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Abstract
The hyperspectral image (HSI) super-resolution (SR) reconstruction has attracted much attention and
been used widely in various study �elds due to its low requirements on hardware in practice. However, the
distribution of image information is uneven. And HSI is treated equally during the process of super-
resolution reconstruction. It is time consuming and many details cannot be extracted speci�cally. In this
paper, a new method named MSDESR (multilevel streams and detail enhancement) is proposed to
reconstruct HSI according to its uneven distribution of spatial information. The MSDESR consists of a
submap shunt block, a high-low frequency information extraction with detail enhancement block, and a
partition image reconstruction block. Firstly, the submap shunk block is designed to pre-classify
hyperspectral images. The images are divided into complex and simple parts according to the spatial
information distribution of the reconstructed submap. Secondly, the multiscale Retinex with detail
enhancement algorithm is constructed to purify high-frequency noise-contaminated and enhance the
image details by separating the samples into high and low frequency information. Finally, branching
networks of different complexities are designed to reconstruct the images with high credibility and clear
content. In this paper, datasets of QUST-1, Pavia University and Chikusei are applied in the experiments.
The results show that, the MSDER outperforms state-of-the-art CNN-based methods in terms of
quantitative metrics and visual quality, with quantities of 4.18% and 9.35% in the SRE and MPSNR
metrics, respectively. Overall, the MSDER performs well in hyperspectral image super-resolution
reconstruction, which is time saving and preserves the details of spatial information.

1 Introduction
Hyperspectral images include dozens or even hundreds of tiny spectral channels, making them very
spectrally discriminating due to their abundance of spectral information. As a result, HSI has been used
for natural disaster warning [1], land cover identi�cation [2], and change detection [3]. However, the spatial
resolution of HSI cannot meet the demand for the identi�cation and interpretation of �ne features,
limiting its application in a variety of �elds. Therefore, it is of great importance to improve the spatial
resolution of HSI. Obtaining hyperspectral images with great spatial resolution can be di�cult. To
address this issue, hyperspectral images super-resolution reconstruction has been developed.

Super-resolution reconstruction is a promising image processing technique designed to acquire high-
resolution (HR) images from their low-resolution (LR) images to overcome their inherent resolution
limitations. With the advancement of image super-resolution reconstruction technology, deep learning
has made many achievements in the spatial resolution reconstruction of hyperspectral images [4],[5],[6],
[7],[8]. Due to the uneven spatial distribution of images, different strategies for different spatial
distribution areas can effectively improve the effect of image reconstruction. For example, RAISR [9]
separated the picture patches into clusters and created a matching image enhancement strategy for each
cluster. It also employs an e�cient hashing approach to decrease the complexity of the clustering
procedure. Kong et al. [10] created an accelerated super-resolution network that uses data features to
recreate speci�ed areas and produced good results. In addition, previous methods have generated decent
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textures; however, the edges of the generated images would inconsistent with the real ones, leading to
serious arti�cial artifacts. To acquire clear and precise edges, researchers have devised edge �lters that
learn picture edges independently [11],[12],[13],[14],[15]. Compared with natural images, hyperspectral
images collected by unmanned aerial vehicles, satellites, and other platforms have a wide imaging range.
The inhomogeneity of the image spatial information distribution is more obvious. In the application of
hyperspectral remote sensing images, the clarity of the object edge is particularly important. However, few
studies have combined partition reconstruction and detail enhancement technologies in super-resolution
reconstruction of hyperspectral images.

In this article, we propose a super-resolution reconstruction framework for a hyperspectral image called
MSDESR, which provides a reliable solution for the spatial reconstruction of hyperspectral remote
sensing images. Hyperspectral remote sensing images are used as the input of the submap shunt
network to realize the shunt of spatial information, which is divided into two data streams: simple and
di�cult. The spatial information of the two data streams is separated by high-low frequency information,
and details are enhanced. Finally, the data are input into the regional reconstruction module [16]
respectively to achieve spatial hyperspectral remote sensing images super-resolution reconstruction. This
method can solve the problem that hyperspectral remote sensing images occupy the same amount of
computation due to the uneven distribution of spatial information. In addition, the method can transform
redundant computing operations into enhanced processing of complex detailed texture information, thus
realizing resource conversion to improve reconstruction e�ciency.

The contributions of this article are summarized as follows:

-To encode spatial information effectively and enhance details, a multibranch partition reconstruction
network is proposed. The proposed MSDESR is a network with high computational e�ciency.

-To fully make use of the local spatial information distribution of the hyper- spectral remote sensing
images, the submap shunt network is employed for shunting in the image preprocessing stage.

-To viably exploit the detailed textural features of hyperspectral remote sensing images, the multiscale
Retinex with detail enhancement algorithm is proposed. The separation of spatial high-low frequency
information from hyperspectral remote sensing images is helpful to extract and strengthen the details of
high frequency information.

2 Related Work

2.1 Partition image reconstruction and detail enhancement
For different image regions, researchers are beginning to use different processing strategies. However, the
key issue is how to allocate different image areas to different processing strategies. Using multipath CNN
reconstruction with path�nders, Ke et al. [17] combined reinforcement learning and deep learning to �nd
suitable paths to recover each region e�ciently. RAISR [9] separated picture patches into clusters and
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creates a matching image enhancement strategy for each cluster. It also employs an e�cient hashing
approach to decrease the complexity of the clustering procedure. Inspired by the above methods,
SFTGAN [18] introduced a new spatial feature transformation layer that incorporates a high-level
semantic prior before guiding image reconstruction in different regions, which is an implicit way to
handle different parameter regions. These deeper networks achieve better image shunt performance but
due to limited computing power and memory resources, they are di�cult to train.

In addition, in order to obtain clear detail information, the researcher further introduced a detail �lter into
the model. The EP-GAN [19] model extracted detail information as priori labels from high-quality images
to guide the network in inferring detailed details. Kui et al [20] built EESN network, removed noise
pollution through mask pro-cessing, extracted detail image contour, and combined the extracted detail
contour with the restored intermediate image to realize the enhancement of detail information. Compared
with natural images, hyperspectral images are more spatially contaminated. If the details of
hyperspectral images are extracted and enhanced directly, noisy results and false image details will
appear instead. Therefore, the detail enhancement method for natural images is inapplicable to
hyperspectral images.

2.2 Hyperspectral super-resolution methods for remote
sensing images
Deep neural networks have been used with great success in computer vision [21],[22],[23],[24]. Inspired by
the successful application of RGB image processing, deep learning has also been widely used in HSI [25],
[26]. Pan et al [27] presented an SR approach based on a residual dense back projection network
(RDBPN), which promotes super-resolution reconstruction of remote sensing images with median and
large scale factors. Zou et al [28] combined deep residual convolutional neural networks (DRCNN) with
spectral unmixing. Hu [29] et al. proposed an intra fusion network (IFN) hat effectively utilizes spectral
information between continuous LR bands. Li et al [30] proposed a band-attentive adversarial learning
frame, which introduces a series of spatial spectral constraints to improve the reconstruction results. To
achieve e�cient exploitation of high multispectral features, MSFMNet [31] uses a multiscale feature
generation, a fusion multiscale feature mapping block based on wavelet transform, and a spatial
attention mechanism to learn the spectral features between different spectral bands. These extremely
deep networks achieve good recon�guration performance. However, treating all areas of the whole image
with only one strategy will reduce the effectiveness and e�ciency of reconstruction.

3 Porposed Methods
The framework of the MSDESR is shown in Fig. 1. The proposed framework mainly consists of three
parts: a submap shunt block, a high-low frequency information extractor with an enhancement block, and
a regional image superresolution reconstruction block. First, the input image is spatially decomposed
[32]. The data are shunted by a lightweight submap shunt network (based on the DenseNet [33] model)
according to the complexity of the image information. Second, mproving the multiscale Retinex [34] with
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detail enhancement algorithm to separate the high-low frequency information of the image and enhance
the high-frequency information of details in the image. Then, the processed high-low frequency data are
fed into large, medium and small networks of different complexity, and the network carries out super
resolution reconstruction of high-low frequency information respectively. Finally, the completed super-
resolution reconstructed images' high-low frequency information is fused with linear weighting. And the
clear images are reconstructed by stitching the submaps into complete images.

3.1 Submap shunts
The submap shunt network classi�es images into two categories based on detailed texture information:
easy and di�cult parts. According to statistics, approximately 36% of the LR subimages (32x32) in the
Pavia University dataset fall in the smooth region, while this percentage rises to 56% in the QUST-1
hyperspectral satellite dataset of Gaomi City. Based on this observation, large-scale remote sensing
images are spatially decomposed into subimages. Smaller networks are used to deal with smooth
regions of the image, and deep networks are used to deal with complex regions [35]. Following spatial
decomposition, different networks are used for super-resolution reconstruction of areas containing
different morphological information. Subimage decomposition is especially important for large remote
sensing images because many areas are easy to reconstruct relatively. Submap shunting not only
reduces computational effort and saves memory space in practice but also prepares for the subsequent
extraction of high-low frequency information.

As shown in Fig. 2, we create a lightweight submap shunt network inspired by the DenseNet model. The
lightweight submap shunt network has four convolutional layers, three LReLU layers, an average pooling
layer, and a fully connected layer, all of which are connected in a feed-forward manner. Speci�c
parameters are shown in Table 1. The feature extraction is handled by the convolutional layers, while the
pooling and fully connected layers generate probability vectors. Speci�cally, this classi�cation model

allows a probability vector p xi to be generated for a subgraph xi that is decomposed from a large

scale image X. The submap is identi�ed by selecting the metric with the highest probability value to
determine which class it belongs to. Experiments show that the structure is simple and achieves better
performance than DenseNet.

Table 1
Submap diversion network parameter settings

Number of storeys Convolution kernel size Input channels Output channels Step length

1 4x4 1 256 4

2 1x1 256 256 1

3 1x1 256 256 1

4 1x1 256 32 1

( )
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When training with the baseline DenseNet network, it converges to an extreme point, and the resulting
images are all classi�ed into complex texture branches. For example, in the case of output vectors, a
shunt result vector of [0.90, 0.10] is preferable to [0.54, 0.46]. As the latter appears to be random, the
submap classi�cation network loses its functionality. To avoid this issue, we design a lightweight
submap shunt network based on the DenseNet model to carry out the submap shunt task, ensuring that
both branches have equal chances of being selected. Some of the submap shunt network results are
depicted in Fig. 3(a)-(b). Figure 3(a) depicts the resulting map derived from the easily reconstructed shunt
data. The result map shows that there is less texture information in the plots, and little difference between
textures in terms of thickness, sparsity, and other easily distinguishable information. The results of the
di�cult reconstructed shunt data in Fig. 3(b) show that the textures are more complex, non-randomly
arranged, and densely distributed. By comparing these two images, the submap shunt network can
accurately classify the images into two categories: easy and di�cult parts, enhancing shunt
effectiveness.

3.2 Separation of high-low frequency information
The Retinex algorithm is an image enhancement algorithm based on a human vision system. The
traditional multiscale retinex algorithm is used to extract high-low frequency image information, but the
local details of high frequency information in the results are very poor. Therefore, we proposed a
multiscale Retinex with detail enhancement algorithm to separate high and low frequency information
from hyperspectral remote sensing images. It is assumed that the low-frequency information is a
spatially smooth image. The improved multiscale Retinex with detail enhancement algorithm can be
expressed as:

S(x, y) = R(x, y)*L(x, y)

1

r(x, y) = D(x, y) +
K

∑
i=1

Wi{ logS(x, y) − log Fi(x, y)*S(x, y) }

2

WhereS(x, y) and r(x, y) represent the original image and the output image. R (x, y) and L(x, y)
represent high frequency information and low frequency information respectively. * represents the
convolution sign. Fi(x, y) is the center surround function. K is the number of Gaussian center surround
functions. The K value is usually taken as 3. Wi is the weighting factor of the scale and W1 =W2 =W3 =
1/3. D(x, y) is the detail recovery section, which is responsible for improving the detail portion of the
high-frequency information. The expression for low-frequency information extraction is :

L(x, y) = S(x, y)/R(x, y)

[ ]
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3

Figure 4 shows some of the results from extracting the image's high-low frequency information from the
original remote sensing data. The high-frequency information contains the remote sensing image's main
features and detail information, whereas the low-frequency information comprises the remote sensing
image with a large amount of smooth information. Therefore, during the reconstruction of super-
resolution images, different processing strategies should be used for different frequency information.

The detail recovery section extracts local details in an image by utilizing DoG's multiscale differences
[36]. First, the Gaussian kernel function is applied to the image with the high-frequency information 
R(x, y) to produce three distinct blurred images, and the blurred image of the re�ection component is

R1(x, y) =G1 ×R(x, y) (4)

R2(x, y) =G2 ×R(x, y) (5)

R3(x, y) =G3 ×R(x, y) (6)

where G1, G2 and G3 are the Gaussian kernels of the three images with standard deviations of σ1 = 1.0,
σ2 = 2.0 and σ3 = 4.0, respectively. Then, high quality details DR1, medium detail DR2 and coarse details 

DR3 are extracted forR(x, y). The details of high-frequency information can be expressed as

DR1(x, y) = R(x, y) − R1(x, y)

7

DR2(x, y) = R1(x, y) − R2(x, y)

8

DR3(x, y) = R2(x, y) − R3(x, y)

9

The detail information D of high frequency information R(x, y) is generated by merging three detail
images. The expression is as follows

D = [1 − z1 × (DR1)] × hR1 + z2 × DR2 + z3 × DR3

10

where z1, z2 and z3 are 0.5, 0.5 and 0.25, respectively. When high-quality detail is added to an image, D
will extend the grayscale difference near the edges. But its excessive overshoot may cause grayscale
saturation. To overcome this problem, the positive component of DR1 is reduced and the negative
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component of DR1 is enlarged in Eq. (10).Therefore, the detail is increased while the saturation is
suppressed in the experiments.

Figure 5 depicts the detail information extracted from the high-frequency information. The majority of the
detail information may be extracted from the high-frequency data. Figure 5 shows the results of
extracting high-frequency information before and after the Retinex algorithm improvement. In Fig. 5,
image1 and image2 are the results of high frequency information extracted from the easy and di�cult
reconstruction datasets re-spectively. The results show that the details of the edge parts of the features
and background in the improved high-frequency information are clearer. This makes the regional image
super-resolution reconstruction module more sensitive to the extraction of detailed feature information
and better to local feature extraction.

3.3 Partition image reconstruction model
To successfully conduct super-resolution reconstruction, different networks are used to process submaps
of various levels of complexity, which is a divide-and-conquer strategy. Deep residual channel attention
networks (RCAN) employs a channel attention mechanism in the long and short skip residuals
connections to adaptively reclassify the features of the channel to receive more information. In this work,
we develop a RCAN -based regionalized image reconstruction method. As shown in Table 2('-O' represents
the original network), there is almost no difference in performance between RCAN (32) and RCAN − 0(64)
for the "di�cult low-frequency and easy low-frequency ” submap, while RCAN (50) can achieve roughly
the same performance as RCAN-O(64). This suggests that we can reduce computational costs by using
lightweight networks for simple submaps. As shown in Fig. 6, three RCAN models with the same network
structure but a different number of channels are employed in this paper. In the �rst layer, three networks
with 32, 50, and 64 channels are used for training of subimage high-low frequency information,
speci�cally di�cult low-frequency, easy low-frequency information, easy high-frequency information, and
di�cult high-frequency information. Because of the small difference in spatial complexity, submap shunt
networks classify di�cult low-frequency information and easy low-frequency information into one group.
As a result, we propose the method for reconstructing regional images that can differentially process
different regional images.

Table 2
MPSNR values obtained for the three SR branches of RCAN
Model FLOPs Shallow Medium Deep

RCAN (32) 8.28G 38.21dB - -

RCAN (50) 17.91G - 28.53dB -

RCAN (64) 29.34G - - 26.33dB

RCAN -O(64) 29.34G 38.20dB 28.56dB 26.32dB
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The regional image reconstruction model is divided into three branches: simple, medium, and complex.
Each branch is based on RCAN, which is a super-resolution network. The baseline RCAN network is used
as the most complex branch, and the other two branches are obtained by reducing the network
complexity. Furthermore, controlling network complexity is accomplished by reducing the number of
convolutional layers and the number of channels (convolutions) per convolutional layer. Therefore, the
smallest number of layers and convolutions for performing all the training tasks can be determined,
namely, the maximum branch. Then the minimum and medium branches are determined in the same
way. Finally, the completed superresolution reconstructed image's high-low frequency information are
fused and linearly weighted. The clear and complete image is reconstructed by stitching the submaps.

S = lR(x, y) + (1 − l)L(x, y)

11

where R(x, y) is the high-frequency information, L(x, y) is the low-frequency information, S is the �nal
image after the fusion of high-low frequency information using linear weighting. And l is the weighting
factor and takes the value 0.5.

To fully demonstrate the ability of the framework to encode spatial spectral information, tests were
performed with 2-, 4-, and 8-fold up-sampling factors. According to the data in Table 3, the MSDESR
achieves better performance and lower computational cost than the original network, realizing e�cient
encoding of spatial spectral information, with FLOPs reduced to 52%-70%. Furthermore, the reduction in
computation did not lead to a decrease in image quality, indicating that the performance improvement is
not at the expense of computational burden. The results certify the signi�cance of diverting the input
submaps to their appropriate branches.

Table 3
MPSNR (dB) values for each upsampling factor

experiment

  RCAN -O MSDESR

2Scale Factor 33.31 35.67

FLOPs 29.34G (100%) 21.12G (72%)

4Scale Factor 29.72 30.64

FLOPs 29.34G (100%) 18.48G (63%)

8Scale Factor 25.56 25.99

FLOPs 29.34G (100%) 14.96G (51%)

4 Experimental Results And Analysis
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The framework was trained on an ubuntul10. 4 system using an NVIDIA GTX1080Ti GPU device with 28
G of memory. The network was implemented by the open-source PyTorch deep learning framework, and
the network parameters were optimized using the Adam correction method, with the initial learning rate
set to 0.001. Attempts were made to set the learning rates to 0.1 and 0.01. The experimental results show
that when the initial learning rate is 0. 001, the best results are obtained compared to the other.

4.1 Dataset information
In this section, the MSDESR is applied to three hyperspectral image datasets,: the QUST-1 satellite
dataset, the Pavia University[37] dataset, and the Chikusei dataset[38]. The QUST-1 satellite data are
hyperspectral remote sensing images taken on July 2019 in Weifang City, Shandong Province, China. The
spectral range is 400 nm to 1000 nm. The images are equally divided into 32 spectral bands with a
spatial resolution of ten meters. The images are cropped to 128×128 pixels from approximately
5000×5000 pixels. The Pavia University data are part of the 2003 hyperspectral data from the city of
Pavia, Italy, covering 103 spectral bands from 430 nm to 860 nm, with a spatial resolution of 1.3 meters
and 610×340 pixels. The Chikusei dataset was taken on 29 July 2014 by the Headwall hyperspectral
imaging sensor in the agricultural and urban areas of Chikusei, Ibaraki Prefecture, Japan. The spectral
range was 128 bands from 363 nm to 1018 nm with a spatial resolution of 2. 5 meters. The scene
consisted of 2517×2335 pixels, and the images were cropped to a size of 128x 128 pixels with 19
categories.

For each image in each dataset, we randomly chose a 128x128 pixel region to test the performance of
our pro-posed hyperspectral image super-resolution reconstruction framework MSDESR. Another
128×128 region was randomly selected for validation. And the remainder was selected for training. To
create the super-resolution reconstruction training set, the hyperspectral remote sensing images are used
as the base HR image. The LR images are created by simulating the blur method of the remote sensing
image, adding Disk blur, and using double triple interpolation. To achieve varying blur levels, various disk
blur kernels are performed on the LR images[39].

4.2 Evaluation metric
To evaluate the performance of the proposed method comprehensively, a combination of classical
evaluation metrics and visual effects is used for validation. The classical evaluation metrics include
signal to reconstruction error (SRE), mean peak signal-to-noise ratio (MPSNR), mean structural similarity
(MSSIM), and mean root mean square error (MRMSE) [40]. SRE is a global image quality indicator based
on the signal error between the reconstructed images and the scene ground truth images, while MPSNR
and MRMSE use the mean square error to estimate the similarity between the generated images and the
ground truth image. MSSIM emphasizes structural consistency. Generally, the larger the values of SRE,
MPSNR and MSSIM, the better the spatial quality, whereas, the smaller the value of MRMSE, the less the
spectral distortion.

4.3 Results and discussion
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To assess the performance of the MSDESR, a series of experiments are carried out on three benchmark
datasets: QUST-1, Pavia University, and Chikusei. Three of the most advanced deep learning methods
with common code were selected as the baseline for comparison on the 4× sampling factor: FSRCNN,
LapSRN, and RCAN. Table 4 shows the results of experiment. Figures 7, 8, and 9 show the corresponding
visualization results, with the QUST-1 satellite dataset in band 1, the Pavia University dataset in band 49,
and the Chikusei dataset in band 93. The red rectangular area in the bottom right corner of the image
indicates that the image has been magni�ed by a factor of three. 

 
Table 4

MPSNR (dB) values for each upsampling factor experiment
Datasets Indicators FSRCNN LapSRN RCAN MSDESR

QUST-1 satellite SRE↑ 39.36 39.88 40.57 41.78  

MPSNR↑ 28.87 29.96 33.31 34.67  

MSSIM↑ 0.58 0.60 0.67 0.64  

MRMSE↓ 8.70 8.05 8.71 7.78

Pavia University SRE↑ 33.77 31.98 35.57 36.18  

MPSNR↑ 28.34 29.24 30.29 31.50  

MSSIM↑ 0.78 0.80 0.88 0.85  

MRMSE↓ 5.49 4.66 5.12 4.14  

Chikusei SRE↑

MPSNR↑

MSSIM↑

MRMSE↓

35.50

35.90

0.86

6.77

35.86

37.06

0.90

5.75

37.58

38.04

0.94

6.47

38.42

39.08

0.91

5.16

 

The results of experiment from the QUST-1 satellite data in Table 4 show that the proposed hyperspectral
image super-resolution reconstruction framework MSDESR achieves the best performance in terms of the
SRE, MPSNR, MSSIM, and MRMSE indexes, which are 42.78, 35.67, 0.64, and 7.78, respectively. The SRE,
MPSNR, and MSSIM are improved by 5.42, 5.80, and 0.06, respectively, compared with the FSRCNN. The
results from the Pavia University data show that MSDESR still has better reconstruction results compared
to other methods. In comparison to the FSRCNN, the SRE increased by 2.41, the MPSNR increased by
3.36, the MSSIM decreased by 0.07, and the MRMSE decreased by 1.35. For the Chikusei dataset,
compared with FSR- CNN, the proposed model also achieves the optimal reconstruction results, with SRE,
MPSNR, and MSSIM improved by 2.52, 3.38, and 0.08 respectively, the MRMSE was reduced by 2.16.
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When dealing with relatively simple, irregular natural pattern data, such as the QUST-1 satellite dataset,
which is dominated by natural scenes such as plains, �elds and small towns, the submap shunt block of
the proposed method divides most submap into a category that is easy to reconstruct. The subtle texture
and spectral information are preserved properly by the multiscale Retinex structure with detail
enhancement, which is transmitted to the simple branch of the regional image reconstruction module for
reconstruction. The local image information is smoother and achieves better results with less
computation. The Pavia University dataset consists of urban scenes in various frequency bands, which
are mainly regular arti�cial patterns. When dealing with this kind of data, the submap shunt structure
divides most of the submaps into the category of di�cult-to-reconstruction. Through the structure of
multiscale Retinex with detail enhancement and the complex branches of regional image reconstruction
module, the edge and texture detail features of different frequency bands are extracted more
comprehensively and involved in the reconstruction calculation, so as to avoid the jagged boundary of
the image and depict a more realistic shape. Of course, when dealing with moderately complex data, such
as the Chikusei suburban-urban combination, the proposed method can also make �exible processing
and achieve the optimal computation and performance.

The visualization results are shown in Figs. 7, 8, and 9. And the MPSNR curves for all the band spectra
are shown in Fig. 10. These results further demonstrate the superiority of the proposed framework. Figure
7, depicts the FSRCNN effect plot of the experimental results of the QUST-1 satellite dataset. The FSRCNN
fails to extract and recover the gaps between small buildings. Although these gaps can be seen in the
LapSRN and RCAN reconstruction results, they are not obvious and di�cult to detect. The proposed
framework preserves the details and makes them more visible by comparison. In the experimental results
of Pavia University datasets in Fig. 8, there is a long black outline building in the ground truth image,
which is di�cult to distinguish from the results of other methods. In contrast, this long black outline can
still be observed in the result generated by the proposed method. Figure 9 shows the experimental results
of the Chikusei dataset. The two intersecting �eld paths in the real image are di�cult to distinguish in the
results of the other methods, or only one of them can be recognized with di�culty. In contrast, these two
paths are still visible in our results, with clear details and a consistent structure. This means that the
proposed MSDESR can take advantage of the detailed texture features of hyperspectral remote sensing
images and reconstruct delicate textures more fully. The results indicate that our network can better
preserve spectral information and maintain detailed features.

In all bands for the MPSNR, the proposed method consistently outperforms the other methods. When
local spatial details are considered, the results show that the algorithm in this paper can better learn and
strengthen spatial features and improve the coherence of structural features. As a result, it can be
concluded that the proposed algorithm performs better on datasets acquired by both CMOS
(complementary metal-oxide-semiconductor) and ROSIS (re�ective optics system imaging spectrometer)
sensors.

In the practical application of hyperspectral remote sensing data, in addition to spectral data,
corresponding spatial morphological information is also necessary. The spatial resolution of
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hyperspectral remote sensing data cannot meet the demand for spatial morphological information of the
features. Although researchers [12],[13],[14],[15] investigated the use of cascaded residual methods to
improve the spatial resolution, treating data with uneven information distribution equally cannot make
symptomatic reconstruction for spatial morphological information with different features. The results of
experiment show that the proposed method is not only capable of preserving the true spatial
morphological information of features for symptomatic reconstruction without compromising the
spectral information, but also effectively makes use of the computational load. It allows for further
improvements in spatial resolution and improves the accuracy of feature recognition.

4.4 Discussion on the Proposed Framework: Ablation Study
The importance of each component of the proposed framework is validated through ablation
experiments. Without the submap shunt network branch, without the high-low frequency information
extraction branch, and without the improved high-low frequency information extraction branch are the
settings of the various modules in the ablation experiments. Except for the ablation module, all three
comparison methods use the same settings as the proposed model. Table 5 and Fig. 11 depict the results
of experiments performed on the QUST-1 datasets. According to the table, the super-resolution
reconstruction results using the improved detail enhancement algorithm improved the MPSNR values by
approximately 6.4% compared with that of the unimproved algorithm, demonstrating the effectiveness of
the detail enhancement algorithm. The super-resolution reconstruction metrics of the proposed
framework outperform that of other ablation experimental models, demonstrating the importance of each
component. 

Table 5
Results on the QUST-1 dataset from different network architectures.

  Without the
sub-map shunt
network

Without the high and low
frequency information
extraction

Without the improved
high and low frequency
information

Complete
framework

SRE↑ 39.66 35.12 40.19 41.78

MPSNR↑ 33.32 29.64 32.43 34.67

MSSIM↑ 0.68 0.59 0.6 0.64

MRMSE↓ 7.62 7.74 7.55 7.78

5 Conclusion
In this study, a hyperspectral image super-resolution reconstruction framework MSDESR is proposedt o
improve the spatial resolution of hyperspectral remote sensing images. We design a submap shunt
network to minimize the computational load of reconstruction process in light of the uneven spatial
information distribution during super-resolution reconstruction and the varying di�culty of image
reconstruction in different regions by classify hyperspectral remote sensing images accurately. The high-
low frequency information extraction and enhancement modules are designed to address the extraction
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of texture detail to fully retain texture detail information and eliminate unnecessary noise. The partition
image reconstruction block is designed to reduce the di�culty of HSI reconstruction by targeting different
reconstruction di�culties. Compared with other super-resolution reconstruction methods of hyperspectral
remote sensing images, this framework can recover �ner details and has higher reconstruction e�ciency.
The focus of our future research will be on how to perform more accurate weighted fusion of high-low
frequency information of images under certain constraints.
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Figures

Figure 1

MSDESR Framework

Figure 2

Submap shunt network
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Figure 3

Schematic diagram of shunt results. �gures (a) and (b) show the result of the experiment with the easy
and di�cult reconstructed shunt data.
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Figure 4

High-low frequency information separation effect
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Figure 5

High-frequency information comparison.(a) and (d) are the original algorithm extraction results, (b) and
(e) are the extracted detail information, and (c) and (f) are the improved algorithm extraction results.
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Figure 6

MSDESR Framework

Figure 7

Experimental results of the QUST-1 satellite dataset
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Figure 8

Experimental results for the Pavia University dataset

Figure 9

Experimental results for the Chikusei dataset

Figure 10

MPSNR as a function of spectral band wavelength for the methods tested on the hyperspectral image
dataset.

Figure 11
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Results of ablation experiments on QUST-1 datasets


