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Abstract

This study concerned with the synchronization problem in finite-time domain for a class of fractional-order

stochastic neural networks via non-fragile controller with discontinuous activation functions. Specifically, the sug-

gested state feedback controller sequentially cope with non-fragile scheme for gain scheduling process. Notably, the

main objective of this work is to develop a non-fragile controller to obtained the finite-time synchronization criterion

for the resulting synchronized error system over finite bound. For that, some consignment of sufficient conditions

is derived systematically by implementing Lyapunovs indirect method and finite-time stability theory which ensures

the finite-time stochastic synchronization of the stipulated neural networks. Later on, the controller gain fluctuations

that obeying certain white noise sequels derived from Bernoulli distribution are formulated in terms of linear matrix

inequalities. Eventually, the illustrated study are substantiated through two numerical examples and the simulation

results manifest the advantage and accuracy of the proposed synchronization criteria.

Key Words: Fractional-order stochastic neural networks; Non-fragile control; Finite-time; Synchronization.

I. INTRODUCTION

Fractional-order calculus, a natural generalization of integer-order and integration operators has been originally

commenced by Riemann and Leibniz [1], and later used in many real process. Scientific researches show that

fractional-order approach is the finest description for plentiful natural phenomenon. Moreover, the fractional-order

systems has raised promising research attention due to its elegant reflection of dynamical behavior and practical

values which confers accurate results [2], [3]. The significant aspect of fractional-order systems are the prominent

hereditary properties of diverse materials and superiority of memory [3], [6]. In the present situation, the better

understanding of fractional calculus leds to the increasing amount of works on stability and stabilization of fractional-

order control systems (see [6]–[8] and the references cited therein).

It is worth noticed that neural networks (NNs) has been extensively inspected owing to its successful applications

in parameter estimation, parallel computation, prediction and data analysis, automatic control, artificial intelligence,

and so on [4], [5], [9]–[11]. Owing to their viability, neural networks has become a powerful tool to delineate

the neurodynamics in human brains with higher quality. Generally, the accuracy can be increased while analyzing

the dynamical behavior of neural networks by incorporating the fractional calculus. As mentioned from the above

facts and infinite memory property, a huge amount of significant results on the dynamics of fractional-order neural

networks (FNNs) systems embracing stability, stabilization and synchronization have been reported, for example
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see [9]–[12]. Namely, Zhang et al. [9] examined the asymptotic stability analysis of Riemann-Liouville derivative

fractional based NNs in the presence of distributed and discrete delays. Based on the theory of impulsive and

fractional differential equation, Yang et al. [12] presented global synchronization of Mittag-Leffler derivative based

fractional-order neural works.

Synchronization is an universal phenomenon which was proposed first by Pecora and Carroll, subsequently, it

is enhanced to analyze diverse fields, namely, cryptography, secure communication, image encryption, information

sciences and so on [13]–[17]. Consequently, synchronization of two or more systems adjust each other and may

leads to common dynamical behavior. However, the study on synchronization of FNNs cannot be ignored and a

lot of interesting results have been reported through various control approaches [18], [19], [26]. For instance, the

authors proposed globally asymptotically synchronization analysis for FNNs subject to multiple time-delay in [19].

As it is well known that the stochastic noise is usually unavoidable in practice and it is one of the crucial factor

which affects the system performance. So far, the synchronization of fractional-order stochastic neural networks

(FSNNs) have not been examined fully. This stimulates our research attention towards synchronization of FSNNs.

It should be pointed out that, in reality, the imprecision are frequently inevitable in the controller deployment while

designing a practical systems. Obviously, these unmodelled drifts may probably cause performance degradation,

round off errors in numerical computation, random perturbation in controller and inherent inaccuracies in simulations

[20], [21]. To overwhelm this consequences, it is fundamental to implement a controller that will be able to

incorporate some tuning parameters to tolerate the possible gain variations during the synchronization of the

underlying system. Desperately, such form of controller are pointed as non-fragile (or resilient) and some important

results has been found (see [21]–[25] and references therein). To be more precious, in [25], the synchronization issue

with non-fragile control problem for discontinuous NNs subject to randomly occurring controller gain fluctuation

and time-varying delay has been investigated, whereas the global asymptotic synchronization has been achieved.

An another important front line in research is finite-time horizon, which is an effective framework for faster

synchronization in control systems and it provokes optimality in convergence time. Further, the introduction of

finite-time synchronization criterion has revealed the faster convergence rate, better robustness and disturbance

rejection performance [27]–[30]. In recent years, a huge enumerates of interesting results based on finite-time

synchronization have been reported; for instance, see [31]–[33]. Recently, in [33], the issue of synchronization in

finite-time has been concerned for fuzzy cellular NNs under differential inclusions framework. Despite that, the

synchronization of FSNNs under non-fragile controller design has not yet been inspected thoroughly over finite-time

domain which provokes us to commence the present study.

Accordant from the abovesaid observations, we develop herein the non-fragile controller design for finite-time

synchronization of FSNNs with nonlinear activation function over finite interval. Moreover, the crucial benefactions

of this study can be encapsulated in the following form:

� Finite-time synchronization of FSNNs under non-fragile controller strategy is investigated.

� The proposed non-fragile state feedback controller assures the synchronization of FSNNs within finite-time

domain.

� Sufficient conditions for FSNNs are framed by using Lyapunov technique and the desired non-fragile state

feedback gain fluctuations is retrieved in respect of linear matrix inequalities together with neuron nonlinear

activation function.

� Finally, two numerical examples along with corresponding simulations delineates the applicability and com-
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pactness under the designed control strategy.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the FSNNs that can be characterized by the following fractional differential equation:

CDνx(t) = −(A+∆A(t))x(t) +Bφ(x(t),

x(0) = 0,
(1)

where CDν denotes the Caputo fractional derivative which takes the commensurate order ν (0 < ν ≤ 1); x(t) =

[x1(t), x2(t), . . . , xn(t)]
T ∈ Rn represents the n-neuronal state vector; φ(x(t) = [φ1(x1(t), φ2(x2(t)), . . . , φn(xn(t))]

T

denotes the nonlinear neuron activation function with φ(0) = 0. Moreover, A = ai > 0 is the self-connection

diagonal matrix and B = (blk)n×n is the interconnection weight matrix which represents the synaptic connection

for the unit l on the unit k at time t. Matrix ∆A(t) is unknown time-varying norm bounded uncertain matrix. Let

∆A(t) = SG(t)J , where S and J are known real constant matrices and G(t) is time-varying matrix that satisfies

GT (t)G(t) ≤ I for all t ≥ 0.

The noise free system (1) is the drive system and its corresponding response system can be governed by

CDνy(t) = [−(A+∆A(t))y(t) +Bφ(y(t)) + Cu(t)] + g(t, y(t))dB
H(t)
dt ,

y(0) = 0,
(2)

where, C depicts the input weight matrix, u(t) ∈ Rp represents the control input and g(t, y(t)) is the noise intensity

function.

It is a well-known fact that design of non-fragile controller is established to reduce some amount of parameter

variations and fluctuations of the controller without loss of its robustness. Due to clear engineering insights, the

non-fragile state feedback control incorporated in this study is represented as

u(t) = (K +∆K(t))x̄(t), (3)

where K is the state feedback controller gain which is to be computed, ∆K(t) represents the controller gain

fluctuations and possess the norm-bounded additive configuration as ∆K(t) = UΦ(t)W , here U and W are known

real constant matrices and unknown norm-bounded function Φ(t) which is limited as ΦT (t)Φ(t) ≤ I .

Further, it is to be noted that the synchronization error signal can be denoted as x̄(t) = x(t) − y(t). Thus, the

dynamical error system from (1) and (2) with the proposed control strategy (3) can be expressed as follows:

CDν x̄(t) =[−(A+∆A(t))x̄(t) +Bℓ(x̄(t)) + C(K +∆K(t))x̄(t)] + g(t, x̄(t))
dBH(t)

dt
, (4)

where, ℓ(x̄(t)) = φ(y(t)) − φ(x(t)). Further, the stochastic noise is defined over the Wiener process probability

space (Ω,F ,P), where Ω, F and P reveals the sample space, algebra of the events and the probability measure

which is defined on [0, T ] with 1/2 < H < 1. The function g(t, x̄(t)) : R × R
n × R

n → R
n is the vector-valued

noise intensity function and BH(t) denotes the fractional Brownian motion of Hurst parameter H . A centered zero

mean one-parameter family of Gaussian process BH(t) on the probability space (Ω,F ,P) with filtration χt has

covariance E{BH(t)BH(s)} = 1/2(t2H + s2H − |t− s|2H) for s 6= t, where E{.} is the mathematical expectation.

Hereinafter, the following definitions, lemmas and assumption are mandatory for smooth development of finite-

time synchronization criterion.
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Definition 1: [34] The Riemann-Liouville fractional integral with ν order for the univariate function x(t) is

defined as follows:

CDνx(t) =
1

Γ(k − ν)

dk

dtk

∫ 1

0
(t− ν)k−ν−1x(u)du,

where, k is the first integer greater than ν, i.e, k − 1 < ν < k, k ∈ Z+ and Γ(.) is the Gamma function and takes

Γ(p) =
∫

∞

0 tp−1e−tdt.

Definition 2: [35] The Caputo fractional derivative of order ν for the differentiable function x(t) is expressed

as

CDνx(t) =
1

Γ(k − ν)

∫ 1

0
(t− ν)k−ν−1x(k)(u)du,

where k is the first-order integer which is bigger than ν. i.e., k − 1 < ν < k, k ∈ Z+ and x(k)(.) is the classical

kth derivative.

Definition 3: [35] The Mittag-Leffler function for one parameter ν > 0 is defined as Fν(z) =
∑

∞

i=0
zi

Γ(iν+1) ,

where z ∈ C. The Mittag-Leffler function with two parameters ν > 0 and β > 0 is defined as Fν,β(z) =
∑

∞

i=0
zi

Γ(iν+β) , where z ∈ C. For β = 1, one has Fν(z)=Fν,1(z) and also ν = 1, β = 1 one has further F1,1(z) = ez .

Definition 4: For a given positive definite matrix Q and positive constants c1, c2, T f with c1 < c2, the

fractional-order error system (4) under the controller (3) is said be stochastically synchronized in finite-time, if

(c1, c2, d2, T
f , Q) and x̄T (0)Qx̄(0) ≤ c1 =⇒ x̄T (t)Qx̄(t) < c2, ∀t ∈ [0, T f ].

Lemma 1: [36] For any real matrix D,S and F of appropriate dimensions and F TF ≤ I. Then for any scalar

ǫ > 0 and vectors x, y ∈ R
n, one has the following inequality:

2xTDF (t)Sy ≤ ǫ−1xTDDTx+ ǫyTSTSy.

Assumption 1: For any distinct x, y ∈ R, x 6= y, the neuron activation function φi(.)(i = 1, . . . , n) in (1) is

assumed to be continuously bounded, nondecreasing and globally Lipschitz and accomplishes χ−

i ≤ φi(x)−φi(y)
x−y ≤

χ+
i , i = 1, . . . , n, where χ−

i and χ+
i are known real constants which takes either positive, negative or zero. For

the purpose of proclamation, we express χ1 = diag{χ−

1 χ
+
1 , . . . , χ

−

nχ
+
n } and χ2 = diag{χ−

1 +χ+

1

2 , . . . , χ
−

n
+χ+

n

2 }.

Assumption 2: Given ǫ1 > 0, ǫ2 > 0, the matrix-valued functions ∆A(t) and ∆K(t) are assumed to be norm-

bounded such that ‖∆A(t)‖= ǫ1ζa(t) and ‖∆K(t)‖= ǫ2ζk(t), where ζa(t) ∈ Rn and ζk(t) ∈ Rn with ‖ζ(t)‖< 1.

III. MAIN RESULTS

In this section, we derive the finite-time synchronization criterion for FSNNs (1) under the proposed non-fragile

controller. For carrying out the above consideration, the upcoming theorem substantiate a quantity of sufficient

condition in respect of LMIs to ease the closed-loop error system (4) of FSNNs (1) to be stochastically synchronized

over finite-time interval.

Theorem 1: Suppose that Assumption 1 is satisfied, then for a given positive scalars ǫ, ̺, ν, c1, c2, δ and T f

with c2 > c1, the FSNNs (1) under the controller (3) achieves the stochastic finite-time synchronization criterion

with respect to (c1, c2, d2, T
f ,Ψ), if there exist a symmetric matrix X , positive diagonal matrix Γ̂1 with appropriate
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dimensions and appropriate dimensioned matrix Y such that the following conditions hold:

























−AX −XAT + ̺X − δX + CY + Y TCT − χ1Γ̂1 BX + χ2Γ̂1 −ǫ1S XJT ǫ2CU XW T

∗ −Γ̂1 0 0 0 0

∗ ∗ −ǫ1I 0 0 0

∗ ∗ ∗ −ǫ1I 0 0

∗ ∗ ∗ ∗ −ǫ2I 0

∗ ∗ ∗ ∗ ∗ −ǫ2I

























< 0, (5)

λ2c1Fν(δt
ν) < λ1c2. (6)

Furthermore, the anticipated non-fragile controller gain fluctuation is procured by employing the relation K =

Y X−1.

Proof: To obtain the finite-time synchronization criterion for FSNNs (1), let us construct the Lyapunov function

for synchronized error system (4) in the following configuration:

V (t) = x̄T (t)Px̄(t). (7)

Further, based on Property 1 in [34], the fractional-order Caputo derivative function for V (t) is given as

CDνV (t) =[RDν x̄(t)]TPx̄(t) + x̄T (t)P [RDν x̄(t)] + P

∞
∑

k=1

Γ(1 + ν)

Γ(1 + k)Γ(1− k + ν)
RDkx̄(t)RDν−kx̄(t)

−
t−νP

Γ(1− ν)
x̄T (0)x̄(0),

where RDν signifies the Riemann-Liouville fractional-order derivative. For representation convenience, we denote

Ξx̄(t) =
∑

∞

k=1
Γ(1+ν)

Γ(1+k)Γ(1−k+ν)
RDkx̄(t)RDν−kx̄(t) such that Ξx̄(t) ≤ ̺‖x̄(t)‖2, where ̺ is a positive scalar. Since,

t−νP
Γ(1−ν)‖x̄(0)‖

2 > 0 and further replacing the Caputo fractional derivative in place of the Riemann-Liouville

fractional derivative, it can be easy to attain that

CDνV (t) =[CDν x̄(t)]TPx̄(t) + x̄T (t)P [CDν x̄(t)] + P

∞
∑

k=1

Γ(1 + ν)

Γ(1 + k)Γ(1− k + ν)
CDkx̄(t)CDν−kx̄(t)

−
t−νP

Γ(1− ν)
x̄T (0)x̄(0).

Further, based on Itô’s formula with respect to fractional Brownian motion [37] and from the trajectory of syn-

chronized error system (4), the above equation can be rephrased as

CDνV (t)− δV (t) ≤x̄T (t)(−P (A+∆A(t))− (A+∆A(t))TP + PC(K +∆K(t)) + (K +∆K(t))TCTP − δP

+̺P )x̄(t) + ℓT (x̄(t), t)BTPx̄(t) + x̄T (t)PBℓ(x̄(t), t) + 2x̄T (t)Pg(t, x̄(t))dBH(t). (8)

Then, by taking mathematical expectation on both sides of (8), we can obtain that

E[CDνV (t)] ≤x̄T (t)(−P (A+∆A(t))− (A+∆A(t))TP + PC(K +∆K(t)) + (K +∆K(t))TCTP − δP

+̺P )x̄(t) + ℓT (x̄(t), t)BTPx̄(t) + x̄T (t)PBℓ(x̄(t), t). (9)
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On the other hand, with the aid of Assumption 1, for the diagonal matrices βi > 0 i = 1, . . . , n, one has the

following:

[ℓ(x̄(t))− χ−

i x̄(t)]βi[χ
+
i x̄(t)− ℓ(x̄(t))] ≥ 0. (10)

Now, from the equations (9) and (10), we can attain

E[CDνV (t)] ≤ ξT (t)Θξ(t), (11)

where ξT (t) =
[

x̄T (t) lT (x̄(t))
]T

and Θ =

[

−PA−ATP − δP + ̺P +KTCTP + PCK − χ1Γ1 PB + χ2Γ1

∗ −Γ1

]

− SG(t)J − (SG(t)J)TP + PCUΦ(t)W + (UΦ(t)W )TCTP .

Further, in light of Lemma (1) and Schur complement, Θ can be remodeled as

Θ =

























−PA−ATP + ̺P − δP +KTCTP + PCK − χ1Γ1 PB + χ2Γ1 −ǫ1PS JT ǫ2PCU W T

∗ −Γ1 0 0 0 0

∗ ∗ −ǫ1I 0 0 0

∗ ∗ ∗ −ǫ1I 0 0

∗ ∗ ∗ ∗ −ǫ2I 0

∗ ∗ ∗ ∗ 0 −ǫ2I

























.

(12)

It is noted that the Θ is not strictly in LMIs format, so we need to transform the inequality constraints into LMIs

to attain the control gain fluctuation. Considering this fact, first pre- and post-multiplying the right-hand side of (12)

with diag{P−1, P−1, I, I, I, I} and assume that P−1 = X . Secondly, denote a new variable as P−1Γ1P
−1 = Γ̂1

and Y = KX . Thus, it is easy to spot from right hand side of (12) that left hand side of (5) is arrived. Thus, if

the condition (5) holds, then CDνV (t) − δV (t) < 0. Suppose that there exists a nonnegative function L(t), the

inequality can be rephrased as CDνV (t) + L(t)− δV (t) = 0. Then, applying Laplace transform, we get

δV (s) = sνV (s)− V (0)sν−1 + L(s) ⇒ V (s) = (V (0)sν−1 − L(s))/(sν − δ). (13)

Further, taking inverse Laplace transform to (13), we procure V (t) = V (0)Fν(δt
ν)−

∫ 1
0 j(u)(t− u)ν−1Fν,ν(δ(t−

u)ν)du. Since (t− u)ν−1 and Fν,ν(δ(t− u)ν) are non negative functions, then we get

V (t) ≤ V (0)Fν(δt
ν) (14)

Let P̃ = Ψ−1/2PΨ−1/2, λ1 = λmin(P̃ ) and λ2 = λmax(P̃ ), we can obtain

V (t) = xT (t)Ψ1/2P̃Ψ1/2x(t) ≥ λmin(P̃ )xT (t)Ψx(t) = λ1x
T (t)Ψx(t). (15)

Moreover, V (0)Fν(δt
ν) = xT (0)Px(0) = xT (0)Ψ1/2P̃Ψ1/2x(0) ≤ λmax(P̃ )xT (0)Ψx(0). If xT (0)Ψx(0) ≤ c1,

then the above inequality can be easily written as

V (0)Fν(δt
ν) ≤ λ2c1Fν(δt

ν). (16)

Further, from the inequalities (14), (15) and (16), we can attain λ1x
T (t)Ψx(t) < V (t) < V (0)Fν(δt

ν) <

λ2c1Fν(δt
ν). Hence, xT (t)Ψx(t) < λ2c1Fν(δt

ν)/λ1. Therefore, if the condition (6) holds, then it is clear that
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xT (t)Ψx(t) < c2, for all t ∈ [0, T f ]. Thus, from Definition 4, it can be easily deduced FSNNs (1) is stochastically

synchronized within finite-time interval through the controller (3).

In the forthcoming theorem, we derive the finite-time synchronization of FSNNs (1) by assuming the system

parameter and control gain variation with norm bounded uncertainty which is defined in Assumption (2).

Theorem 2: With the assistance of Assumption 1 and 2, the FSNNs (1) under the controller (3) achieves the

stochastic finite-time synchronization criterion with respect to (c1, c2, d2, T
f ,Ψ), if there exist a matrix X , diagonal

matrix Γ̂1, any appropriate matrix Y and some positive scalars ǫ1, ǫ2, ̺, ν, c1, c2, δ and T f with c2 > c1, such

that the following conditions hold:

























−XTAT −AX + ρX − δX + CZ + ZTCT −G1Γ̂1 BX +G2Γ̂1 −I I X X

∗ −Γ̂1 0 0 0 0

∗ ∗ −ǫ1 0 0 0

∗ ∗ ∗ −ǫ2 0 0

∗ ∗ ∗ ∗ − 1
ǫ1ζa

2 0

∗ ∗ ∗ ∗ ∗ − 1
ǫ2ζk

2

























< 0. (17)

λ2c1Fν(δt
ν) < λ1c2. (18)

Moreover, the controller gain fluctuation is acquired by the relation K = Y X−1.

Proof: To derive the anticipated result, we assume that Assumption 2 holds for ∆A(t) and ∆K(t). Then, by

following the similar lines of Theorem 1, (11) can be rewritten as

E[CDνV (t)] ≤ ξTΘ1ξ, (19)

where ξT =
[

x̄T (t) lT (x̄(t))
]T

, Θ1 =

[

θ11 PB + χ2Γ1

∗ −Γ1

]

+ ǫ−1
1 x̄T (t)x̄(t) + ǫ−1

2 x̄T (t)x̄(t) and θ11 = −PA

−ATP − δP + ̺P +KTCTP + PCK − χ1Γ1 + ǫ1ζa
2 + ǫ2ζk

2. Next, using Lemma (1) and Schur complement,

Θ1 can be rewritten as

Θ1 ≤













−PA−ATP + ̺P − δP +KTCTP + PCK − χ1Γ1 + ǫ1ζa
2 + ǫ2ζk

2 PB + χ2Γ1 −I I

∗ −Γ1 0 0

∗ ∗ −ǫ1 0

∗ ∗ ∗ −ǫ2













.

(20)

Further, pre- and post-multiply the right-hand side of (20) with diag{P−1, P−1, I, I} and letting X = P−1,

P−1Γ1P
−1 = Γ̂1 and Y = KX , the right hand side of (20) is arrived which is similar to the left hand side of (17).

Thus, if the conditions (17), (18) holds, then from Definition 4, it can be concluded that FSNNs (1) is stochastically

synchronized over finite-time interval.

For the case neither parameter uncertainty nor control variations (∆A(t) = 0 and ∆K(t) = 0), the error dynamics

of the FSNNs has the following framework:

CDνe(t) =−Ax̄(t) +Bℓ(x̄(t)) + CKx̄(t) + g(t, x̄(t))
dBH(t)

dt
. (21)
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Corollary 1: Given some positive constants ̺, ν, c1, c2, δ and T f with c2 > c1, the FSNNs (21) achieves the

finite-time synchronization criterion, if there exists X , Γ̂1 and Y such that the following conditions hold:

[

−AX −XAT + ̺X − δX + CY + Y TCT − χ1Γ̂1 B + χ2Γ̂1

∗ −Γ̂1

]

< 0, (22)

λ2c1Fν(δt
ν) < λ1c2. (23)

The non-fragile state feedback controller gain fluctuation can be computed as K = Y X−1.

Proof: In order to procure the required consequence, we consider the uncertain terms as ∆A(t) = 0 and

∆K(t) = 0, the conditions (22) and (23) can be secured easily from Theorem 2. The proof is similar to that of

Theorem 2 and hence it is neglected.

IV. SIMULATION RESULTS

This section confers two numerical examples with its simulations for FSNNs (1) to validate the applicability of

the developed theoretical approach through finite-time synchronization criterion under the Theorem 1.

Example 1: Consider the FSNNs (1) with two neuron function and the dynamics of parameter coefficients are

retrieved as follows:

A =

[

4 0

0 4

]

, B =

[

8 8

−8 −8

]

, C =

[

0.3

0.5

]

, S =

[

0.5

1.5

]

, J =
[

0.1 0.2
]

, U = 5, W =

[

4

3

]

,

G(t) = Φ(t) = sin(t).

The activation function revealed for the FSNNs (1) is φ(x(t)) = [0.2 tanh(x(t)); 0] and the anticipated values

from Assumption (1) are χ1 = 0.10 and χ2 = 0.50. Moreover, the fractional-order here is taken ν = 0.93 and

the rest of the parameters involved in the inequality (5) and (6) are portrayed as ̺ = 0.2, c1 = 1.4, δ = 0.1 and

T f = 10. Now, based on these substantiate values and solving the LMIs developed in Theorem 1, the feasibility

can be succeeded with the aid of MATLAB software. Further, the feedback gain fluctuation is computed as K =

[−87.8836 − 65.1513]. Moreover, the initial conditions of the considered network system are randomly taken

as xT (0) = [2 1] and yT (0) = [12 10]. Further, the associated simulation results are rendered in Figs. 1-6.

For compressed note, Fig. 1 delineates the response of state trajectory curve, ie., Fig. 1 portrays that the response

system exactly traces the drive system. Further, the phase portrait of the drive and its response system is delineated

in Fig. 2. Moreover, the corresponding synchronized error state is demonstrated in Fig. 3. Fig. 4 shows the time

history xT (t)Ψx(t) of the considered system (1), wherein, it is noted that the state trajectories of all states indeed

satisfy the condition xT (t)Ψx(t) < 5.6414 for all t ∈ [0, 10]. From which, it is evident that the synchronization

criterion for FSNNS (1) is attained over finite-time domain. Further, Figs. 5 exhibit the controller responses and

the fractional Brownian motion curve is represented in Fig. 5. Finally, TABLE I displays the optimal bound value

of c2 for various values of c1. From TABLE I, it is noticed that the optimum bound value of c2 increasing when

the optimum bound value of c1 is increasing.
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Fig. 2: Phase portrait of the state trajectories

TABLE I: Optimum bound value of c2 for various values of c1

c1 1.4 1.5 1.6 1.7 1.8 1.9

c2 5.6414 9.1277 10.1320 15.3480 19.8304 23.2460

Example 2: Consider the three-neuron mode FSNNs (1) with the corresponding coefficient matrices as follows:

A =









2.3 0 0

0 2.8 0

0 0 2.4









, B =









0.9 1.5 0.1

1.2 1 0.2

0.2 0.3 1









, C =









2.8

1.5

0.8









, ζa = 0.3, ζk = 0.5.

At this point, the nonlinear neuron activation functions is spotted as φ(x(t)) = [0.5 tanh(x(t)); 0; 0], from which

we can hold the values χ1 = 0.10 and χ2 = 0.50 satisfying Assumption 1. Further, the other parameters engaged in

the simulation process are stipulated as ν = 0.93, ̺ = 0.9, c1 = 1.4, δ = 0.1 and T f = 10. Moreover, by resorting

the LMIs formulated in Theorem 2 with the prior mentioned parameter values, the feasibility can be endorsed and
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the corresponding state feedback gain fluctuation is quantified as K = [−10.2966 −11.2866 −13.4298]. Further,

by substituting the obtained feedback gain fluctuation, the simulation results are drawn in Figs. 7-11, whereas the

initial conditions are randomly chosen as xT (0) = [1 2 1] and yT (0) = [2 3 4]. To mention in short, 7 and 8

illustrate the trajectories of drive and its response state which trace exactly each other within a specified finite-time

period. Furthermore, the synchronized error state are depicted in Fig. 9. Fig. 10 spots the response of the controller.

Further, the finite-time synchronization criterion is displayed in Fig. 11, whereas the time evolution of xT (t)Ψx(t)

does not exceeds the optimum bound value c2 = 7.8881 and contained within the finite interval. Additionally, the

optimal bound value of c2 for various values of c1 are established and listed in TABLE II. Thus, TABLE II reveals

that the value of c1 increases, the bound value of c2 will also increases subsequently.

TABLE II: Optimum bound value of c2 for various values of c1

c1 1.4 1.6 1.8 2.0 2.2 2.4

c2 7.8881 8.9734 10.6570 11.8996 13.1348 14.3854
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Thus, it is conferred from the above simulation results, the finite-time synchronization criterion under the proposed

non-fragile control strategy for the addressed FSNNs (1) is achieved with respect to (c1, c2, d2, T
f ,Ψ) at specified

finite-time interval.

V. CONCLUSION

In this paper, we have examined the synchronization problem in finite-time domain for a class of fractional-

order stochastic neural networks with discontinuous activation functions via a non-fragile controller. Precisely, the

phenomenon of randomness in the controller is characterized by stochastic variables that satisfies the Bernoulli

distributed sequences with white noise. Further, by utilizing indirect Lyapunov method along with linear matrix

inequalities, a novel set of adequate conditions is procured and it assures the finite-time stochastic synchronization

criterion over specified finite domain. Moreover, the desired form of non-fragile state feedback controller gain

fluctuation has been exhibited by using aforementioned sufficient conditions. At last, two numerical examples with

its simulations have been proffered to validate the superiority and potency of the synchronization criterion proposed
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in this study.
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