
An enhanced surrogate-assisted differential
evolution for constrained optimization problems
Rafael de Paula Garcia 

Federal University of Vicosa: Universidade Federal de Vicosa
Beatriz Souza Leite Pires de Lima 

Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro
Afonso Celso de Castro Lemonge  (  afonso.lemonge@ufjf.edu.br )

Federal University of Juiz de Fora: Universidade Federal de Juiz de Fora https://orcid.org/0000-0001-
9938-294X
Breno Pinheiro Jacob 

Federal University of Rio de Janeiro

Research Article

Keywords: Constrained optimization problems, Evolutionary algorithms, Surrogate models, Constraint-
handling techniques

Posted Date: June 4th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-522951/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-522951/v1
mailto:afonso.lemonge@ufjf.edu.br
https://orcid.org/0000-0001-9938-294X
https://doi.org/10.21203/rs.3.rs-522951/v1
https://creativecommons.org/licenses/by/4.0/


− 1 − 

An enhanced surrogate-assisted differential evolution  

for constrained optimization problems 

Rafael de Paula Garciaa,1, rafael.pgarcia@ufv.br 

Beatriz Souza Leite Pires de Limaa, bia@coc.ufrj.br 

Afonso Celso de Castro Lemongeb,*, afonso.lemonge@ufjf.edu.br 

Breno Pinheiro Jacoba, breno@lamcso.coppe.ufrj.br 
 

aPEC/COPPE/UFRJ – Post-Graduate Institute of the Federal University of Rio de Janeiro, Civil Engineering Dept.  
Avenida Pedro Calmon, S/N, Cidade Universitária, Ilha do Fundão 

21941-596 Rio de Janeiro, RJ, Brazil. 
http://www.lamcso.coppe.ufrj.br 

bUFJF – Federal University of Juiz de Fora, Applied and Computational Mechanics Dept. 
Rua José Lourenço Kelmer, S/N 

36036-330 Juiz de Fora, MG, Brazil 
http://www.ufjf.br/mac/ 

 
*Corresponding Author.  

 
1Present address: UFV – Federal University of Viçosa, Department of Architecture and Urban Planning.  

Avenida Peter Henry Rolfs, s/n, Campus Universitário 

36570-900, Viçosa, MG, Brazil 
 

Abstract 

The application of Evolutionary Algorithms (EAs) to complex engineering 

optimization problems may present difficulties as they require many evaluations of 

the objective functions by computationally expensive simulation procedures. To deal 

with this issue, surrogate models have been employed to replace those expensive 

simulations. In this work, a surrogate-assisted evolutionary optimization procedure is 

proposed. The procedure combines the Differential Evolution method with a 𝑘-

nearest neighbors (𝑘–NN) similarity-based surrogate model. In this approach, the 

database that stores the solutions evaluated by the exact model, which are used to 

approximate new solutions, is managed according to a merit scheme. Constraints are 

handled by a rank-based technique that builds multiple separate queues based on the 

values of the objective function and the violation of each constraint. Also, to avoid 

premature convergence of the method, a strategy that triggers a random 

reinitialization of the population is considered. The performance of the proposed 

method is assessed by numerical experiments using 24 constrained benchmark 

functions and 5 mechanical engineering problems. The results show that the method 

achieves optimal solutions with a remarkably reduction in the number of function 

evaluations compared to the literature.  

 

Keywords: Constrained optimization problems; Evolutionary algorithms; Surrogate models; 

Constraint-handling techniques 
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1 Introduction  

EAs have become appealing to solve complex real-world engineering optimization 

problems, for which classical mathematical methods may no longer be effective. This includes, 

for instance, the design of offshore oil & gas production systems such as floating platforms, 

risers, mooring systems and submarine pipelines [1-3]: those problems are characterized by 

many design variables, defined on high-dimensional spaces, with objectives and constraints that 

are generally non-linear functions. However, the use of EAs for such problems can become 

impractical due to excessive computational costs: many evaluations of candidate solutions may 

be needed until a satisfactory solution is found, and each evaluation requires computationally 

expensive numerical simulations.  

Those issues can be handled by building cheaper approximation models (usually referred 

as surrogate or metamodels) [4] to partially or totally replace the numerical simulation 

procedures, emulating or mimicking the behavior of the actual model as closely as possible by 

capturing the relationship between a given set of inputs and outputs. The goal is to significantly 

reduce computational costs, while presenting accurate results. In this sense, several surrogate 

models have been proposed. They may comprise polynomial approximation models [5,6]; radial 

basis functions [7-10]; response surface models [11]; artificial neural networks [12]; Gaussian 

process [13,14]; Kriging [15]; Support Vector Machines [16], and similarity-based models such 

as the nearest-neighbor algorithms [17-19]. Particularly, the 𝒌-NN model presents many 

advantages in terms of good performance and ease of implementation, as reported in [19-21].  

Many applications of surrogate models with EAs have been presented in the literature. In 

[22] a polynomial model was used to approximate the objective function. In [23] a kriging 

metamodel, trained using few samples evaluated by the actual objective function, has been 

successfully used to reduce the number of function evaluations. The goal of reducing 

computational costs was also sought in [24] where the fitness function has been approximated by 

an online multi-layer neural network, and in [25] that presented a surrogate-assisted PSO 

algorithm. Surrogate models have also been employed to initialize the population of candidate 

solutions in evolutionary operators such as mutation and crossover [26,27], and to calculate 

approximations for the sum of violation terms [21]. The IEEE Congress on Evolutionary 

Computation (CEC) competitions have presented many articles that solve computationally 

expensive functions by employing metamodels with EAs. Regarding particularly the application 

to offshore oil & gas production systems mentioned above, surrogate models based on neural 

networks were used in [28,29] to avoid expensive nonlinear dynamic Finite Element analyses.  

Among evolutionary algorithms, the Differential Evolution (DE) algorithm [30] has been 

widely used due to its outstanding performance. The association of DE with approximation 

models has been studied in some works, including neural networks [31] and neural networks of 

radial basis functions [32]. In [33] a simple kriging metamodel was proposed to comprise a 

surrogate model-based differential evolution (ESMDE). The proposed strategy was based on the 

population members of the current generation, to assist the DE to generate competitive offspring 

by using an appropriate parameter set along the different stages of the evolution.  
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A surrogate model for DE consisting of multiple local surrogate models was presented in 

[34], built from the feedback of the evolutionary process in diverse overlapped local regions of 

the search space. In [35] a multi-fidelity surrogate-model-based DE optimization strategy was 

developed, coupled to a data mining technique to handle the discrepancy between the low and 

high fidelity simulation models. A surrogate-model to assist the DE algorithm in generating 

competitive solutions along the evolutionary process was proposed in [36], using an adaptation 

scheme to adapt parameters of a Kriging model. Recently, a two-layer adaptive surrogate-

assisted DE has been proposed in [37], where three different search strategies are adapted during 

the evolutionary process according to the feedback information, to measure the status of the 

algorithm approaching the optimal value. Local similarity-based surrogate models based on an r-

nearest neighbors have been employed in [17] and [18] to solve complex structural optimization 

problems; the results indicated that the performance of DE has been significantly improved. In 

this context, in [38] we had presented preliminary studies leading to the optimization procedure 

called SADE-kNN (Surrogate-Assisted Differential Evolution with the 𝑘-NN surrogate model).  

Now, this work presents and evaluates an improved surrogate-assisted evolutionary 

method, which will be referred to as SADE-kNN-MCR, intended to comprise a more efficient 

optimization tool to solve complex real-world engineering problems. This method introduces 

enhanced techniques, beginning with the Multiple Constraint Ranking (MCR) constraint-

handling technique (CHT) [39]. The MCR comprises a rank-based approach that builds multiple 

separate queues, corresponding to the values of the objective function and the violation of each 

constraint. It has been devised to deal with complex engineering problems characterized by a 

large number of constraints that may present different units and/or different orders of magnitude, 

where the possible range of minimum and maximum violation values may not be known a-priori 

(thus standard normalization procedures cannot be applied).  

The proposed SADE-kNN-MCR method also incorporates a merit-based scheme to 

manage the database used by the 𝒌-NN surrogate model to store the solutions evaluated by the 

exact model, privileging solutions able to better approximate new candidate solutions. Moreover, 

results of preliminary studies indicated that the previous SADE- 𝒌NN method presented by the 

authors in [38] is susceptible to premature convergence and/or stagnation around local optima. 

This is a known issue related to DE algorithms, as acknowledged in the literature [40,41]. To 

circumvent this issue, a strategy that triggers a random reinitialization of the population 

whenever it stagnates on local optima has been incorporated in the proposed method, comprising 

the variant called SADE-kNN-MCR+.  

The performance of the proposed method is compared with other surrogate-assisted 

procedures recently presented in the literature, by applying them to several benchmark functions 

(including the G-suite from the IEEE competition on real parameter constrained optimization 

[42], and mechanical engineering problems), and assessing their relative performance by direct 

comparisons and nonparametric statistical tests. 
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This paper is organized as follows: Initially, Section 2 summarizes the Differential 

Evolution algorithm, the 𝑘-NN similarity-based metamodel, and the CHTs employed in 

surrogate-assisted evolutionary methods recently presented in the literature. Section 3 then 

describes the proposed surrogate-assisted differential evolution methods. The full sets of 

numerical experiments are described in Section 4. The results are presented in Sections 5 and 6. 

The former compares the variants of the proposed method (SADE-kNN-MCR and SADE-kNN-

MCR+) with the SADE-kNN previously presented by the authors in [38]. Then, Section 6 

presents comparisons with other methods recently presented in the literature that are listed in 

Section 2.4. Final remarks and conclusions are presented in Section 7. 

2 Related Works  

2.1 Differential Evolution  

The DE algorithm, proposed by Storn and Price in the nineties [30], has been shown to be 

a very effective algorithm to solve complex real-world optimization problems such as system 

design [43] and robot manipulator design [44]. One of the main characteristics of the DE is its 

simplicity and ease of implementation. A detailed review of its basic concepts is provided by 

[45,46], along with a survey describing its major variants, covering several aspects related to its 

application to multiobjective, constrained, large scale and uncertain engineering optimization 

problems. 

Four DE variants or “strategies” were proposed in [47,48], characterized by the procedures 

adopted for the selection of the individuals, and the type of recombination.  In this work the first 

one (DE/rand/1/bin) will be adopted, as follows:  

 𝑢𝑖,𝑗,𝐺+1 = 𝑥𝑟1,𝑗,𝐺+𝐹(𝑥𝑟2,𝑗,𝐺− 𝑥𝑟3,𝑗,𝐺) (2.1) 

where 𝐹 is the scale factor of the algorithm, and 𝑟1, 𝑟2 and 𝑟3 are randomly selected individuals. 

A crossover operator CR is also defined, to combine the information of the solutions in the 

current population and the solutions generated by Equation 2.1. 

2.2 The k-NN similarity-based metamodel 

As mentioned in the Introduction, due to this simplicity and good performance, the 𝑘-NN 

approximation method has been selected in this work to comprise a surrogate model coupled to 

the DE algorithm. In general, the 𝑘-NN method evaluates a solution by calculating the average 

of the objective function of the 𝑘-nearest solutions weighted by its distances. This technique can 

be classified in two categories: 

• 𝑘-nearest neighbors (𝑘-NN) proposed in [49], where the 𝑘 nearest candidate solutions are 

able to be selected; and 

• 𝑟-nearest neighbors (𝑟-NN) proposed in [50], for a given neighborhood controlled by 𝑟 

defines the candidate solutions able for selection. 



− 5 − 

In this paper, the k-NN similarity-based metamodel is adopted. The solutions (𝑥, 𝑓(𝑥)) 
evaluated by the exact function are stored in a database as an ordered set 𝐷. Any solution 𝑥ℎ 

generated during the evolution is evaluated by the following weighed average: 

 𝑓(𝑥ℎ) = ∑ 𝑑(𝑥ℎ ,𝑥𝑗)𝑢𝑓(𝑥𝑗)𝑘𝑗=1∑ 𝑑(𝑥ℎ ,𝑥𝑗)𝑢𝑘𝑗=1  
(2.2) 

where 𝑑(𝑥ℎ , 𝑥𝑗) is the Euclidean distance between 𝑥ℎ and 𝑥𝑗, 𝑘 is the number of neighbor 

solutions, and 𝑢 = 2. 

The number of neighbors k and the size of the database D significantly impact the 

computational costs of the algorithm, since they determine the number of operations to perform 

the similarity comparisons and to calculate the approximations. Section 3.2 will present some 

considerations regarding the database management.  

2.3 Constraint-Handling Techniques  

A general constrained optimization problem may be formally defined in a q-dimensional 

search space as follows: 

 minimize 

subject to 

 

𝑓(𝒙) 𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1, … ,𝑚 ℎ𝑗(𝒙) = 0, 𝑗 = 1, … , 𝑝 𝑙𝑘 ≤ 𝑥𝑘 ≤ 𝑢𝑘, 𝑘 = 1,… , 𝑞 

 

(2.3) 

where 𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑞) is a vector of design variables whose components 𝑥𝑖 present lower 

and upper bounds [𝑙𝑘, 𝑢𝑘]. The goal is to minimize the objective function 𝑓(𝒙), considering 

inequality and equality constraints (respectively 𝑔𝑖(𝒙) ≤ 0 and ℎ𝑗(𝒙) = 0) that define the 

feasible region.  

Many classical CHTs transform this constrained problem into an unconstrained one. For 

this purpose, whenever any given constraint is violated a penalty functions 𝑝(𝒙) is added to the 

objective function 𝑓(𝒙); thus, the objective function and constraints are combined into a single 

value. Another approach is to maintain those values apart along the evolution. Deb [51] proposed 

a binary tournament selection method that ranks the solutions according to the values of the 

objective function and constraint violation. That method comprises a pairwise comparison where 

a feasible solution is always preferred over an infeasible one; if both solutions are feasible, the 

one having the best objective function value is preferred; and if both solutions are infeasible, the 

one having the lowest constraint violation value is preferred. Later, other methods have followed 

this approach, such as the Stochastic Ranking (SR) method [52], the GCR (Global Competitive 

Ranking) method [53], and the Ho and Shimizu ranking method (HSR) [54]. 
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2.4 Surrogate-assisted methods for constrained problems 

Surrogate-assisted evolutionary methods to solve constrained problems have been 

presented in the literature, including the ASRES – Approximated Stochastic Ranking Evolution 

Strategy, which employs two levels of approximation along the evolution, to estimate the values 

of the objective and penalty functions [55].  

The SADE-kNN method presented in [38] employed the binary tournament selection 

technique proposed by Deb [51]. Other methods recently presented in the literature also 

employed the DE algorithm associated with some of the CHTs described above, including for 

instance SA-DECV [21] and SA-DECV_SR [56]. These works presented methods that couple 

DE with the k-NN surrogate model to approximate both the values of the objective function and 

the sum of constraint violations. The former also employs Deb’s feasibility rules of [51]; the 

latter work [56], after comparing different CHTs associated to the same surrogate model, 

concludes that the best performance is provided by the Stochastic Ranking (SR) method [52]. 

Recently, [57] presented the e-DE method following two different approaches for the 

crossover of solutions (with the goal of balancing population diversity and fast convergence). 

This method employs seven comparison criteria for feasible and unfeasible solutions, comprising 

an extension of Deb’s feasibility rules. 

3 A new surrogate-assisted differential evolution method with multiple 

constraint ranking  

This section describes the main characteristic of the new surrogate-assisted evolutionary 

method proposed in this work: SADE-kNN-MCR. Those characteristics are related to the 

following aspects:  

➢ The Multiple Constraint Ranking (MCR) technique, comprising a specialized CHT to deal 

with the large number of complex constraints that may be found in real-world engineering 

problems;  

➢ A merit-based strategy to manage the database that stores the exact solutions employed by 

the surrogate model;  

➢ A strategy that triggers a random reinitialization or “rebirth” of the population whenever it 

stagnates on local optima. 

3.1 The Multiple Constraint-Handling technique (MCR) 

Recently, focusing on the solution of complex real-world engineering optimization 

problems, we had presented the Multiple Constraint Ranking technique (MCR) in association 

with a Genetic Algorithm [39]. Now, in this paper the MCR is associated with the DE algorithm, 

comprising the SADE-kNN-MCR method and thus replacing the pair-wise tournament method 

of [51] that had been employed in the SADE-𝒌NN method described in Section 2.4 . In MCR, 

the fitness function F for each solution 𝑥𝑖 is evaluated as follows: 
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 𝐹(𝑥𝑖) = {  
  𝑅𝑁𝑣𝑖 +∑𝑅𝜙𝑖𝑗𝑚

𝑗=1 ,    if only infeasible solutions
𝑅𝑓𝑖 + 𝑅𝑁𝑣𝑖 +∑𝑅𝜙𝑖𝑗𝑚

𝑗=1 ,                           otherwise 

 

 

(3.1) 

where rank Rf sorts the value of the objective function f, and RNv sorts the number of constraints 

violated. MCR extends the rank-based approach described in Section 2.3: while previous 

ranking methods such as the HSR [54] employ only one rank R  associated to all violation 

values (built as a single summation of the values for functions 𝑣𝑗(𝑥) of all constraints), here 

MCR splits R  into several ranks 𝑅𝜙𝑗 , one for each constraint 𝑗 = 1,… ,𝑚, building multiple 

queues considering the objective function and the violation of each constraint. Algorithm 1 

presents the pseudocode of the MCR.  

The HSR and other previous rank-based techniques may face difficulties in complex 

problems characterized by several constraints with different units and/or different orders of 

magnitude; in those cases, the single rank of constraint violation values could be dominated by a 

given constraint with higher violation values. Of course, this would not be an issue for simpler 

cases where one knows a-priori the ranges of minimum and maximum violation values, and 

usual normalization procedures could be applied. However, for many real-world engineering 

applications such information is not available and cannot be estimated in advance [58,59,1,2,60]. 

With MCR, all types of constraints are given the same priority and importance in the evaluation 

of each solution, irrespective of the range of their violation values.  

 

Algorithm 1: Pseudocode of the MCR CHT 
Initialize population of 𝑥𝑖 individuals (𝑝𝑜𝑝𝑠𝑖𝑧𝑒); 
for 𝑖 = 1, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do 
                Evaluate objective function and constraints of each individual 𝑥𝑖; 
end 
for each solution 𝑥𝑖 do 

              𝑅𝑁𝑣𝑖 = ranking position of 𝑥𝑖 according to its number of violations; 

              for each constraint 𝑗 do 

                          𝑅𝜙𝑖𝑗  += position of 𝑥𝑖 in rank according to violation in constraint 𝑗; 
             end 
              if There are feasible individuals in the population then 
                          𝑅𝑓𝑖 = ranking position of 𝑥𝑖 according to its objective function; 

                          𝐹(𝑥𝑖) = 𝑅𝑓𝑖 + 𝑅𝑁𝑣𝑖 + 𝑅𝜙𝑖𝑗 ; 

             else 

                         𝐹(𝑥𝑖) =  𝑅𝑁𝑣𝑖 + 𝑅𝜙𝑖𝑗 ; 

             end 

end 

The MCR presents other advantages: it does not require any user-defined parameter; also, 

when there are no feasible solutions in the population, F depends only on the ranks associated to 

the constraints (
Nv

R  and )j
R , thus the computational costs associated to evaluations of the 

objective function f is avoided.  
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3.2 Surrogate model: Database management  

A difficult and nontrivial task associated to the k-NN metamodel described in section 2.2 is 

the definition of an adequate database size to store the exact solutions. Extensive databases may 

slow down the evolution; many similar individuals can be generated, compromising the 

population diversity. On the other hand, small databases may not efficiently approximate the 

different solutions scattered through the search space. This requires an efficient database 

management considering the strategies for insertion, maintenance, and replacement of the 

solutions to keep the database size constant.  

Usually, an insertion step choses the best solution of the population for evaluation by the 

exact model [61-63]. In this work, a merit-based database management strategy is employed to 

define how the solutions are replaced according to their contribution to the approximation, 

following some guidelines that have been suggested in [64]. Initially, a predetermined number of 

solutions are generated and evaluated by the exact function to compose the database D. Those 

with the best objective function values also compose the initial population (here it is assumed 

that the number of solutions in the population is less or equal than the number of solutions in the 

database). Evolution occurs considering the current population evaluated by the surrogate model, 

and the database solutions used in the approximation process are scored as indicated in 

Algorithm 2 (that shows the general structure of the metamodel including this merit-based 

strategy). After each generation, a percentage of solutions of the current population is randomly 

chosen; they are evaluated by the exact function and introduced into the database, replacing the 

lower scored solutions.  

 

Algorithm 2: Pseudocode of the 𝑘-NN metamodel with the merit-based strategy 
for 𝑖 = 1, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do 

      Evaluate the similarity considering the solutions of database 𝐷; 

       Select the most similar 𝑘 solutions; 

       Define the updated fitness function according to the arithmetic average of the 𝑘 distance-weighted 

neighboring solutions                                                             

       Increase with +1 the score of the selected solutions of 𝐷; 

       Decrease with -1 the score of the not selected solutions of 𝐷; 

end 

Evaluate a percentage of the population by the exact function; 

Replace the lower scored solutions in D by the solutions evaluated by the exact function; 

3.3 Avoiding stagnation around local optima 

A very common problem associated to optimization algorithms in general is the stagnation 

of solutions around a local minimum in the search space. For a wide class of problems, the 

distribution of the solutions in the search space may be a decisive factor for this stagnation 

behavior, when many evaluations of the objective function may be uselessly performed.  

An example of this behavior may be observed in Table 1 that presents results of the 

application of the SADE-kNN-MCR  to the G1 function (from the G-Suite benchmark functions 

proposed for the IEEE-CEC 2006 competition on real parameter constrained optimization [42]). 
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The success rate (SuccRate) of the algorithm is 0.84; that is, it finds the optimal solution -

15.0000 in 21 out of the 25 runs. In those 21 successful runs, the algorithm performs an average 

of 3,783 evaluations of the objective function (succ_nfe). This value corresponds to 

approximately 0.76% of the maximum number of evaluations (500,000) that defines the stopping 

criterion of the algorithm. In the other 4 runs, the algorithm remains stagnated in the local 

optimum -12.0000 until it reaches the termination criterion of 500,000 evaluations. This way, the 

average number of evaluations considering all 25 runs (nfe) increases to 83,177.22. This does not 

accurately represent the performance of the algorithm: although it was able to reach the optimum 

with a small number of evaluations in most of the runs (21), the stagnation in the other 4 runs 

drastically increases the value of this metric (nfe).  

Table 1. Results for the G1 function  

Func Best Average Worst succ_nfe succRate Nfe 

G1 -15.0000 -14.5999 -12.0000 3,783 0.84 83,177.22 

 

There are several strategies to avoid this problem; one of them consists in restarting the 

population along the evolution, generating new candidate solutions whenever the population 

converges to a local optimum. The strategy employed in this work maintains in the database the 

population from the previous generation, and triggers the reinitialization (or “rebirth”) of the 
population after a given number of generations in which stagnation of the best solution is 

observed. In the context of the SADE-kNN-MCR algorithm, this strategy may be particularly 

suited to avoid the frequent premature convergence behavior due to the following reasons: The 

new population may visit new regions of the search space, counteracting the tendency of being 

stuck in regions where it previously stagnated; and there is no additional computational cost, 

since the objective function of the new individuals from the restarted population are 

approximated by the k-NN metamodel using the values from the solutions stored in the k-NN 

database, and thus there is no need for costly extra evaluations of the objective function.  

To summarize, the method proposed in this work (that combines the DE algorithm with a 

k-NN surrogate model and the MCR constraint-handling technique) is referred to as SADE-

kNN-MCR. Its variation that includes the population reinitialization described in this section is 

called SADE-kNN-MCR+.  
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4 Numerical experiments 

The performance of the proposed methods is compared with the other methods recently 

presented in the literature that have been mentioned in Section 2.4: ASRES, SADE-kNN, SA-

DECV, SA-DECV_SR and e-DE. For this purpose, two sets of benchmark numerical 

experiments are executed:  the twenty-four G-Suite benchmark functions proposed for the IEEE-

CEC 2006 competition on real parameter constrained optimization [42]; and a suite of five 

benchmark mechanical engineering problems [65]: Pressure vessel [66], Welded beam [67], 

Cantilever beam [68], Speed reducer and Spring design [65]. The main parameters related to 

these latter problems are presented in Table 2, where 𝑛 is the number of decision variables, LI is 

the number of linear inequality constraints, NI is the number of nonlinear inequality constraints. 

LE and NE are the number of linear and nonlinear equality constraints, respectively. The 

complete formulation and mathematical definition of these benchmark problems are already well 

documented in those references; thus, they will not be reproduced here.  

Table 2. Parameters of the engineering problems  

Problem n 
Type of 

function 
LI NI LE NE 

Pressure Vessel [66] 4 Quadratic 3 1 0 0 

Welded Beam [67] 4 Quadratic 6 1 0 0 

Tension/Compression Spring [65] 3 Quadratic 1 3 0 0 

Cantilever Beam [68] 10 Quadratic 6 5 0 0 

Speed Reducer [65] 7 Cubic 1 10 0 0 

To assess specifically the advantages of the MCR constraint-handling technique described 

in Section 3.1, special attention will be focused on the problems that are representative of many 

actual engineering problems, i.e. presenting constraints with different units and/or different 

orders of magnitude: functions G10 and G21 from the CEC2006 suite, the Pressure Vessel and 

the Welded Beam engineering problems. Lower and upper bounds for the constraint functions of 

most of those problems can be analytically calculated, as shown in Table 3; the differences in 

scale and magnitude are evident. The orders of magnitude have been numerically estimated for 

the Welded Beam problem that presents severely nonlinear constraint functions. 

Table 3. Lower and upper bounds for the constraints with different magnitudes 

G10 G21 

-0.95 ≤ 𝑔1 ≤ 4 
-3.45 ≤ 𝑔2 ≤ 3.975 
-10.9 ≤ 𝑔3 ≤ 8.9 

-10,065,000 ≤ 𝑔4 ≤ 1,748,999.187 
-11,227,500 ≤ 𝑔5 ≤ 11,227,500 
-11,240,000 ≤ 𝑔6 ≤ 11,215,000 

 

-1,000 ≤ 𝑔1 ≤ 640.227 
-48,250 ≤ ℎ1 ≤ 52,500 
-47,625 ≤ ℎ2 ≤ 39,448 

-0.303071 ≤ ℎ3 ≤ 0.384611 
-0.4085 ≤ ℎ4 ≤ 0.497 
-1.6449 ≤ ℎ5 ≤ 1.7146 

 

Pressure Vessel Welded Beam (Orders of magnitude) 

-3.85375 ≤ 𝑔1 ≤ 4.9807 
-1.90175 ≤ 𝑔2 ≤ 4.9046 

-1,288,673.3 ≤ 𝑔3 ≤ 57,317,600 
40 ≤ 𝑔4 ≤ 230 

 

−104 ≤ 𝑔1 ≤ 104 −104 ≤ 𝑔2 ≤ 106 −10 ≤ 𝑔3 ≤ 10 −10 ≤ 𝑔4 ≤ 102 −10 ≤ 𝑔5 ≤ 10−1 −10−1 ≤ 𝑔6 ≤ 104 −107 ≤ 𝑔7 ≤ 103 
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The remainder of this section will present the main parameters considered for the 

execution of the methods for those benchmark problems and will describe the approaches for the 

assessment of their performance.  

4.1 Parameters of the algorithms 

Following the suggestion of [42], the algorithms are tested from the results of twenty-five 

independent executions performed for each benchmark problem. Also following the 

specifications of [42], the tolerances for satisfying the equality constraints, and for determining if 

the optimal solution x* has been found, are respectively 0.0001 and f(x*) – f(x) < 0.0001. The 

maximum number of function evaluations is set to 500,000 for the G-Suite problems. Regarding 

the structural engineering problems, 10,000 function evaluations are considered to obtain the 

results presented in section 5.2 to compare the different SADE-kNN algorithms. 

Numerical experiments have been conducted to set the value for the parameter that control 

the reinitialization of the population, i.e. the number of iterations in which stagnation is observed 

(as described in section 3.2). The results indicated that an appropriate value would be 1,000 

iterations. Similar experiments have also indicated that an appropriate value for the percentage of 

solutions selected in the current population at each generation, for the evaluation of their 

objective function and introduction in the database (as described in section 3.2), is twenty-two 

percent. Table 4 presents the values for the remaining parameters employed for the SADE-kNN 

algorithm, and also the parameters that have been used by the other algorithms being compared. 

Table 4. Parameters of the algorithms  

 
SADE-kNN 

SA-DECV 
[21]  

SA-DECV-SR 
[56] 

ASRES 

[55] 

e-DE 

[57] 

Differential 

Evolution  

Pop. size (N) 30 90 90 200 50 

Runs 25 30 25 25 25 

CR 0.9 1 1 - 0.9 

F 0.8 0.9 0.9 - 0.8 

k-NN 

k (number of 

neighbors)   
2 

n (problem 

dimension) 
n (problem 

dimension) 

N N 
regression 

model 
- 

D (database 

size) 
1.5*N 2*N 2*N N - 

4.2 Performance Assessment  

The performance of the methods is assessed by direct comparisons and by nonparametric 

statistical tests, as described next.  

4.2.1 Direct Comparisons 

Direct comparisons are performed by observing the most relevant performance measures 

collected in tables: best, average, worst results for 25 runs and average of the number of function 

evaluations to find a feasible solution, considering only the successful runs (succ_nfe); ratio 

between the number runs in which the algorithms find the optimum solution and the total number 
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of runs (succRate); average of the number of function evaluations (nfe) (when succRate = 1, then 

succ_nfe = nfe); ratio of runs where the algorithm finds a feasible solution (feasRate). 

4.2.2 Sign Test  

The Sign Test (ST) is a statistical procedure that indicates if the results of two methods are 

statistically different. It employs pairwise comparisons that count the number of cases on which 

a method wins. The method that provides a better result for a given problem receives a positive 

sign, while the other receives a negative sign. The significance of the difference between these 

pairwise comparisons (or significance level) is tested by calculating probability values (p-values) 

[69] from the totalized signs. If the p-value is higher than a given threshold value α, then the null 

hypothesis (𝐻0) that both methods are equivalent is accepted; otherwise 𝐻0 is rejected, and the 

performance of the methods is different. The most commonly used threshold values are 0.01 and 

0.05 [70-73], representing a significance level of respectively 1% and 5%, i.e., the chance of 

rejecting the null hypothesis when in fact it is correct. 

4.2.3 Performance Profiles  

The comparisons also use another nonparametric statistical test, specifically the 

Performance Profiles (PPs) that were introduced in [74] to evaluate and compare the 

performance of a set of S solvers for a given set of optimization problems P. The PPs are a useful 

tool for the easy visualization and interpretation of results from computational experiments. 

Briefly speaking, they comprise graphs with several curves (one for each solver s  S 

considering all problems p  P), built considering a given metric mp,s . This metric can be the 

number of evaluations of the objective function; or a statistical parameter such as mean or best 

value computed from objective function values obtained in several independent runs of the 

method. The performance ratio rp,s, is then calculated dividing this metric mp,s by the 

corresponding value of the metric obtained by the solver that performed best on problem p. An 

overall assessment of the performance of solver s may then be given by:  

  ,size :
( )

p s

s

p

p P r

n


 

 
=

 

(4.1) 

where np is the total number of problems in set P; and ( )
s

   ∈ →[0, 1] may be seen as the 

cumulative distribution function for the performance ratio rp,s; that is, the probability of solver s 

to have its ratio rp,s within a factor τ of the best possible ratio.  

For =1, (1)
s

  indicates the accuracy of solver s, being a normalized measure of the 

number of times it was able to provide the best value for the considered metric, or the probability 

that it will win over all other solvers in set S; (1)
s

  = 1 indicates that this solver wins over all 

other solvers in all problems P.  

For larger values of , ( )
s

   indicates the robustness of the solver, i.e., the number of 

times it is able to provide feasible solutions; considering an upper limit rM as an arbitrarily large 

value assigned to rp,s when solver s is not able to find a solution for problem p, then ( )
s M

r  = 1 

and the probability that method s solves a problem is given by 
* lim ( )

M

s s
r

  
→

= .  
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Thus, the PPs are curves [ ( )
s

  ,], nondecreasing, piecewise constant functions, 

continuous from the right at each discontinuity point. A detailed explanation including an 

illustrative example of the assembly of a PP may be found in [39]. 

5 Comparing the SADE-kNN methods  

Initially, this section compares the proposed methods (SADE-kNN-MCR and SADE-

kNN-MCR+) with the SADE-kNN method previously presented by the authors in [38]. The 

performance is compared by their application to the sets of numerical experiments listed at the 

beginning of Section 4: the G-Suite benchmark functions proposed for the IEEE-CEC 2006 

competition and the suite of five benchmark mechanical engineering problems. 

5.1 G-Suite functions 

5.1.1 Direct Comparisons 

Table 5 presents the direct comparisons between the methods, in terms of the performance 

measures defined in Section 4.2.1, statistically evaluated from the results of the 25 independent 

runs. Those measures are: best, average and worst solution; succ_nfe: average number of 

function evaluations considering only the successful runs; succRate: ratio between successful 

and total runs; nfe: average number of evaluations considering all 25 runs; feasRate: ratio of 

feasible runs and total runs. Results for functions G20 and G22, for which no algorithm has 

currently found a feasible solution, are not presented. Values in bold indicate the results in which 

SADE-kNN-MCR+ finds better or equal solutions than the other algorithms. For problems in 

which all three methods reached at least one successful run, the cells corresponding to succ_nfe 

shows in parenthesis the percentage values corresponding to the reduction/increase of the 

succ_nfe values provided by SADE-kNN-MCR+ in relation to the smaller value observed for 

the other methods. 

Table 5. Results obtained by the SADE-kNN algorithms for the G-Suite problems 

Function  

[best known] 

 
SADE-kNN  

SADE-kNN  

MCR 

SADE-kNN 

MCR+  

G1 

[-15.0000] 

best -15 -15 -15 

average -14.5599 -14.5999 -15 

worst -12 -12 -15 

succ_nfe 3,722.4 3,783 2,528.5 (-32%) 

succRate  0.84 0.84 1 

nfe 83,127.32 83,177.22 2,528.5 

feasRate  1 1 1 

G2 

[-0.8036] 

best -0.7429 -0.7727 -0.8036 

average -0.6367 -0.7458 -0.7729 

worst -0.5277 -0.6532 -0.7186 

succ_nfe - - 28,632.7 

succRate 0 0 0.16 

nfe 500,000 500,000 424,581.2 

feasRate  1 1 1 
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Function  

[best known] 

 
SADE-kNN  

SADE-kNN  

MCR 

SADE-kNN 

MCR+  

G3 

[-1.0005] 

best -0.4515 -0.1687 -1.0005 

average -0.0399 -0.0288 -0.4379 

worst 0.0000 0.0000 -0.0487 

succ_nfe - - 169,089.4 

succRate 0 0 0.24 

nfe 500,000 500,000 380,873.3 

feasRate  1 0.68 1 

G4 

[-30,665.5386] 

best -30,665.5386 -30,665.5386 -30,665.5386 

average -30,665.5386 -30,665.5386 -30,665.5386 

worst -30,665.5386 -30,665.5386 -30,665.5386 

succ_nfe 2,597.60 2,457.12 1,208.2 (-51%) 

succRate  1 1 1 

nfe 2,597.60 2,457.12 1,208.2 

feasRate  1 1 1 

G5 

[5,126.49] 

best 5,126.49 5,126.49 5,126.49 

average 5,126.49 5,165.92 5,126.49 

worst 5,126.4977 6,112.22 5,126.49 

succ_nfe 17,809.7 26,003.9 14,612.6 (-18%) 

succRate  0.88 0.96 1 

nfe 74,855.24 44,963.92 14,612.6 

feasRate  0.96 1 1 

G6 

[-6,961.8138] 

best -6,961.8138 -6,961.8138 -6,961.8138 

average -6,961.8138 -6,961.8138 -6,961.8138 

worst -6,961.8138 -6,961.8138 -6,961.8138 

succ_nfe 1,234.88 1,134.76 655.5 (-42%) 

succRate  1 1 1 

nfe 1,234.88 1,134.76 655.5 

feasRate  1 1 1 

G7 

[24.3062] 

best 24.3073 24.3082 24.3062 

average 28.2727 48.2589 24.3062 

worst 121.7574 512.2665 24.3062 

succ_nfe - - 64,067.2 

succRate 0 0 1 

nfe 500,000 500,000 64,067.2 

feasRate  1 1 1 

G8 

[-0.09582] 

best -0.09582 -0.09582 -0.09582 

average -0.09582 -0.09582 -0.09582 

worst -0.09582 -0.09582 -0.09582 

succ_nfe 291.76 326.48 182.8 (-37%) 

succRate  1 1 1 

nfe 291.76 326.48 182.8 

feasRate  1 1 1 

G9 

[680.630] 

best 680.638 680.6353 680.630 

average 681.287 680.6783 680.630 

worst 682.476 680.7954 680.630 

succ_nfe - - 38226.8 

succRate  0 0 1 

nfe 500,000 500,000 38226.8 

feasRate  1 1 1 

G10 

[7,049.2480] 

best 7,049.249 7,049.249 7,049.2480 

average 7,278.785 7,198.919 7,049.2480 

worst 11,100.000 8,332.225 7,049.2480 
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Function  

[best known] 

 
SADE-kNN  

SADE-kNN  

MCR 

SADE-kNN 

MCR+  

succ_nfe - - 20,198.4 

succRate 0 0 1 

nfe 500,000 500,000 20,198.4 

feasRate  1 0.96 1 

G11 

[0.7499] 

best 0.74990 0.74990 0.74990 

average 0.9695 0.7736 0.74990 

worst 1.0000 1.0000 0.74990 

succ_nfe 2,995.0 2,941.57 1,334.2 (-55%) 

succRate  0.12 0.56 1 

nfe 440,363.28 221,649.32 1,334.2  

feasRate  1 0.76 1 

G12 

[-1.0000] 

best -1 -1 -1 

average -1 -1 -1 

worst -1 -1 -1 

succ_nfe 385.96 439.52 211.5 (-45%) 

succRate  1 1 1 

nfe 385.96 439.52 211.5  

feasRate  1 1 1 

G13 

[0.05394] 

best 0.05394 0.05394 0.05394 

average 0.3534 0.2930 0.05394 

worst 1.000 1.000 0.05394 

succ_nfe 43,906.85 55,912.83 48,682.1 (+10%) 

succRate  0.28 0.48 1 

nfe 372,297.24 286,840.32 48,682.1 

feasRate  1 0.96 1 

G14 

[-47.76] 

best -47.76 -47.76 -47.76 

average -47.595 -47.513 -47.76 

worst -43.845 -43.844 -47.76 

succ_nfe 55,179.31 100,064.78 54,356.1 (-1%) 

succRate  0.88 0.56 1 

nfe 108,558.52 276,038.16 54,356.1 

feasRate  1 1 1 

G15 

[961.7150] 

best 961.7150 961.7150 961.7150 

average 961.7150 961.7150 961.7150 

worst 961.7150 961.7150 961.7150 

succ_nfe 1,1431.3 1,7245.28 5,412.4 (-53%) 

succRate  0.92 1 1 

nfe 54,909.56 17,245.28 5,412.4 

feasRate  0.92 1 1 

G16 

[-1.9051] 

best -1.9051 -1.9051 -1.9051 

average -1.9051 -1.9051 -1.9051 

worst -1.9051 -1.9051 -1.9051 

succ_nfe 4,633.36 4,330.66 1,447.8 (-67%) 

succRate  1 0.96 1 

nfe 4,633.36 2,4157.6 1,447.8 

feasRate  1 0.96 1 

G17 

[8,853.53] 

best 8,853.53 8,853.53 8,853.53 

average 8,868.96 8,910.50 8,860.07 

worst 8,927.59 9,011.91 8,938.51 

succ_nfe 69,887.31 70,850.44 258,603.70 (+73%) 

succRate  0.76 0.40 0.68 

nfe 173,115.36 345,508.28 304584 
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Function  

[best known] 

 
SADE-kNN  

SADE-kNN  

MCR 

SADE-kNN 

MCR+  

feasRate  0.96 0.96 0.84 

G18 

[-0.8660] 

best -0.866 -0.866 -0.866 

average -0.8654 -0.8649 -0.866 

worst -0.8536 -0.8597 -0.866 

succ_nfe 253,743.70 85,907.04 5,855.1 (-93%) 

succRate  0.40 0.92 1 

nfe 401,500.28 119,034.84 5,855.1 

feasRate  1 1 1 

G19 

[32.6555] 

best 32.6632 32.659 32.6569 

average 39.2811 38.080 32.6586 

worst 81.044 70.502 32.6676 

succ_nfe - - - 

succRate 0 0 0 

nfe 500,000 500,000 500,000 

feasRate  1 1 1 

G21 

[193.7245] 

best 193.7546 193.7546 193.7245 

average 193.7546 193.7546 199.4284 

worst 193.7546 193.7546 324.7028 

succ_nfe - - 122454 

succRate 0 0 0.6 

nfe 500,000 500,000 258,371.4 

feasRate  0.64 0.92 0.92 

G23 

[-400.055] 

best -400.055 -400.055 -400.055 

average -400.055 -154.191 -400.055 

worst -400.055 -0.0024 -400.055 

succ_nfe 68,852.00 88,843.33 51,922.6 (-25%) 

succRate  0.04 0.24 1 

nfe 482,757.88 401,325.76 51,922.6 

feasRate  0.04 0.96 1 

G24 

[-5.5080] 

best -5.508 -5.508 -5.508 

Mean -5.5080 -5.5080 -5.508 

worst -5.5080 -5.5080 -5.508 

succ_nfe 765.20 710.56 370 (-48%) 

succRate  1 1 1 

nfe 765.20 710.56 370 

feasRate  1 1 1 

It can be seen in Table 5 that the SADE-kNN-MCR+ method was able to find the optimal 

solution for 21 out of the 22 functions. Although it had not reached the known optimum for 

problem G19, the error is relatively small. Also, the fact that the best and worst solutions are 

very close (that is, the results found in the twenty-five runs present a small variation) indicate the 

robustness of the method. Considering these 21 functions for which the SADE-kNN-MCR+ was 

able to reach the optimal solution, it frequently (except for function G17) obtained the highest 

success rate (succRate), indicating its best performance in terms of the greater number of runs in 

which it can find the optimum.  

The other methods were able to reach the global optimum for only 15 out of these 21 

functions (failing in functions G2, G3, G7, G10, G19 and G21). Considering those 15 functions 

for which all methods found the optimal solution, the highest succRate (always equal to 1) is 
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again obtained by the SADE-kNN-MCR+. The feasibility rate (feasRate) obtained by the 

SADE-kNN-MCR+ is again always equal to 1.  

Considering the 6 problems for which only SADE-kNN-MCR+ was able to find the 

optimal solution, in three of them (G7, G9 and G10), it obtained a success rate of 1 (that is, all 

runs reached the optimal solution).  

Regarding the G10 and G21 problems that present constraints with different units and/or 

different orders of magnitude, shown in Table 3: for function G10, the enhanced performance of 

the SADE-kNN-MCR method can be measured by the better average and worst metrics 

compared with the original SADE-kNN; then, the association of the “rebirth” strategy makes the 

SADE-kNN-MCR+ obtain the optimal solution in all runs. For function G21, the enhanced 

performance of the SADE-kNN-MCR and SADE-kNN-MCR+ methods is reflected by their 

higher number of feasible runs (FeasRate).  

Besides the increased performance in finding optimal solutions as commented above, the 

SADE-kNN-MCR+ also reduces the average number of function evaluations to find a feasible 

solution (succ_nfe). To assess this behavior, in the cells corresponding to succ_nfe for SADE-

kNN-MCR+ and considering only the 15 test problems for which all three methods reached at 

least one successful run, Table 5 shows percentage values in parenthesis that correspond to the 

ratio between the succ_nfe values provided by SADE-kNN-MCR+, and the smaller succ_nfe 

value observed for the other methods. The number of evaluations is reduced for 13 out of those 

15 problems. For the other two problems (G13 and G17), although requiring a higher number of 

evaluations, SADE-kNN-MCR+ presents better success rates; for the G13 function, for instance, 

it finds the optimal solution in 100% of the runs, while SADE-kNN succeeds in only 28%.  

5.1.2 Sign Test  

Table 6 summarizes the SuccRate values for all methods, considering the 15 test problems 

for which all three methods reached at least one successful run. For all those problems (except 

G17) SADE-kNN-MCR+ found the optimal solution for 100% of the runs, while the other 

methods reached SuccRate = 1 for only 6 out of those 15 problems. The results of the Sign Test 

from the pairwise comparison between SADE-kNN-MCR+ and each other method are shown in 

the last three lines of Table 6 (discarding the draws). The number of wins and losses confirms 

the observations from Table 5, i.e., the SADE-kNN-MCR+ outperforms all other methods. All 

p-values (computed according to the procedure described in Section 4.2.2) are small enough to 

reject the null hypothesis, meaning the pairwise compared samples are not statistically equivalent 

in all cases. This demonstrates that SADE-kNN-MCR+ outperforms all other methods.  
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Table 6. Success Rate 

 Problem 
SADE-

kNN 

SADE-kNN-

MCR 
SADE-kNN-MCR+ 

1 G1 0.84 0.84 1 

2 G4 1 1 1  

3 G5 0.88 0.96 1 

4 G6 1 1 1  

5 G8 1 1 1  

6 G11 0.12 0.56 1  

7 G12 1 1 1  

8 G13 0.28 0.48 1 

9 G14 0.88 0.56 1  

10 G15 0.92 1 1 

11 G16 1 0.96 1  

12 G17 0.76 0.40  0.68 

13 G18 0.40 0.92 1  

14 G23 0.04 0.24 1  

15 G24 1 1 1  

SADE-kNN-MCR+ Wins (+) 8 9  

SADE-kNN-MCR+ Losses (-) 1 0  

p-values 0.019531 0.001953  

5.1.3 Performance Profiles  

The SuccRate values presented in Table 6 were also used as the metric for the generation 

of the performance profiles, according to the procedure described in Section 4.2.3 . The PPs 

shown in Figure 1 again indicate that SADE-kNN-MCR+ is the best performer, since its curve 

reaches 𝜌(𝜏) = 1 with the lowest 𝜏 value. A global indication of the performance of the methods 

may also be observed in Figure 2 that contains a bar chart where the y axis indicates the areas 

under the PP curves, again confirming the better accuracy and robustness of SADE-kNN-

MCR+. 

 

Figure 1. Performance Profiles – SADE-kNN methods 
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Figure 2. Global performance – SADE-kNN methods 

5.2 Suite of structural engineering problems 

Table 7 compares the results of the methods for the suite of five benchmark mechanical 

engineering problems shown in Table 2. All algorithms provided feasible solutions in all runs. 

Values in boldface indicate the best results amongst the algorithms.  

Table 7. Results for the suite of engineering problems – SADE-kNN methods  

  SADE-kNN-MCR+ SADE-kNN-MCR SADE-kNN 

Pressure Vessel 

Best 6,059.7143 6,059.7143 6,059.7180 

Average 6,176.5486 6,577.5020 6,276.0322 

Worst 6,820.4100 7,332.8415 7,332.8529 

Welded Beam 

Best 1.724852 1.724852 1.726247 

Average 1.724852 1.802360 1.784099 

Worst 1.724852 2.497832 2.319204 

Cantilever 

Best 64,578.194 64,578.194 65,036.880 

Average 66,581.615 66,815.056 70,160.740 

Worst 68,597.130 68,597.130 74,223.488 

Speed Reducer 

Best 2,996.3481 2,996.3481 2,996.3481 

Average 2,996.3481 3,002.1815 2,999.8637 

Worst 2,996.3481 73,035.625 3,035.6255 

Tension/Compr. 
Spring 

Best 0.012665 0.012665 0.012675 

Average 0.013285 0.013095 0.012952 

Worst 0.025651 0.017773 0.015754 

 

Regarding the “best” solutions, both SADE-kNN-MCR+ and SADE-kNN-MCR are the 

best performers, except for the Speed Reducer problem where all of them achieved the same 

solution. It is important to stress that, for the Pressure Vessel and Welded Beam problems that 

present constraints with different units and/or different orders of magnitude, the better 
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performance of the MCR-based methods compared with the SADE-kNN algorithm may be due 

to the increased efficiency of the MCR constraint-handling method in dealing with this type of 

problems, as indicated in [39]. The increased robustness of the SADE-kNN-MCR+ compared 

with the other methods is demonstrated by the average and worst results, since it presents the 

best performance for all problems except the Tension/Compression Spring. 

Here, since the number of examples (only five benchmark problems) is low, statistical 

performance assessment methods such as the sign test cannot be adequately employed. Even so, 

it may be illustrative to compare the performance profiles for the methods. Since SADE-kNN-

MCR+ and SADE-kNN-MCR found the same best values for all problems, the average was 

employed as the comparison metric to be evaluated by the performance profiles. Figure 3 shows 

that SADE-kNN-MCR+ finds best values for 80% of the problems with 𝜌(1) = 0.8. Altogether, 

SADE-kNN-MCR+ is the best overall performer, as also indicated by Figure 4. 

 

 

Figure 3. Performance Profiles – SADE-kNN methods  
applied to the engineering problems. Metric: average. 

 

 

Figure 4. Global performance – SADE-kNN methods  
applied to the engineering problems. Metric: average. 
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6 Comparison with other recent methods  

Since in the previous section SADE-kNN-MCR+ had demonstrated its better performance 

amongst the proposed SADE methods, this section now compares its results with those obtained 

by other methods recently presented in the literature. Those methods have been mentioned in 

Section 2.4: ASRES, SA-DECV, SA-DECV_SR and e-DE which employ different surrogate 

models and/or different constraint handling techniques. The performance of the methods is 

compared firstly by their application to the IEEE-CEC 2006 G-Suite benchmark functions, and 

then to the benchmark of mechanical engineering problems as described in the beginning of 

Section 4. 

6.1 G-Suite functions 

6.1.1 Direct comparisons  

Table 8 compares the results of the methods, in terms of the available main statistical 

parameters that characterize their performance: the best solution found amongst the runs; the 

average number of function evaluations considering the successful runs succ_nfe; and the ratio 

between successful and total runs SuccRate. The cells corresponding to succ_nfe shows also, in 

parenthesis, the percentage values corresponding to the reduction/increase of the succ_nfe values 

provided by SADE-kNN-MCR+ in relation to the smaller value observed for the other methods. 

Table 8. Comparison of Results 

   SADE-kNN-

MCR+ 

SA-DECV 

[21] 

SA-

DECV_SR 

[56] 

ASRES 

[55] 

e-DE 

[57] 

G1 

[-15.0000]  

Best -15 -15 -15 -15 -15 

succ_nfe 
2,528.5  

(-68%) 
7,972 15,730.00 35,406 64,274 

SuccRate 1 0.83 0.84 1 1 

G2 

[-0.8036]  

Best -0.8036 -0.713 -0.6252 -0.739 − 0.8036 

succ _nfe 
28,632.7 

(-85%) 
- - - 192,297 

SuccRate 0.16 0 0 0 0.92 

G3 

[-1.0005]  

Best -1.0005 -0.333 -0.3127 -0.998 − 1.0005 

succ _nfe 
169,089.4 

(+80%) 
- - - 33,066 

SuccRate 0,24 0 0 0 1 

G4 
[-30,665.5386]  

Best -30,665.5386 -30,665.539 -30,665.5387 -30,665.539 − 30,665.5386 

succ _nfe 
1,208.2 

(-76%) 
5,113 7,175 15,104 43,942 

SuccRate 1 1 0,8 1 1 

G5 

[5,126.49]  

Best 5,126.49 5,126.49 5,126.49 5,126.49 5,126.49 

succ _nfe 
14,612.6 

(-24%) 
69,418 21,960 19,281 152,110 

SuccRate 1 1 0.96 1 1 

G6 

[-6,961.8138]  

Best -6,961.8138 -6,961.814 -6,961.8138 -6,961.814 − 6,961.8138 

succ _nfe 655.5 7,335 5,734 9,603 42,098 
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   SADE-kNN-

MCR+ 

SA-DECV 

[21] 

SA-

DECV_SR 

[56] 

ASRES 

[55] 

e-DE 

[57] 

(-86%) 

SuccRate 1 1 1 1 1 

G7 

[24.3062]  

Best 24.3062 24.409 24.3062 24.306 24.3062 

succ _nfe 
64,067.2 

(+54%) 
- 29,440 77,674 99,614 

SuccRate 1 0 0.04 0.08 1 

G8 

[-0.09582]  

Best -0.09582 -0.096 -0.09582 -0.096 − 0.09582 

succ _nfe 
182.8 

(-66%) 
676 539.3 1,027 6,254 

SuccRate 1 1 0.96 1 1 

G9 

[680.630]  

Best 680.630 680.630 680.630 680.63 680.630 

succ _nfe 
38,226.8 

(+79%) 
9,831 7,994 30,618 29,446 

SuccRate 1 0.2 0.84 1 1 

G10 

[7,049.2480]  

Best 7,049.2480 7,260.041 7,049.2480 7,049.408 7,049.2480 

succ _nfe 
20,198.4 

(-56%) 
- 45,560 - 135,934 

SuccRate 1 0 0.04 0 1 

G11 

[0.7499]  

Best 0.7499 0.75000 0.7499 0.75 0.7499 

succ _nfe 1,334.2 10,478 10,580 2,792 24,566 

SuccRate 1 1 0.8 1 1 

G12 

[-1.0000]  

Best -1 -1 -1 -1 -1 

succ _nfe 
211.5 

(-68%) 
1,139 660.6 2,996 1,354 

SuccRate 1 1 0.64 1 1 

G13 

[0.05394]  

Best 0.05394 0.453 0.337683 0.054 0.05394 

succ _nfe 
48,682.1 

(+77%) 
- - 11,292 303,741 

SuccRate 1 0 0 0.84 0.44 

G14 

[-47.76]  

Best -47.76 -47.24 -47.48 -47.76 − 47.76 

succ _nfe 
54,356.1 

(-41%) 
- - 92,820 92,730 

SuccRate 1 0 0 0.08 1 

G15 

[961.7150]  

Best 961.715 961.715 961.715 961.715 961.715 

succ _nfe 
5,412.4 

(-36%) 
46,105 12,430 8,519 95,022 

SuccRate 1 0.63 0.64 1 1 

G16 

[-1.9051]  

Best -1.905 -1.905 -1.905 -1.905 − 1.905 

succ _nfe 
1,447.8 

(-85%) 
10,149 9,384 16,179 24,410 

SuccRate 1 1 1 1 1 

G17 

[8,853.53]  

Best 8,853.53 8,872.62 8,857.65 8,853.54 8,853.53 

succ _nfe 
258,603.71 

(+92%) 
- - 21,490 264,232 

SuccRate 0.68 0 0 0.76 0.44 

G18 

[-0.8660]  

Best -0.8660 -0.8660 -0.8660 -0.8660 − 0.8660 

succ _nfe 
5,855.1 

(-80%) 
32,751 29,830 40,840 140,458 

SuccRate 1 0.03 0.76 0.92 1 
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   SADE-kNN-

MCR+ 

SA-DECV 

[21] 

SA-

DECV_SR 

[56] 

ASRES 

[55] 

e-DE 

[57] 

G19 

[32.6555]  

Best 32.6569 35.404 32.6556 32.665 32.6555 

succ _nfe - - 53,740 - 207,286 

SuccRate 0 0 0.04 0 1 

G21 

[193.7245]  

Best 193.7245 193.732 193.7267 - 193.7245 

succ _nfe 
122,454 

(+31%) 
- - - 84,500 

SuccRate 0.6 0 0 0 0.72 

G23 

[-400.055]  

Best -400.055 -308.803 -365.2985 -348.816 -400.055 

succ _nfe 
51,922.6 

(+10%) 
- - - 46,922 

SuccRate 1 0 0 0 1 

G24 

[-5.5080]  

Best -5.508 -5.508 -5.508 -5.508 − 5.508 

succ _nfe 370 (-88%) 3,444 3,015 3,638 19,678 

SuccRate 1 1 1 1 1 

 

In Table 8, it is interesting to compare the performance between the SA-DECV and the 

SA-DECV-SR methods. The latter is a variation that uses a rank-based constraint handling 

technique, instead of simple feasibility rules; thus, unlike the SA-DECV, the SA-DECV-SR 

provides optimal solutions to problems G7, G10 and G19. It also improves the solution found by 

SA-DECV in problem G21. SA-DECV-SR also produced a slight improvement in the number 

of optimal executions.  

However, the performance of these algorithms is still inferior to those presented by SADE-

kNN-MCR+ and e-DE: SA-DECV methods failed in functions G13, G14, G17 and G23, while 

SADE-kNN-MCR+ and e-DE found optimal solution for most problems. Moreover, they found 

good solutions in most executions, as indicated by their SuccRate. 

Considering the problems that present constraints with different orders of magnitude, such 

as G10 and G21 problems, SADE-kNN-MCR+ presents an enhanced performance. For function 

G10, besides finding the optimal solution in all runs, it also requires the smaller number of 

function evaluations.  

Table 9 summarizes the main results of Table 8, collecting the number of functions for 

which each method was able to find the optimal solutions in at least one run, and required the 

lower number of function evaluations to find the optimal solution.   

Table 9. Summary of some performance measures 

N. of functions where: 
SADE-kNN-

MCR+ 

SA-

DECV 

SA-DECV-

SR 
ASRES e-DE 

Found optimal solution 

in at least one run  
21 12 15 16 22 

Required lower number 

of function evaluations  
14 0 2 2 4 
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A more comprehensive comparison of the performance of all methods will be presented in 

terms of nonparametric statistical tests previously described in section 4.2: the sign test, and the 

performance profiles. 

6.1.2 Sign Test  

Table 10 presents the results of the Sign Test based on the pairwise comparison between 

SADE-kNN-MCR+ and each other method in terms of the average number of function 

evaluations (succ_nfe). The number of wins and losses confirms the observations based on Table 

8, i.e., the SADE-kNN-MCR+ outperforms all other methods. The statistical assessment in 

terms of the p-values indicates that all of them are below the threshold, which confirms that the 

superiority of the SADE-kNN-MCR+ is statistically significant.  

Table 10. Sign Test, Pairwise Comparisons 

SADE-kNN-MCR+ versus SA-DECV SA-DECV-SR ASRES e-DE 

# of wins / # of losses  

(p-value) 

20 / 1 

(0.00001) 

19 / 3  

(0.0004) 

18 / 3  

(0.0007) 

17 / 5  

(0.0084) 

 

Regarding the success rate (succRate), both SADE-kNN-MCR+ and e-DE reach 100% of 

optimal executions in 16 problems. e-DE gets more optimal runs in 4 out of the remaining 6. 

However, this leads to a p-value of 0.3437, not small enough to indicate that there is a 

statistically significant difference between these two methods regarding this particular metric. 

6.1.3 Performance Profiles   

The succ_nfe values were also used as the metric for the generation of the performance 

profiles shown in Figure 5, according to the procedure described in Section 4.2.3 . A global 

indication of the performance of the methods may also be observed in the bar chart of Figure 6 

where the y axis indicates the areas under the PP curves.  

 

 

Figure 5. Performance Profiles  
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Figure 6. Global performance of the methods  

 

In Figure 5 it is interesting to observe that, for smaller values of , the curve 

corrresponding to the e-DE method is located below those for the SA-DECV-SR and ASRES 

algorithms; however, since e-DE is able to find feasible solutions for more problems than SA-

DECV, SA-DECV-SR and ASRES, it ends up with the second larger area in the bar chart of 

Figure 6. The overall best performer is SADE-kNN-MCR+, since its curve approaches 𝜌(𝜏) = 1  

with the lowest 𝜏 value and presents the larger area in the bar chart of Figure 6, reflecting the fact 

that it requires fewer evaluations for the greater number of problems.  

6.2 Suite of structural engineering problems  

Finally, this section compares the results for some of the benchmark engineering problems 

shown in Table 2. Here the proposed SADE-kNN-MCR+ method is compared only with SA-

DECV-SR, since results for the other methods could not be found in the literature. Anyway, this 

is a useful comparison since both methods share the following characteristics: 1) DE is used as 

the search algorithm; 2) Some of the solutions are approximated by a similarity-based surrogate 

model; and 3) Rank-based constraint handling techniques are employed. 

For these comparisons, the maximum number of function evaluations is set to 30,000 

function evaluations for the Welded Beam problem; 20,000 for the Pressure Vessel; and 5,000 

for the Tension/Compression Spring problem.  

Table 11 compares the statistical analysis of the results for the three benchmark problems 

considering 25 runs: the best, average and worst solutions amongst all runs; and the average 

number of function evaluations considering the successful runs. Unlike section 5.2, where 

optimal reference values were not used as a stopping criterion, the results presented in 

parentheses were considered as optimal in order to compare the average number of function 

evaluations that each algorithm required to reach it.  
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Table 11. Results for the suite of engineering problems  

Prob. Algorithm Best Average Worst Succ_nfe 

Welded Beam 

(1.7248523) 

SADE-kNN-

MCR+ 
1.7248523 1.7248523 1.7248523 3,983.0 

SA-DECV-SR 1.72486 1.72496 1.72595 6,971 

Pressure Vessel 

(6,059.71433) 

SADE-kNN-

MCR+ 
6,059.71436 6,062.20310 6,090.52622 6,719.7 

SA-DECV-SR 6,059.7 6,296.0336 6,820.44 6,139 

Tension/Compression 

Spring  

(0.01266523) 

SADE-kNN-

MCR+ 
0.012732 0.012765 0.012902 1,409.4 

SA-DECV-SR 0.0127127 0.013047148 0.0143943 1,617 

For the Welded Beam problem, SADE-kNN-MCR+ provided the better solution as 

indicated in the “best” column of Table 11. It also obtained this optimal solution in all runs, as 

indicated by the worst value, which is equal to the best one. Also, its average number of function 

evaluations (3,983.0) is nearly half of the value required by the SA-DECV-SR. 

Considering the Pressure Vessel problem, SADE-kNN-MCR+ also provided better 

solutions regarding all statistical measures. It obtained the accuracy required for the optimal 

solution in 20 out of the 25 runs, employing an average number of 6,719.7 function evaluations. 

In [56] it is not clear whether the value of 6,139 evaluations refers to the number of function 

evaluations considering only the optimal runs; anyway, it can be concluded that SADE-kNN-

MCR+ is the most efficient algorithm in obtaining the best solutions considering all runs.  

Finally, for the Tension/Compression Spring problem, SADE-kNN-MCR+ provided 

better results regarding all measures (average, worst, and number of function evaluations), 

except for the best solution. The best solution provided by SADE-kNN-MCR+ (0.012732) 

reached the first termination criterion (f(x*) – f(x) < 0.0001), thus stopping the evolution process.  

Table 12 presents the values of the variables corresponding to the optimal solutions 

provided by SADE-kNN-MCR+ . Again, the number of problems is low, thus the sign test 

cannot be adequately employed. However, it may be illustrative to compare the performance 

profiles for the SADE-kNN-MCR+ and SA-DECV_SR algorithms. Figures 8 and 9 show 

respectively the individual and global performance using as metric the succ_nfe values presented 

in Table 11. Those results show that SADE-kNN-MCR+ is the best performer, since not only it 

gives better results for two problems (𝜌(1) = 0.666), but still finds optimal executions in all of 

them (there is 𝜏 such that 𝜌(𝜏) = 1). 

Table 12. Values of the variables corresponding to the optimal solutions  

provided by SADE-kNN-MCR+ 

Welded Beam Pressure Vessel Tens./Compr. Spring 

H 0.205730 𝑇𝑠 0.8125 d 0.050016 

L 3.470489 𝑇ℎ 0.4375 D 0.317587 

T 9.036624 R 42.098446 N 14.025337 

B 0.205730 L 176.636597   

f(x*) 1.724852  f(x*) = 6,059.714361  f(x*) = 0.012732 



− 27 − 

 

 

 
 

Figure 7. PPs comparing  
SADE-kNN-MCR+ and SA-DECV-SR  

Figure 8. Global performance of  
SADE-kNN-MCR+ and SA-DECV-SR  

7 Conclusions and extensions 

This work presented a new merit-based surrogate-assisted evolutionary method designed 

for applications to complex real-world constrained optimization problems. Besides presenting a 

very good accuracy in finding optimal solutions, the main goal of the method is to reduce the 

number of objective function evaluations.  

Those goals of accuracy and computational cost savings are pursued by the following 

approaches: a) employing the Multiple Constraint Ranking (MCR) technique to deal with the 

large number of constraints with different orders of magnitude and/or different units that are 

common in the aforementioned complex engineering problems; b) devising an enhanced 

approximation model based on the 𝑘-nearest-neighbor (𝒌-NN) algorithm associated to a merit-

based database management procedure; and c) implementing a strategy that triggers a random 

reinitialization of the population whenever it stagnates on local optima. These approaches have 

the potential to present significant cost savings by reducing the number of objective function 

evaluations: the MCR does not require evaluations when there is no feasible solution in the 

population, and the merit scheme of the k-NN model evaluates only part of the population.  

Two variants of the proposed method (SADE-kNN-MCR and SADE-kNN-MCR+) were 

applied to a set of 24 constrained benchmark problems and 5 mechanical engineering problems. 

Based on direct comparisons of different performance measures; nonparametric statistical sign 

tests; and performance profile graphs, the results were compared with those provided by other 

algorithms recently presented in the literature that also employ surrogate models and constraint 

handling techniques (SADE-kNN, ASRES, SA-DECV, SA-DECV_SR and e-DE). The 

comparisons have shown that both variants of the proposed method presented superior accuracy 

and drastically reduced the number of function evaluations. The best performer is SADE-kNN-

MCR+ since in several executions it was able to escape from local optima.  

This method may be particularly suited for real-life engineering problems such as, for 

instance, the design of offshore systems that have been addressed in [58,59,1-3]. Those are 
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complex engineering problems defined on high-dimensional spaces, with many design variables, 

nonlinear objective and constraint functions (the latter comprised by constraints with different 

orders of magnitude and/or different units), and requiring evaluations by expensive Finite 

Element nonlinear dynamic analyses; thus, reducing the number of evaluations is a critical issue. 

The potential of the SADE-kNN-MCR+ method to solve such practical engineering problems is 

indicated by its performance in the Welded Beam and Pressure Vessel problems, which are also 

characterized by severely nonlinear constraint functions with diverse magnitudes. Thus, 

extensions of this work will incorporate this method into optimal design procedures for mooring 

systems, submarine pipelines and risers that have been considered in [1,3,60]. It is expected that 

the resulting procedures will lead to increased efficiency in terms of accuracy, computational 

costs, and more importantly to better engineering design solutions.   
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