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Abstract 13 

A reliable traffic noise prediction model is one of the decision-making tools used in providing a 14 

noise friendly environment. In this study, four linear-nonlinear hybrid models were proposed to 15 

capture both linear and nonlinear patterns of the data by summing up the predicted traffic noise 16 

from the multilinear regression (MLR) and estimated residuals from four artificial intelligence 17 

(AI)-based models. The input variables for the models were volumes of cars, medium vehicles, 18 

buses, heavy vehicles, and average speed. Prior to the development of the hybrid model, the 19 

potential of Boosted Regression Tree (BRT), Feed Forward Neural Network (FFNN), Gaussian 20 

Process Regression (GPR), Support Vector Regression (SVR) and Linear regression models for 21 

traffic noise prediction were evaluated and compared with each other. The performances of the 22 

single and hybrid models were evaluated using the Nash-Sutcliffe efficiency (NSE), root mean 23 

square error (RMSE), mean absolute error (MAE) and relative root mean square error (rRMSE). 24 

The results showed that, the hybrid models provide better prediction capability than both the 25 

linear and nonlinear models in both calibration and verification stages. MLR-GPR hybrid 26 

demonstrated better prediction skill than all other hybrid models with NSE, RMSE, MAE and 27 

rRMSE values of 0.9312, 0.0427, 0.0347 and 7.4%, respectively. The study found that, the 28 

efficiency of the linear models could be improved up to 27.26% when they are hybridized with 29 

the nonlinear models.  30 

mailto:ibrahimkhalil.umar@neu.edu.tr
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1. Introduction 33 

Monitoring, assessing and prediction of the noise pollution which is one of the major 34 

environmental pollutions endangering the wellbeing of residents along the major roads of urban 35 

cities are essential for management of noise pollution. This can help in reducing the increased 36 

health risks such as premature death, cardiovascular diseases, hearing impairment, sleep 37 

disturbance (European Environment Agency 2014), tinnitus (Maschke and Widmann, 2013), 38 

occasional memory difficulties (Schlittmeier et al. 2015), increased chance of diabetes and 39 

annoyance (Sørensen et al. 2013) which are believed to be associated with incessant exposure to 40 

the noise pollution. Roadway noise is the main source of the environmental noise pollution in 41 

urban areas and is believed to be higher in areas where the total traffic volume as well as the 42 

speed are high (Kumar et al. 2014). The three components of noise that make up the traffic noise 43 

are noise generated as a result of the interaction of the vehicles’ tire with road pavement; 44 

aerodynamically generated noise due to the airflow turbulent through and around the vehicle; 45 

propulsion noise from engine, exhaust and transmission. Aerodynamically generated noise 46 

dominates other forms of the traffic noise in high-speed roads while the tire pavement interaction 47 

is the dominant on low-speed roads (Sandberg and Ejsmont, 2002). The physical measurement of 48 

the traffic noise can be expensive and time consuming and even impossible along high speed 49 

roads (Ahmed and Pradhan 2019). As a result of these problems, researchers have been 50 

developing various statistical and regression models aimed at providing cost effective as well as 51 

reliable models capable of predicting the traffic noise with higher accuracy.  52 

However, the traffic noise prediction models serve as decision-making tools that help the 53 

stakeholders for both decision and policy making for providing friendly road environments. As a 54 

result of local conditions such as variations in traffic composition, weather conditions and road 55 

geometry from one country to another, the regression models for the prediction of the roadway 56 

traffic noise are faced with the non-generalization problem (Hamad et al. 2017). The non-57 

generalization problem of the models has resulted in the development of various mathematical as 58 

well as artificial intelligence (AI)-based models for roadway traffic noise prediction in different 59 

regions and countries. Traffic volume, traffic composition, vehicular speed, distance from the 60 
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noise source, reflective surface, temperature, building facade, gradient, honking and 61 

acceleration/deceleration or combination of some of the parameters are the major inputs 62 

parameters considered for the development of both statistical and regression models for roadway 63 

traffic noise prediction (Gundogdu et al. 2005). Other variables such as driving behavior, driver’s 64 

skills, vehicle maintenance duties, speed limits and road geometry may also have effects on the 65 

mentioned parameters (Covaciu et al. 2015).   66 

The most commonly used models for estimation of roadway traffic noise in the literature 67 

includes the German RLS 90, French NMPB-Routes 96 which was approved to be used in many 68 

European countries by the environmental noise legislation of the European Union (Ece et al. 69 

2018), Son Road, Nord 2000, Harmonoise, calculation of roadway traffic noise (CoRTN), ASJ 70 

RTN-model 2008, Federal highway administration (FHWA) model and CNOSSOS-EU (Garg 71 

and Maji, 2014). A comprehensive review of the aforementioned roadway traffic noise models 72 

by Garg and Maji, (2014) revealed that, considerations given to uncertainty computations in 73 

noise predictions as well as noise maps are limited, and suggested that, less arduous and time 74 

effective methods that also consider the uncertainty of the prediction of noise will be more 75 

appropriate for the stakeholders in providing a noise friendly environment. In addition to the 76 

non-generalization problem of the classical models due to the differences in local conditions 77 

such as road geometry, traffic volume and composition, the use of the classical models requires 78 

an in-depth understanding of the physical process and interaction between the traffic noise and 79 

the noise generators. The empirical models also proved to provide lower prediction accuracy 80 

than AI-based models in the prediction of nonlinear processes.  81 

The limitations of the classical models give rise to the application of several AI-based models 82 

such as support vector machine (SVM), artificial neural network (ANN), random forest (RF), 83 

genetic algorithm (GA), decision trees (DT) and adaptive neuro fuzzy inference system (ANFIS) 84 

models for the prediction of roadway traffic noise, due to their accuracy and robustness in 85 

handling nonlinear processes like the traffic noise. For examples, Nedic et al., (2014) compared 86 

the performance of an ANN model with some statistical models for the estimation of highway 87 

traffic noise and the results affirmed the superiority of the ANN over other applied models. 88 

Kumar et al., (2014) employed ANN for modelling the roadway traffic noise of Punjab, India 89 

using the average speed, hourly traffic volume and heavy vehicle percentage as the model’s 90 
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inputs. A research conducted in Patiala, India evaluated and compared the performance of DT, 91 

RF, ANN and generalized linear model for roadway traffic noise estimation. The result showed 92 

that RF is more accurate and stable in the traffic noise prediction (Singh et al., 2016). Bravo-93 

Moncayo et al., (2019) utilized three different machine learning approaches (ANN, SVM and 94 

multi-linear regression (MLR)) for the assessment of roadway traffic noise annoyance. The ANN 95 

model was found to be superior of the three models. Compared to the MLR and the SVM model, 96 

the modelling error in training phase was reduced by 42% and 35%, respectively and in testing 97 

stage the error was reduced by 24% for MLR and 19% for SVM model. Traffic noise in the hot 98 

climate of Sharjah, Dubai was modelled by ANN using five input variables namely mean speed, 99 

volume of heavy and light vehicles, road temperature and distance from the pavement edge. 100 

Comparing the efficiency of the developed ANN model with Ontario ministry of transport traffic 101 

noise model (ORNAMENT) and Basic Statistical Traffic Noise model (BSTN) in the prediction 102 

of roadway traffic noise proved superiority of the ANN model over the empirical models 103 

(Hamad et al. 2017).  ANFIS model was also found to have higher prediction accuracy than 104 

FHWA, CRTN and RM models in a study performed by Sharma et al., (2018). ANN model has 105 

demonstrated superiority over two conventional roadway noise models (RLS90 and Criterion 106 

model) in the estimation of roadway noise in the mountainous city of Chongqing, China. The 107 

ANN had the least error of 1.60 dBA, while the RLS90 and Criterion had a forecasted error of 108 

4.54 dBA and 6.70 dBA, respectively. The models input variables were traffic volume, speed, 109 

heavy-vehicle and road gradient (Chen et al. 2020). Ahmed and Pradhan (2019) developed an 110 

ANN model for both prediction and simulation of the propagation of roadway noise emission in 111 

a new expressway in Shah Alam, Malaysia. The model was found to have accuracy of 78.4% and 112 

an error of less than 4.02 dBA. Recently, Nourani et al., (2020a) developed a traffic noise model 113 

using an ensemble model that combines the outputs of AI-based models and a linear model 114 

where, the result of the ensemble approach provided higher accuracy than the single models. An 115 

emotional neural network (ENN) which is one of the recent generations of ANN that 116 

incorporates anxiety and confidence emotions into the ANN, was used by Nourani et al., (2020b) 117 

to model roadway traffic noise. The ENN led to higher accuracy in the prediction of roadway 118 

noise than the classic ANN and some common empirical noise models (CNR, RLS90 and 119 

BURGESS). Also, the study proved that dividing the traffic volume into sub-categories could 120 

enhance performance of the roadway traffic noise model up to 12% in the verification phase.  121 
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Although many AI-based models have already been utilized for roadway traffic noise 122 

prediction, and proved to be superior to both regression and empirical models, it is difficult to 123 

ascertain one particular model as a universal model that can predict roadway traffic noise with 124 

higher accuracy in all countries since different places have different traffic composition and 125 

characteristics. To overcome the constraints of the single models in modelling engineering 126 

processes like traffic noise, hybrid models have begun to attract attention of the researchers. The 127 

main aim of using hybrid models in prediction is to utilize each model’s exclusive quality to 128 

capture different patterns in the data. Combining different models for predictions was found to 129 

be effective in improving the prediction accuracy in some other engineering and financial 130 

problems (e.g. see Nourani et al., 2011; Zhang et al., 2019). Besides, machine learning 131 

computing and modelling methods tend to be more demanding in under developing and 132 

developing regions where the economic stability and budget for environmental impact 133 

assessment is below the standard compare to developed countries.  In contrast with this 134 

mentioned statement, the motivation of this research applies to both developed and developing 135 

countries as far as global warming and climate variables are concern.  136 

In view of reported technical literature, to the best of the author's knowledge, there is no 137 

considered work in technical literature that employed application of the linear-nonlinear hybrid 138 

models for roadway traffic noise prediction. Based on the extensive bibliographic reported 139 

literature from Scopus database (1986-2021), there is need for substantial attention on road 140 

traffic noise modeling using the viability of AI based models. Figure 1a shows the main 141 

keywords of over 120 and likelihood occurrences, while Figure 1b indicating the important of 142 

this topic especially in African continent, Nigeria in particular. The conceptual approach of 143 

modeling road noise using new hybrid proposed in this work would be of interest and 144 

benchmarks to the researchers and scientist. This study presents the first application of Gaussian 145 

process regression (GPR) and a novel hybrid model for the prediction of roadway noise. The 146 

capability of the GPR model for prediction purposes has yielded reliable outcomes in several 147 

engineering problems (e.g. Bonakdari et al., 2019;Cai et al., 2020). The objective of this study 148 

was to propose novel linear-nonlinear hybrid models for estimation of roadway noise. This 149 

objective was achieved in two stages. First, development of five black box models (FFNN, SVR, 150 

GPR, BRT, MLR) and then development of four linear-nonlinear hybrid models (MLR-FFNN, 151 

MLR-SVR, MLR-GPR and MLR-BRT). To the best of the authors knowledge, there is no any 152 
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published study on the application of the linear-nonlinear hybrid models for roadway traffic 153 

noise prediction.  154 

 155 
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Figure 1: The algorithm results for the (a) Scopus database research for the surveyed keywords 175 

(b) the region/counties employed the road traffic noise research frequently  176 

 177 

2. Material and Methods 178 

2.1 Proposed methodology 179 

The study was conducted in three stages (see Figure 2), selection of the relevant input 180 

variables was performed in the first stage. In the second stage, four different AI models (FFNN, 181 

GPR, BRT, SVR) and classical MLR model were used to model the roadway traffic noise at 182 

different sites in Nicosia, North Cyprus. Thirdly, the hybrid models were developed by summing 183 

up the predicted noise level from the MLR model and estimated residuals (MLR residuals) using 184 

the four AI-based models. The performances of the models were assessed and compared 185 

together.  186 

 187 

 188 
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Figure 2: Proposed methodology for the prediction of roadway traffic noise  189 

 190 

 191 

 192 

2.2 Data Description 193 

For conducting the study, Sound Level Meter (SLM) with 0.1dBA resolution was used to 194 

record the roadway traffic noise level at some sites in Nicosia, North Cyprus (see Figure 3). The 195 

SLM was placed at 1.2m above the ground level at a distance of 3m from the road edge (see 196 

Figure 4). Simultaneously with the equivalent noise level (N), video camera was used to record 197 

the vehicular traffic. The traffic data consist of the vehicles’ average speed (V), total traffic 198 

volume (Q) and traffic composition that is numbers of cars (C), medium vehicles (MV), bus (B), 199 

truck (HV) and motorcycle (MC). A total of 175 data samples from 12-observation sites on four 200 

road classes (local, collector, major arterial, and expressway) were recorded. The observations 201 

were taken in the morning (8:00-10:00) and evening (16:00-18:00) peak hours. Afternoon 202 

(12:00-14:00) observations were also taken at some strategic locations (sites 1-7 and 11). The 203 

relative humidity and wind speed at the time of data recording were less than 80% and 5 ms-1, 204 

respectively.  205 

The data collection sites were carefully sited such that, other noise sources were 206 

minimized to the lowest level. The observation sites were also located along straight tangent that 207 

are on relatively flat terrain and at a reasonable distance from any intersection to minimize the 208 

acceleration/deceleration effects. Table 1 summarizes the data recorded from the study sites. The 209 

noise level ranged from 56.3-80.5 dBA with 69.74 dBA as the mean value. The mean noise level 210 

at the 12 observation sites for both evening and the morning hours was greater than 55dBA that 211 

has been considered to be safe level in European countries (Ilgurel et al., 2016).  The mean noise 212 

level for each of the road classes is shown in Figure 5, the expressway has the maximum average 213 

noise level followed by the collector road. The local road recorded the minimum noise level. 214 

This is attributed to the traffic volume and the average speed observed at the observation sites. A 215 

noise level of 80.5dBA was recorded in the evening hour which was recorded as the maximum 216 

noise level whereas the minimal noise level of 56.3dBA was observed during the morning hours. 217 

The highest traffic volume was recorded at site 5 during the evening hours while the highest 218 
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vehicular speed was recorded along the express road (site 12) and minimum average speed and 219 

traffic volume were observed along the local roads (site 8) during the morning hours.  220 

 221 

Table 1: Descriptive statistics of the recorded data 222 

Parameter Maximum Minimum Mean Standard Deviation 
Volume of cars (C) 981 36 405.43 227.12 
Volume of medium vehicles (MV) 81 0 33.78 23.01 
Volume of buses (B) 42 0 8.87 7.65 
Volume of motorcycles (MC) 24 0 5.27 4.68 
Volume of heavy vehicles (HV) 46 0 10.67 10.66 
Number of honks (HK) 12 0 2.53 2.68 
Velocity V (km/hr)  116 35 63.36 20.26 
Noise level (dBA)  80.5 56.3 69.74 5.03 
All observations made are for 15min intervals 223 

 224 
 225 
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 226 

Figure 3: Study area showing sampling points 227 
 228 
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 229 

Figure 4: Data collection (a) Camera setting at site 1 (b) Recording roadway traffic noise with 230 
SLM at site 5 231 
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 253 
Figure 5: Average noise level (a) Road class (b) observation points 254 

2.3 Dominant inputs selection 255 

Mutual information (MI) method was used for the selection of the most appropriate and 256 

dominant input variables in the prediction of roadway noise. The MI measures the statistical 257 

nonlinear interactions between two variables (e.g. C and N), an MI value of 0 indicates that, 258 

there is no interaction between the two variables and a high MI value indicates strong nonlinear 259 

relationship (Nourani et al. 2015). Equation 1 was used for obtaining the MI value between the 260 

random parameters x and y (Yang et al., 2000).  261 𝑀𝐼 (𝑥, 𝑦)  =  𝐻(𝑥)  +  𝐻(𝑦)  −  𝐻(𝑥, 𝑦)        (1) 262 

whereas H(x) is the entropy function of x and H(x, y) is the joint entropy function of parameters x 263 
and y given as: 264 𝐻(𝑥, 𝑦)  =   −∑𝑚𝜖𝑥∑𝑛𝜖𝑦𝑝𝑥𝑦 (𝑥, 𝑦) 𝑙𝑜𝑔𝑝𝑥𝑦 (𝑥, 𝑦)      (2) 265 

Pxy (x,y) represents the joint probability distribution of x and y. The computed mutual 266 
information value between considered inputs and target are given in Table 2. 267 

 268 
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3. Artificial Intelligence Methods 270 

Four AI-based models were employed for conducting the modelling and are briefly discussed in 271 

the below subsections. 272 

3.1 Feed Forward Neural Network (FFNN) 273 

FFNN is a type of supervised machine learning that may be trained to map the connection 274 

between input and output by altering the weights and biases between neuron elements.  Despite 275 

ANN is available in different structures and training algorithms. The FFNN architecture 276 

consisted of three layers: an input layer, a hidden layer, and an output layer (see, Fig. 6). The 277 

hidden node processes the value given into the input layer and transmits the prediction to the 278 

output layer during the ANN process (Jahani and Mohammadi 2019). Furthermore, the training 279 

of the overall FFNN network was performed by adjusting the weight values to obtain the output 280 

with the lowest error. From the viewpoint of the optimization process, the FFNN training process 281 

is equivalent to the process to minimize a multivariable error function as a function of the 282 

network weights. The backpropagation algorithm adjusts the weight values by evaluating the 283 

gradient of the error function in relation to the weight values at each iteration (Kim and Singh 284 

2014). 285 

 286 

Figure 6: Structure of the three-layer FFNN Wang et al., (2015) 287 

 288 

 289 
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3.2 Support Vector Regression (SVR) 290 

SVM was developed using statistical learning theory. The fundamental principle of the 291 

SVM execution in pattern recognition is the linear or non-linear mapping of the input vectors 292 

into a potentially higher dimension of feature space. The type of kernel function determines the 293 

mapping process. Then, an optimal hyperplane was built to achieve a maximum separation of 294 

two classes. In other words, SVM training was developed to address the issue of over-fitting and 295 

it excels at processing a large number of features (Vapnik, 1998). . For more details, the readers 296 

are referred to Wang et al., (2015) and Nourani et al., (2020b) about SVR modelling. Figure 7 297 

gives the general structure of SVR model. The SVR equation can be expressed as (Wang et al., 298 

2015): 299 𝑓(𝑥, 𝛼𝑖, 𝛼𝑖∗) = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝐾(𝑥, 𝑥𝑖) + 𝑏𝑁𝑖=1                                                                    (4) 300 

Where x represents the input vector, αi and αi* are the Lagrange multipliers, k(xi, xj) is the kernel 301 

function performing the non-linear mapping into feature space and b is bias term. Gaussian 302 

Radial Basis Function (RBF) kernel is the most commonly used kernel in the SVR and is given 303 

as: 304 𝑘(𝑥1, 𝑥2) = 𝑒𝑥𝑝( − 𝛾‖𝑥1 − 𝑥2‖2)                                                                                    (5) 305 

where, γ is the kernel parameter. 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

Figure 7: Conceptual structure of SVR model (Nourani et al. 2020a) 317 
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 318 

3.3 Gaussian Process Regression (GPR) 319 

Gaussian Process Regression (GPR) is a non-parametric technique that is used to model 320 

random complex systems. The flexibility of the GPR method in providing uncertainty 321 

representation makes it more desirable in the prediction of many engineering problems 322 

(Rasmussen 2004). The GP is a stochastic process of which finite sub-collection of random 323 

variables has a multivariate Gaussian distribution (Cai et al. 2020). The general expression of the 324 

GPR model relating the explanatory vector (x) and the response (y) is given by: 325 𝑦𝑖  =  𝑓(𝑥𝑖)  +  𝜀          (6) 326 

In Equation 6, f(xi) stands for an arbitrary function that maps the inputs into the corresponding 327 

outputs, ε represents the regression error having an identically distributed Gaussian function with 328 

mean and variance values of zero and σ2, respectively. 329 

The function f(x) for any unobserved pair (x*, f*) in which f is the response and x is the 330 

explanatory parameter is obtained by: 331 

[ 𝑓𝑓∗] ֊ Nn+1 (0, [𝐾(𝑋, 𝑋) 𝑘(𝑋, 𝑥∗)𝑘(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)])       (7) 332 

In Equation 7, K (X, X) represents the matrix of covariances (n x n) for all samples in the 333 

calibration data, k (X, x*) stands for vector of covariances (n × 1) between the point x* and 334 

calibration data. k(x*, x*) is the variance at point x*. In the classic regression, the mean (f) is 335 

derived from f then integrates to f*: 336 

 337 

𝑃(𝑓 ∗ 𝑥׀ ∗, 𝑋, 𝑓) = 𝑁׀( 𝑘(𝑥 ∗, 𝑋)𝐾(𝑋, 𝑋)−1 𝑓, 𝑘(𝑥 ∗, 𝑥 ∗) − 𝑘(𝑥 ∗, 𝑋)𝐾(𝑋, 𝑋)−1 𝑘(𝑋, 𝑥 ∗))338 

 (8) 339 

Equation (8) expresses X and f by maximizing the joint probability of f* conditional on x* to 340 

obtain the f*. 341 

When using data that is noisy, it should be supplemented by a model for the observation error. 342 

Hence, Equation (7) is converted into: 343 
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[ 𝑓𝑓∗] ֊ Nn+1 (0, [𝐾(𝑋, 𝑋) + σ2I 𝑘(𝑋, 𝑥∗)𝑘(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)])      (9) 344 

consequently, the conditional likelihood and the variance change to 345 𝑓( 𝑥∗, )  =  𝑘 ( 𝑥∗, 𝑋) (𝐾 (𝑋, 𝑋)  +   𝜎2 𝐼)−1𝑓      (10) 346 

and 347 𝐶𝑜𝑣 (𝑓( 𝑥∗))  =  𝑘 ( 𝑥∗,  𝑥∗) −  𝑘 ( 𝑥∗, 𝑋) (𝐾 (𝑋, 𝑋)  +  𝜎2 𝐼) −  𝑘 (𝑥,  𝑥∗)   (11) 348 

where I stands for identity matrix and σ2 represents variance of the measured error (Bonakdari et 349 

al. 2019). 350 

3.4 Boosted Regression Tree (BRT) 351 

The BRT is a unique method for prediction and classification combining both a machine 352 

learning approach and a statistical technique. The BRT combines several models and fit them 353 

into single model for improving performance of the single models in prediction problems 354 

(Youssef et al. 2016). The method does not require any data transformation before fitting the 355 

complex nonlinear pattern of the dataset and establishing the interaction between the target and 356 

input variables (Elith et al. 2008). This advantage of the BRT makes it suitable for modelling 357 

natural processes with complex nonlinear relationships. Information in decision trees is 358 

represented in distinctive way that is easy to visualize which gives it several advantages. In the 359 

BRT, missing data in the predictor variables are modified using surrogates (Elith et al. 2008). 360 

Another advantage of all decision trees including the BRT is their insensitivity to outliers. 361 

Boosting and regression are the two algorithms used in the BRT models. Boosting is a technique 362 

used for enhancing prediction accuracy of a model based on the idea that, it is easier to find 363 

many rough rules of thumb than to find a single and highly accurate prediction rule (Youssef et 364 

al. 2016). Fitting multiple regression trees in the BRT overcomes the deficiency of the single 365 

regression trees in predictions. The Regression Learner of Matlab (2019b) was employed for 366 

developing the BRT model in this study.  For a typical predictive learning system consisting of a 367 

set of predictors of different variables X= {x1…, xn} and a response variable y, a BRT for 368 

function approximation could be applied. For example, using a training sample {yi, Xi}, i =1…, 369 

N of known y and X values.  The aim is to determine the function F*(X) (Equation 12) that fits 370 

X to y, such that the anticipated value of the identified loss function is minimized over the joint 371 
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distribution of all values of X and y. In gradient boosting regression, the function is approximated 372 

using Equation 13. 373 

F* (X) = ѱ (y, F(X))          (12) 374 

F(X) = ∑ 𝐹𝑚(𝑋)𝑀𝑚=0   = ∑ β𝑚𝑔(𝑋; 𝛼𝑚)𝑀𝑚=0         (13) 375 

Where g (X; αm) stands for the regression tree at a specific node, βm are the expansion 376 

coefficients, αm explains the tree parameters, m=1…, M. The X space is divided into N-377 

disjointed regions {Rnm} for each iteration m, n=1…, N and distinct constant are estimated in 378 

each iteration (Suleiman et al. 2016). The following steps are employed for implementing the 379 

BRT algorithm: 380 

1. Initialize F(X) to be a constant 381 

2. Do the following steps for values of m from 1 to M: 382 

a. Compute the residual error  𝑟 = − [𝜕𝜓𝑦𝑖, 𝐹(𝑋𝑖)𝜕𝐹(𝑋𝑖)] 𝐹𝑚(𝑋) =  𝐹𝑚−1(𝑋), 𝑖 = 1, … , 𝑁 383 

b. Without replacement, select randomly p ×N samples from the calibration data.  384 

c. To obtain the approximate αm value of 𝛽𝑔(𝑋; 𝛼), fit the r values computed is step 2a into 385 

a least squares regression trees with K terminal nodes using the randomly selected 386 

observations in 2b. 387 

d. Minimize the loss function 𝜓(𝑦, 𝐹𝑚 –  1(𝑋)) + 𝛽𝑔(𝑋; 𝛼𝑚) to obtain the approximate 388 

values of βm. 389 

e. Update 𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝛽𝑚𝑔(𝑋; 𝛼𝑚) 390 

3. Calculate 𝐹𝑚(𝑋) =  ∑ 𝐹𝑚(𝑋)𝑀𝑚=0   391 

For the avoidance of overfitting problems expected in the BRT models, a learning rate λ 392 

parameter that controls the contribution of each regression tree is added to keep the condition 393 

under control by moderating the calibration process of the regression trees as shown in Equation 394 

14. There is a strong interaction between λ and number of iterations M. For convergence of the 395 

calibration error, more iterations are required for smaller values of m. Setting the λ to a small 396 

constant value and choosing fewer number of iterations has been recommended by Hastie et al., 397 

(2011) for obtaining better test error. 398 𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝜆𝛽𝑚𝑔(𝑋; 𝛼𝑚)        (14) 399 
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3.5 Multi Linear Regression (MLR) 400 

The most commonly used method for the prediction and analysis of engineering problems 401 

is the MLR. It helps understand the linear dependency between the predictor and the dependent 402 

variables. It explores the interaction between the variables and describes the relationship between 403 

them by keeping the independent variables fixed and varying one (Doǧan and Akgüngör 2013). 404 

The 𝑛 regressor variables and the dependent variable 𝑦 can be correlated by Nourani et al., 405 

(2020a): 406 𝑦 =  𝑏0 +  𝑏1𝑥1 +  𝑏2𝑥2 +  𝑏3𝑥3 + ⋯ +  𝑏𝑖𝑥𝑖 + 𝜉                                       (15) 407 

In Equation 15,  𝑥𝑖 represents value of the 𝑖𝑡ℎ predictor, 𝑏𝑖stands for coefficient of the 𝑖𝑡ℎ 408 

predictor, 𝑏0 is the constant of regression and 𝜉 is the error term. 409 

3.6 Proposed Hybrid Methodology 410 

In many real-life problems such as the roadway traffic noise prediction, a linear or a 411 

nonlinear interaction may exist between the predictor variables and the roadway traffic noise 412 

level. As a result of this complex nature, the application of linear models (such as MLR, 413 

ARIMA) for such process may not be adequate. On the other hand, nonlinear models (such as 414 

ANN, SVR etc.) despite their advantage in modelling complex problems are not appropriate for 415 

all circumstances and may yield errors especially in modelling data with a linear pattern. 416 

Therefore, it is not appropriate to blindly apply nonlinear models to any data without pre-417 

processing of the data. For example, a spatial data pre-processing (e.g. spatial clustering) should 418 

be employed for modelling processes that shows trend in space before developing main models. 419 

Likewise, temporal data pre-processing may improve the model efficiency for processes which 420 

include seasonal and non-stationary characteristics. Therefore, since it is difficult to know the 421 

characteristics of the data in a real problem completely, hybrid modeling can be a good 422 

methodology for practical use and by combining different models; different aspects of the 423 

underlying patterns may be captured (Nourani et al., 2011). In this study, a hybrid model was 424 

developed by combining the predicted values from a linear model (MLR) and estimated residuals 425 

(error) by a nonlinear model (AI-based). The proposed hybrid model can be expressed as: 426 

yi = Li + Ni,            (16) 427 
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where yi is the observed noise level; Li and Ni are the linear and nonlinear parts of the traffic 428 

noise, respectively. The development of the proposed linear-nonlinear hybrid model involved 429 

three steps (Figure 8). For the first step, a linear model is created via MLR and the residuals are 430 

computed using: 431 

ri = Nobs(i) − Npre(i).           (17)  432 

where the residual ri is estimated by the MLR models, Nobs(i) and Npre(i) present the observed 433 

noise level, and predicted noise level by MLR model, respectively. In the second stage, the 434 

residual (ri) which contains only the nonlinear part of the traffic noise that was not captured by 435 

the MLR, is passed through a nonlinear kernel of AI model, (e.g., FFNN, SVR, BRT and GPR) 436 

for capturing the nonlinearity of the data. Lastly in step three, the result obtained from the 437 

nonlinear model is combined (summed up) with the output of the MLR model obtained in step 1 438 

to give the predicted noise level by the hybrid model.  The final traffic noise computed by the 439 

hybrid model is given by Equation 18. By combining the MLR and AI-based models in roadway 440 

traffic noise prediction, the MLR will effectively capture the linear pattern in the data and the 441 

AI-based models will capture the nonlinearity of the data there by coming up with a model that 442 

has higher prediction accuracy than both MLR and the AI-based models as hinted by Nourani et 443 

al., (2011). 444 𝑌𝑝𝑟𝑒 =  𝑁𝑝𝑟𝑒 +  𝑟𝑝𝑟𝑒          (18) 445 

Where Ypre is the predicted noise level, Npre stands for the approximated noise level obtained by 446 

MLR and rpre is the predicted residual obtained using the AI model. 447 
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 448 

Figure 8: Proposed linear-nonlinear hybrid model 449 

3.7 Model Validation 450 

The main purpose of using data-driven models for prediction problems is to achieve a 451 

reliable result that is difficult to obtain using the classical methods without prior knowledge and 452 

deep understanding of the concept. But, due to overfitting problems in many data driven models, 453 

the model’s performance at the calibration stage is not always coherent with its performance at 454 

the verification stage, which makes it impossible to obtain accurate prediction results for other 455 

unseen dataset. This makes it necessary to validate the models for overcoming the overfitting 456 

issues. Despite the fact that, hybrid models handle the overfitting problems much better than the 457 

traditional feed forward neural network, because the main part of the model is MLR (linear 458 

model) which is not so sensitive to overfitting issue, it may also experience overfitting issues as a 459 

result of fewer observation samples for training the model. Different types of validation process 460 

exist in the literature (cross validation, holdout validation and leave one out validation etc.) but 461 

the k-fold cross validation was employed in this study. In this type of validation mechanism, the 462 

dataset is portioned into equal k-number of subsets. The calibration of the model is done using k-463 

1 subsets and remaining subset is used for the verification. The procedure is repeated for k times 464 

until all the k-subsets are used for the calibration and verification in alteration. The final 465 

performance is obtained by computing the average value of k- subsets performances in 466 

verification stage. One of  the key benefit of using the k-fold cross validation is that the 467 
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calibration and the verification subsets are independent (Sharma et al. 2018). Efficiency in the 468 

data usage could also be achieved through the cross validation. Considering the 4-fold cross-469 

validation, the data set (normalized) is divided into two (calibration=75 % and validation=25 for 470 

developing the models. The data size determines the k values to be used usually ranging from 2-471 

10. 472 

3.8 Data pre-processing and performance evaluation 473 

In order to obtain a better result, prior to the development of the data driven models, data 474 

preparation such as normalization, standardization etc., are required. In this study, normalization 475 

was employed and all data (inputs and the target parameters) were normalized between the 476 

values of 0 and 1. The normalization was done to bring all the input and the target parameters to 477 

the same range and to also remove the dimensions of the data. This helps prevent that data with 478 

higher numeric values to dominate over those with lower values (Nourani et al., 2019a). 479 

Normalization also improves the model’s accuracy by reducing the complexity, computational 480 

requirement, redundancy in the data and also time required to attain the global minima. The data 481 

were normalized using:  482 

Nnorm = 
𝑁−𝑁𝑚𝑖𝑛𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛           (19) 483 

Where N, Nmax and Nmin represent the values of observed, maximum and minimum roadway 484 

noise levels, respectively, while Nnorm indicates the normalized roadway noise 485 

The efficiency of the developed models in predicting the equivalent noise level was 486 

evaluated using four different evaluation criteria namely the mean absolute error (MAE), root 487 

mean square error (RMSE), Nash-Sutcliffe efficiency (NSE) and the relative root mean square 488 

error (rRMSE). The NSE values ranges from -∞ to 1 and it is a parameter that indicates how well 489 

the model fits the observed noise level. A perfect model has an NSE value of 1 and the model 490 

efficiency decreases as the value moves far from 1 and vice versa Nourani et al., (2020a). RMSE 491 

as one of the best measures for computing the model’s performance was used for measuring the 492 

average error produced by the models. The RMSE value ranged between 0 and +∞ and is zero in 493 

the best model (Nourani and Sayyah 2012). The MAE construes the goodness-of-fit of the model 494 

regardless of the sign of the prediction error between observed and predicted noise level values 495 

just like RMSE. MAE was used in the study for evaluating the deviations of the predicted noise 496 
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level from the observed values in an equal way regardless of the sign since the RMSE is suitable 497 

for estimating errors with a normal distribution which may not be satisfied by all proposed 498 

models (Bonakdari et al. 2019). Finally, rRMSE was also used, which could be evaluated based 499 

on the defined ranges: Excellent for rRMSE values less than 10%, Good for values between 10% 500 

and 20%, Fair for rRMSE values between 20% and 30%, and Poor if rRMSE  value is greater 501 

than 30% (Rabehi et al. 2020). The performance evaluations mentioned are computed using 502 

Equations 20 -23, respectively.   503 

𝑁𝑆𝐸 = 1 − ∑ (𝑁𝑜𝑏𝑠𝑖−𝑁𝑝𝑟𝑒𝑖)2𝑛
𝑖=1∑ (𝑁𝑜𝑏𝑠𝑖−𝑁𝑜𝑏𝑠𝑖̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

        (20)  504 

 505 

RMSE = 
√∑ (𝑁𝑜𝑏𝑠𝑖−𝑁𝑝𝑟𝑒𝑖)2𝑛

𝑖=1 𝑛         (21)  506 

MAE =  
∑ │𝑁𝑜𝑏𝑠𝑖−𝑁𝑝𝑟𝑒𝑖│𝑁𝑖=1 𝑁          (22) 507 

rRMSE = 

√∑ (𝑁𝑜𝑏𝑠𝑖−𝑁𝑝𝑟𝑒𝑖)2𝑛
𝑖=1 𝑛1𝑛 ∑ (𝑁𝑜𝑏𝑠𝑖)𝑛𝑖=1   x 100        (23) 508 

where, n is the number of observations, �̅�obs is the mean observed noise level, Nobs is the 509 

observed noise level, and Npre is the predicted noise level. 510 

 511 

4. Results and Discussion 512 

4.1 Results of single models 513 

For all data driven models, selection of the dominant input variables is very important for 514 

obtaining a satisfactory result as fewer inputs might not accurately model the process and too 515 

much inputs might increase the complexity of the model. In this study, MI between the inputs 516 
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and target was computed and used for dominant variables selection purpose and in this way, C, 517 

V, MV, HV and B were found to be the most dominant parameters among the potential inputs 518 

with MI values greater than 1 as shown in Table 2. The result of the MI value showed that C is 519 

the most important parameter for the prediction of roadway noise in Nicosia followed by V, and 520 

are ranked 1st and 2nd, respectively. This result was supported by findings of Agarwal and Swami 521 

(2011) where volume of light vehicles were suggested to be the most important parameters in 522 

modelling roadway noise. Likewise, Covaciu et al. (2015) and Vijay et al. (2015) stressed on the 523 

importance of speed for the generation of roadway noise. MV and HV which are ranked 4th and 524 

5th, were reported to have significant influence on roadway noise generation by Gökdag (2012) 525 

and Vijay et al. (2015), respectively. The MC and HK got a low MI values (<1) and were found 526 

to be statistically insignificant according to the student t-test. Despite the fact that other studies 527 

(e.g. Vijay et al. 2015) showed increase in roadway noise as a result of honking. In this study, 528 

number of honks was found to be insignificant due to fewer number of honks during the 529 

observation period. The low number of the honk is because the data collection was done along a 530 

straight road section with less conflict. Also, volume of MC is low due to the nature of the traffic 531 

composition in Nicosia. Local parameters such as road geometry and traffic composition of a 532 

region or country has significant influence of the vehicular class and other parameters that maybe 533 

dominant for the generation of roadway noise in that region. The modelling part of the study was 534 

done in two stages after determining the dominant input variables. 535 

Table 2: Mutual information (MI) value between the potential inputs and target (traffic noise) 536 
C V MV HV B MC HK 

1.5686 1.4785 1.3538 1.2001 1.0608 0.8229 0.5962 

In the first stage, five data driven models including four AI-based models (BRT, FFNN, 537 

GPR, SVR) and a classical model (MLR) were developed for the prediction of roadway traffic 538 

noise, individually. The performances of these models were evaluated using four performance 539 

criteria (NSE, RMSE, MAE, CC) and the results are presented in Table 3. It should be noted that, 540 

several models were developed with each of the AI-technique using different structure, training 541 

algorithms and kernel functions but only the best models are reported in the Tables. For the 542 

FFNN model, the best result was obtained using 5-8-1 structure (8- neurons in the hidden layer) 543 

trained with the Levenberg Marquardt algorithm and tan-sigmoid activation function. The best 544 

models for the SVR, BRT and GPR were obtained using RBF kernel, least square boost 545 
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algorithm and squared exponential kernel which is the most commonly used kernel for GPR 546 

models (Athavale et al. 2019), respectively. All the AI-based models led to reliable performance 547 

in the prediction of roadway traffic noise than the linear model (MLR). This is because, the AI 548 

based models have higher ability in modeling convoluted processes such as roadway traffic noise 549 

in addition to better generalization ability than the linear models (Nourani et al. 2019b).  It can 550 

be seen that, the BRT model outperformed all other models used in this study in the prediction of 551 

the road noise by providing higher NSE value and lowest error (RMSE, MAE) at verification 552 

stage.  553 

Comparing the performances of the AI-based models with the MLR model indicated that, 554 

the BRT model has an improved prediction accuracy over the MLR model by up to 20.9% in the 555 

verification step, GPR up to 16.9%, FFNN up to 12.6% and lastly the SVR model which has an 556 

improved performance over the linear model by 10.3%. The BRT demonstrated higher prediction 557 

capability than GPR, FFNN and SVR models at both calibration and verification stages with 558 

NSE, RMSE and MAE values of 0.8679, 0.0852, 0.0626 respectively, at the verification stage. 559 

The ability of the BRT to model with high accuracy comes by ensemble of different regression 560 

tress and its ability to fit complex nonlinear relationships and automatically addressing the 561 

interaction effects between the predictions. The results shown in Figure 9 show that the BRT fits 562 

the data better than all other models in verification stage. The data are more compacted along the 563 

diagonal line better than the other models which indicates better goodness of fit than other data 564 

driven models. Followed by the BRT is the GPR model, even though this is the first study to 565 

apply GPR model in vehicular traffic  noise prediction, a similar outcome where GPR 566 

outperformed ANN, SVR, and POD was also reported by Athavale et al., (2019) in a study to 567 

compare the prediction capability of different data driven models for temperature time series 568 

prediction. The GPR gets its high prediction ability from its flexibility to provide uncertainty 569 

representation (Cai et al. 2020). In terms of the model’s accuracy, the FFNN model was more 570 

accurate than all other data driven models with least percentage increase in the NSE values 571 

between the calibration and verification stages, followed by the GPR model. Contrary to the 572 

findings by the Fan et al., (2018) where SVR was found to be more stable than the tree-based 573 

ensemble algorithms in the prediction of daily evapotranspiration, the SVR was found to be least 574 

stable for prediction of roadway traffic noise.  575 
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 The efficiency of the different models (with regards to NSE values) in both calibration 576 

and validation stages were compared by radar charts as shown in Figure 10. In addition to the 577 

radar chart, Taylor diagram was also used to compare the models’ performances (see Figure 11). 578 

The Taylor diagram compares different statistical performance metrics (RMSE, correlation and 579 

the standard deviation) of the models. In the Taylor diagram, the azimuthal position gives the 580 

correlation between the actual and the computed values. The RMSE values are directly 581 

proportional to the distance between the observed and the predicted fields having same unit with 582 

the standard deviation. For any increase in correlation, the value of the RMSE is decreased. The 583 

standard deviation of the pattern increases with increasing radial distance measured from the 584 

origin (Taylor 2001). A model is said to be a perfect model by reference point when its 585 

correlation coefficient is 1 (Yaseen et al. 2018). If the standard deviation of the computed values 586 

is greater than the standard deviation of the measured values, then it may lead to overestimation 587 

and vice versa. However, considering the rRMSE values of the models at the verification stage 588 

(>20%), it shows that all models have fair performance with the exception of the BRT model 589 

which led to almost good performance. It is clear that, there is a need to improve the modelling 590 

performance of the process.  To this end, the following hybrid models were for prediction of the 591 

roadway traffic noise. 592 

 593 

Table 3: Performance of single models for prediction of roadway traffic noise level 594 

Model Calibration  Verification  
 NSE RMSE* MAE* rRMSE* NSE RMSE* MAE* rRMSE* 
FFNN 0.7857 0.0754 0.0534 13.6005 0.7850 0.1325 0.1035 23.9084 
SVR 0.8406 0.0650 0.0417 11.7299 0.7619 0.1394 0.0952 25.1564 
BRT 0.9110 0.0592 0.0464 10.6796 0.8679 0.0852 0.0626 15.3848 
GPR 0.8687 0.0590 0.0389 10.6452 0.8282 0.1184 0.0882 21.3712 
MLR 0.6707 0.0934 0.0724 16.8603 0.6586 0.1669 0.1214 30.1236 
*No unit for normalized data 595 

 596 

 597 

 598 

 599 
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 627 

Figure 9: Scatter plots of observed and computed roadway traffic noise levels in verification 628 
stage obtained by a) FFNN, b) SVR, c) BRT d) GPR, e) MLR, and f) overall models 629 
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 639 

Figure 10: Radar Plot showing NSE and rRMSE values for different models in calibration and 640 
verification stages 641 
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Figure 11: Taylor diagram representing different statistical parameters of the models in steps of 656 
(a) Calibration (b) Verification 657 

 658 

 659 

 660 

0

0.2

0.4

0.6

0.8

1
FFNN

SVR

BRTGPR

MLR

NSE-Calibration NSE-Verification

0
5

10
15
20
25
30
35

FFNN

SVR

BRTGPR

MLR

rRMSE-Calibration rRMSE-Verification



28 

 

4.2 Results of hybrid models 661 

For enhancing the prediction ability of the single models in this study, four different 662 

linear-nonlinear hybrid models were developed in the second part of the study where the results 663 

of the hybrid models are shown in Table 4. The results of the hybrid models demonstrated 664 

increased performance in the prediction of roadway traffic noise with regard to the single 665 

models. Similar results were obtained by Nourani et al., (2011) where SARIMAX (Seasonal 666 

Auto Regressive Integrated Moving Average with exogenous input)-ANN model outperformed 667 

both SARIMAX and ANN models in daily and monthly rainfall-runoff modelling at both 668 

calibration and verification stages. Zhang et al., (2019) also found that linear-nonlinear hybrid 669 

(autoregressive integrated moving average (ARIMA)-SVR) could model emergency patient flow 670 

with higher accuracy in terms of MAPE, MAE, and RMSE than both the ARIMA (linear) and 671 

the SVR (nonlinear) models. The MLR-GPR model demonstrated higher performance at the 672 

verification stage than all linear-nonlinear hybrid models with NSE value of 0.9312, followed by 673 

MLR-BRT (0.9100), then MLR-FFNN (0.8845) and finally MLR-SVR (0.8723). Performance 674 

evaluation of the linear-nonlinear hybrid models using the rRMSE showed that, all the hybrid 675 

models have excellent to good performance with MLR-GPR having the highest accuracy with 676 

rRMSE value of 7.4% (excellent). Table 5 clearly indicates that the hybrid modelling improved 677 

the performance of the nonlinear models by up to 10.30% for the AI models and up to 27.26% 678 

for linear models. The predictive performance of the hybrid models is presented graphically 679 

using the Taylor diagram (see Figure 12) and Radar plots (Figure 13). It can be seen clearly that, 680 

the MLR-GPR hybrid model was the best model outperforming all single and linear-nonlinear 681 

hybrid models. Comparing the absolute error of the hybrid models in the roadway traffic noise 682 

prediction using the box plot in Figure 14 revealed higher accuracy of the MLR-GPR hybrid 683 

model. The MLR-GPR model has the least forecasted mean absolute error (0.85 dBA) than all 684 

the hybrid models, making it reliable for the estimation of roadway traffic noise. As a result, the 685 

hybrid model could be used for enhancing the performance of the non-linear models. The results 686 

from the hybrid models could be integrated for development of a more accurate and reliable 687 

traffic noise maps that will in turn help the stakeholders in providing a sustainable mitigation 688 

measure for reducing the peoples’ incessant exposure to the traffic noise. The use of pavement 689 

materials with suitable textures during the construction, car sharing and the use of electric cars 690 

are some of the sustainable tools in providing a noise healthy environment. The aforementioned 691 
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statement could be justified by considering the comparative analysis of hybrid scatter plot 692 

presented in Figure 15 and that of single model above. 693 

 Table 4: Performance of hybrid models for prediction of traffic noise level 694 

Models Calibration  Verification 

 
NSE RMSE* MAE* rRMSE* NSE RMSE* MAE* rRMSE* 

MLR-FFNN 0.9657 0.0529 0.0450 9.9861 0.8845 0.0553 0.0422 9.5447 
MLR-SVR 0.9610 0.0564 0.0465 10.1826 0.8723 0.0582 0.0470 10.5005 
MLR-BRT 0.9440 0.0676 0.0398 8.8154 0.9100 0.0488 0.0529 12.1971 
MLR-GPR 0.9793 0.0411 0.0350 7.7069 0.9312 0.0427 0.0347 7.4249 
*No unit for normalized data 695 
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 710 

Figure 12: Taylor diagram representing different statistical parameters of the hybrid models in 711 
steps (a) Calibration (b) Verification 712 
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 723 

Figure 13: Radar Plot showing NSE, and rRMSE values for the hybrid models in calibration and 724 
verification stage 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 
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Figure 14: Boxplot for the absolute forecasted error in the prediction of the traffic noise by the 739 
hybrid models 740 
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 748 

Figure 15: Scatter plots for the hybrid models (a) MLR-FFNN (a) MLR-SVR (c) MLR-BTR (d) 749 
MLR-GPR 750 

 751 

5. Conclusions 752 

Roadway traffic noise of Nicosia, North Cyprus was simulated by recording data from 12 753 

different sites on four different road classes. The average traffic noise in the study area exceeds 754 

the safe noise level of 55 dBA recommended for European countries. The traffic noise was found 755 

to be higher along the expressway and least on local roads. The observed traffic noise levels 756 
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ranged between 80.5 and 56.3 dBA with maximum value been recorded during the evening 757 

hours. The obtained data were used to predict the roadway traffic noise using five data driven 758 

models; one linear (MLR) and four nonlinear models (BRT, GPR, FFNN and SVR). Selection of 759 

relevant input variables prior to the model development, which is an essential step for obtaining 760 

appropriate performance in machine learning was done using MI and the result revealed that B, 761 

C, HV, MV and V are the most important parameters for the prediction of roadway traffic noise 762 

in Nicosia. The results of the models showed that the nonlinear models could predict the traffic 763 

noise with higher skills than the linear model with an improved performance of 20.9%, 16.9%, 764 

10.33% and 12.64% compared to the linear model (MLR) for BRT, GPR, SVR and FFNN, 765 

respectively. Subsequently, four linear-nonlinear hybrid models were applied for improving the 766 

performance of the single models. Performance evaluation of the hybrid models using NSE, 767 

RMSE, MAE and rRMSE indicated that, the hybrid models demonstrated higher prediction 768 

capability than their equivalent single models with hierarchical order of MLR-GPR > MLR-BRT 769 

> MLR-FFNN > MLR-SVR. The MLR-GPR hybrid model improved the efficiency of the MLR 770 

and GPR models in the verification stage up to 27.26% and 10.30%, respectively. This shows 771 

that for the prediction of roadway traffic noise, stronger nonlinear models performed better when 772 

incorporated with linear models. The result of this study can be useful for the stakeholders in 773 

predicting noise level across the Nicosia which could further be used in developing noise maps 774 

with higher accuracy. The result of the study indicated that, inhabitants of the study area are 775 

exposed to an increased noise level of 14.5 dBA (on average) above the safe noise level (55 776 

dBA). Therefore, immediate facilities to minimize the noise from the traffic are required for the 777 

wellbeing of the people along the roads. The effectiveness of other linear models (e.g., 778 

Autoregressive integrated mean average ARIMA, generalized linear regression, stepwise 779 

regression) for developing the linear-nonlinear hybrid models for estimation of roadway noise 780 

can be studied as future studies. 781 
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