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Abstract 

In this paper, we propose a new method to obtain eigenvalues and fuzzy triangular eigenvectors of a fuzzy 

triangular matrix (Ã), which are the elements of the given fuzzy triangular matrix . To this purpose, we 

solve the 1 − cut of a fuzzy triangular matrix (Ã) to obtain the 1 − cut of eigenvalues and eigenvectors. 

Then, based on the results obtained in a 1 − cut mode, we use three new models to determine the left 

and right widths for those eigenvalues and eigenvectors. So, after some manipulation, in each of the 

models, the fully fuzzy linear systems (FFLSs) transformed to 2n crisp linear equations and some crisp 

linear non-equations (that, the first model includes 2(n + 1), the second model includes 2(n + 3) and 

the third model includes 6n + 2 crisp linear non-equation). Then, we suggest a nonlinear programming 

problem (NLP) to calculation simultaneous equations and non-equations. Furthermore, we define three 

other new eigenvalues (namely, fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy 

approximate eigenvalue) for a fuzzy triangular matrix (Ã) that does not have any suitable solution. the 

fuzzy escribed eigenvalue which is placed in a tolerable fuzzy triangular eigenvalue set (TTFES), the fuzzy 

peripheral eigenvalue placed in a controllable fuzzy triangular eigenvalue set (CTFES), and the fuzzy 

approximate eigenvalue placed in an approximate fuzzy triangular eigenvalue set (ATFES). Finally, 

numerical examples are presented to illustrate the proposed method. 

Keywords:  Fuzzy number ,  Fuzzy eigenvalues , Fuzzy eigenvector, fuzzy triangular matrix 

1. Introduction 
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The system of linear equations plays a crucial role in various areas such as physics, statistics, operational 

research, engineering, and social sciences. One of the major applications of fuzzy number arithmetic is in 

solving linear systems whose parameters are all or partially represented by fuzzy numbers. Therefore, it 

is immensely important to develop a numerical procedure that would appropriately treat general fuzzy 

linear systems and solve them. 

The system of linear equations AX̃ = b̃ where the coefficient matrix A = (aij), 1 ≤ i, j ≤ n is a crisp matrix 

and the elements, x̃i, b̃i , 1 ≤ i ≤ n of the vectors X̃, b̃ are fuzzy numbers, called a fuzzy linear system (FLS). A general model for solving a FLS first was proposed by Friedman et al.[14]. Friedman et al.[15] 
investigated a dual fuzzy linear system using nonnegative matrix theory. To continue Friedman et al.’s 

work, Allahviranloo [2 − 4] proposed various numerical methods to solve fuzzy linear systems. In 

addition, Abbasbandy et al. [1] used the LU decomposition method for solving a fuzzy system of the linear 

equation when the coefficient matrix is symmetric positive definite. In 2011 Allahviranloo and Salahshour  [6] proposed a practical method to solve a FLS. In that method, they solved 1-cut of a fuzzy linear system. 

Then, by some fuzzification, they obtained the fuzzy vector solutions by symmetric spreads of each 

element of a fuzzy vector solution. Also for more references see [19 − 21]. 
The system of linear equations ÃX̃ = b̃ where, Ã = (ãij)n×n , X̃T = (x̃1,⋯ , x̃n)1×n, b̃T = (b̃1,⋯ , b̃n)1×n 

such that ãij, b̃i, x̃j are fuzzy numbers, for all i, j = 1,⋯ , n, called a fully fuzzy linear system(FFLS).  FFLSs have been studied by many authors. Buckley and Qu in their consecutive works [8 − 10]  suggested 

different solutions for FFLS. Based on their works, Muzzioli and Reynaerts [17] introduced an algorithm 

to find vector solutions by transforming the system A1x + b1 = A2x + b2 into the FFLS Ax = b where A = A1 − A2 and b = b1 − b2. their approach contains solving of 2n(n+1) crisp systems for all α ∈ [0,1]. 
obviously, for a large n, obtaining such a solution is not easy work and such an approach has a big 

propagation error. 

Dehghan et al. [11, 12]proposed some methods to solve FFLS such as the Cramer’s rule, Gaussian 

elimination, LU decomposition (Doolittle algorithm), and linear programming (LP) for solving square 

and non-square fully fuzzy systems. However, their methods are not available for the nonnegative 

solution. Vroman et al. [18] suggested a practical algorithm using parametric functions in which the 

variables were given by the fuzzy coefficients of the system. In addition, they showed that their algorithm 

is better than the method of Buckley and Qu. Allahviranloo et al. [7] suggested a method to solve FFLS. 

To this end, they solved 1 − cut  of an FFLS, then allocated some unknown symmetric spreads to each 
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row of a 1 − cut and then the symmetric spreads of the solution are computed by solving a 2n linear 

equations. In 2014, Allahviranloo and Hosseinzade. [5] proposed a novel method to obtain the fuzzy 

trapezoidal solution for an FFLS. Their method is constructed based on solving two FILSs. In addition, 

they introduced two different models for those FFLSs that do not have a feasible solution. 

in this paper, we propose a method for obtaining eigenvalues and fuzzy triangular eigenvectors for a fuzzy 

triangular matrix (Ã) using a nonlinear programming problem (NLP). Moreover, we define three other 

new eigenvalues namely, fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate 

eigenvalue for a fuzzy triangular matrix. 

The structure of this paper organized as follows: 

In section 2, we introduce the notation, the definitions, and preliminary results, which will be used 

throughout. In section 3, we design our new method to obtain eigenvalues and fuzzy triangular 

eigenvectors of a fuzzy triangular matrix. In section 4, we define three new eigenvalues namely, fuzzy 

escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate eigenvalue for a fuzzy triangular 

matrix. Numerical examples are given in section 5 to examine our method and conclusions drawn in 

section 6. 

2. preliminaries 

The basic definitions of a fuzzy number given in [13, 16, 23] as follows: 

Definition 2.1. An interval number [𝑥] is defined as the set of real numbers such that [𝑥] =[x, x]={�́� ∈ 𝑅: 𝑥 ≤ �́� ≤ 𝑥} where  𝑥 ≤ 𝑥. We denote the set of all interval numbers by𝕀. 
Definition 2.2. A vector  [𝑋] = ([𝑥1], [𝑥2],… , [𝑥𝑛])𝑇, where [𝑥𝑖]=[𝑥𝑖, 𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑛 are interval numbers, 

is called an interval number vector. In this case, we denote[𝑋] ∈ 𝕀𝑛. 

Definition 2.3. Let [𝑥] = [𝑥, 𝑥] and [𝑦] = [𝑦, 𝑦] be to interval numbers, then  

[𝑥, 𝑥]⨁ [𝑦, 𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦] , [𝑥, 𝑥] ⊖ [𝑦, 𝑦] = [𝑥 − 𝑦, 𝑥 − 𝑦] , 
[𝑥, 𝑥]⨂ [𝑦, 𝑦] = [𝑐, 𝑐]                    { 𝑐 = 𝑚𝑖𝑛 {𝑥. 𝑦, 𝑥. 𝑦, 𝑥. 𝑦, 𝑥. 𝑦}𝑐 = 𝑚𝑎𝑥 {𝑥. 𝑦, 𝑥. 𝑦, 𝑥. 𝑦, 𝑥. 𝑦} , 

[𝑥, 𝑥] ⊘ [𝑦, 𝑦] = [𝑥, 𝑥]⨂ [1/𝑦, 1/𝑦]        ,  𝑦, 𝑦 ≠ 0,                                                  (2.1)  
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 𝑘. [𝑥, 𝑥] = {[𝑘𝑥, 𝑘𝑥]     𝑘 ≥ 0[𝑘𝑥, 𝑘𝑥]     𝑘 < 0               𝑘 ∈ 𝑅           

Definition 2.4. The width of an interval number [𝑥] is defined as follows:[5] 𝑊([𝑥]) = 𝑥 − 𝑥.      
Definition 2.5. For arbitrary interval numbers [𝑥] = [𝑥, 𝑥] and [𝑦] = [𝑦, 𝑦], and arbitrary interval number 

vectors [𝑋] = ([𝑥1], [𝑥2],… , [𝑥𝑛])𝑇 and [𝑌] = ([𝑦1], [𝑦2], … , [𝑦𝑛])𝑇 we defined: 

1) [𝑦] ⊆ [𝑥]  ⟺ 𝑥 ≤ 𝑦 ≤ 𝑦 ≤  𝑥    

2) [Y]⊆ [𝑋]      ⟺   ∑ [𝑦𝑗, 𝑦𝑗]𝑛𝑗=1 ⊆ ∑ [𝑥𝑗, 𝑥𝑗]𝑛𝑗=1         
 

Definition 2.6. [20] For any two arbitrary interval number vectors 𝑋, 𝑌 ∈ 𝕀𝑛 the metric, 𝑑: 𝕀𝑛 → ℝ, in the 

space 𝕀𝑛 defined as: 

𝑑(𝑋, 𝑌) = 𝑀𝑎𝑥 {𝑚𝑎𝑥1≤𝑗≤𝑛 |𝑥𝑗 − 𝑦𝑗| , 𝑚𝑎𝑥1≤𝑗≤𝑛|𝑥𝑗 − 𝑦𝑗| }                                               (2.2)   
Obviously, 𝕀𝑛 is a complete metric space with the metric d. 
3. Eigenvalues and fuzzy eigenvectors 

The basic definition of fuzzy numbers given in [16]. 

Definition 3.1. A fuzzy number is a function 𝑢:ℝ ⟶ [0,1] satisfying the following 

Properties: 

i. 𝑢 is normal, i.e. ∃𝑥0 ∈ ℝ 𝑤𝑖𝑡ℎ 𝑢(𝑥0) = 1, 
ii. 𝑢 is a convex fuzzy set, 

iii. 𝑢 is upper semi-continuous on ℝ, 
iv. {𝑥 ∈ ℝ: �̃�(𝑥) > 0} is compact, where 𝐴 denotes the closure of 𝐴. 

The set of all these fuzzy numbers is denoted by Ϝ. Obviously, ℝ ⊂ Ϝ. Here ℝ ⊂ Ϝ is understood 

as ℝ = {𝜒{𝑥}: 𝑥 𝑖𝑠 𝑢𝑠𝑢𝑎𝑙 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟}. For 0 < 𝑟 ≤ 1, we define r-cuts of fuzzy number 𝑢 ̃as [𝑢]𝑟 ={𝑥 ∈ ℝ: 𝑢(𝑥) ≥ 𝑟} and the support and core of �̃� are defined by the sets 𝑆(𝑢) = {𝑥 ∈ ℝ: 𝑢(𝑥) > 0} 
and 𝐶(𝑢) = {𝑥 ∈ ℝ: 𝑢(𝑥) = 1}, respectively. Then, from (𝑖) − (𝑖𝑣) it follows that [𝑢]𝑟 is a bounded 
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closed interval for each 𝑟 ∈ [0,1] [22]. In this paper, we denote the r-cuts of fuzzy number 𝑢 as [𝑢]𝑟 = [𝑢(𝑟), 𝑢(𝑟)], for each 𝑟 ∈ [0,1]. 
Remark 3.1. For arbitrary fuzzy numbers 𝑢 = [𝑢(𝑟), 𝑢(𝑟)] and �̃� = [𝑣(𝑟), 𝑣(𝑟)], and 𝜆 ∈ ℝ, 𝑟 − 𝑐𝑢𝑡𝑠 

of the sum 𝑢 + �̃� and the product 𝜆. 𝑢 are defined based on interval arithmetic as 

{  
   [𝑢 + �̃�]𝑟 = [𝑢]𝑟 + [�̃�]𝑟 = [𝑢(𝑟) + 𝑣(𝑟), 𝑢(𝑟) + 𝑣(𝑟)], [𝑢 − �̃�]𝑟 = [𝑢]𝑟 − [�̃�]𝑟 = [𝑢(𝑟) − 𝑣(𝑟), 𝑢(𝑟) − 𝑣(𝑟)], [𝜆. 𝑢]𝑟 = 𝜆. [𝑢]𝑟 = { [𝜆𝑢(𝑟), 𝜆𝑢(𝑟)],   𝜆 ≥ 0,  [𝜆𝑢(𝑟), 𝜆𝑢(𝑟)],   𝜆 < 0.                                               (3.3) 
Definition 3.2. Two fuzzy numbers 𝑢 and �̃� are said to be equal, if and only if [𝑢]𝑟 = [�̃�]𝑟, i.e., 𝑢(𝑟) =𝑣(𝑟) 𝑎𝑛𝑑 𝑢(𝑟) = 𝑣(𝑟), for each 𝑟 ∈ [0,1]. 
Definition 3.3. A fuzzy triangular number 𝑢 = (𝑎1, 𝑎2, 𝑎3), defined as follows: 

𝑢(𝑥) = {  
  0                              𝑎1 > 𝑥         𝑥−𝑎1𝑎2−𝑎1                        𝑎1 ≤ 𝑥 ≤ 𝑎2𝑎3−𝑥𝑎3−𝑎2                        𝑎2 ≤ 𝑥 ≤ 𝑎30                               𝑎3 < 𝑥               

Where 𝑎2  is the core, 𝑎1 and 𝑎3 are the left and right points of support. 

We denote the set of fuzzy triangular numbers by 𝐹𝑇. Clearly, for the fuzzy triangular number �̃� =(𝑎1, 𝑎2, 𝑎3) we have 𝑆(�̃�) = [𝑎1, 𝑎3] and 𝐶(�̃�) = 𝑎2. 

Definition 3.4. Two fuzzy triangular numbers �̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3) are said to be 

equal, if and only if 𝑎1 = 𝑏1, 𝑎2 = 𝑏2 𝑎𝑛𝑑 𝑎3 = 𝑏3. 
Definition 3.5. For arbitrary fuzzy triangular numbers �̃� and �̃�, addition, subtraction, and scalar 

multiplication are defined as follows: 

 �̃� + �̃� = (𝑎1, 𝑎2, 𝑎3) + (𝑏1, 𝑏2, 𝑏3) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3)       �̃� − �̃� = (𝑎1, 𝑎2, 𝑎3) − (𝑏1, 𝑏2, 𝑏3) = (𝑎1 − 𝑏3, 𝑎2 − 𝑏2, 𝑎3 − 𝑏1)    
𝜆. �̃� = 𝜆. (𝑎1, 𝑎2, 𝑎3) = {(𝜆𝑎1, 𝜆𝑎2, 𝜆𝑎3),      𝜆 ≥ 0,(𝜆𝑎3, 𝜆𝑎2, 𝜆𝑎1),       𝜆 < 0.   
Definition 3.6. A vector �̃� = (�̃�1, �̃�2, … , �̃�𝑛)𝑇, where �̃�𝑖 ∈ 𝐹𝑇   1 ≤ 𝑖 ≤ 𝑛,  is called a fuzzy triangular 

number vector. In this case, we denote �̃� ∈ 𝐹𝑇𝑛. 
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 Consider the fuzzy square matrix of �̃� = [�̃�𝑖𝑗]𝑖,𝑗=1𝑛  that �̃�𝑖𝑗 ∈ 𝐹𝑇. 

Definition 3.7. The fuzzy triangular number �̃� ≠ 0̃ is the fuzzy eigenvalue of the fuzzy triangular 

matrix �̃�, if there is a fuzzy eigenvector X̃ ≠ 0̃ such that �̃��̃� = �̃�𝑋.̃ 
Otherwise, the 𝑛 × 𝑛 linear system of equations 

{ 
 �̃�11�̃�1 + �̃�12�̃�2 +⋯+ �̃�1𝑛�̃�𝑛 = �̃��̃�1,�̃�21�̃�1 + �̃�22�̃�2 +⋯+ �̃�2𝑛�̃�𝑛 = �̃��̃�2,⋮�̃�𝑛1�̃�1 + �̃�𝑛2�̃�2 +⋯+ �̃�𝑛𝑛�̃�𝑛 = �̃��̃�𝑛,                      (3.4) 
is called a fully fuzzy nonlinear system (FFNLS), where �̃�𝑖𝑗 , �̃� and �̃�𝑖 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, are fuzzy numbers. 

The matrix form of the system (3.4) is as follows: �̃��̃� = �̃�𝑋.̃ 
Definition 3.8. The  𝑛 × 𝑛 linear system 

{ 
 [�̃�11]𝛼[�̃�1]𝛼 + [�̃�12]𝛼[�̃�2]𝛼 +⋯+ [�̃�1𝑛]𝛼[�̃�𝑛]𝛼 = [�̃�]𝛼[�̃�1]𝛼,[�̃�21]𝛼[�̃�1]𝛼 + [�̃�22]𝛼[�̃�2]𝛼 +⋯+ [�̃�2𝑛]𝛼[�̃�𝑛]𝛼 = [�̃�]𝛼[�̃�2]𝛼,⋮[�̃�𝑛1]𝛼[�̃�1]𝛼 + [�̃�𝑛2]𝛼[�̃�2]𝛼 +⋯+ [�̃�𝑛𝑛]𝛼[�̃�𝑛]𝛼 = [�̃�]𝛼[�̃�𝑛]𝛼 ,                (3.5) 
Is called the 𝛼 − 𝑐𝑢𝑡 system of FFLS (3.4), where [�̃�𝑖𝑗]𝛼, [�̃�𝑗]𝛼 and [�̃�]𝛼, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝛼 ∈ [0,1] , 
are 𝛼 − 𝑐𝑢𝑡 of fuzzy numbers �̃�𝑖𝑗 , �̃�𝑗and �̃�, respectively. In addition, its matrix form represented by [�̃�]𝛼⊗ [�̃�]𝛼 = [�̃�]𝛼⊗ [�̃�]𝛼 .   
Definition 3.9. We define the following eigenvalue sets for FFLS (3.4) 

 United fuzzy triangular eigenvalue set: 

𝑈𝑇𝐹𝐸𝑆 = {𝜆 ∈ 𝐹𝑇 |[𝐴]1⊗ [�̃�]1 = [𝜆]1⊗ [�̃�]1,  [𝐴]0⊗ [�̃�]0 = [𝜆]0⊗ [�̃�]0},  
 Tolerable fuzzy triangular eigenvalue set: 

𝑇𝑇𝐹𝐸𝑆 = {𝜆 ∈ 𝐹𝑇 |[𝐴]1⊗ [�̃�]1 = [𝜆]1⊗ [�̃�]1,  [𝐴]0⊗ [�̃�]0 ⊆ [𝜆]0⊗ [�̃�]0}, 
 Controllable fuzzy triangular eigenvalue set: 

𝐶𝑇𝐹𝐸𝑆 = {𝜆 ∈ 𝐹𝑇 |[𝐴]1⊗ [�̃�]1 = [𝜆]1⊗ [�̃�]1, [𝐴]0⊗ [�̃�]0 ⊇ [𝜆]0⊗ [�̃�]0}, 
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 Approximate fuzzy triangular eigenvalue set: 

𝐴𝑇𝐹𝐸𝑆 = {𝜆 ∈ 𝐹𝑇 |[𝐴]1⊗ [�̃�]1 = [𝜆]1⊗ [�̃�]1, 𝜀 > 𝑑 ([𝐴]0⊗ [�̃�]0, [𝜆]0⊗ [�̃�]0)}, 
Where [�̃�]1 = ([�̃�𝑖𝑗]1)𝑖,𝑗=1𝑛  and [�̃�]0 = ([�̃�𝑖𝑗]0)𝑖,𝑗=1𝑛  are interval number-value matrices and [�̃�]1 =([�̃�1]1, [�̃�2]1, … , [�̃�𝑛]1)𝑇, [�̃�]0 = ([�̃�1]0, [�̃�2]0, … , [�̃�𝑛]0)𝑇, [�̃�]1 = ([�̃�1]1, [�̃�2]1, … , [�̃�𝑛]1)𝑇 and [�̃�]0 = ([�̃�1]0, [�̃�2]0, … , [�̃�𝑛]0)𝑇 are interval number valued eigenvectors and interval number valued 

eigenvalues and [�̃�𝑖]0, [�̃�𝑖]0, [�̃�𝑖]1, [�̃�𝑖]1, 1 ≤ 𝑖 ≤ 𝑛 are 0 − cuts and 1 − cuts of fuzzy numbers �̃�𝑖 and �̃�𝑖, respectively. 

3.1. Find eigenvalues and fuzzy eigenvectors for a fuzzy matrix 

In this section, we shall describe a new practical method to solve eigenvalues and fuzzy triangular 

eigenvectors of a fuzzy triangular matrix �̃�. 

Hence, we consider the following system: �̃��̃� = �̃�𝑋,̃                                                                                                              (3.6) 
Such that either 𝑎𝑖𝑗(0) ≥ 0 or 𝑎𝑖𝑗(0) ≤ 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Now, to get a suitable solution of system 

(3.6), it is sufficient to solve the follows FILSs: 

{ [�̃�]1⊗ [�̃�]1 = [�̃�]1⊗ [�̃�]1                                                                              (3.7) [�̃�]0⊗ [�̃�]0 = [�̃�]0⊗ [�̃�]0                                                                              (3.8)         
∑ ([𝑎𝑖𝑗, 𝑎𝑖𝑗]0⊗ [𝑥𝑗, 𝑥𝑗]0) = [𝜆, 𝜆] ⊗ [𝑥𝑖, 𝑥𝑖] ,   𝑖 = 1,2,… , 𝑛.𝑛𝑗=1                     (3.9) 
𝐽𝑖− =: {𝑗|𝑎𝑖𝑗 ≤ 0 & 𝑎𝑖𝑗 ≠ 0}           𝐽𝑖+ =: {𝑗 |𝑎𝑖𝑗 ≥ 0 }      𝑖 = 1,2,… , 𝑛.          (3.10) 
Such that [�̃�𝑗]1 ⊆ [�̃�𝑗]0    𝑖. 𝑒. ,    𝑥𝑗1 ≤ 𝑥𝑗2 ≤ 𝑥𝑗3,    𝑗 = 1,… , 𝑛.[�̃�𝑗]1 ⊆ [�̃�𝑗]0    𝑖. 𝑒. ,    𝜆𝑗1 ≤ 𝜆𝑗2 ≤ 𝜆𝑗3,    𝑗 = 1,… , 𝑛.                                          (3.11) 
First, by solving the system (3.7), we obtain the eigenvalues 𝜆1, … , 𝜆𝑛 and the corresponding 

eigenvectors 𝑋1, … , 𝑋𝑛 for the crisp matrix [�̃�]1. Consequently, after obtaining the solution of the 

crisp system(3.7), we are going to determine the left and right widths for the eigenvalues 𝜆𝑗 , 1 ≤𝑗 ≤ 𝑛 and the eigenvectors 𝑋𝑗 , 1 ≤ 𝑗 ≤ 𝑛 , which are obtained from system (3.7). 
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Consider the eigenvalue 𝜆𝑘, 𝑘 ∈ {1,⋯ , 𝑛} and corresponding eigenvector 𝑋𝑘. 

We assume that simultaneous zero cannot belong to 𝑆(�̃�𝑘) and 𝑆(�̃�𝑗). 
Therefore, we consider the following three case: 

 Case A: 

0 ∉ 𝑆(�̃�𝑗), 1 ≤ 𝑗 ≤ 𝑛, Consider the follows partition. 

𝑃+ = {𝑗|𝑋𝑗 ≥ 0 &𝑋𝑗 ≠ 0}      𝑃− = {𝑗|𝑋𝑗 ≤ 0 }                                             (3.12) 
Subcase 𝚰: 
0 ∉ 𝑆(�̃�𝑘) Then 𝜆𝑘, 𝜆𝑘, 𝜆𝑘  > 0  or 𝜆𝑘, 𝜆𝑘, 𝜆𝑘  < 0. Therefore, according to the sign of the values 

obtained 𝒙𝒋 , 𝜆𝑗 from equation (3.7), equation (3.8) written as follows: 

∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] + ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] + ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] +∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] = [𝜆𝑘, 𝜆𝑘] ⊗ [𝑥𝑖 , 𝑥𝑖]                  1 ≤ 𝑖 ≤ 𝑛    (3.13)    
That here: 

∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗 𝑥𝑗 , 𝑎𝑖𝑗 𝑥𝑗]𝐽𝑖+𝑃+∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 , 𝑎𝑖𝑗𝑥𝑗]𝐽𝑖+𝑃−   ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 , 𝑎𝑖𝑗𝑥𝑗]𝐽𝑖−𝑃+   ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗 𝑥𝑗 , 𝑎𝑖𝑗 𝑥𝑗]𝐽𝑖−𝑃−
                                   (3.14) 

And 

[𝜆𝑘, 𝜆𝑘] ⊗ [𝑥𝑖 , 𝑥𝑖] =
{   
   [ 𝜆𝑘𝑥𝑗 , 𝜆𝑘 𝑥𝑗]        𝜆𝑘 > 0, 𝑗 ∈ 𝑃+ [ 𝜆𝑘𝑥𝑗 , 𝜆𝑘 𝑥𝑗]         𝜆𝑘 > 0, 𝑗 ∈ 𝑃−[ 𝜆𝑘 𝑥𝑗 , 𝜆𝑘𝑥𝑗]        𝜆𝑘 < 0, 𝑗 ∈ 𝑃+[ 𝜆𝑘 𝑥𝑗 , 𝜆𝑘 𝑥𝑗]        𝜆𝑘 < 0, 𝑗 ∈ 𝑃−

                    (3.15) 
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In summary, due to be clear the sign of the intervals and using the interval multiplication definition, 

model (3.13) written as follows. 

�̂� =
{   
   (𝐴𝑋)𝑖 = (𝜆𝑘𝑋𝑖)       (𝐴𝑋)𝑖 = (𝜆𝑘𝑋𝑖)       0 < 𝜆𝑘 ≤ 𝜆𝑘 ≤ 𝜆𝑘   𝑜𝑟 𝜆𝑘 ≤ 𝜆𝑘 ≤ 𝜆𝑘  < 0  𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑗1 ≤ 𝑗 ≤ 𝑛                                        (3.16) 

Subcase 𝚰𝚰: 
0∈ 𝑆(𝜆�̃�) then 𝜆𝑘, 𝜆𝑘 > 0, 𝜆𝑘 < 0   𝑜𝑟 𝜆𝑘 , 𝜆𝑘 < 0 , 𝜆𝑘 > 0,  therefore, according to the sign of the 

values obtained 𝑥𝑗 , 𝜆𝑗 from equation (3.7), equation (3.8) written as follows: 

∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] + ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] + ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] +∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] = [𝜆𝑘, 𝜆𝑘] ⊗ [𝑥𝑖 , 𝑥𝑖]                  1 ≤ 𝑖 ≤ 𝑛                                    (3.17) 
That here: 

∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗 𝑥𝑗 , 𝑎𝑖𝑗 𝑥𝑗]𝐽𝑖+𝑃+ , ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 , 𝑎𝑖𝑗𝑥𝑗]   𝐽𝑖+𝑃−∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃+ ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 , 𝑎𝑖𝑗𝑥𝑗]𝐽𝑖−𝑃+ , ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑃− ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗 𝑥𝑗 , 𝑎𝑖𝑗 𝑥𝑗]𝐽𝑖−𝑃−                    1 ≤ 𝑗 ≤ 𝑛                                                                                                                                       (3.18)   

And 

[𝜆𝑘, 𝜆𝑘] ⊗ [𝑥𝑖 , 𝑥𝑖] =
{  
  
  [𝜆𝑘 𝑥𝑗 , 𝜆𝑘 𝑥𝑗]       𝜆𝑘, 𝜆𝑘 > 0  , 𝑗 ∈ 𝑃+ [𝜆𝑘𝑥𝑗 , 𝜆𝑘 𝑥𝑗]        𝜆𝑘, 𝜆𝑘 > 0  , 𝑗 ∈ 𝑃−  [𝜆𝑘𝑥𝑗 , 𝜆𝑘𝑥𝑗]        𝜆𝑘, 𝜆𝑘 < 0  , 𝑗 ∈ 𝑃+ [𝜆𝑘 𝑥𝑗 , 𝜆𝑘 𝑥𝑗]        𝜆𝑘, 𝜆𝑘 < 0  , 𝑗 ∈ 𝑃−                 1 ≤ 𝑗 ≤ 𝑛

                                               (3.19) 
Consequently, according to the definition (interval multiplication), model (3.17) written as follows: 
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�̂� =
{   
   (𝐴𝑋)𝑖 = (𝜆𝑘𝑋𝑖)(𝐴𝑋)𝑖 = (𝜆𝑘𝑋𝑖)𝜆𝑘 < 0 < 𝜆𝑘 ≤ 𝜆𝑘   𝑜𝑟 𝜆𝑘 ≤ 𝜆𝑘  < 0 <  𝜆𝑘 𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑗1 ≤ 𝑗 ≤ 𝑛

                                                                   (3.20) 
Case B: 

0∉ 𝑆(𝜆�̃�) then  𝜆𝑘, 𝜆𝑘, 𝜆𝑘 > 0 𝑜𝑟  𝜆𝑘, 𝜆𝑘, 𝜆𝑘 < 0,  Consider the following partition. 

𝑞+ = {𝑗|𝑋𝑗 ≥ 0 &𝑋𝑗 ≠ 0} 𝑞− = {𝑗|𝑋𝑗 ≤ 0 }                                                                              (3.21) 
Therefore, the equation (3.8) is rewritten as follows: 

∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑞+ ⨂[𝑥𝑗 , 𝑥𝑗] + ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑞− ⨂[𝑥𝑗 , 𝑥𝑗] + ∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑞+ ⨂[𝑥𝑗 , 𝑥𝑗] +∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑞− ⨂[𝑥𝑗 , 𝑥𝑗] = [𝜆𝑘, 𝜆𝑘] ⊗ [𝑥𝑖 , 𝑥𝑖]                  1 ≤ 𝑖 ≤ 𝑛                                  (3.22) 
That here: 

∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑞+ ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖𝑗𝑥𝑗´, 𝑎𝑖𝑗 𝑥𝑗]𝐽𝑖+𝑞+∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖+𝑞− ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 , 𝑎𝑖𝑗 𝑥𝑗 + 𝑎𝑖𝑗𝑥𝑗´]𝐽𝑖+𝑞−∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑞+ ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 , 𝑎𝑖𝑗 𝑥𝑗´ + 𝑎𝑖𝑗𝑥𝑗]𝐽𝑖−𝑞+∑ [𝑎𝑖𝑗 , 𝑎𝑖𝑗]𝐽𝑖−𝑞− ⨂[𝑥𝑗 , 𝑥𝑗] = ∑ [𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖𝑗𝑥𝑗´, 𝑎𝑖𝑗 𝑥𝑗]𝐽𝑖−𝑞−𝑥𝑗 ≥ 0, 𝑥𝑗´ ≤ 0, 1 ≤ 𝑗 ≤ 𝑛
                                                  (3.23) 

And 

[𝜆𝑘, 𝜆𝑘] ⊗ [𝑥𝑖 , 𝑥𝑖] =
{  
  
  [ 𝜆𝑘𝑥𝑗 + 𝜆𝑘𝑥𝑗´ , 𝜆𝑘 𝑥𝑗]        𝜆𝑘 > 0  𝑗 ∈ 𝑞+ [ 𝜆𝑘𝑥𝑗 , 𝜆𝑘𝑥𝑗 + 𝜆𝑘 𝑥𝑗´]         𝜆𝑘 > 0  𝑗 ∈ 𝑞−[ 𝜆𝑘𝑥𝑗 , 𝜆𝑘𝑥𝑗´ + 𝜆𝑘 𝑥𝑗]        𝜆𝑘 < 0  𝑗 ∈ 𝑞+[ 𝜆𝑘𝑥𝑗 + 𝜆𝑘𝑥𝑗´, 𝜆𝑘 𝑥𝑗]        𝜆𝑘 < 0  𝑗 ∈ 𝑞−𝑥𝑗 ≥ 0, 𝑥𝑗´ ≤ 0, 1 ≤ 𝑗 ≤ 𝑛

                                    (3.24) 

Finally, the model (3.22) obtained as follows: 
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�̂� =
{  
   
   
  (𝐴𝑋)𝑖 = (𝜆𝑘𝑋𝑖)(𝐴𝑋)𝑖 = (𝜆𝑘𝑋𝑖)𝜆𝑘, 𝜆𝑘, 𝜆𝑘 > 0 𝑜𝑟 𝜆𝑘, 𝜆𝑘, 𝜆𝑘 < 0     𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑗1 ≤ 𝑗 ≤ 𝑛0 ≤ 𝑥𝑗 ≤ 𝑀𝛿𝑗−𝑀(1 − 𝛿𝑗) ≤ 𝑥𝑗´ ≤ 0   𝛿𝑗 ∈ {0,1} 𝑥𝑗 + 𝑥𝑗´ = 𝑥𝑗 𝑜𝑟 𝑥𝑗 + 𝑥𝑗´ = 𝑥𝑗

                                                                              (3.25) 

Solving models (3.16), (3.20) 𝑎𝑛𝑑(3.25) we obtain the values of 𝜆𝑘, 𝜆𝑘 and 𝑥𝑗 , 𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑛,  that is 

the suitable solution of the system (3.8). the basis of our proposed method is using the following 

nonlinear programming problem (𝑁𝐿𝑃): 
{ 𝑀𝑎𝑥 𝜆𝑘 − 𝜆𝑘𝑠. 𝑡  (𝑋, 𝜆) ∈ �̂�                         (3.26) 
{𝑀𝑎𝑥 ∑ 𝑥𝑗 − 𝑥𝑗𝑛𝑗=1𝑠. 𝑡  (𝑋, 𝜆) ∈ �̂�                   (3.27) 
Due to the nonlinearity of models (3.26) 𝑎𝑛𝑑 (3.27), it is possible to obtain different solutions for 

them. That these models have the most width for �̃� 𝑎𝑛𝑑 �̃�, respectively. 

Where �̂� is one of the regions (3.16), (3.20) 𝑜𝑟 (3.25). 
The above 𝑁𝐿𝑃𝑆 (3.26) and (3.27) can be easily solved by using LINGO 18 software package. 

Theorem 3.1. Suppose that the 𝑁𝐿𝑃𝑆 (3.26) and (3.27) are feasible and  

𝑋 = (𝑥11, 𝑥11, 𝑥11, 𝑥21, 𝑥21, 𝑥21, ⋯ 𝑥𝑛1, 𝑥𝑛1, 𝑥𝑛1),  
Is its optimum solution. Also, the fuzzy triangular number vector �̃� = (�̃�1, �̃�2, … , �̃�𝑛)𝑇, be constructed 

as follows: 

[�̃�𝑗]0 = [𝑥𝑗1, 𝑥𝑗3]  
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Then, �̃� is a suitable solution for the system (3.6). Otherwise, if the 𝑁𝐿𝑃𝑆 (3.26) and (3.27) are 

unfeasible, the system (3.6) does not have any suitable solution. 

Proof. First, let us assume that the 𝑁𝐿𝑃𝑆 (3.26) and (3.27) are feasible and 

𝑋 = (𝑥11, 𝑥11, 𝑥11, 𝑥21, 𝑥21, 𝑥21, ⋯ 𝑥𝑛1, 𝑥𝑛1, 𝑥𝑛1, )  
Is its optimum solution, then with considering Eqs. (3.6)- (3.25) we can conclude that �̃� =(�̃�1, �̃�2, … , �̃�𝑛)𝑇, where 

[�̃�𝑗]1 ⊆ [�̃�𝑗]0    𝑖. 𝑒. ,    𝑥𝑗1 ≤ 𝑥𝑗2 ≤ 𝑥𝑗3, 𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑗  

�̃�𝑗 = (𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3),    𝑗 = 1,… , 𝑛. 
Is a suitable solution for system (3.6). 
Now, let us assume that the 𝑁𝐿𝑃𝑆 (3.26) and (3.27)are unfeasible. By contradiction assume that 

the system (3.6) has a suitable solution �̃� = (�̃�1, �̃�2, … , �̃�𝑛)𝑇, therefore we have: 

 [�̃�]1⊗ [�̃�]1 = [�̃�]1⊗ [�̃�]1 and  [�̃�]0⊗ [�̃�]0 = [�̃�]0⊗ [�̃�]0. By considering the proposed method, 

for solving fuzzy triangular matrix �̃� , in section 3, we can rewrite: 

{ 𝑀𝑎𝑥 𝜆𝑘 − 𝜆𝑘𝑠. 𝑡  (𝑋, 𝜆) ∈ �̂�    
{𝑀𝑎𝑥 ∑𝑥𝑗 − 𝑥𝑗𝑛

𝑗=1𝑠. 𝑡  (𝑋, 𝜆) ∈ �̂�  

Hence 

𝑋 = (𝑥11, 𝑥11, 𝑥11, 𝑥21, 𝑥21, 𝑥21, ⋯ 𝑥𝑛1, 𝑥𝑛1, 𝑥𝑛1) 
are feasible solutions of the 𝑁𝐿𝑃𝑆 (3.26) and (3.27). However, this is a contradiction. Thus, system (3.6) does not have any suitable solution. 
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4. Finding the fuzzy escribed, peripheral and approximate eigenvalue 

Fuzzy nonlinear system (3.4) does not necessarily have an exact solution. Therefore, in this section, we 

are going to introduce three eigenvalues for �̃� that does not have any suitable solution. These eigenvalues 

are fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate eigenvalue that 

defined as following. 

Definition 4.1. The fuzzy triangular number �̃� called a fuzzy escribed eigenvalue of �̃�, if: 

1)  �̃� ∈ 𝐹𝑇 , �̃� ∈ 𝐹𝑇𝑛  

2) ∀ 𝜆´̃ ∈ 𝐹𝑇 , ∀ �̃� ∈ 𝐹𝑇𝑛: 𝐴𝑋 = 𝜆𝑋 & 𝐴𝑌 = 𝜆𝑌 &   𝑑 ( [�̃�]0⊗ [�̃�]0, [�̃�]0⊗ [�̃�]0) ≤ 𝑑 ( [�̃�]0⊗ [𝑌]0, [�̃�]0⊗ [𝑌]0)               (4.28) 
 

We denote fuzzy escribed eigenvalue by �̃�⊆ . 

Definition 4.2. The fuzzy triangular number �̃� called a fuzzy peripheral eigenvalue of �̃�, if: 

1)  �̃� ∈ 𝐹𝑇 , �̃� ∈ 𝐹𝑇𝑛  

2) ∀ 𝜆´̃ ∈ 𝐹𝑇 , ∀ �̃� ∈ 𝐹𝑇𝑛: 𝐴𝑋 = 𝜆𝑋 & 𝐴𝑌 = 𝜆𝑌 &   𝑑 ( [�̃�]0⊗ [�̃�]0, [�̃�]0⊗ [�̃�]0) ≥ 𝑑 ( [�̃�]0⊗ [𝑌]0, [�̃�]0⊗ [𝑌]0)                     (4.29) 
We denote fuzzy escribed eigenvalue by �̃�⊇ . 

In the following, we explain a method to obtaining (�̃�⊆, �̃�⊆ ) and (�̃�⊇, �̃�⊇ ) of the system �̃��̃� =  �̃��̃� . 

We first solve the 1-cut system of FFLS, i.e., [�̃�]1⊗ [�̃�]1 = [�̃�]1⊗ [�̃�]1 . 

We can construct the algebraic solution of the 1-cut system like the previous part technique as following: [�̃�]1 = ([�̃�1]1, [�̃�2]1, … , [�̃�𝑛]1). 
 Then for finding 0-cut of (�̃�⊆, �̃�⊆) it is sufficient to solve the following 𝑁𝐿𝑃 problem 

                      

𝑀𝑖𝑛   𝑧 = 𝑀𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 |(𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖 | , 𝑚𝑎𝑥1≤𝑖≤𝑛 |(𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖| }(𝐴𝑋0)𝑖 ≥ (𝜆𝑋0)𝑖 , (𝐴𝑋0)𝑖 ≤ (𝜆𝑋0)𝑖          (4.30) 
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Now, we define: 

𝑤1 = 𝑚𝑎𝑥1≤𝑖≤𝑛 |(𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖 | , 𝑤2 = 𝑚𝑎𝑥1≤𝑖≤𝑛 |(𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖|𝑧 = 𝑀𝑎𝑥{𝑤1, 𝑤2}.                      (4.31) 
With consider, Eq. (𝐴𝑋0)𝑖 ≥ (𝜆𝑋0)𝑖  , (𝐴𝑋0)𝑖 ≤ (𝜆𝑋0)𝑖    𝑖 = 1,… , 𝑛,   we have: 

(𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖 ≤ 𝑧,   (𝜆𝑋0𝑖) − (𝐴𝑋0𝑖) ≤ 𝑧   𝑖 = 1,… , 𝑛.                                            (4.32) 
Then by using (4.32) we can rewrite system (4.30) as follows: 𝑀𝑖𝑛  𝑧⊆                                                                                                𝑠. 𝑡.                                                                                                    

𝑆⊆ = { 
 (𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖 ≤ 𝑧,   (𝜆𝑋0𝑖) − (𝐴𝑋0𝑖) ≤ 𝑧(𝐴𝑋0)𝑖 ≥ (𝜆𝑋0)𝑖 , (𝐴𝑋0)𝑖 ≤ (𝜆𝑋0)𝑖,(𝑋, 𝜆) ∈ �̂�                      (4.33)

 

where �̂� is one of the regions (3.16), (3.20), 𝑜𝑟 (3.25). 
Similarly, to obtain(�̃�⊇, �̃�⊇), it is sufficient to solve the following NLP problem 𝑀𝑖𝑛  𝑧⊇                                                                                                 𝑠. 𝑡.                                                                                                     

𝑆⊇ = { 
 (𝜆𝑋0)𝑖 − (𝐴𝑋0)𝑖 ≤ 𝑧, (𝐴𝑋0𝑖) − (𝜆𝑋0𝑖) ≤ 𝑧(𝐴𝑋0)𝑖 ≤ (𝜆𝑋0)𝑖 , (𝐴𝑋0)𝑖 ≥ (𝜆𝑋0)𝑖,(𝑋, 𝜆) ∈ �̂�                    (4.34)

 

where �̂� is one of the regions (3.16), (3.20), 𝑜𝑟 (3.25). 
By solving the NLPS (4.33) and (4.34), we can obtain fuzzy escribed and peripheral eigenvalue. 

Theorem 4.1. for a fuzzy matrix �̃� , �̃� is a suitable eigenvalue if there exists a fuzzy peripheral eigenvalue �̃�⊇ and a fuzzy escribed eigenvalue �̃�⊆ such that �̃�⊇ = �̃�⊆ = �̃� and in models (4.33) 𝑎𝑛𝑑 (4.34), 𝑧∗ = 0. 
Proof: The proof is obvious. □ 

Given that, for the system (3.4), there may not be an algebraic, escribed, and peripheral solution, so here 

we define the approximate algebraic solution. In fact, we are looking for the value of �̃� and the vector �̃� 

in the approximate solution, which the upper and lower boundary values  [�̃�]0⊗ [�̃�]0 and [�̃�]0⊗ [�̃�]0 

have the least distance with each other. 
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Definition 4.3. The fuzzy triangular number �̃� called a fuzzy approximate eigenvalue of �̃�, if: 

1) �̃� ∈ 𝐹𝑇 , �̃� ∈ 𝐹𝑇𝑛 , 𝐴𝑋 = 𝜆𝑋  
2) ∃ 𝜀 > 0, 𝑑 ( [�̃�]0⊗ [�̃�]0, [�̃�]0⊗ [�̃�]0) < 𝜀  

We denote fuzzy approximate eigenvalue by �̃�≃. 

We first solve the 1-cut system of FFLS, i.e., [�̃�]1⊗ [�̃�]1 = [�̃�]1⊗ [�̃�]1 . 

We can construct the algebraic solution of the 1-cut system like the previous part technique as following: [�̃�]1 = ([�̃�1]1, [�̃�2]1, … , [�̃�𝑛]1). 
 Then for finding 0-cut of (�̃�≃, �̃�≃) it is sufficient to solve the following 𝑁𝐿𝑃 problem 𝑀𝑖𝑛  𝜀                                                                                                 𝑠. 𝑡.                                                                                                     {−𝜀 ≤ (𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖 ≤ 𝜀                               −𝜀 ≤ (𝐴𝑋0)𝑖 − (𝜆𝑋0)𝑖 ≤ 𝜀,                                (𝑋, 𝜆) ∈ �̂�                                                              (4.35) 
where �̂� is one of the regions (3.16), (3.20), 𝑜𝑟 (3.25). 
Theorem 4.2. model  (4.35) is always feasible. 

Proof: The proof is obvious. □ 

Remark: it is clear that the value of 𝜀 in model (4.35) is the same as the approximate solution error (�̃�≃, �̃�≃), and if the algebraic solution (definition(3.9)) exists for system (3.4) then the solution error 

of model (4.35) is zero. 

5. numerical example   

In this section, we use the following examples to illustrate our proposed method, computed by lingo 18. 

In each example, we are looking for an algebraic solution(UTFES). If this solution is not available, we 

try to calculate the escribed, peripheral and approximate solutions. 

Example 5.1. Consider a fuzzy triangular matrix �̃�, assuming that the fuzzy triangular number �̃� = (𝜆, 𝜆, 𝜆) 
is a fuzzy eigenvalue and the fuzzy triangular vector �̃� = (�̃�1, �̃�2) is a fuzzy eigenvector of matrix �̃�, we 

have: 
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{(6.8, 12, 15.25)�̃�1 + (15, 16, 28)�̃�2 = (�̃�) (�̃�1�̃�2)(7.2, 8, 10.2)�̃�1 + (19.5, 20, 22)�̃�2 = (�̃�) (�̃�1�̃�2)                      (5.36) 
Where �̃�𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, are fuzzy triangular numbers. First, we solve 1-cut system (5.36) which is crisp: 

{12𝑥1 + 16𝑥2 = 𝜆 (𝑥1𝑥2)8𝑥1 + 20𝑥2 = 𝜆 (𝑥1𝑥2)                                                                    (5.37) 
So, the crisp solution (1 − 𝑐𝑢𝑡) obtained as follows: 

𝜆 = [4 00 28]                            𝑋 = [16 −8−8 −8]𝜆1 = 4,  𝜆2 = 28  𝑎𝑛𝑑   𝑥1 = [16−8] , 𝑥2 = [−8−8]   
Now, we are going to get the three models mentioned in section 3 for system (5.36). 
By using models (3.16), (3.20), 𝑎𝑛𝑑 (3.25) for 𝜆1 = 4  ,  𝑥1 = [16−8], problem (5.35), written as follows: 

Model(3.16): MAX     z =𝜆2 − 𝜆1                                                                      
𝑠. 𝑡.

{  
  6.8 ∗ 𝑥11 + 28 ∗ 𝑥21 = 𝜆1 ∗ 𝑥11                                    7.2 ∗ 𝑥11 + 22 ∗ 𝑥21 = 𝜆2 ∗ 𝑥21                                    15.25 ∗ 𝑥12 + 15 ∗ 𝑥22 = 𝜆2 ∗ 𝑥12                                10.2 ∗ 𝑥12 + 19.5 ∗ 𝑥22 = 𝜆1 ∗ 𝑥22                               𝑥11 ≤ 16, 𝑥12 ≥ 16, 𝑥21 ≤ −8, 𝑥22 ≥ −8                  𝜆1 > 0,  𝜆2 ≥ 4, 𝜆1 ≤ 4                                                   

                                (5.38) 
That here: 

�̃� = (𝜆1, 𝜆, 𝜆2)  , �̃� = [(𝑥11, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥22)], 
Model (3.20): 
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MAX     z =𝜆2 − 𝜆3 − 𝜆4                                                                   
𝑠. 𝑡.

{   
   6.8 ∗ 𝑥11 + 28 ∗ 𝑥21 = 𝜆3 ∗ 𝑥11 + 𝜆4 ∗ 𝑥12                         15.25 ∗ 𝑥12 + 15 ∗ 𝑥22 = 𝜆2 ∗ 𝑥12                                        7.2 ∗ 𝑥11 + 22 ∗ 𝑥21 = 𝜆2 ∗ 𝑥21                                             10.2 ∗ 𝑥12 + 19.5 ∗ 𝑥22 = 𝜆3 ∗ 𝑥22 + 𝜆4 ∗ 𝑥21                   𝑥11 ≤ 16, 𝑥12 ≥ 16, 𝑥21 ≤ −8, 𝑥22 ≥ −8                             𝜆2 ≥ 4,  𝜆1 = 𝜆3 + 𝜆4 ≤ 4,  𝜆3 ≥ 0, 𝜆4 ≤ 0, 𝜆3 ≤ 1000 ∗ 𝑠1, 𝜆4 ≥ 1000 − 1000 ∗ 𝑠1                               

                       (5.39) 
That here: 

�̃� = (𝜆3 + 𝜆4, 𝜆, 𝜆2)  , �̃� = [(𝑥11, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥22)], 
Model (3.25): 
 MAX     z = 𝜆2 − 𝜆1                                                                                                        
𝑠. 𝑡.

{   
   
  6.8 ∗ 𝑥111 + 15.25 ∗ 𝑥112 + 28 ∗ 𝑥21 = 𝜆1 ∗ 𝑥111 + 𝜆2 ∗ 𝑥112                  15.25 ∗ 𝑥12 + 28 ∗ 𝑥221 + 15 ∗ 𝑥222 = 𝜆2 ∗ 𝑥12                                           7.2 ∗ 𝑥111 + 10.2 ∗ 𝑥112 + 22 ∗ 𝑥21 = 𝜆2 ∗ 𝑥21                                             10.2 ∗ 𝑥12 + 22 ∗ 𝑥221 + 19.5 ∗ 𝑥222 = 𝜆2 ∗ 𝑥221 + 𝜆1 ∗ 𝑥222                  𝑥11 = 𝑥111 + 𝑥112 ≤ 16, 𝑥12 ≥ 16, 𝑥21 ≤ −8, 𝑥22 = 𝑥221 + 𝑥222 ≥ −8,𝑥111 ≥ 0, 𝑥111 ≤ 1000 ∗ 𝑠1,𝑥112 ≤ 0, 𝑥112 ≥ −1000 + 1000 ∗ 𝑠1           𝑥221 ≥ 0, 𝑥221 ≤ 1000 ∗ 𝑠2,𝑥222 ≤ 0, 𝑥222 ≥ −1000 + 1000 ∗ 𝑠2𝜆1 ≤ 4, 𝜆1 > 0, 𝜆2 ≥ 4,                                                                                      

                       (5.40) 

That here: 

�̃� = (𝜆1, 𝜆, 𝜆2)  , �̃� = [(𝑥111 + 𝑥112, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥221 + 𝑥222)], 
 

Then, using the LINGO 18 software package, we will see that model (5.38) is infeasible, but models (5.39) 𝑎𝑛𝑑 (5.40) have the following answers, respectively: 𝜆2 = 22.00000,   𝜆4 = −23.04995,    𝜆3 = 0.000000,          x11 = 0.000000,        x12 = 273.3317,                                           x21 = −225.0100,     x22 = 122.9993,                                                                                  (5.41) 
And for case(5.40): 𝜆2 = 35.85842            ,    𝜆1 = 0.1000000,x11 = 0.000000,   x12 = 16.00000, 𝑥111 = 0.000000, 𝑥112 = −1000.000,x21 = −736.0149,    x22 = 0.000000 , 𝑥221 = 11.77624, 𝑥222 = 0.000000,                             (5.42) 
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besides, the eigenvector and the fuzzy triangular eigenvalue for matrix �̃� obtained as follows: 

Case(5.39): �̃�1 = (0.000000,16 ,273.3317 ),     �̃�2 = (−225.0100, −8 ,122.9993),                           �̃� = (𝜆, 𝜆 , 𝜆) = (−23.04995, 4, 22.00000 )                                                                                (5.43) 
Case(5.40): �̃�1 = (−1000.000,16 ,16.00000 ),     �̃�2 = (−736.0149, −8 ,11.77624),                       �̃� = (𝜆, 𝜆 , 𝜆) = (0.1000000, 4, 35.85842 )                                                                                   (5.44) 
And for 𝜆2 = 28  ,  𝑥2 = [−8−8] , as above, using the lingo 18 software package, we will see that models (3.16) 𝑎𝑛𝑑 (3.20) are infeasible, but model (3.25) has the following answers:   𝜆2 = 35.85842            ,    𝜆1 = 0.1000000,  x11 = −10.86935,    x12 = 0.00000, 𝑥121 = 0.000000, 𝑥122 = 0.000000,   x21 = −8.000000,    x22 = 0.000000, 𝑥221 = 0.000000, 𝑥222 = 0.000000,                              (5.45) 
Therefore, the suitable solution obtained as follows: �̃�1 = (−10.86935, −8 ,0.00000 ),     �̃�2 = (−8.000000, −8 ,0.000000),                          �̃� = (𝜆, 𝜆 , 𝜆) = (0.1000000, 28, 35.85842 )                                                                                 (5.46) 
Example 5.2. Consider a fuzzy triangular matrix �̃�, assuming that the fuzzy triangular number �̃� = (𝜆, 𝜆, 𝜆) 
is a fuzzy eigenvalue and the fuzzy triangular vector �̃� = (�̃�1, �̃�2, �̃�3 ) is a fuzzy eigenvector of matrix �̃�, 
we have: 

{  
  
  (0.5, 1, 1.8)𝑥1 + (−3.4,−3,−0.9)𝑥2 + (6, 7, 8)𝑥3 = (𝜆, 𝜆) (𝑥1𝑥2𝑥3)   (−6,−4,−2)𝑥1 + (9.5, 12, 15.5)𝑥2 + (1, 2, 3)𝑥3 = (𝜆, 𝜆) (𝑥1𝑥2𝑥3)     (2, 6, 10)𝑥1 + (3.75, 4, 11)𝑥2 + (−7,−5,−1)𝑥3 = (𝜆, 𝜆)(𝑥1𝑥2𝑥3)     

                                             (5.47) 
So, the crisp solution (1 − 𝑐𝑢𝑡) obtained as follows: 

𝜆 = [−10.0289 0 00 5.0837 00 0 12.9451] 𝑋 = [−0.6937 1.3521 −0.8675−0.2167 0.4928 5.78761.0000 1.0000 1.0000 ] ,𝜆1 = −10.0289,  𝜆2 = 5.0837,  𝜆3 = 12.9451  𝑎𝑛𝑑   𝑥1 = [−0.6937−0.21671.0000 ] , 𝑥2 = [1.35210.49281.0000] , 𝑥3 = [−0.86755.78761.0000 ] 
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Now, we are going to get the three models mentioned in section 3 for system (5.47). 
By using models (3.16), (3.20) 𝑎𝑛𝑑 (3.25) for  𝜆3 = 12.9451 , 𝑥3 = [−0.86755.78761.0000 ], problem (5.47), written 

as follows: 

Model(3.16): MAX     z = 𝜆2 − 𝜆1                                             
𝑠. 𝑡.

{   
  
    
 1.8 ∗ 𝑥11 − 3.4 ∗ 𝑥22 + 6 ∗ 𝑥31 = 𝜆2 ∗ 𝑥11   0.5 ∗ 𝑥12 − 0.9 ∗ 𝑥21 + 8 ∗ 𝑥32 = 𝜆1 ∗ 𝑥12   −2 ∗ 𝑥12 + 9.5 ∗ 𝑥21 + 1 ∗ 𝑥31 = 𝜆1 ∗ 𝑥21   −6 ∗ 𝑥11 + 15.5 ∗ 𝑥22 + 3 ∗ 𝑥32 = 𝜆2 ∗ 𝑥2210 ∗ 𝑥11 + 3.75 ∗ 𝑥21 − 7 ∗ 𝑥32 = 𝜆1 ∗ 𝑥31 2 ∗ 𝑥12 + 11 ∗ 𝑥22 − 1 ∗ 𝑥31 = 𝜆2 ∗ 𝑥32      𝑥11 ≤ −0.8675, 𝑥12 ≥ −0.8675  𝑥21 ≤ 5.7876, 𝑥22 ≥ 5.7876  𝑥31 ≤ 1.0000, 𝑥32 ≥ 1.0000 𝜆2 ≥ 12.9451, 𝜆1 ≤ 12.9451 

                              (5.48) 

That here: 

�̃� = (𝜆1, 𝜆, 𝜆2)  , �̃� = [(𝑥11, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥22)(𝑥31, 𝑥2, 𝑥32)], 
Model (3.20): 𝑀𝐴𝑋     𝑧 = 𝜆2 − 𝜆3 −𝜆4                                                                      

𝑠. 𝑡.
{  
   
   
  1.8 ∗ 𝑥11 − 3.4 ∗ 𝑥22 + 6 ∗ 𝑥31 = 𝜆2 ∗ 𝑥11                      0.5 ∗ 𝑥12 − 0.9 ∗ 𝑥21 + 8 ∗ 𝑥32 = 𝜆3 ∗ 𝑥12 + 𝜆4 ∗ 𝑥11  −2 ∗ 𝑥12 + 9.5 ∗ 𝑥21 + 1 ∗ 𝑥31 = 𝜆3 ∗ 𝑥21 + 𝜆4 ∗ 𝑥22  −6 ∗ 𝑥11 + 15.5 ∗ 𝑥22 + 3 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                    10 ∗ 𝑥11 + 3.75 ∗ 𝑥21 − 7 ∗ 𝑥32 = 𝜆3 ∗ 𝑥31 + 𝜆4 ∗ 𝑥322 ∗ 𝑥12 + 11 ∗ 𝑥22 − 1 ∗ 𝑥31 = 𝜆2 ∗ 𝑥32                          𝑥11 ≤ −0.8675, 𝑥12 ≥ −0.8675 𝑥21 ≤ 5.7876, 𝑥22 ≥ 5.7876 𝑥31 ≤ 1.0000, 𝑥32 ≥ 1.0000𝜆2 ≥ 12.9451, 𝜆1 = 𝜆3 + 𝜆4 ≤ 12.9451,𝜆3 ≥ 0, 𝜆3 ≤ 1000 ∗ 𝑠1, 𝜆4 ≤ 0, 𝜆4 ≥ −1000 + 1000 ∗ 𝑠1 

              (5.49) 

That here: 

�̃� = (𝜆3 + 𝜆4, 𝜆, 𝜆2)  , �̃� = [(𝑥11, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥22)(𝑥31, 𝑥2, 𝑥32)], 
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Model (3.25): MAX     z = 𝜆2 − 𝜆1                                                                                                                                                       

𝑠. 𝑡.

{  
   
  
   
  1.8 ∗ 𝑥11 − 3.4 ∗ 𝑥22 + 6 ∗ 𝑥311 + 8 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                        1.8 ∗ 𝑥121 + 0.5 ∗ 𝑥122 − 0.9 ∗ 𝑥211 − 3.4 ∗ 𝑥212 + 8 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                    −6 ∗ 𝑥121 − 2 ∗ 𝑥122 + 9.5 ∗ 𝑥211 + 15.5 ∗ 𝑥212 + 1 ∗ 𝑥311 + 3 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212−6 ∗ 𝑥11 + 15.5 ∗ 𝑥22 + 3 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                              10 ∗ 𝑥11 + 3.75 ∗ 𝑥211 + 11 ∗ 𝑥212 − 7 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                            10 ∗ 𝑥121 + 2 ∗ 𝑥122 + 11 ∗ 𝑥22 − 1 ∗ 𝑥311 − 7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                    𝑥11 ≤ −0.8675, 𝑥12 = 𝑥121 + 𝑥122 ≥ −0.8675,𝑥21 = 𝑥211 + 𝑥212 ≤ 5.7876, 𝑥22 ≥ 5.7876,𝑥31 = 𝑥311 + 𝑥312 ≤ 1.0000, 𝑥32 ≥ 1.0000,𝑥121 ≥ 0, 𝑥121 ≤ 1000 ∗ 𝑠1,𝑥122 ≤ 0, 𝑥122 ≥ −1000 + 1000 ∗ 𝑠1               𝑥211 ≥ 0, 𝑥211 ≤ 1000 ∗ 𝑠2,𝑥212 ≤ 0, 𝑥212 ≥ −1000 + 1000 ∗ 𝑠2𝑥311 ≥ 0, 𝑥311 ≤ 1000 ∗ 𝑠3,𝑥312 ≤ 0, 𝑥312 ≥ −1000 + 1000 ∗ 𝑠3𝜆1 ≤ 12.9451, 𝜆2 ≥ 12.9451,    (5.50)

 

That here: 

�̃� = (𝜆1, 𝜆, 𝜆2)  , �̃� = [(𝑥11, 𝑥1, 𝑥121 + 𝑥122)(𝑥211 + 𝑥212, 𝑥2, 𝑥22)(𝑥311 + 𝑥312, 𝑥3, 𝑥32)], 
Then, using the LINGO 18 software package, we will see that models (5.48) 𝑎𝑛𝑑 (5.49) are infeasible, but 

model (5.50) has the following answers: 𝜆2 = 22.36984,    𝜆1 = 0.100000,    x11 = −5.529008 , x12 = 0.1325000 , 𝑥121 = 5.529008, 𝑥122 = 0.000000 ,                x21 = 0.7876000,    x22 = 9.309340, 𝑥211 = 0.000000, 𝑥212 = −9.309340 , x31 = 0.000000 ,    x32 = 10.25988 , 𝑥311 = 0.000000, 𝑥312 = −10.25988,                           (5.51) 
Besides, corresponding suitable solution of FFLS based on the compute above given by: �̃�1 = (−5.529008  , −0.8675, 0.1325000),     �̃�2 = (0.7876000, 5.7876, 9.309340),     �̃�3 = (0.000000,1.0000, 10.25988)   �̃� = (𝜆, 𝜆 , 𝜆) = (0.100000,12.9451, 22.36984 )    (5.52) 
Similarly, to obtain widths 𝜆1 = −10.0289,  𝑥1 = [−0.6937−0.21671.0000 ] , 𝑎𝑛𝑑 𝜆2 = 5.0837, 𝑥2 = [1.35210.49281.0000] , we 

behavior as above. That we will see for 𝜆1 = −10.0289,  𝑥1 = [−0.6937−0.21671.0000 ], all three the models 

(3.16), (3.20), 𝑎𝑛𝑑 (3.25) are infeasible, and for 𝜆2 = 5.0837, 𝑥2 = [1.35210.49281.0000] models (3.16) 𝑎𝑛𝑑 (3.20) 
are infeasible, but model (3.25) has the following answers: 
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𝜆2 = 22.36984,    𝜆1 = 0.100000,   x11 = 0.3521000 ,   x12 = 1.352100, 𝑥111 = 0.000000, 𝑥112 = −1.352100,x21 = 0.4928000,    x22 = 2.276567, 𝑥211 = 0.000000, 𝑥212 = −2.276567,x31 = 0.000000 ,      x32 = 2.509020, 𝑥311 = 0.000000, 𝑥312 = −2.509020,                     (5.53) 
Therefore, we have: �̃�1 = (0.3521000  ,1.3521, 1.352100),     �̃�2 = (0.4928000, 0.4928, 2.276567),               �̃�3 = (0.000000,1.0000, 2.509020)   �̃� = (𝜆, 𝜆 , 𝜆) = (0.100000,12.9451, 22.36984 )      (5.54) 
Now, we consider three 𝛼 − 𝑐𝑢𝑡 levels (𝑖. 𝑒.  𝛼 = 0.3, 0.5, 0.7) in model (5.50) that  𝜆3 = 12.9451 , 𝑥3 =[−0.86755.78761.0000 ] , and based on the interval solutions under different 𝛼 − 𝑐𝑢𝑡 levels, the membership function 

can then be generated through statistical regression analysis methods. Therefore, we have: 

Table 1 

Solution process by model(5.50). 

 

  

𝛼 = 0.3 

 

Eigenvalues NLP models solutions 

 𝑥1 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                          1.56 ∗ 𝑥11 − 3.52 ∗ 𝑥22 + 6.3 ∗ 𝑥311 + 7.7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                         1.56 ∗ 𝑥121 + 0.65 ∗ 𝑥122 − 1.53 ∗ 𝑥211 − 3.52 ∗ 𝑥212 + 7.7 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                                    −5.4 ∗ 𝑥121 − 2.6 ∗ 𝑥122 + 10.25 ∗ 𝑥211 + 14.45 ∗ 𝑥212 + 1.3 ∗ 𝑥311 + 2.7 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                                      −5.4 ∗ 𝑥11 + 14.45 ∗ 𝑥22 + 2.7 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                              8.8 ∗ 𝑥11 + 3.825 ∗ 𝑥211 + 8.9 ∗ 𝑥212 − 6.4 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                                 8.8 ∗ 𝑥121 + 3.2 ∗ 𝑥122 + 8.9 ∗ 𝑥22 − 2.2 ∗ 𝑥311 − 6.4 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                                    0.2 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 22                                                                                                                                                                           X11 >= −5.529008, X121 + X122 <= 5.529008,X121 >= 0.1, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1 X211 + X212 >= −9.309340,X22 <= 9.309340,X211 >= 0, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2    X311 + X312 >= −10.25988,X32 <= 10.25988,X311 >= 0, X311 <= 1000 ∗ S3, X312 <= 0, X312 >= −1000 + 1000 ∗ S3    X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                         
 

 

𝜆1 = 0.2000000𝜆2 = 20.41815    X11 = −3.477525X121 = 3.477525  X122 = 0.000000  X22 = 5.800000   X211 = 0.000000   X212 = −5.800000X32 = 5.865413  X311 = 0.000000   X312 = −5.865413
 

 𝑥2 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                        1.56 ∗ 𝑥11 − 3.52 ∗ 𝑥22 + 6.3 ∗ 𝑥311 + 7.7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                       1.56 ∗ 𝑥121 + 0.65 ∗ 𝑥122 − 1.53 ∗ 𝑥211 − 3.52 ∗ 𝑥212 + 7.7 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                                  −5.4 ∗ 𝑥121 − 2.6 ∗ 𝑥122 + 10.25 ∗ 𝑥211 + 14.45 ∗ 𝑥212 + 1.3 ∗ 𝑥311 + 2.7 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                                    −5.4 ∗ 𝑥11 + 14.45 ∗ 𝑥22 + 2.7 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                            8.8 ∗ 𝑥11 + 3.825 ∗ 𝑥211 + 8.9 ∗ 𝑥212 − 6.4 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                                8.8 ∗ 𝑥121 + 3.2 ∗ 𝑥122 + 8.9 ∗ 𝑥22 − 2.2 ∗ 𝑥311 − 6.4 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                                    0.2 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 22                                                                                                                                                                           X11 >= −5.529008, X121 + X122 <= 5.529008, X121 >= 0, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1    X211 + X212 >= −9.309340,X22 <= 9.309340, X211 >= 0.1, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2X311 + X312 >= −10.25988, X32 <= 10.25988, X311 >= 0, X311 <= 1000 ∗ S3, X312 <= 0, X312 >= −1000 + 1000 ∗ S3    X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                         
 

 

 

 𝜆1 = 0.2000000   𝜆2 = 20.41815      X11 = −2.216488X121 = 1.862351 X122 = 0.000000   X22 = 5.800000     X211 = 1.604428    X212 = 0.000000    X32 = 4.434871      X311 = 0.000000    X312 = −2.247337
 

 

 

 𝑥3 
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𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                              1.56 ∗ 𝑥11 − 3.52 ∗ 𝑥22 + 6.3 ∗ 𝑥311 + 7.7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                             1.56 ∗ 𝑥121 + 0.65 ∗ 𝑥122 − 1.53 ∗ 𝑥211 − 3.52 ∗ 𝑥212 + 7.7 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                                        −5.4 ∗ 𝑥121 − 2.6 ∗ 𝑥122 + 10.25 ∗ 𝑥211 + 14.45 ∗ 𝑥212 + 1.3 ∗ 𝑥311 + 2.7 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                                           −5.4 ∗ 𝑥11 + 14.45 ∗ 𝑥22 + 2.7 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                                   8.8 ∗ 𝑥11 + 3.825 ∗ 𝑥211 + 8.9 ∗ 𝑥212 − 6.4 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                                      8.8 ∗ 𝑥121 + 3.2 ∗ 𝑥122 + 8.9 ∗ 𝑥22 − 2.2 ∗ 𝑥311 − 6.4 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                                        0.2 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 22                                                                                                                                                                                X11 >= −5.529008,X121 + X122 <= 5.529008, X121 >= 0, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1        X211 + X212 >= −9.309340,X22 <= 9.309340,X211 >= 0, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2        X311 + X312 >= −10.25988, X32 <= 10.25988, X311 >= 0, X311 <= 1000 ∗ S3, X312 <= −0.1, X312 >= −1000 + 1000 ∗ S3  X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                             
 

 

𝜆1 = 0.2000000    𝜆2 = 20.41815       X11 = −3.477526X121 = 3.477527 X122 = 0.000000   X22 = 5.800000     X211 = 0.000000   X212 = −5.800004X32 = 5.865414     X311 = 0.000000   X312 = −5.865416
 

 

𝛼 = 0.5 

 

Eigenvalues NLP models solutions 

 𝑥1 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                                   1.28 ∗ 𝑥11 − 3.26 ∗ 𝑥22 + 6.65 ∗ 𝑥311 + 7.35 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                            1.28 ∗ 𝑥121 + 0.825 ∗ 𝑥122 − 2.265 ∗ 𝑥211 − 3.26 ∗ 𝑥212 + 7.35 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                                   −4.7 ∗ 𝑥121 − 3.3 ∗ 𝑥122 + 11.125 ∗ 𝑥211 + 13.225 ∗ 𝑥212 + 1.65 ∗ 𝑥311 + 2.35 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                                    −4.7 ∗ 𝑥11 + 13.225 ∗ 𝑥22 + 2.35 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                                   7.4 ∗ 𝑥11 + 3.9125 ∗ 𝑥211 + 6.45 ∗ 𝑥212 − 5.7 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                                    7.4 ∗ 𝑥121 + 4.6 ∗ 𝑥122 + 6.45 ∗ 𝑥22 − 3.6 ∗ 𝑥311 − 5.7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                                           0.5 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 20.41815                                                                                                                                                                          X11 >= −3.477525, X121 + X122 <= 3.477525, X121 >= 0.1, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1       X211 + X212 >= −5.8, X22 <= 5.8, X211 >= 0, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2                                     X311 + X312 >= −5.865413, X32 <= 5.865413, X311 >= 0, X311 <= 1000 ∗ S3, X312 <= 0, X312 >= −1000 + 1000 ∗ S3         X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                                  
 

 

 

 𝜆1 = 0.5000000       𝜆2 = 17.99655                    X11 = −3.357019X121 = 3.357019X122 = 0.000000                 X22 = 5.800000                  X211 = 0.4266358E − 07X212 = −5.800000            X32 = 5.062553           X311 = 0.000000         X312 = −5.062553           
 

 

 𝑥2 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                                   1.28 ∗ 𝑥11 − 3.26 ∗ 𝑥22 + 6.65 ∗ 𝑥311 + 7.35 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                            1.28 ∗ 𝑥121 + 0.825 ∗ 𝑥122 − 2.265 ∗ 𝑥211 − 3.26 ∗ 𝑥212 + 7.35 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                                   −4.7 ∗ 𝑥121 − 3.3 ∗ 𝑥122 + 11.125 ∗ 𝑥211 + 13.225 ∗ 𝑥212 + 1.65 ∗ 𝑥311 + 2.35 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                                    −4.7 ∗ 𝑥11 + 13.225 ∗ 𝑥22 + 2.35 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                                   7.4 ∗ 𝑥11 + 3.9125 ∗ 𝑥211 + 6.45 ∗ 𝑥212 − 5.7 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                                    7.4 ∗ 𝑥121 + 4.6 ∗ 𝑥122 + 6.45 ∗ 𝑥22 − 3.6 ∗ 𝑥311 − 5.7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                                           0.5 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 18.57814                                                                                                                                                                          X11 >= −2.216488,X121 + X122 <= 1.862351, X121 >= 0, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000+ 1000 ∗ S1                X211 + X212 >= 1.604428,X22 <= 5.8, X211 >= 0.1, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2                           X311 + X312 >= −2.247337,X32 <= 4.434871,X311 >= 0, X311 <= 1000 ∗ S3, X312 <= 0, X312 >= −1000 + 1000 ∗ S3              X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                                   
 

 

 𝜆1 = 4.037175       𝜆2 = 16.41320       X11 = −2.137860X121 = 1.504952 X122 = 0.000000   X22 = 5.800000    X211 = 1.604428  X212 = 0.000000  X32 = 3.593029    X311 = 0.000000    X312 = −1.829205
 

 

 𝑥3 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                                   1.28 ∗ 𝑥11 − 3.26 ∗ 𝑥22 + 6.65 ∗ 𝑥311 + 7.35 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                            1.28 ∗ 𝑥121 + 0.825 ∗ 𝑥122 − 2.265 ∗ 𝑥211 − 3.26 ∗ 𝑥212 + 7.35 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                                   −4.7 ∗ 𝑥121 − 3.3 ∗ 𝑥122 + 11.125 ∗ 𝑥211 + 13.225 ∗ 𝑥212 + 1.65 ∗ 𝑥311 + 2.35 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                                    −4.7 ∗ 𝑥11 + 13.225 ∗ 𝑥22 + 2.35 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                                   7.4 ∗ 𝑥11 + 3.9125 ∗ 𝑥211 + 6.45 ∗ 𝑥212 − 5.7 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                                    7.4 ∗ 𝑥121 + 4.6 ∗ 𝑥122 + 6.45 ∗ 𝑥22 − 3.6 ∗ 𝑥311 − 5.7 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                                           0.5 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 20.41815                                                                                                                                                                          X11 >= −3.477526,X121 + X122 <= 3.477527, X121 >= 0, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1         X211 + X212 >= −5.800004,X22 <= 5.8, X211 >= 0, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2                       X311 + X312 >= −5.865416,X32 <= 5.865414,X311 >= 0, X311 <= 1000 ∗ S3, X312 <= −0.1, X312 >= −1000 + 1000 ∗ S3  X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                                  
 

 

 

 𝜆1 = 0.5000000      𝜆2 = 17.99655         X11 = −3.357019X121 = 3.357019  X122 = 0.000000   X22 = 5.800000    X211 = 0.000000   X212 = −5.800000X32 = 5.062553     X311 = 0.000000 X312 = −5.062553
 

𝛼 = 0.7 

 

Eigenvalues NLP models solutions 

 𝑥1 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                               1.084 ∗ 𝑥11 − 3.078 ∗ 𝑥22 + 6.895 ∗ 𝑥311 + 7.105 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                              1.084 ∗ 𝑥121 + 0.9475 ∗ 𝑥122 − 2.7795 ∗ 𝑥211 − 3.078 ∗ 𝑥212 + 7.105 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                    −4.21 ∗ 𝑥121 − 3.79 ∗ 𝑥122 + 11.7375 ∗ 𝑥211 + 12.3675 ∗ 𝑥212 + 1.895 ∗ 𝑥311 + 2.105 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                   −4.21 ∗ 𝑥11 + 12.3675 ∗ 𝑥22 + 2.105 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                       6.42 ∗ 𝑥11 + 3.97375 ∗ 𝑥211 + 4.735 ∗ 𝑥212 − 5.21 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                     6.42 ∗ 𝑥121 + 5.58 ∗ 𝑥122 + 4.735 ∗ 𝑥22 − 4.58 ∗ 𝑥311 − 5.21 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                        0.7 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 17.99655                                                                                                                                                                   X11 >= −3.357019, x121 + X122 <= 3.357019, X121 >= 0.1, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1      X211 + X212 >= −5.8, X22 <= 5.8, X211 >= 0, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2                                X311 + X312 >= −5.062553,X32 <= 5.062553,X311 >= 0, X311 <= 1000 ∗ S3, X312 <= −0.1, X312 >= −1000+ 1000 ∗ S3X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                             
 

 𝜆1 = 0.7000000               𝜆2 = 16.27231                 X11 = −3.207526           X121 = 3.207526             X122 = 0.000000               X22 = 5.800000                 X211 = 0.4886187E − 07X212 = −5.800000            X32 = 4.344056                 X311 = 0.000000               X312 = −4.344056           
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FIGURE 1: 

 

 𝑥2 

 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                            1.084 ∗ 𝑥11 − 3.078 ∗ 𝑥22 + 6.895 ∗ 𝑥311 + 7.105 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                            1.084 ∗ 𝑥121 + 0.9475 ∗ 𝑥122 − 2.7795 ∗ 𝑥211 − 3.078 ∗ 𝑥212 + 7.105 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                  −4.21 ∗ 𝑥121 − 3.79 ∗ 𝑥122 + 11.7375 ∗ 𝑥211 + 12.3675 ∗ 𝑥212 + 1.895 ∗ 𝑥311 + 2.105 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212               −4.21 ∗ 𝑥11 + 12.3675 ∗ 𝑥22 + 2.105 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                    6.42 ∗ 𝑥11 + 3.97375 ∗ 𝑥211 + 4.735 ∗ 𝑥212 − 5.21 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                   6.42 ∗ 𝑥121 + 5.58 ∗ 𝑥122 + 4.735 ∗ 𝑥22 − 4.58 ∗ 𝑥311 − 5.21 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                      4.037175 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 16.41320                                                                                                                                                    X11 >= −2.137860, x121 + X122 <= 1.504952, X121 >= 0, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1       X211 + X212 >= 1.604428, X22 <= 5.8, X211 >= 0.1, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2                   X311 + X312 >= −1.829205, X32 <= 3.593029,X311 >= 0, X311 <= 1000 ∗ S3, X312 <= 0, X312 >= −1000 + 1000 ∗ S3      X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                           
 

 𝜆1 = 6.841805       𝜆2 = 14.88045        X11 = −2.039475X121 = 1.141952  X122 = 0.000000   X22 = 5.800000    X211 = 1.604428    X212 = 0.000000    X32 = 2.845093      X311 = 0.000000  X312 = −1.447589 
 

 

 

 𝑥3 

 

 𝑀𝐴𝑋 = 𝜆2 − 𝜆1                                                                                                                                                                                                                     1.084 ∗ 𝑥11 − 3.078 ∗ 𝑥22 + 6.895 ∗ 𝑥311 + 7.105 ∗ 𝑥312 = 𝜆2 ∗ 𝑥11                                                                                                                   1.084 ∗ 𝑥121 + 0.9475 ∗ 𝑥122 − 2.7795 ∗ 𝑥211 − 3.078 ∗ 𝑥212 + 7.105 ∗ 𝑥32 = 𝜆2 ∗ 𝑥121 + 𝜆1 ∗ 𝑥122                                                       −4.21 ∗ 𝑥121 − 3.79 ∗ 𝑥122 + 11.7375 ∗ 𝑥211 + 12.3675 ∗ 𝑥212 + 1.895 ∗ 𝑥311 + 2.105 ∗ 𝑥312 = 𝜆1 ∗ 𝑥211 + 𝜆2 ∗ 𝑥212                     −4.21 ∗ 𝑥11 + 12.3675 ∗ 𝑥22 + 2.105 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                                                                                                                                           6.42 ∗ 𝑥11 + 3.97375 ∗ 𝑥211 + 4.735 ∗ 𝑥212 − 5.21 ∗ 𝑥32 = 𝜆1 ∗ 𝑥311 + 𝜆2 ∗ 𝑥312                                                                                          6.42 ∗ 𝑥121 + 5.58 ∗ 𝑥122 + 4.735 ∗ 𝑥22 − 4.58 ∗ 𝑥311 − 5.21 ∗ 𝑥312 = 𝜆2 ∗ 𝑥32                                                                                             0.7 ≤ 𝜆1 ≤ 12.9, 13 ≤ 𝜆2 ≤ 17.99655                                                                                                                                                                       X11 >= −3.357019, x121 + X122 <= 3.357019, X121 >= 0, X121 <= 1000 ∗ S1, X122 <= 0, X122 >= −1000 + 1000 ∗ S1            X211 + X212 >= 5.8, X22 <= 5.8, X211 >= 0, X211 <= 1000 ∗ S2, X212 <= 0, X212 >= −1000 + 1000 ∗ S2                                       X311 + X312 >= −5.062553,X32 <= 5.062553,X311 >= 0, X311 <= 1000 ∗ S3, X312 <= −0.1, X312 >= −1000+ 1000 ∗ S3    X11 <= −0.87, X121 + X122 >= −0.87, X211 + X212 <= 5.8, X22 >= 5.8, X311 + X312 <= 1, X32 >= 1                                                 
 

 

 𝜆1 = 0.7000000   𝜆2 = 16.27231      X11 = −3.207526X121 = 3.207526 X122 = 0.000000X22 = 5.800000  X211 = 0.000000   X212 = −5.800000X32 = 4.344056    X311 = 0.000000 X312 = −4.344056
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Example 5.3. Consider a fuzzy triangular matrix �̃�, assuming that the fuzzy triangular number �̃� = (𝜆, 𝜆, 𝜆) 
is a fuzzy eigenvalue and the fuzzy triangular vector �̃� = (�̃�1, �̃�2, �̃�3, �̃�4, �̃�5) is a fuzzy eigenvector of matrix �̃�, we have: 

{  
   
   
   
  
   
   
   
  (26, 38, 45)𝑥1 + (6, 16, 25)𝑥2 + (−22,−20,−18)𝑥3 + (16, 17, 19)𝑥4 + (15, 26, 38)𝑥5 = (𝜆, 𝜆)( 

 𝑥1𝑥2𝑥3𝑥4𝑥5) 
 

(10, 15, 23)𝑥1 + (25, 45, 70)𝑥2 + (20, 29, 37)𝑥3 + (−12,−11,−9)𝑥4 + (18, 25, 36)𝑥5 = (𝜆, 𝜆)( 
 𝑥1𝑥2𝑥3𝑥4𝑥5) 

      
(−25,−23,− 20)𝑥1 + (21, 30, 43)𝑥2 + (27, 36, 46)𝑥3 + (9, 18, 28)𝑥4 + (23, 32, 47)𝑥5 = (𝜆, 𝜆)( 

 𝑥1𝑥2𝑥3𝑥4𝑥5) 
 

(10, 21, 38)𝑥1 + (−20,−9,−8)𝑥2 + (6, 14, 28)𝑥3 + (36, 50, 65)𝑥4 + (−25,−23,−22)𝑥5 = (𝜆, 𝜆)( 
 𝑥1𝑥2𝑥3𝑥4𝑥5) 

 
(15, 26, 34)𝑥1 + (17, 25, 41)𝑥2 + (14, 22, 40)𝑥3 + (−50,−35,−23)𝑥4 + (44, 65, 87)𝑥5 = (𝜆, 𝜆)( 

 𝑥1𝑥2𝑥3𝑥4𝑥5) 
 

 (5.55) 

So, the crisp solution (1 − 𝑐𝑢𝑡) obtained as follows: 

𝜆 = [   
 −27.07950000

0111.8871000
0024.064800

00060.77520
000064.3524]   

 
 

𝑋 = [   
 −1.40390.7980−1.70811.08431.0000

0.30040.72390.5578−0.24881.0000
−0.0899−1.43660.32900.28351.0000

1.8516−1.3523−3.0913−1.41291.0000
−0.3265−2.4186−4.0015−4.46691.0000 ]   

 
 

 𝜆1 = −27.0795,  𝜆2 = 111.8871,  𝜆3 = 24.0648,  𝜆4 = 60.7752,  𝜆5 = 64.3524, 
And  
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   𝑥1 = [   
 −1.40390.7980−1.70811.08431.0000 ]  

  , 𝑥2 = [   
 0.30040.72390.5578−0.24881.0000 ]  

  , 𝑥3 = [   
 −0.0899−1.43660.32900.28351.0000 ]  

  ,    𝑥4 = [   
 1.8516−1.3523−3.0913−1.41291.0000 ]  

  ,    𝑥5 = [   
 −0.3265−2.4186−4.0015−4.46691.0000 ]  

  
 

By using model (3.25) for 𝜆4 = 60.7752 ,  𝑥4 = [   
 1.8516−1.3523−3.0913−1.41291.0000 ]  

  
, problem (5.55), written as follows: 

MAX     z = 𝜆2 − 𝜆1                                                                                                                                                                                                                       

𝑠. 𝑡

{  
   
   
   
   
   
   
  26 ∗ 𝑥111 + 45 ∗ 𝑥112 + 25 ∗ 𝑥21 − 22 ∗ 𝑥321 − 18 ∗ 𝑥322 + 19 ∗ 𝑥41 + 15 ∗ 𝑥511 + 38 ∗ 𝑥512 = 𝜆1 ∗ 𝑥111 + 𝜆2 ∗ 𝑥112                       45 ∗ 𝑥12 + 25 ∗ 𝑥221 + 6 ∗ 𝑥222 − 22 ∗ 𝑥31 + 19 ∗ 𝑥421 + 16 ∗ 𝑥422 + 38 ∗ 𝑥52 = 𝜆2 ∗ 𝑥12                                                                          10 ∗ 𝑥111 + 23 ∗ 𝑥112 + 70 ∗ 𝑥21 + 37 ∗ 𝑥31 − 12 ∗ 𝑥421 − 9 ∗ 𝑥422 + 18 ∗ 𝑥511 + 36 ∗ 𝑥512 = 𝜆2 ∗ 𝑥21                                                  23 ∗ 𝑥12 + 70 ∗ 𝑥221 + 25 ∗ 𝑥222 + 37 ∗ 𝑥321 + 20 ∗ 𝑥322 − 12 ∗ 𝑥41 + 36 ∗ 𝑥52 = 𝜆2 ∗ 𝑥221 + 𝜆1 ∗ 𝑥222                                               −25 ∗ 𝑥12 + 43 ∗ 𝑥21 + 46 ∗ 𝑥31 + 28 ∗ 𝑥41 + 23 ∗ 𝑥511 + 47 ∗ 𝑥512 = 𝜆2 ∗ 𝑥31                                                                                              −20 ∗ 𝑥111 − 25 ∗ 𝑥112 + 43 ∗ 𝑥221 + 21 ∗ 𝑥222 + 46 ∗ 𝑥321 + 27 ∗ 𝑥322 + 28 ∗ 𝑥421 + 9 ∗ 𝑥422 + 47 ∗ 𝑥52 = 𝜆2 ∗ 𝑥321 + 𝜆1 ∗ 𝑥32210 ∗ 𝑥111 + 38 ∗ 𝑥112 − 20 ∗ 𝑥221 − 8 ∗ 𝑥222 + 28 ∗ 𝑥31 + 65 ∗ 𝑥41 − 25 ∗ 𝑥52 = 𝜆2 ∗ 𝑥41                                                                           38 ∗ 𝑥12 − 20 ∗ 𝑥21 + 28 ∗ 𝑥321 + 6 ∗ 𝑥322 + 65 ∗ 𝑥421 + 36 ∗ 𝑥422 − 22 ∗ 𝑥511 − 25𝑥512 = 𝜆2 ∗ 𝑥421 + 𝜆1 ∗ 𝑥422                               15 ∗ 𝑥111 + 34 ∗ 𝑥112 + 41 ∗ 𝑥21 + 40 ∗ 𝑥31 − 50 ∗ 𝑥421 − 23 ∗ 𝑥422 + 44 ∗ 𝑥511 + 87 ∗ 𝑥512 = 𝜆1 ∗ 𝑥511 + 𝜆2 ∗ 𝑥512                        34 ∗ 𝑥12 + 41 ∗ 𝑥221 + 17 ∗ 𝑥222 + 40 ∗ 𝑥321 + 14 ∗ 𝑥322 − 50 ∗ 𝑥41 + 87 ∗ 𝑥52 = 𝜆2 ∗ 𝑥52                                                                        𝑥11 = 𝑥111 + 𝑥112 ≤ 1.8516, 𝑥12 ≥ 1.8516, 𝑥21 ≤ −1.3523, 𝑥22 = 𝑥221 + 𝑥222 ≥ −1.3523,𝑥31 ≤ −3.0913, 𝑥32 = 𝑥321 + 𝑥322 ≥ −3.0913,𝑥41 ≤ −1.4129, 𝑥42 = 𝑥421 + 𝑥422 ≥ −1.4129, 𝑥51 = 𝑥511 + 𝑥512 ≤ 1.0000, 𝑥52 ≥ 1.0000,𝑥111 ≥ 0, 𝑥111 ≤ 1000 ∗ 𝑠1,𝑥112 ≤ 0, 𝑥112 ≥ −1000 + 1000 ∗ 𝑠1          𝑥221 ≥ 0, 𝑥221 ≤ 1000 ∗ 𝑠2,𝑥222 ≤ 0, 𝑥222 ≥ −1000 + 1000 ∗ 𝑠2𝑥321 ≥ 0, 𝑥321 ≤ 1000 ∗ 𝑠3,𝑥322 ≤ 0, 𝑥322 ≥ −1000 + 1000 ∗ 𝑠3𝑥421 ≥ 0, 𝑥421 ≤ 1000 ∗ 𝑠3,𝑥422 ≤ 0, 𝑥422 ≥ −1000 + 1000 ∗ 𝑠4𝑥511 ≥ 0, 𝑥511 ≤ 1000 ∗ 𝑠3,𝑥512 ≤ 0, 𝑥512 ≥ −1000 + 1000 ∗ 𝑠3                                                              𝜆1 ≤ 60.7752, 𝜆2 ≥ 60.7752,                                                           (5.56)         

 

 

That here: 

�̃� = (𝜆1, 𝜆, 𝜆2 )  , �̃� = [  
  (𝑥111 + 𝑥112, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥221 + 𝑥222)(𝑥31, 𝑥3, 𝑥321 + 𝑥322)(𝑥41, 𝑥4, 𝑥421 + 𝑥422)(𝑥511 + 𝑥512, 𝑥5, 𝑥52)]  

  , 
Then, using the LINGO 18 software package, we can obtain:  𝜆2 = 193.5974 , 𝜆1 = 0.000000,      x11 = −17.38445,  x12 = 17.38445, 𝑥111 = 0.000000, 𝑥112 = −17.38445, x21 = −21.03200,  x22 = 21.03200, 𝑥221 = 21.03200, 𝑥222 = 0.000000, x31 = −22.71764,  x32 = 22.71764, 𝑥321 = 22.71764, 𝑥322 = 0.000000,x41 = −19.43440,  x42 = 19.43440, 𝑥421 = 19.43440, 𝑥422 = 0.000000,    x51 = −31.27477,  x52 = 31.27477, 𝑥511 = 0.000000,  𝑥512 = −31.27477,

 (5.57) 
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Besides, the eigenvector and the fuzzy triangular eigenvalue for matrix �̃� based on the compute above 

given by: �̃�1 = (−17.38445 ,1.8516,17.38445 ),     �̃�2 = (−21.03200,−1.3523, 21.03200 ),                  �̃�3 = (−22.71764 ,−3.0913 ,22.71764 ),     �̃�4 = (−19.43440,−1.4129, 19.43440 ),        �̃�5 = (−31.27477, 1.0000, 31.27477 ),   �̃� = (𝜆, 𝜆 , 𝜆) = (0.000000,60.7752, 193.5974  )           (5.58) 
Now, If we write models (3.16) 𝑎𝑛𝑑 (3.20)of the proposed based on the results obtained in a 1-cut 

position  (5.55) for (𝜆4 ,  𝑥4)  and, execution by using  the software package as LINGO 18 software 

package, then will see, that models are both infeasible. Moreover, models (3.16), (3.20), and (3.25) 
for (𝜆1, 𝑥1), ( 𝜆3, 𝑥3), 𝑎𝑛𝑑  (𝜆5, 𝑥5)  are infeasible, but for (𝜆2 ,  𝑥2) model (3.25) has the following 

answers:  𝜆2 = 193.5974 , 𝜆1 = 0.000000,       x11 = −0.5983550, x12 = 0.5983550 , 𝑥111 = 0.000000, 𝑥112 = −0.5983550,    x21 = −0.7239000, x22 = 0.7239000 , 𝑥211 = 0.000000, 𝑥212 = −0.7239000,  x31 = −0.7819182,  x32 = 0.7819182 , 𝑥311 = 0.000000, 𝑥312 = −0.7819182,x41 = −0.6689122,  x42 = 0.6689122 , 𝑥421 = 0.6689122 , 𝑥422 = 0.000000,       x51 = −1.0764460,  x52 = 1.0764460 , 𝑥511 = 0.000000, 𝑥512 = −1.0764460,     
                          (5.59) 

Besides, the eigenvector and the fuzzy triangular eigenvalue for matrix �̃�  given by: �̃�1 = (−0.5983550    ,0.3004, 0.5983550),  �̃�2 = (−0.7239000, 0.7239, 0.7239000 ),�̃�3 = (−0.7819182 ,0.5578 ,0.7819182), �̃�4 = (−0.6689122,−0.2488, 0.6689122 ),      �̃�5 = (−1.076446, 1.0000, 1.076446), �̃� = (𝜆, 𝜆 , 𝜆) = (0.000000, 111.8871, 193.5974)   (5.60) 
Example 5.4. Consider a fuzzy triangular matrix �̃�, assuming that the fuzzy triangular number �̃� = (𝜆, 𝜆, 𝜆) 
is a fuzzy eigenvalue and the fuzzy triangular vector �̃� = (�̃�1, �̃�2, �̃�3 ) is a fuzzy eigenvector of matrix �̃�, 
we have: 

{  
  
  (48, 53, 60)𝑥1 + (9, 12, 14)𝑥2 + (19, 24, 30)𝑥3 = (𝜆, 𝜆) (𝑥1𝑥2𝑥3)                                 (11, 15, 20)𝑥1 + (−987,−461,−451)𝑥2 + (351, 385, 572)𝑥3 = (𝜆, 𝜆) (𝑥1𝑥2𝑥3)     (85, 236, 473)𝑥1 + (21, 158, 362)𝑥2 + (36, 282, 1091)𝑥3 = (𝜆, 𝜆) (𝑥1𝑥2𝑥3)             

                 (5.61) 
Consider 1-cut fuzzy triangular matrix �̃� above. If we write models (3.16), (3.20), 𝑎𝑛𝑑 (3.25) of the 

proposed based on the results obtained in a 1-cut position and, execution by using of the software 

package as LINGO 18 software package, then will see, that models are infeasible. Therefore, we 
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obtain the fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate eigenvalue of 

above, first, we solve the fuzzy triangular matrix �̃� in a 1-cut position. So, we obtain: 

𝜆 = [376.4468 0 00 31.8520 00 0 −534.2988] 𝑋 = [0.0913 −1.5513 0.06670.4614 0.7340 −5.26611.0000 1.0000 1.0000 ] ,𝜆1 = 376.4468,  𝜆2 = 31.8520,  𝜆3 = −534.2988  𝑎𝑛𝑑   𝑥1 = [0.09130.46141.0000] , 𝑥2 = [−1.55130.73401.0000 ] , 𝑥3 = [ 0.0667−5.26611.0000 ] 
     

By using model (3.20) for 𝜆2 = 31.8520, 𝑥2 = [−1.55130.73401.0000 ], problem (5.61), written as follows: 

𝑀𝐴𝑋  𝑧 = 𝜆2 − 𝜆3 −𝜆4                                                                         

𝑠. 𝑡.
{  
   
   
  60 ∗ 𝑥11 + 9 ∗ 𝑥21 + 19 ∗ 𝑥31 = 𝜆2 ∗ 𝑥11                           48 ∗ 𝑥12 + 14 ∗ 𝑥22 + 30 ∗ 𝑥32 =  𝜆3 ∗ 𝑥12 + 𝜆4 ∗ 𝑥11    20 ∗ 𝑥11 − 987 ∗ 𝑥22 + 351 ∗ 𝑥31 = 𝜆3 ∗ 𝑥21 + 𝜆4 ∗ 𝑥2211 ∗ 𝑥12 − 451 ∗ 𝑥21 + 572 ∗ 𝑥32 = 𝜆2 ∗ 𝑥22                    473 ∗ 𝑥11 + 21 ∗ 𝑥21 + 36 ∗ 𝑥31 = 𝜆3 ∗ 𝑥31 + 𝜆4 ∗ 𝑥32  85 ∗ 𝑥12 + 362 ∗ 𝑥22 + 1091 ∗ 𝑥32 = 𝜆2 ∗ 𝑥32                  𝑥11 ≤ −1.5513, 𝑥12 ≥ −1.5513  𝑥21 ≤ 0.7340, 𝑥22 ≥ 0.7340      𝑥31 ≤ 1.0000, 𝑥32 ≥ 1.0000     𝜆2 ≥ 31.8520, 𝜆1 = 𝜆3 + 𝜆4 ≤ 31.8520,𝜆3 ≥ 0, 𝜆3 ≤ 1000 ∗ s1, 𝜆4 ≤ 0, 𝜆4 ≥ −1000 +  1000 ∗ s1

  (5.62) 

That here: 

�̃� = (𝜆3 + 𝜆4, 𝜆, 𝜆2)  , �̃� = [(𝑥11, 𝑥1, 𝑥12)(𝑥21, 𝑥2, 𝑥22)(𝑥31, 𝑥2, 𝑥32)] 
 

That model (5.62) is infeasible.  

Therefore, to find 0-cut of the fuzzy escribed eigenvalue, we write model (4.33) of the proposed for above 

fuzzy triangular matrix �̃� as follows: 
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𝑀𝑖𝑛      𝑇                                                                                                                                 

𝑠. 𝑡.

{  
   
   
  
   
   
  60 ∗ 𝑥11 + 9 ∗ 𝑥21 + 19 ∗ 𝑥31 − 𝜆2 ∗ 𝑥11 ≤ 𝑇                                                  20 ∗ 𝑥11 − 987 ∗ 𝑥22 + 351 ∗ 𝑥31 − 𝜆3 ∗ 𝑥21 − 𝜆4 ∗ 𝑥22 ≤ 𝑇                       473 ∗ 𝑥11 + 21 ∗ 𝑥21 + 36 ∗ 𝑥31 − 𝜆3 ∗ 𝑥31 − 𝜆4 ∗ 𝑥32 ≤ 𝑇                         60 ∗ 𝑥11 + 9 ∗ 𝑥21 + 19 ∗ 𝑥31 − 𝜆2 ∗ 𝑥11 ≥ 0                                 20 ∗ 𝑥11 − 987 ∗ 𝑥22 + 351 ∗ 𝑥31 − 𝜆3 ∗ 𝑥21 − 𝜆4 ∗ 𝑥22 ≥ 0                          473 ∗ 𝑥11 + 21 ∗ 𝑥21 + 36 ∗ 𝑥31 − 𝜆3 ∗ 𝑥31 − 𝜆4 ∗ 𝑥32 ≥ 0                          −48 ∗ 𝑥12 − 14 ∗ 𝑥22 − 30 ∗ 𝑥32 + 𝜆3 ∗ 𝑥12 + 𝜆4 ∗ 𝑥11 ≤ 𝑇                             −11 ∗ 𝑥12 + 451 ∗ 𝑥21 − 572 ∗ 𝑥32 + 𝜆2 ∗ 𝑥22 ≤ 𝑇                                            −85 ∗ 𝑥12 − 362 ∗ 𝑥22 − 1091 ∗ 𝑥32 + 𝜆2 ∗ 𝑥32 ≤ 𝑇                                          −48 ∗ 𝑥12 − 14 ∗ 𝑥22 − 30 ∗ 𝑥32 + 𝜆3 ∗ 𝑥12 + 𝜆4 ∗ 𝑥11 ≥ 0                              −11 ∗ 𝑥12 + 451 ∗ 𝑥21 − 572 ∗ 𝑥32 + 𝜆2 ∗ 𝑥22 ≥ 0                                            −85 ∗ 𝑥12 − 362 ∗ 𝑥22 − 1091 ∗ 𝑥32 + 𝜆2 ∗ 𝑥32 ≥ 0                                        𝑥11 ≤ −1.5513, 𝑥12 ≥ −1.5513                                                        𝑥21 ≤ 0.7340, 𝑥22 ≥ 0.7340                                                               𝑥31 ≤ 1.0000, 𝑥32 ≥ 1.0000                                                              𝜆2 ≥ 31.8520, 𝜆1 = 𝜆3 + 𝜆4 ≤ 31.8520,                                       𝜆3 ≥ 0, 𝜆3 ≤ 1000 ∗ s1, 𝜆4 ≤ 0, 𝜆4 ≥ −1000 +  1000 ∗ s1            

            (5.63) 

Now, by solve above NLP problem by using the LINGO 18 software package, we can obtain: 𝑇 = 1706.472𝑥11 = −1.551300, 𝑥12 = −1.551300,       𝑥21 = 0.7340000, 𝑥22 = 0.7340000,            𝑥31 = 0.6120798E − 01, 𝑥32 = 2.090704,                 𝜆3 = 0.000000, 𝜆4 = −1000.000 , 𝜆2 =  1155.019                                                       (5.64) 
Therefore, fuzzy escribed eigenvalue obtained as follows: �̃�1 = (−1.551300,−1.5513,−1.551300), �̃�2 = (0.7340000, 0.7340, 0.7340000),                         �̃�3 = (0.6120798E − 01, 1.0000, 2.090704), �̃� = (𝜆, 𝜆 , 𝜆) = (−1000.000, 31.8520,1155.019 )                                

                                                                                                                                                                     (5.65) 
 Indeed �̃�, �̃� ∈ TTFES 

Equivalent, fuzzy peripheral eigenvalue obtained as follows: �̃�1 = (−2.462680,−1.5513,−1.551300),  �̃�2 = (0.000000, 0.7340, 0.7340000),                  �̃�3 = (0.000000, 1.0000, 1.000000), �̃� = (𝜆, 𝜆 , 𝜆) = (28.36870, 31.8520,60.00000)            (5.66) 
Indeed �̃�, �̃� ∈ CTFES 

Equivalent, fuzzy approximate eigenvalue obtained as follows: 
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�̃�1 = (−1.551300,−1.5513,−1.551300), �̃�2 = (0.000000, 0.7340, 0.7340000),            �̃�3 = (0.000000, 1.0000, 1.000000), �̃� = (𝜆, 𝜆 , 𝜆) = (−64.31428, 31.8520,516.5702 )  (5.67) 
Indeed �̃�, �̃� ∈ ATFES 

Clear the value of the objective function of each model is the distance between �̃��̃� 𝑎𝑛𝑑 �̃��̃� in 0-cut. 

So here: 𝑇(�̃�TTFES, �̃�TTFES) = 1706.472, 𝑇(�̃�CTFES, �̃�CTFES) = 1164.848, 𝑇(�̃�ATFES, �̃�ATFES) = 708.2773 

Thereupon: 𝑇(�̃�TTFES, �̃�TTFES) = 1706.472 ≤ 𝑇(�̃�CTFES, �̃�CTFES) = 1164.848 ≤ 𝑇(�̃�ATFES, �̃�ATFES) = 708.2773 

Similarly, to obtain widths 𝜆1,  𝑥1 𝑎𝑛𝑑 𝜆3, 𝑥3, we behavior as above.  

Therefore, the tables of values of 𝑇 for proposed models assumed as follows: 

Table 2 

Values of λ̃ and T (𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 �̃��̃� 𝑎𝑛𝑑 �̃��̃� 𝑖𝑛 0 − 𝑐𝑢𝑡) for 

 𝜆 = 376.4468 𝑎𝑛𝑑 𝑥 = (0.0913, 0.4614, 1.0000)𝑡  
 

Models Escribed Peripheral Approximate 

 λ̃ T λ̃ T λ̃ T (3.16) infeasible infeasible 𝜆 = 1.234568𝜆 = 376.4468𝜆 =  459.3384 

841.8733 𝜆 = 0.000000𝜆 = 376.4468𝜆 = 1197.813 

103.3975 

(3.20) 𝜆 = −226.2718𝜆 = 376.4468𝜆 =  1365.309  262.2718 𝜆 = 1.250812𝜆 = 376.4468𝜆 = 459.3384 

841.8733 𝜆 = −46.80566𝜆 = 376.4468𝜆 = 1218.406  

82.80567 

(3.25) 𝜆 = 0.000000𝜆 = 376.4468𝜆 =  1505.592 

0.000000 𝜆 = 1.238309𝜆 = 376.4468𝜆 =  459.3384 

841.8733 𝜆 = 0.000000𝜆 = 376.4468𝜆 =  1505.593 

0.000000 
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Therefore, the best solution in table 1 is the escribed eigenvalue (𝑇(�̃�TTFES, �̃�TTFES) = 0.000000) of 

model (3.25). 
Table 3 

Values λ̃ and of T (𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 �̃��̃� 𝑎𝑛𝑑 �̃��̃� 𝑖𝑛 0 − 𝑐𝑢𝑡) for 

 𝜆 = 31.8520 𝑎𝑛𝑑 𝑥 = (−1.5513, 0.7340, 1.0000)𝑡 
 

Models Escribed Peripheral Approximate 

 λ̃ T λ̃ T λ̃ T (3.16) infeasible infeasible 𝜆 = 22.03726𝜆 = 31.8520𝜆 =  60.00000 

1164.848 𝜆 = 0.000000𝜆 = 31.8520𝜆 = 512.6980 

712.1495 

(3.20) 𝜆 = −1000.000𝜆 = 31.8520𝜆 =  1155.019  

1706.472 𝜆 = 28.36870𝜆 = 31.8520𝜆 = 60.00000 

1164.848 𝜆 = −64.31428𝜆 = 31.8520𝜆 = 516.5702  

708.2773 

(3.25) 𝜆 = 0.000000𝜆 = 31.8520𝜆 =  1505.592 

0.000000 𝜆 = 22.03726𝜆 = 31.8520𝜆 =  69.41576 

1155.432 𝜆 = 0.000000𝜆 = 31.8520𝜆 =  512.6980 

712.1495 

 

Therefore, the best solution in table 2 is the approximate eigenvalue (𝑇(�̃�ATFES, �̃�ATFES) = 708.2773) 
of model (3.20). 
Table 4 

Values of λ̃ and T (𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 �̃��̃� 𝑎𝑛𝑑 �̃��̃� 𝑖𝑛 0 − 𝑐𝑢𝑡)  

for 𝜆 = −534.2988 𝑎𝑛𝑑 𝑥 = (0.0667,−5.2661, 1.0000)𝑡 
 

Models Escribed Peripheral Approximate 

 λ̃ T λ̃ T λ̃ T 
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(3.16) infeasible infeasible 𝜆 = −917.4524𝜆 = −534.2988𝜆 =  1976.095  

1122.549 𝜆 = −903.7074𝜆 = −534.2988𝜆 = −258.8352 

1011.961 

(3.20) infeasible infeasible 𝜆 = −943.7568𝜆 = −534.2988𝜆 = 0.000000  

1122.549 𝜆 = −1205.017𝜆 = −534.2988𝜆 = 179.1463  

943.4028 

(3.25) infeasible infeasible 𝜆 = −1127.641𝜆 = −534.2988𝜆 =  −534.2988 

2957.304 𝜆 = −4974.252𝜆 = −534.2988𝜆 = −534.2988 

2957.304 

 

Therefore, the best solution in table 3 is the approximate eigenvalue (𝑇(�̃�ATFES, �̃�ATFES) = 943.4028) 
of model (3.20). 
5. Conclusion 

In this paper, we suggested a novel method for finding eigenvalues and fuzzy triangular eigenvectors of a 

fuzzy triangular matrix �̃�. In our approach, we solve the 1-cut of a fuzzy triangular matrix, then, we 

obtained 0-cut of eigenvalues and eigenvectors. In addition, we introduced three different eigenvalues 

namely, fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate eigenvalue for 

when a fuzzy triangular matrix (�̃�) does not have any suitable solution. Hence, our proposed method 

always has a solution, and the best solution is the shortest distance between  �̃��̃� 𝑎𝑛𝑑 �̃��̃� in a 0-cut mode. 

However, our method is not cost-effective for large matrices because the volume of calculations is large. 

Finally, the numerical examples show that the methods are effective and applicable for obtaining the 

eigenvalues and fuzzy triangular eigenvectors of a fuzzy triangular matrix �̃�.  
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