fast saliency map detection
method to train a model. This model could pre-
dict a saliency map for any attacking image with a
low computational cost. Yu et al. (2018) propose a
method to predict saliency map of an input image
with low computation cost.

The relationship between saliency map and
adversarial example is discussed in many works.
Fong and Vedaldi (2017) and Gu and Tresp (2019)
claim that saliency maps can be used to explain
adversarial example classifications. Tsipras et al.
(2019) find out that more robust models have
more interpretable saliency maps. Etmann et al.
(2019) quantify the relationship between saliency
map and attacking image by analyzing their align-
ment. They conclude that the more linear CNN
has the stronger connection between its robustness
and alignment.

Due to the existence of the relationship
between saliency map and adversarial exam-
ple, our research utilizes the class model
map (Simonyan et al., 2013) as a pattern in
pbATNG. By generating a class model map of
an attacking image set, pbATNG could find top-n
important features which have the largest impact
on the classification of the CNN. pbATNG then
modifies these important features to generate
adversarial examples.

3 Background

3.1 Convolutional Neural Network

Definition 1 (Convolutional Neural Network (CNN))
A typical CNN M is a tuple (L,W ,θ), where L =
{Lk | k ∈ {0, ..., h − 1}} is a set of layers (i.e.,
a convolutional layer, a pooling layer, an activation
layer, sampling layer, a fully-connected layer, etc.),
h is the number of layers, W ⊆ L × L is a set of
layers, and θ = {θ0, θ1, ..., θh−1} represents a set of
activation functions.

The activation function of the k-th layer,
denoted by θk, is either linear or non-linear. The
most popular activation functions are softmax,
sigmoid, hyperbolic tangent, ReLU, and leaky
ReLU (Goodfellow et al., 2016). The activation
function of the output layer is softmax. A typical
CNN M can be illustrated in a simple repre-
sentation as M(x) = Lh−1 ◦ Lh−2 ◦ ... ◦ L0,
where ◦ presents linear connection, x is the input
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Fig. 1: Architecture of LeNet-5 (Lecun et al., 1998a).

image, L0 is the input layer, and Lh−1 is the
output layer. The input image has the shape
(width, height, channel). The number of features
on L0 is computed by width×height×channel. If
the input image is 2D, the size of channel is one.
If the input image is 3D, the size of channel is
three corresponding to red, green, and blue chan-
nel. Other CNNs could have more complicated
representation such as ResNet (He et al., 2015)
and Inception (Szegedy et al., 2015).

For example, Fig. 1 illustrates the architecture
of LeNet-5 (Lecun et al., 1998a), which is a CNN
model. This model is designed for handwritten
and machine-printed character recognition. This
model comprises 8 layers. Convolutional layers are
labeled Ci, where i is layer index. Sub-sampling
layers and fully-connected layers are labeled Si and
Fi, respectively. The shape of the input image is
(32, 32, 1). Layer C1 is a convolutional layer with
6 feature maps of size 28 × 28. Layer S2 is a sub-
sampling layer with 6 feature maps of size 14 × 14.
Layer C3 is a convolutional layer with 16 feature
maps of size 10 × 10. Layer S4 is a sub-sampling
layer with 16 feature maps of size 5 × 5. Layer
C5 is a convolutional layer with 120 feature maps.
The size of a feature map in this layer is 1 × 1.
Layer C5 is then flatten into fully-connected layer
F6 with 84 hidden units. The output layer has 10
outputs in which each output is corresponding to
a digit.

Let X be the training set containing a set of
images. Let k be the number of labels. The pre-
dicted probability vector of an attacking image
xw×h×s ∈ X is denoted by M(x) ∈ R

k, where
w is corresponding to width, h is corresponding
to height, and c is corresponding to channel. The
probability of label c is denoted by Mc(x) ∈ R. Let
∂Mc(x)

∂xi
be the gradient of the c-th output neuron

with respect to the feature xi. The ground truth
label of x is denoted by ytrue.

3.2 Targeted Attack

If an input image is used in the targeted attack,
this research uses the name attacking image alter-
natively. The attacking image must be predicted
correctly by the attacked CNN. Let x′ be an
adversarial example generated from the attack.
The predicted probability vector of x′ is denoted
by M(x′).

The key idea of a targeted attack method
is that perturbations are added to an attacking
image to generate an adversarial example. This
adversarial example is classified as a target label
y∗ 6= ytrue. The neuron corresponding to the
target label on the output layer is called tar-
get neuron. In this research, a modified feature
is called adversarial feature. This research defines
two types of perturbations, namely mandatory
perturbation and redundant perturbation:

Definition 2 (Adversarial feature) Given an attack-
ing image x and its corresponding adversarial example
x′, a feature x′i on the adversarial example x′ is
adversarial if and only if x′i 6= xi.

Definition 3 (Mandatory perturbation) A pertur-
bation β is mandatory if and only if x is predicted
correctly by the attacked model and (x+ β) produces
an adversarial example classified as the target label y∗.

Definition 4 (Redundant perturbation) A perturba-
tion β is redundant if and only if x and (x + β) are
classified as the ground true label.



A feature containing redundant perturbation
is called redundantly adversarial feature. Redun-
dant perturbations play an important role in our
proposed pbATNI . We would find out redundant
perturbation and remove them from the adversar-
ial examples. This leads to an improvement in
the quality of adversarial examples. The detail of
pbATNI is presented in Section 4.2.

3.2.1 Success Rate

In addition to Lp-norm, success rate is a common
metric to evaluate the effectiveness of an adversar-
ial example generation method. Let sr(M) ∈ [0, 1]
be a success rate of an adversarial example gen-
eration method used to attack a CNN model M.
Ideally, an adversarial example generation method
should produce a set of adversarial examples with
small Lp-norm and achieve high success rate. The
success rate of an adversarial example generation
method is computed as follows:

sr(M) =

∑

x
′ ✶(argmax(M(x′)) = y∗)

| Xattack |
(1)

where Xattack is a set of attacking images, x′ is
an adversarial example generated by modifying
an attacking sample on Xattack, and ✶ is a indi-
cator function. Function ✶(argmax(M(x′)) = y∗)
returns 1 if the model M classifies x′ as the target
label y∗, and returns 0 otherwise.

3.2.2 Lp-norm

Given an attacking image x, its adversarial exam-
ple x′ should be similar to the corresponding
attacking image. Lp-norm is one popular way to
measure the difference between an attacking image
and its corresponding adversarial example. The
equation of Lp-norm is defined as follows:

Lp(x,x′) = (
∑

i

(xi − x′
i)

p)
1

p (2)

The popular metrics of Lp-norm are L0-norm
(p=0), L2-norm (p=2), and L∞-norm (p=∞).
L0-norm is known as Hamming distance, which
is interpreted as the number of different features
when comparing x and x′. L0(x,x′) ≈ 0 if and
only if both x and x′ are very similar. L2-norm
is known as Euclidean distance. It is calculated
as the Euclidean distance from x to x′. L∞-norm

measures the maximum change in value of features
in every axis of the coordinate.

There are a wide range of attack methods using
Lp-norm. Targeted FGSM (Goodfellow et al.,
2015) and BIM (Kurakin et al., 2016) gener-
ate adversarial examples to minimize L∞-norm.
Box-constrained L-BFGS (Szegedy et al., 2014),
Carlini-Wagner L2 (Carlini and Wagner, 2016),
and ATN (Baluja and Fischer, 2017) aim to mini-
mize L2-norm. DeepFool (Moosavi-Dezfooli et al.,
2015), Carnili-Wagner L0 (Carlini and Wagner,
2016), and DeepCheck (Gopinath et al., 2019)
minimize L0-norm.

3.3 Autoencoder

Generally, an autoencoder consists of one encoder
and one decoder (Bengio et al., 2006; Masci et al.,
2011). Several popular variations of autoencoder
are denoising (Vincent et al., 2010), sparse (Ng,
2011), convolutional (Masci et al., 2011), vari-
ational (Kingma and Welling, 2014), symmet-
ric (Pu et al., 2017), Wasserstein (Tolstikhin et al.,
2019), etc. They differ on the architecture of the
encoder and decoder, on the computation of the
loss, or on the noise inserted into the network.
In the context of image reconstruction, the input
and the output of the autoencoder are called input
image and reconstructed image, respectively. This
research uses stacked convolutional autoencoder
to generate adversarial examples. The conven-
tional autoencoders including sparse autoencoder
and stacked autoencoder are presented in detail.

3.3.1 Sparse Autoencoder

A sparse autoencoder has one input layer, one hid-
den layer, and one output layer. This autoencoder
is the simplest autoencoder. This autoencoder
takes an input image xin ∈ R

m×1. In the encoder
stage, this autoencoder maps this input image to
a latent representation z ∈ R

n×1 in which n < m:

z = f(WT
1 · xin + b1) (3)

where b1 ∈ R
n×1 is the bias matrix of the hidden

layer, W1 ∈ R
m×n is the weight matrix between

the input layer and the hidden layer, and f(.) is
an activation function.

In the decoder stage, the latent representa-
tion z is then transformed into the input image



. 7

as follows:

xout = g(WT
2 · z + b2) (4)

where xout is the reconstructed image, g(.) is an
activation function, b2 ∈ R

m×1 is the bias matrix
of the output layer, and W2 ∈ R

n×m is the weight
matrix between the hidden layer and the output
layer.

This reconstructed image should be similar to
the input image. To fulfil this requirement, the
popular objective function of this autoencoder is
as follows:

∑

xin

L2
2(xin,xout) (5)

3.3.2 Stacked Autoencoder

Stacked autoencoder is an extension of sparse
autoencoder. A stacked autoencoder has at least
one hidden layer. In the encoder stage, the size of
the previous layer is larger than the size of the next
layer. In the decoder stage, the size of the previous
layer is smaller than the size of the next layer.

Figure 2 indicates an example of stacked
autoencoder. The input layer has 5 neurons. In the
encoder stage, there are 2 hidden layers with the

Fig. 2: Example of a stacked autoencoder.

size of 4 neurons and 3 neurons. The latent rep-
resentation has 2 neurons. In the decoder stage,
there are 2 hidden layers with 3 neurons and 4
neurons. The output layer has the same size as
the input layer. As can be seen, the reconstructed
image is similar to the input image.

3.3.3 Stacked Convolutional

Autoencoder

Stacked autoencoder ignores the 2D/3D image
structure because the input image is flatten into
a k-dimensional vector. Each dimension repre-
sents a pixel of the input image. For example,
on the MNIST dataset, a 28 × 28 image is
flattened into a 784-dimensional vector. Because
the stacked autoencoder does not consider the
2D/3D image structure, this type of autoen-
coder does not reconstruct the input image effec-
tively (Masci et al., 2011). To mitigate this
issue, the stacked convolutional autoencoder is
proposed. In the encoder stage, a layer can be con-
volutional, down-sampling, and fully-connected.
In the decoder stage, a layer can be deconvolu-
tional, up-sampling, and fully-connected. The typ-
ical objective function of the stacked convolutional
autoencoder is identical to Equation 5.

Figure 3 illustrates an example of stacked con-
volutional autoencoder. The input image is a 2D
image with the size 28 × 28. In the encoder stage,
this image is fed into a convolutional layer with
the stride of value 2. The resulting layer Conv1
consists of 32 feature maps of size 14 × 14. At
the end of the encoder, the layer is flattened into
a fully-connected layer of size 10 × 1. The fully-
connected layer is the latent representation. In
the decoder stage, this latent representation is fed
into a fully-connected layer (i.e., FC), an upsam-
pling layer (i.e., Reshape) and deconvolutional
layers (i.e., DeConv3, DeConv2, and DeConv1)
to reconstruct the input image.

Fig. 3: An example of stacked convolutional autoencoder.



3.4 Popular Adversarial Example

Generation

3.4.1 Box-constrained L-BFGS

Szegedy et al. (2014) propose box-constrained L-
BFGS to generate adversarial examples by solving
the following box-constrained optimization prob-
lem:

minimize (1 − c) · L2
2(x′,x) + c · f(y∗,M(x′))

such that x′ ∈ [0, 1]w×h×s

(6)
where f is a function to compute the difference
between M(x′) and the target label y∗, and c is
the weight to balance two terms. A common choice
of f is cross-entropy.

3.4.2 Targeted FGSM

Goodfellow et al. (2015) propose targeted FGSM
to generate adversarial examples which are simi-
lar to the attacking images in terms of L∞-norm.
Targeted FGSM generates adversarial examples
by modifying all features:

x′ = x− ω · sign

(

∂My∗(x)

∂xi

)

(7)

where function sign(.) returns the sign of
∂My∗ (x)

∂xi

and ω is a positive value to shift values of all
features in x.

Main disadvantage of targeted FGSM is that
its effectiveness is sensitive to the value of ω. If the
value of ω is large, the success rate of the targeted
FGSM could be high. However, adversarial exam-
ples could be very different from the corresponding
attacking images in terms of Lp-norm. Otherwise,
if the value ω is very small, the success rate of
the targeted FGSM could be low significantly.
In terms of Lp-norm, adversarial examples could
be very similar from the corresponding attacking
images.

3.4.3 Carnili-Wagner L2

Inspired from box-constrained L-BFGS, Carlini
and Wagner (2016) propose a method to minimize
L2-norm. An adversarial example is generated by
solving the following equation:

minimize (1 − c) · L2
2(x′,x) + c · f(y∗,M(x′))

such that x′ ∈ [0, 1]w×h×s

(8)
where f is their suggested objective function:

f(x′) = max(max{Z(x′)i : ∀i 6= y∗}−Z(x′)y∗ ,−k)
(9)

where Z(.) returns the pre-softmax value of the
output layer, term max{Z(x′)i : ∀i 6= y∗} is the
largest pre-softmax value except the target neu-
ron, and term Z(x′)y∗ is the pre-softmax value of
target neuron.

3.4.4 Adversarial Transformation

Networks

Baluja and Fischer (2017) introduce ATN to
generate adversarial examples based on stacked
convolutional autoencoder. The input and out-
put of ATN are attacking image and adversarial
example, respectively. The authors suggest using
L2-norm to compute the distance between the
adversarial example and its corresponding attack-
ing image. The loss function of ATN is as follows:

∑

x

β ·L2(x,x′) +L2(M(x′), rα(M(x), y∗)) (10)

where β is a weight to balance two terms and
function rα(.) modifies M(x) with the expectation
that the modification on the attacking image x is
the least:

rα(M(x), y∗)

= n

({

α ·max(M(x)) if i = y∗

M(x)i otherwise

}

i∈{0..k−1}

)

(11)

where α is greater than 1 and n(.) normalizes a
vector into an array of probabilities.

However, this method does not support mod-
ifying specific portions of an attacking image to
generate an adversarial example. Instead, this
method adds perturbation to all features of the
attacking image. Adding perturbation to all fea-
tures could be consider as a pattern. This paper
generalizes ATN to support different patterns, in
which a pattern defines a set of modified features.



. 9

4 Pattern-based Adversarial
Transformation Network

To generate high-quality and diverse adversarial
examples, pbATN consists of two phases named
pbATNG and pbATNI . The illustration of pbATN

is shown in Fig. 4. In the first phase, pbATNG
is applied to produce a set of adversarial exam-
ples based on patterns. However, these adversarial
examples could not be high-quality since they
could contain redundantly adversarial features. By
removing these features, the resulting adversarial
examples are still classified as a target label. Addi-
tionally, they are more similar to the attacking
images than the prior adversarial examples.

It is suggested that these adversarial examples
should be close to their corresponding attacking
images. Therefore, in the second phase, pbATNI is
employed to improve the quality of these adver-
sarial examples. The proposed pbATNI finds out
redundantly adversarial features and restores them
to the original values.

4.1 Pattern-based Stacked

Convolutional Autoencoder

In the first phase of pbATN, pbATNG is applied to
produce a set of adversarial examples based on
stacked convolutional autoencoders. These adver-
sarial examples must satisfy a specific pattern.
The objective of pbATNG satisfies two require-
ments. The first requirement is that the adver-
sarial example should be similar to the attacking
image as much as possible. The second require-
ment is that the labels of adversarial examples are

Fig. 4: The overview of pbATN

the target label y∗. Based on these two require-
ments, the objective of pbATNG is defined as
follows:

∑

x

(1 − ǫ) · L2
2(γ(P,x), res) + ǫ ·CE(y∗,M(x′))

(12)
where P is the pattern, M is the attacked model,
CE is cross-entropy, and res is the reconstructed
image and computed by aey∗(γ(P,x)) (aey∗ is the
training autoencoder).

Compared to Equation 10, Equation 12 has the
following differences:

• The weight between terms : In our objective
function, the used weights are (1 − ǫ) for the
first term and ǫ for the second term. In ATN,
the first term has the weight β and the second
term has the weight 1. Essentially, our config-
ured weights are similar to the weights of ATN.
We set up this type of weight to have a better
intuition about the importance of terms.

• Crossentropy : In the second term of
Equation 10, while ATN uses L2-norm, pbATN
uses crossentropy function. This would lead to
a better optimization of Equation 12.

• Pattern: In Equation 10, all features could be
modified. Otherwise, in Equation 12, only fea-
tures satisfying a pattern P would be modified.

• Function rα: This function is used in
Equation 10. Equation 12 does not use func-
tion rα. We only consider this function as an
optional choice. We find out that using rα does
not produce a better result than not using rα
when attacking CNN models based on patterns.
Instead of using function rα, this paper uses a
general strategy by proposing pbATNI , which
improves the quality of adversarial examples in
terms of L0-norm and L2-norm.

The function γ(P,x) creates a pattern map of
x satisfying P. Specifically, if the feature xi ∈ x

does not satisfied the pattern P, the value of the
corresponding element in the pattern map is zero.
Otherwise, if the feature xi satisfies the pattern
P, the value of the corresponding element in the
pattern map is xi:



γ(P, xi) =

{

xi if xi satisfies the pattern P
0 otherwise

(13)
The adversarial example x′ is computed by

using the equation x − P(x) + P(res). This
equation replaces the features on x satisfying the
pattern P with new values returning from the
autoencoder aey∗ . All features not satisfied the
pattern P remain unchanged. This research uses
three patterns including all-feature pattern, border
feature pattern, and class model map pattern:

All-feature pattern: all features could be mod-
ified to generate adversarial examples. ATN uses
this pattern to generate adversarial examples.

Border feature pattern: all features locat-
ing at the edge of objects on attacking images
would be modified. For example, on the MNIST
dataset (Lecun et al., 1998b), objects are digits.

Class model map pattern: Let I be a class
model map of attacking images. These attacking
images are classified as label c. The shape of I is
the same as the shape of the attacking images. The
class model map I is generated by minimizing the
following objective function:

argmax
I

Sc(I) − λ · L2
2(I) (14)

where Sc is the score of the label c, λ is a
hyper-parameter, and I is initialized as a zero
image. The class model map I is constructed by
minimizing Equation 14. The authors use back-
propagation to find out I.

Fig. 5: Example of a class model map during the
training process.

An example of training a class model map
is illustrated in Fig. 5. This class model map is
trained on 1,000 attacking images classified as
label 3. These attacking images belong to the
MNIST dataset. From leftmost side to rightmost
slide, the class model map is captured after 10, 20,

30, and 40 epochs. The value of λ is chosen 0.2.
The more dark pixel on I means that this pixel has
more impact on the output neuron corresponding
to the label c.

4.2 Adversarial Example

Improvement

The adversarial examples generated by pbATNG
might contain redundant perturbation. Hence, this
section presents an algorithm named pbATNI to
improve the quality of adversarial examples in
terms of L0-norm and L2-norm. We empirically
observed that a large number of the generated
adversarial examples from an autoencoder could
contain many redundant perturbations. If these
redundantly adversarial features are restored to
the original values, the resulting adversarial exam-
ples are still classified as the target label y∗. In
other words, these redundantly adversarial fea-
tures do not contribute to or only have a very
little impact on the final classification of adversar-
ial examples. Additionally, due to the existence of
redundant perturbation, the quality of adversarial
examples would be degraded in terms of L0-norm
and L2-norm. Meanwhile, one of the most impor-
tant objectives of the targeted attack is to gener-
ate adversarial examples similar to their attacking
images as much as possible. Therefore, in order to
improve the quality of adversarial examples, the
features containing redundant perturbation should
be restored to the original values.

This research proposes Algorithm 1 to improve
the quality of adversarial example in terms of
L0-norm and L2-norm. The inputs of this algo-
rithm are an adversarial example x′, the attacking
image x of x′, a target label y∗, an attacked
model M, a step size α >= 1, a positive thresh-
old δ < α, and a decay rate t >= 1. The output
of the algorithm is an improved adversarial exam-
ple. If α is greater than δ and the restored rate is
not converged, the algorithm detects adversarial
features by comparing x and x′, and then stores
these features in a set S (line 2). After that, the
adversarial features of S are ranked by applying
an adversarial feature ranking heuristics (line 3)
and stored in S′. The beginning elements of set
S′ tend to have a low impact on the classifica-
tion of adversarial example x′. The last elements
of S′ tend to affect significantly the decision of
the attacked model. The proposed algorithm then
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Algorithm 1 pbATNI : Improve the quality of
adversarial examples in terms of L0-norm and
L2-norm

Input: adversarial example x′, attacking image
x, target label y∗, CNN M, step α, threshold δ, and
decay rate t

Output: An improved adversarial example

1: while α > δ do

2: S ← compute diff features(x,x′)
3: S′ ← rank features(S)
4: #block ← ⌈|S′|/α⌉
5: for idx← 0, idx < #block, idx← idx+ 1 do

6: start← α · idx; end← start+ α
7: if end > |S′| then
8: end← |S′|
9: end if

10: x′
clone ← x′

11: x′
start...end−1 ← xstart...end−1

12: if argmaxM(x′) 6= y∗ then

13: x′ ← x′
clone

14: end if

15: if is converged then

16: return x′

17: end if

18: end for

19: α← ⌊α/t⌋
20: end while

21: return x′

restores sequentially adversarial features in S′. A
set of these sequentially adversarial features is
called block. For each block starting from posi-
tion start to position end, in which the size of
block is step α (line 6 - 10), the algorithm updates
the adversarial example x′ by restoring the block
(line 11). If the restoration changes the classifica-
tion, the current adversarial features are reverted
to their original values (line 12-14). Next, α is
decreased by t times (line 19).

Algorithm 1 terminates when α is not greater
than threshold δ (line 1) or the restored rate
(denoted by r) converges (line 15). At the i-th
modification, the restored rate r of an adversarial
example improvement is defined as follows:

r(x,x′, i) =
L0(x,x′

i)

L0(x,x′)
(15)

where x′
i is the improved adversarial example at

the i-th modification. At the p-th modification,
the restored rate r converges if and only if it

satisfies the following equation:

∧

(r(x,x′, i)−r(x,x′, i−1) <= β) | i ∈ [p−k+1, p]

(16)
where k >= 1 is number of prediction with the
improvement of adversarial examples less than β.

The value of step α plays an important role in
the performance of our proposed pbATNI . The step
α must be greater than or equal to 1, which con-
trols the performance of pbATNI . If step α is equal
to one, pbATNI calls the prediction M(x′) at least
#block times. The cost of making a prediction call
is expensive. When #block is large enough such
as in the case of all-feature pattern, the total cost
of prediction could be extremely huge. Therefore,
step α should be large enough to decrease this
computational cost.

Adversarial Feature Ranking Heuristics:
The purpose of an adversarial feature ranking
heuristics (line 3) is to estimate the impact of
an adversarial feature on the target neuron. The
impact of adversarial feature x′

i on the output
neuron y∗-th is denoted by sy∗(x′

i). Adversarial
feature x′

i has a higher impact on the output neu-
ron y∗ than adversarial feature x′

j if and only if
sy∗(x′

i) > sy∗(x′
j).

For the feature xi on an attacking image, there
are several well-known feature ranking heuris-
tics such as JSMA (Papernot et al., 2015),
COI (Gopinath et al., 2019), etc. Concerning
JSMA, Papernot et al. (2015) propose two heuris-
tics. This research calls them JSMA+ and JSMA−.
These two ranking heuristics are applied to
compute the score of features on the attack-
ing image. Specifically, for the feature xi which
should increase to generate an adversarial exam-
ple, JSMA+ assigns this feature to a non-zero
score. By contrast, for the feature xi which
should decrease to generate an adversarial exam-
ple, JSMA− assigns this feature to a non-zero
score. Concerning COI, the score of a feature xi

is computed by the multiplication of its intensity
and its gradient.

However, the above heuristics do not consider
ranking adversarial features. In this research, we
apply these heuristics in a different context. We
would compute the scores of adversarial features
rather than the scores of features on the attacking
images. The score of an adversarial feature x′

i are
defined as follows:



• JSMA+:

sy∗(x′
i)

=







0 if
∂My∗ (x′)

∂x′

i

< 0 or
∑

j 6=y∗

∂Mj(x′)
∂x′

i

> 0

∂My∗ (x′)

∂x′

i

· |
∑

j 6=y∗

∂Mj(x′)
∂x′

i

| otherwise

(17)

• JSMA−:

sy∗(x′
i)

=







0 if
∂My∗ (x′)

∂x′

i

> 0 or
∑

j 6=y∗

∂Mj(x′)
∂x′

i

< 0

|
∂My∗ (x′)

∂x′

i

| ·(
∑

j 6=y∗

∂Mj(x′)
∂x′

i

) otherwise

(18)

• COI:

(19)sy∗(x′
i) = x′

i ·
∂My∗(x′)

∂x′
i

5 Experiments

This experiment compares pbATN with other state-
of-the-art methods including targeted FGSM,
box-constrained L-BFGS, and Carnili-Wagner L2.
These methods are well-known methods to gen-
erate adversarial examples by using Lp-norm dis-
tance metrics. We implement targeted FGSM and
box-constrained L-BFGS because the source code
is not available. For Carnili-Wagner L2, we use
the existing source code1. The experiment is per-
formed on Google Colab. To demonstrate the
advantages of pbATN, the experiment addresses the
following questions:

• Improvement in Diversity Issue: Can the
proposed pbATNG generate diverse adversar-
ial examples in comparison with targeted
FGSM, box-constrained L-BFGS, and Carnili-
Wagner L2? (denoted by RQ1)

• Improvement in Quality Issue: Does the
proposed pbATNI improve the quality of adver-
sarial examples effectively? (denoted by RQ2)

• Overall Performance Analysis: Does the
proposed pbATN achieve good performance com-
pared to targeted FGSM, box-constrained L-
BFGS, and Carnili-Wagner L2? (denoted by
RQ3)

1https://github.com/carlini/nn robust attacks

5.1 Dataset and Attacked Models

Dataset: This experiment conducts on the
MNIST dataset (Lecun et al., 1998b) and
CIFAR-10 (Krizhevsky et al.) dataset to demon-
strate the advantages of pbATN. These two
datasets are used commonly to evaluate the
robustness of CNN models (Zhang et al., 2019).
The MNIST dataset is a collection of handwrit-
ten digits. This dataset has 60,000 images on the
training set and 10,000 images of size 28 × 28 ×
1 on the test set. There are 10 labels representing
digits from 0 to 9. The CIFAR-10 dataset is a col-
lection of images for general-purpose image classi-
fication. This dataset consists of 50,000 images on
the training set and 10,000 images of size 32 × 32
× 3 on the test set. Each pixel is represented in a
combination of three colors including red, green,
and blue. There are 10 labels such as airplanes,
cars, cats, birds, etc.

The result of attacks m → n is stacked convo-
lutional autoencoders. These autoencoders recon-
struct attacking images labelled m into adversarial
examples labelled n. To evaluate attacks m → n,
the experiments split the MNIST dataset and the
CIFAR-10 dataset into separate subsets for evalu-
ation. Let Mi be a subset of the MNIST dataset
and Ci be a subset of the CIFAR-10 dataset. For
simplicity, each subset of these datasets is called
dataset. Based on the purpose of the evaluation,
the experiments define three groups of datasets,
namely G1, G2, and G3. Group G1 = {M1, C1}
is a portion of the training sets and used to train
autoencoders. Each dataset of G1 consists of 1,000
attacking images labelled as m. Group G2 =
{M2, C2} is a portion of the training sets and
not used to train autoencoders. Each dataset of
G2 contains 4,000 attacking images labelled as
m. Group G3 = {M3, C3} is the test sets of the
attacked models. M3 has 1,000 attacking images
labelled as m. Due to the accuracy limitation of
two CNNs on CIFAR-10 test set, we set C3 to have
862 and 759 attacking images labelled as m for
AlexNet and LeNet-5, respectively. Group G2 and
Group G3 are used to evaluate the generalization
ability of the autoencoders trained on Group G1.

Attacked Models: This research
uses LeNet-5 (Lecun et al., 1998a) and
AlexNet (Krizhevsky et al., 2017) to train on
the MNIST dataset and the CIFAR-10 dataset.
LeNet-5 is proposed to recognize handwritten
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digits such as the MNIST dataset. AlexNet is
introduced to deal with general-purpose image
classification such as the CIFAR-10 dataset.
This architecture is considered one of the most
influential CNN architectures. The accuracies of
the trained models using these architectures are
shown in Table 1. As can be seen, on the MNIST
dataset, LeNet-5 produces better results than
AlexNet. On the CIFAR-10 dataset, AlexNet
outperforms LeNet-5.

Table 1: The accuracy of attacked models on the
training set and the test set

Dataset Model Training set Test set

MNIST
AlexNet 99.03% 98.75%
LeNet-5 99.86% 98.82%

CIFAR-10
AlexNet 99.70% 76.22%
LeNet-5 97.71% 69.40%

The purpose is to attack these models to gener-
ate diverse and high-quality adversarial examples.
For each CNN model, there are 90 attacks in total
(i.e., 10 original labels × 9 target labels). However,
in this research, we selects some representative
attacks to make a comprehensive comparison.
Specifically, on the MNIST dataset, the attack is
9 → 7 for AlexNet and 9 → 4 for LeNet-5. On the
CIFAR-10 dataset, the attack is truck → horse
for AlexNet and truck → deer for LeNet-5.

5.2 Configuration

5.2.1 pbATNG

Stacked Convolutional Autoencoder: It is
difficult to select an architecture of stacked convo-
lutional autoencoder which attacks well on a CNN
model. Instead, the architecture of the stacked
convolutional autoencoder should be chosen man-
ually based on the experience of attackers. In this
research, for each dataset, the experiments use a
stacked convolutional autoencoder for all attacked
models. These stacked convolutional autoencoders
are shown in Table 2 and Table 3.

Group G1 is used to train autoencoders. Each
autoencoder is trained up to 500 epochs with
the batch size of 256. The experiment uses early
stopping strategy to terminate the training when
there is no improvement in the loss over subse-
quent epochs. After the training process, attacking

Table 2: The architecture of the stacked convo-
lutional autoencoder used to generate adversarial
examples from dataset M1, M2, and M3 of the
MNIST dataset

Layer Type Input Output Shape

InputLayer (28, 28, 1) (28, 28, 1)
Conv2D (28, 28, 1) (28, 28, 32)
MaxPooling2D (28, 28, 32) (14, 14, 32)
Conv2D (14, 14, 32) (14, 14, 32)
MaxPooling2 (14, 14, 32) (7, 7, 32)
Conv2D (7, 7, 32) (7, 7, 32)
UpSampling2D (7, 7, 32) (14, 14, 32)
Conv2D (14, 14, 32) (14, 14, 32)
UpSampling2 (14, 14, 32) (28, 28, 32)
Conv2D (28, 28, 32) (28, 28, 1)

Table 3: The architecture of the stacked convo-
lutional autoencoder used to generate adversarial
examples from dataset C1, C2, and C3 of the
CIFAR-10 dataset

Layer Type Input Output Shape

InputLayer (32, 32, 3) (32, 32, 3)
Conv2D (32, 32, 3) (32, 32, 32)
MaxPooling2D (32, 32, 32) (16, 16, 32)
Conv2D (16, 16, 32) (16, 16, 32)
MaxPooling2 (16, 16, 32) (8, 8, 32)
Conv2D (8, 8, 32) (8, 8, 32)
UpSampling2D (8, 8, 32) (16, 16, 32)
Conv2D (16, 16, 32) (16, 16, 32)
UpSampling2 (16, 16, 32) (32, 32, 32)
Conv2D (32, 32, 32) (32, 32, 3)

images would be fed into the trained autoen-
coders. The purpose of this step is to generate
candidate adversarial examples. After that, can-
didate adversarial examples are predicted by the
attacked model to identify if they are valid. If a
candidate adversarial example is classified as n, it
is an adversarial example.

The value of weight ǫ: We need to fine-tune
weight ǫ in Equation 12 to generate good adversar-
ial examples. This equation consists of two terms
called distance term and cross-entropy term. To
reduce the effort of choosing such weights, all
attacks are performed with a set of fixed weights
{0.01, 0.05, 0.5, 0.95, 0.99, 1}. If ǫ equals 0.01 or
0.05, the attacks tend to minimize the distance
term. If ǫ equals 0.5, the attacks minimize the two
terms with equal weights. If ǫ equals 0.95 or 0.99,
the attacks tend to minimize the cross-entropy
term. If ǫ equals 1, the attacks only minimize the
cross-entropy term.



Pattern: The experiments use three different
patterns to generate adversarial examples includ-
ing border pattern, class model map pattern, and
all-feature pattern. For class model map pattern,
this pattern describes the impact of features on
the classification of the attacked models.

On the MNIST dataset, we empirically choose
the top-100 features on the class model map. The
attacks would add perturbations to 100 fixed fea-
tures to generate adversarial examples. On the
CIFAR-10 dataset, we empirically choose the top-
400 features on the class model map because the
number of features on this dataset is about four
times larger than that of the MNIST dataset.

5.2.2 pbATNI

pbATNI is used to improve the quality of adversar-
ial examples in terms of L0-norm and L2-norm.
pbATNI uses four main parameters including step
α, threshold δ, decay rate t, and ranking heuris-
tics. These parameters are used to adjust the
performance of pbATNI . In our experiment, the
value of δ is assigned to 0. The value of decay rate
t is assigned to 2.

Step α: By analyzing the result of different
steps α, we observed that using the appropriate
value of step α would have a positive impact on
the performance of pbATNI . Using a too large value
of step α or a too small value of step α might slow
down the performance of pbATNI . Based on the
empirical data, we suggest using step α = 6 for
attacking the MNIST dataset and step α = 30 for
attacking the CIFAR-10 dataset.

Ranking heuristics: The experiment uses
three ranking heuristics including COI, JSMA,
and random. Heuristics random is used as a base-
line. While heuristics COI and heuristics JSMA
arrange adversarial features in increasing order of
impact on the target neuron, heuristics random
sorts adversarial features randomly.

By analyzing the result of ranking heuristics,
for the MNIST dataset, applying heuristics COI
or heuristics JSMA tend to converge the average
restored rate faster than using heuristics random.
For the CIFAR-10 dataset, we observed that using
JSMA usually improve adversarial examples most
effectively.

5.2.3 Compared methods

We compare pbATN with other state-of-the-
art methods including targeted FGSM, box-
constrained L-BFGS, and Carnili-Wagner L2. The
value of weights in targeted FGSM and box-
constrained L-BFGS is the same as pbATNG. Con-
cerning Carnili-Wagner L2, this method does not
need to choose weight manually. This method uses
a binary search algorithm to find the optimal
weight to produce high-quality adversarial with a
high success rate.

5.3 Answers for Research Questions

5.3.1 RQ1: Improvement in Diversity

Issue

This section investigates the ability of pbATNG to
improve the low diversity of adversarial examples.
In order to generate diverse adversarial examples,
the experiment applies different patterns including
border pattern, class model map pattern, and all-
feature pattern. To measure the ability to mitigate
the diverse issue, the experiment uses the average
success rate metric. The average success rate is the
average of success rates resulting from the usage
of the configured weights. The conclusion is that
pbATNG could achieve good average success rates
compared to the other methods.

Table 4 compares the average success rates
of the pbATNG and other comparable methods.
There are three promising results. The first result
is that all-feature pattern could achieve the best
average success rates among the used patterns for
the MNIST dataset and the CIFAR-10 dataset.
In most cases, the average success rate of this
pattern is above 99%. The major reason is that
rather than changing a subset of features as border
pattern and class model map pattern, this pat-
tern allows adding adversarial perturbation to all
features. The autoencoders could learn character-
istics hidden in all features of attacking images
to generate adversarial examples. As a result, the
features with more impact on the classification
tend to be modified by the trained autoencoders
more than the features with lower impact. Con-
cerning the other patterns, border pattern tends
to work better than class model map pattern
for the attacking images on the MNIST dataset.
In particular, while border pattern achieves from
17.1% to 55.1%, class model map pattern achieves
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Table 4: The average success rate comparison (%)

Model Dataset

pbATNG
Carnili-

Wagner L2

Targeted
FGSM L-BFGSBorder

pattern
Class model

pattern
All-feature

pattern (ATN)

AlexNet
9 → 7

M1 21.2 14.9 99.9 100 8.2 23.1
M2 17.1 22.2 99.4 100 8.1 21.8
M3 20.8 9.4 99.1 99.2 6.7 23.4

LeNet-5
9 → 4

M1 55.1 23.2 95.5 100 20.1 34.2
M2 45.8 23.8 99.2 100 19.9 36.4
M3 52.3 20.6 92.2 99.1 22.4 33.1

AlexNet
truck → horse

C1 8.4 68.3 100 100 5.4 24
C2 6.2 62.6 99.2 99.1 5.6 22.4
C3 6.5 67.5 98.1 99.3 3.9 23.7

LeNet-5
truck → deer

C1 28.3 61.1 100 100 18.7 36.7
C2 24.1 54.3 99.3 100 20.7 34.6
C3 22.6 58.5 99.1 98.1 15.8 38.3

from 9.4% to 23.8%. Otherwise, for the attack-
ing images on the CIFAR-10 dataset, class model
map pattern produces better results with the aver-
age success rate from about 54.3% to 68.3%, than
border pattern with the average success rate from
6.2% to 28.3%.

The second result is that the average suc-
cess rates of all-feature pattern in pbATNG are
better than box-constrained L-BFGS, targeted
FGSM, and approximate to Carnili-Wagner L2.
Targeted FGSM has the worst average success
rate because this method only modifies attack-
ing images in one iteration to generate adversarial
examples. Box-constrained L-BFGS seems to be
better than targeted FGSM because they use gra-
dient descent to generate adversarial examples.
However, targeted FGSM and box-constrained L-
BFGS are sensitive to the values of the weight
in Equation 6 and Equation 7, which are selected
based on the experience of the testers. Concerning
Carnili-Wagner L2, this method usually generates
adversarial examples with 100% average success
rate, which was shown in Carlini and Wagner
(2016). The main reason is that the optimal
weight c in Equation 8 is found out automati-
cally by applying a binary search algorithm. It is
promising that the average success rate of pbATNG
is mostly 99%-100%, which is approximate to
Carnili-Wagner L2.

The third result is that pbATNG could generate
adversarial examples from new datasets with the
average success rate approximate to the trained
datasets. The trained datasets are in Group G1

(i.e., M1 and C1). The new datasets are in

Group G2 (i.e., M2 and C2) and Group G3 (i.e.,
M3 and M3). The new datasets have the same
classification purpose as the trained datasets. The
maximum difference between the average success
rate on the new datasets and the trained datasets
is about 10%, which is acceptable. It means that
if the trained autoencoders have a high average
success rate on the trained datasets, these autoen-
coders would likely achieve approximate average
success rates on other similar datasets. This is
the generalization ability of pbATNG, which is not
supported in the comparable methods.

5.3.2 RQ2: Improvement in Quality

Issue

This section investigates the ability of the pro-
posed pbATNI to enhance the quality of adversarial
examples. The conclusion is that pbATNI could
enhance the quality of adversarial examples sig-
nificantly for pbATNG, targeted FGSM, and box-
constrained L-BFGS. For the adversarial examples
generated by Carnili-Wagner L2, pbATNI could
enhance their quality slightly.

In pbATNI , rather than improving the qual-
ity of adversarial examples individually, we put
them in a batch and improve at the same time to
reduce the computational cost. Because the used
heuristics produce approximate final results, the
experiment reports the average reduction rate for
simplicity. The average reduction rate is computed
by (a− b)/a, where a is the average Lp-norm dis-
tance without applying the ranking heuristics and
b is the average Lp-norm distance after applying
the ranking heuristics.



Table 5: The average reduction rate (%) of adver-
sarial examples by applying pbATNI . Larger values
are better.

Model Method L0 L2

AlexNet
9 → 7

pbATN
G
+ border 75.9 42.9

pbATN
G
+ class model map 84.4 51.0

pbATN
G
+ all-feature (ATN) 98.0 69.6

Targeted FGSM 91.5 69.2
Box-constrained L-BFGS 93.4 75.6
Carnili-Wagner L2 7.9 0.1

LeNet-5
9 → 4

pbATN
G
+ border 70.1 38.9

pbATN
G
+ class model map 71.9 36.9

pbATN
G
+ all-feature (ATN) 96.7 65.2

Targeted FGSM 85.7 68.5
Box-constrained L-BFGS 88.6 56.8
Carnili-Wagner L2 6.5 0.1

AlexNet
truck →

horse

pbATN
G
+ border 96.3 78.5

pbATN
G
+ class model map 85.8 60.2

pbATN
G
+ all-feature (ATN) 89.7 67.6

Targeted FGSM 87.8 82.7
Box-constrained L-BFGS 95.7 79.0
Carnili-Wagner L2 0.8 4.5

LeNet-5
truck →

deer

pbATN
G
+ border 95.7 78.0

pbATN
G
+ class model map 88.4 62.4

pbATN
G
+ all-feature (ATN) 89.4 65.9

Targeted FGSM 98.0 89.0
Box-constrained L-BFGS 94.0 82.9
Carnili-Wagner L2 3.3 1.3

Table 5 shows the average reduction rate of
L0-norm and L2-norm when applying pbATNI .
Generally, L0-norm and L2-norm could be
reduced by applying pbATNI . Especially, concern-
ing L0-norm, we observed that pbATNI could
decrease from a large number of adversarial fea-
tures to one adversarial feature. For pbATNG,
targeted FGSM, and box-constrained L-BFGS,
pbATNI could enhance the quality of the gen-
erated adversarial examples significantly. pbATNI
could decrease at most about 98% L0-norm and
89% L2-norm. For Carnili-Wagner L2, pbATNI
could improve the quality of adversarial exam-
ples slightly. This is explainable since Carnili-
Wagner L2 usually generates adversarial examples
with a minimum L2-norm. This method uses a
binary search algorithm to find out the optimal
weight in Equation 8, which leads to a minimum
L2-norm.

Examples of some improvements for adversar-
ial examples are shown in Fig. 6. Notions Origin
and Adversary denote the attacking images and
their corresponding adversarial examples, respec-
tively. Notion Difference shows the difference
between adversarial examples and their improve-
ment in white colour.

(a) Border pattern

(b) Class model map pattern

(c) All-feature pattern

Fig. 6: Examples of improved adversarial exam-
ples generated by pbATNI .

5.3.3 RQ3: Overall Performance

Analysis

Table 6 shows the overall performance of pbATN

and other comparable methods. pbATN includes
pbATNG and pbATNI . The comparable unit is sec-
ond. Generally, pbATN could achieve good average
success rates while requiring lower computational
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Table 6: The overall performance comparison (seconds) between pbATN and other methods

Model Dataset

pbATN

Carnili-
Wagner L2

Targeted
FGSM L-BFGSBorder

pattern
Class model

pattern
All-feature

pattern (ATN)

AlexNet
9 → 7

M1 98 131 174 1,815 18 240
M2 21 38 87 7,176 61 1,009
M3 11 21 63 1,716 20 258

LeNet-5
9 → 4

M1 84 109 95 714 11 141
M2 13 9 55 2,597 40 549
M3 6 4 46 728 12 128

AlexNet
truck → horse

C1 216 287 309 2,255 18 289
C2 26 55 125 8,942 68 1,152
C3 13 24 99 2,164 17 324

LeNet-5
truck → deer

C1 173 181 190 917 42 158
C2 13 44 53 3,276 195 622
C3 8 21 47 919 40 148

cost considerably compared to the other meth-
ods. This is a promising result to show that pbATN
could be applied in practice.

We need to evaluate the overall performance
of pbATN when dealing with new datasets. For all
patterns, the experiment shows that pbATN could
generate adversarial examples from new datasets
(i.e., Group G2 and Group G3) with lower com-
putational cost than the trained datasets (i.e.,
Group G1). The computational cost on Group G1

includes the training process, the adversarial
example generation process, and the improvement
process for adversarial examples. The computa-
tion cost on Group G2 and Group G3 includes
the adversarial example generation process and
the improvement process for adversarial exam-
ples. As can be seen, the overall performance of
adversarial example generation on Group G2 and
Group G3 is from 2 times to 27 times faster than
that of Group G1. It means that the machine
learning testers only need to spend effort on
training autoencoders. The trained autoencoders
could be reused for generating adversarial exam-
ples from new attacking images with an extremely
low computational cost. By contrast, the other
methods does not support generating adversar-
ial examples based on the information of previous
adversarial example generation. In other words,
every adversarial example is generated indepen-
dently to each other. As a result, when dealing
with a set of attacking images, pbATN usually pro-
duces adversarial examples faster than the other
methods.

Another promising finding is that pbATN could
mitigate the trade-off between the average suc-
cess rate and the overall performance. Targeted
FGSM and box-constrained L-BFGS are mostly
worse than pbATN in terms of the average suc-
cess rate and overall performance. About Carnili-
Wagner L2, although this method could achieve
mostly 100% average success rate as shown in
Table 4, this method consumes a large amount of
computational cost, which is mostly from about
1,000 seconds to around 3,000 seconds. By con-
trast, by appling all-feature pattern, pbATN could
not only achieve approximate average success
rates as Carnili-Wagner L2 but also require a
smaller computational cost significantly. In par-
ticular, the computational cost of applying all-
feature pattern is from 7.5 times (i.e., LeNet-5
with dataset M1) to 80 times (i.e., AlexNet with
dataset M2) faster than Carnili-Wagner L2.

6 Discussion

Integral constraint: On the MNIST dataset and
the CIFAR-10 dataset, the value of each feature is
an integer in the set D = {0, 1, ..., 255}. After nor-
malization, the value of each feature is in the set
D′ =

{

0, 1
255 ,

2
255 , ..., 1

}

. The value of an adver-
sarial feature must be in the valid set D or D′.
However, similarly to targeted FGSM (Goodfel-
low et al., 2015) and Carnili-Wagner (Carlini and
Wagner, 2016), we ignore this requirement in the
objective function of the stacked convolutional
autoencoder in the experiments. Instead, the out-
put of the stacked convolutional autoencoder is



continuous in the range [0, 1]. After that, this out-
put of the stacked convolutional autoencoder is
normalized to a valid domain. The output x′ of
the stacked convolutional autoencoder is an adver-
sarial example if and only if M

(

⌊x′∗255⌋
255

)

= y∗,

where y∗ is the target label. We see that ignoring
the integral constraint of adversarial examples in
the objective of the stacked convolutional autoen-
coder rarely affects the success rates of the attacks.

The generation of class model map: A
class model map I of a label l is generated from
a set of attacking images classified as l. In the
Objective 14, the process of finding I is a train-
ing procedure. A major problem of this procedure
is that the generated I could be a locally optimal
class model map. This issue could be addressed by
applying different gradient descent such as Back-
propagation (Springenberg et al., 2014), Excita-
tion Backprop (Zhang et al., 2016), etc.

7 Conclusion

We have presented pbATN method to generate
high-quality and diverse adversarial examples.
pbATN includes two phases named pbATNG and
pbATNI . Firstly, we propose pbATNG, which is a
pattern-based stacked convolutional autoencoder,
to generalize ATN. This autoencoder is used to
generate diverse adversarial examples for CNN
models. We conducted experiments with three
patterns including border pattern, all-feature pat-
tern, and class model map pattern in pbATNG.
Secondly, we introduce pbATNI to enhance the
quality of adversarial examples. The main idea of
pbATNI is to restore redundantly adversarial fea-
tures based on their impacts on the classification
of the attacked model.

The comprehensive experiment on the MNIST
dataset and the CIFAR-10 dataset has shown
several promising results. In terms of adversarial
diversity, pbATNG could generate diverse adver-
sarial examples by using different patterns. Espe-
cially, for all-feature pattern, most of the attacks
could achieve above 99% average success rate. In
terms of adversarial quality, concerning L0-norm,
pbATNI could reduce from hundreds of adver-
sarial features to one adversarial feature. About
L2-norm, our pbATNI could reduce the average
distance considerably. pbATNI could enhance the

quality of adversarial examples generated by tar-
geted FGSM and box-constrained L-BFGS sig-
nificantly and Carnili-Wagner L2 slightly. Addi-
tionally, we suggest using the adversarial feature
ranking heuristics COI and JSMA in pbATNI to
achieve better performance than using the ran-
dom heuristics. In the future, pbATN will be
extended to support other distance metrics such
as L∞-norm. In addition, the research will make a
more comprehensive comparison with other well-
known datasets.

8 Declaration

8.1 Authorship Contributions

Conceptualization: Pham Ngoc Hung, Duc-Anh
Nguyen
Methodology : Duc-Anh Nguyen, Kha Do Minh
Formal analysis and investigation: Duc-Anh
Nguyen, Kha Do Minh
Writing - original draft preparation: Duc-Anh
Nguyen
Writing - review and editing : all authors

8.2 Compliance with Ethical

Standards

8.2.1 Ethics approval

Not applicable.

8.2.2 Funding

The authors did not receive support from any
organization for the submitted work.

8.2.3 Conflicts of interest

The authors have no relevant financial or non-
financial interests to disclose.

8.2.4 Informed Consent

Not applicable

8.3 Availability of data and material

All data and material are available.



. 19

8.4 Code availability

All source code are available.

References

Naveed Akhtar, Ajmal Mian, Navid Kardan, and
Mubarak Shah. Threat of adversarial attacks
on deep learning in computer vision: Survey ii,
2021.

Michael A. Alcorn, Qi Li, Zhitao Gong, Chengfei
Wang, Long Mai, Wei-Shinn Ku, and Anh
Nguyen. Strike (with) a pose: Neural networks
are easily fooled by strange poses of familiar
objects. CoRR, abs/1811.11553, 2018.

Shumeet Baluja and Ian Fischer. Adversarial
transformation networks: Learning to generate
adversarial examples, 2017.

Osbert Bastani, Yani Ioannou, Leonidas Lam-
propoulos, Dimitrios Vytiniotis, Aditya V.
Nori, and Antonio Criminisi. Measuring neu-
ral net robustness with constraints. CoRR,
abs/1605.07262, 2016.

Yoshua Bengio, Pascal Lamblin, Dan Popovici,
and Hugo Larochelle. Greedy layer-wise train-
ing of deep networks. In Proceedings of
the 19th International Conference on Neural
Information Processing Systems, NIPS’06, page
153–160, Cambridge, MA, USA, 2006. MIT
Press.

Tom B. Brown, Nicholas Carlini, Chiyuan Zhang,
Catherine Olsson, Paul Christiano, and Ian
Goodfellow. Unrestricted adversarial examples,
2018.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan
Yu, Jiang Wang, Zilei Wang, Yongzhen Huang,
Liang Wang, Chang Huang, Wei Xu, Deva
Ramanan, and Thomas S. Huang. Look and
think twice: Capturing top-down visual atten-
tion with feedback convolutional neural net-
works. pages 2956–2964, 2015.

Nicholas Carlini and David A. Wagner. Towards
evaluating the robustness of neural networks.
CoRR, abs/1608.04644, 2016.

Piotr Dabkowski and Yarin Gal. Real time image
saliency for black box classifiers, 2017.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang,
Xiaolin Hu, and Jun Zhu. Discovering adver-
sarial examples with momentum. CoRR,
abs/1710.06081, 2017.

Christian Etmann, Sebastian Lunz, Peter Maass,
and Carola-Bibiane Schönlieb. On the con-
nection between adversarial robustness and
saliency map interpretability, 2019.

Ruth Fong and Andrea Vedaldi. Interpretable
explanations of black boxes by meaningful per-
turbation. CoRR, abs/1704.03296, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. The MIT Press, 2016.
ISBN 0262035618.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial
examples. 2015.

Divya Gopinath, Corina S. Păsăreanu, Kaiyuan
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