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Abstract

Cooperation search algorithm (CSA) is a new metaheuristic algorithm inspired from the
team cooperation behaviors in modern enterprises and is characterized by fast convergence.
However for some complex problems, it may get trapped into local optima and suffer from
premature convergence for the shortcoming of population updating guided only by leading
individuals. In this paper, an improved cooperation search algorithm (CCSA) is proposed
by incorporating the mutation and crossover operators in DE algorithms to alleviate the
shortcoming. The two operators can be used to increase population’s diversity significant-
ly, and thus improve population’s exploration capability and accuracy significantly. CCSA
has been tested on 23 benchmark functions and CEC 2017 benchmark suite. Experimental
results demonstrate the better performance of CCSA on convergence speed and accuracy as
compared to other existing optimizers. Furthermore, aiming at the problem that there is
no universal approach for the multi-degree reduction of Ball Bézier surfaces under different
interpolation constrains, we propose a new method to solve this problem by introducing meta-
heuristic methods, where the change of interpolation constrains are treated as the change of
decision variables. The modeling examples show that the proposed method is effective and
easy to implement under different interpolation constrains, which achieves the automatic and
intelligent degree reduction of Ball Bézier surfaces.

Keywords: Metaheuristic method, CSA, Ball Bézier surface, Multi-degree reduction

1. Introduction

Mathematical optimization refers to the seeking of a solution within an available solution
space such that the objective function reaches its maximum or minimum. A lot of real-world
problems in practice can be attributed to optimization problems. Therefore, the solving
methods for optimization problems and their solution accuracy have always been the focus
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of many scholars. Although conventional methods based on derivative theory have the merit
of high precision, they have requirements of differentiability and continuation of function.
Besides, they are sensitive to the initial value.

Inspired form the abundant mechanisms and principles in nature, scholars have developed
numerous metaheuristic methods to address various optimization problems in the past few
decades. These metaheuristic methods have the advantages of free derivative information
demand, easy implementation, high flexibility, high robustness and excellent ability to escape
from local optima. Thus these metaheuristic methods have been successfully applied to solve
the optimization problems in many fields, such as process control, task scheduling, image
processing, electric power design and many other engineering design problems. Metaheuristic
methods are well appreciated by scientific community and are becoming increasingly popular
due to the characteristic of derivative-free mechanism and their superiority over conventional
methods, especially in case of multimodal, discrete and non-differential complex optimization
problems.

According to the thought origin and employed search mechanism, metaheuristic methods
can be broadly classified into 6 main categories [1]:(1) breeding-based evolutionary algorithm-
s, which mimic the evolution laws of natural species. These algorithms generally start with
a randomly generated population, then a process of reproduction and survival iterated over
successive generations enables the population to potentially evolve towards promising regions.
The representatives include the genetic algorithm (GA) [2], differential evolution (DE) [3]; (2)
swarm intelligence based algorithms, which simulate the collective behavior of decentralized
self-organized systems, in either natural or artificial environments to effectively collect and u-
tilize the obtained information about search space to guide the search of population during the
process of iterations. The representatives of this category include particle swarm optimization
(PSO) [4], grey wolf optimization (GWO) [5], cuckoo search (CS) [6], squirrel search algo-
rithm (SSA) [7] and marine predators algorithm (ODMPA)[8]; (3) physics/chemistry based
algorithms, which are inspired form the physical/chemical rules in universe. The represen-
tatives include gravitational search algorithm (GSA) [9], multi-verse optimizer (MVO) [10]
and chemical reaction optimization algorithm (CRO) [11]; (4) social human behavior based
algorithms, which mimic the intelligent social behaviors of human beings. The representatives
include ideology algorithm (IA) [12] and most valuable player algorithm (MVPA) [13]; (5)
plants based algorithms, such as forest optimization algorithms (FOA) [14]. (6) algorithms
with miscellaneous sourcs of inspiration i.e. algorithms which do not fit in any of the previous
categories, such as the Ying-Yang Pair Optimization (YYOP) [15] and so on.

For a metaheuristic algorithm, the search mechanism usually includes two aspects: ex-
ploration for discovering new regions in the search space, and exploitation for developing
the potential of available promising areas [16]. However, it is hard to keep a proper bal-
ance between exploration and exploitation because of the randomness rooted in the search
mechanism. As a result, no single optimizer is found to be adequate to optimally solve all
optimization problems. This means that one method may have good performance in solving
some problems but may suffer form degraded performance in solving other problems [17].

With the progress of technology, optimization problems in reality become more and more
complex and high-dimensional. As the existing metaheuristic methods are used to solve these
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high-dimensional complex problems, they may get trapped into local optima and suffer from
premature convergence, and thus fail to yield feasible solution. Therefore, it is of great impor-
tance to further develop some new and effective metaheuristic methods for real-world complex
problems with unknown decision spaces. This practical necessity keeps the research field of
metaheuristic methods open, allowing the improvement of existing methods and the propo-
sition of novel methods for better optimization. Besides, extending the scope of application
of metaheuristic algorithms to solve the problems in different fields is also the focus of many
scholars.

As for the improvement of existing algorithms, because different operators in diverse al-
gorithms have their own unique strengths, so it is natural to think that the combination of
multiple operators in one algorithm framework may help to improve the overall performance
of the algorithm. For example, in order to enhance the global search ability of the grey
wolf optimizer (GWO) algorithm, the mutation and crossover operators are employed in the
in the memory-based grey wolf optimizer (mGWO) [18]. Beside, chaotic mapping [19] and
opposition-based learning [20] are introduced into the GWO algorithm to maintain population
diversity and enhance the exploration capability. To improve the search efficiency of the sine
cosine algorithm (SCA) [21], the optimal neighborhood update strategy and quadratic inter-
polation strategy are combined in the variant of the SCA algorithm[22]. Random replacement
strategy and double adaptive weights are introduced into the (WOA) algorithm to enhance
its convergence speed and exploration ability respectively [23]. The local search capability
of the squirrel search algorithm (SSA) algorithm is improved significantly by embedding the
reproduction mechanism of the invasive weed optimization (IWO) [24] in the ISSA algorithm
[25]. Moreover, there are a large number of works on the improvement of the PSO algorithm,
including the opposition-based particle swarm algorithm (OBPSO) [26], the synergy of the
sine-cosine algorithm and particle swarm optimizer (SCA-PSO) [27], etc.

Cooperation search algorithm (CSA) [28] is a novel social human behavior based algorith-
m proposed by Feng in 2021, which simulates the efficient team cooperation behaviors and
dynamic position updating mechanism in modern enterprises to achieve population evolution
during the optimization procedure. Compared with most of the existing methods, the CSA
has superiority performance in convergence rate, but as used to solve some high-dimensional
complex problems, it may get trapped into local optimal just like most of the metaheuristic
methods with quick convergence. This is because the movement direction of the search agents
are almost entirely guided by leading individuals in the population. As a result, much of the
other search information the search agents obtained is abandoned in the next iteration[29].
Thus these algorithms have a high probability to stuck in local optima and suffer from pre-
mature convergence.

For alleviating the premature convergence of the CSA, this paper proposes an improved
cooperation search algorithm (CCSA) by incorporating a mutation and crossover operators
in differential evolution methods. The CCSA employs the mutation operator to explore
the neighborhood potential areas of personal best solutions to enhance population diversity.
Then the crossover operator is employed to make full use of the excellent solution structure
of individuals and strengthen the collaboration among individuals to improve population’s
global exploration capability and search accuracy.
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Furthermore, aiming at the problem that there is no universal approach for the multi-
degree reduction of Ball Bézier surfaces under different interpolation constrains, metaheuristic
algorithms are introduced into the multi-degree reduction of Ball Bézier surfaces in this paper.

In the field of Computer Aided Design (CAD), there has been much research on curves
and surfaces. However, objects without thickness do not exist in nature at all, and the
curve/surface without thickness is just a kind of mathematical simplification. Besides, in
recent years, 3D printing finds extensive applications in modern industry manufacture and
also arouses great interests in many other fields. 3D printing turns 3D digital models into
real objects by building them up layer by layer. With the development of multi-material 3D
printer, 3D printing provides an appealing way of fabricating complex solid objects of the
real world [30, 31], thus the modeling of various 3D solid objects has attracted considerable
attention.

In order to effectively represent 3D freeform objects of uneven thickness, scholars pre-
sented Ball curves and surfaces, which are modeled based on skeleton and radius function.
Theoretically, all solid objects can be modeled with Ball curves or surfaces, and thus they
have extensive application in the modeling of objects with uneven thickness. For example,
cerebral vascular [32], plant stems [33, 34], 3D human modeling [35] and other objects with
uneven thickness [36] all can be modeled by Ball curves and surfaces. Since Ball curves and
surfaces are defined by explicit parametric equations, the deformation of Ball curves and sur-
faces can be easily achieved by manipulating their control balls directly. Some scholars have
done some work on Ball curves and surfaces. For instance, Wu et al. studied the properties
[37], intersection [38] and extension [39] of Ball B-Spline curves. Hu and Wang [40] studied
the boundary of Ball Bézier surface. Liu [41] proposed the fitting of scattered data with Ball
B-spline curves/surfaces.

In the design and manufacture procedure of a product, the product data is usually trans-
ferred between several design and manufacturing systems, Since different systems may adopt
different standards, these systems usually have different requirements on the form of curves
and surfaces, such as the degree of curves and surfaces. As a result, for the efficient transmis-
sion a Ball curve/surface between different CAD/CAM systems, the multi-degree reduction
of the Ball curve/surface is a crucial step. Therefore, Wu [42] presented the degree reduction
of Ball Bézier surfaces over rectangular domain. Chen [43] proposed the degree reduction of
Ball Bézier surfaces over triangular domain.

In the degree reduction definition of Ball surfaces, the inclusion constrain and the objective
for minimum thickness are complex and not easy to deal with. Thus, for each kind of specific
interpolation constrain, concrete analysis is required for the multi-degree reduction of Ball
surfaces in the previous works. These tedious and complicated analysis and derivation lead to
the lack of universal approach for the multi-degree reduction of Ball surfaces under different
interpolation constrains. To solve this problem, we propose a new method for the multi-
degree reduction of Ball Bézier surfaces by introducing metaheuristic methods, which can be
used to deal with all the interpolation constrains, simplifying the degree reduction procedure
significantly.

The arrangements for this paper are as follows: Section 2 describes the cooperation search
algorithm; Section 3 presents the main inspiration for this paper and proposes the improved
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cooperation search algorithm combined with a crossover operation (CCSA); In Section 4,
conceptual comparative analysis of CCSA with other metaheuristic algorithms are provided.
In Section 5, the performance of CCSA is analyzed based on experimental results; In Section
6, the CCSA is applied to the optimal multi-degree reduction of Ball Bézier surfaces; Finally,
conclusions and future work are discussed in section 7.

2. Cooperation search algorithm

As a novel social human behavior based algorithm, CSA algorithm simulates the efficient
team cooperation behaviors and dynamic position updating mechanism in modern enterprises
to realize the process of optimization.

2.1. Team cooperation behaviors in modern enterprises

The team cooperation behaviors and position updating mechanism in modern enterprises
are introduced as follows. In general, an enterprise usually offers four different kinds of
positions, including the board of directors, the board of supervisors, the chairman and the
staff. The board of directors is in charge of the enterprise, whose members are elected from
the individuals in the enterprise. The board of supervisors is supposed to exercise responsible
supervision over executive directors for promoting the interests of shareholders. The chairman
on duty is elected form the members in the board of directors, which is mainly responsible
for the smooth and ordered running of the company and has very important influence on the
enterprise. The staffs shall do specific jobs under the guidance of the leaders. The staffs are
empowered to elect the leaders in the board of directors and the board of supervisors.

As we all know, human beings plays a key role in improving productivity. Thus, in order to
achieve the scientific development of an enterprise and maintain its market competitiveness,
it is essential to improve staff’s strength, i.e., to help every staff acquire knowledge as much
as possible. The knowledge of a staff is mainly affected by the chairman on duty for its
highest position in the team. Besides, the leaders in the board of directors and the board
of supervisors can also offer extensive information to staff. After a period of time, ordinary
staffs are encouraged to promote their job positions through their good performance while
the under-performing staffs and leaders may be replaced by staffs with better performance.
This kind of team cooperation behaviors and dynamic position updating mechanism can help
the company to maintain the initiative and thus to realize its sustainable development. Fig.
1 gives a schematic diagram to illustrate the team cooperation relationship in enterprises.
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Fig. 1. Sketch map of the team relationship in modern enterprises.

2.2. Search principle of the CSA method

In the cooperation search algorithm, the optimization process of the problem under con-
sideration is regarded as the development of an enterprise. In the optimization process, every
solution is treated as a staff and a group of staffs constitute a company team. The fitness val-
ue of a solution for the target problem represents the performance of the corresponding staff.
The board of directors and the board of supervisors are composed of M global best solutions
the group has found by far (an external elite set) and N personal best solutions respectively.
The chairman is randomly selected from the board of directors. The implementation process
of the CSA is described as follows.
(1) Team building phase. For conducting uniform search in the initial phase, all the
staffs in the team are randomly produced by Eq.(1). Then evaluate the fitness value of each
solution, store the M ∈ [1, N ] number of global best solutions to constitute the external elite
set {gbest1i }

M
i=1 and record the personal best state pbest1i of each staff.

xt
i,j = φ(x

¯j
, xj), i ∈ [1, N ], j ∈ [1, D], t = 1, (1)

where N denotes the population size, D is the number of decision variables, xt
i,j is the jth

decision variable of the ith solution at tth iteration. φ(x
¯
, x) represents a uniformly distributed

random number in the interval [x
¯
, x].

(2)Team communication operator. Staff could obtain new knowledge through exchanging
information with the leaders. There are three sources of information for a staff: the knowledge
A from the chairman on duty (namely a randomly selected member in the board of directors)
and the collective knowledge B and C form the board of directors and supervisors respectively.

yt+1
i,j = xt

i,j + At
i,j +Bt

i,j + Ct
i,j, i ∈ [1, N ], j ∈ [1, D], t ∈ [1, T ], (2)

At
i,j = log(1/φ(0, 1)) · (gbesttcha,j − xt

i,j), (3)
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Bt
i,j = α · φ(0, 1)

[ 1

M

M
∑

m=1

gbesttm,j − xt
i,j

]

, (4)

Ct
i,j = β · φ(0, 1)

[ 1

N

N
∑

i=1

pbestti,j − xt
i,j

]

, (5)

where yt+1
i,j denotes the jth value of the ith communication solution at t + 1th iteration.

gbesttm,j denotes the jth value of the mth global best solution that the population has found
by far. pbestti,j is the jth value of the ith personal best solution at tth iteration. At

i,j is the
knowledge obtained from the chairman on duty and cha is a randomly selected index from
the set {1, 2, . . . ,M}. Bt

i,j is the mean knowledge obtained from the M number of global best
solutions. Ct

i,j is the mean knowledge obtianed from the N personal best solutions. α and β
are learning coefficients, which are used to control the relevant effects of the corresponding
subpopulations.
(3) Reflective learning operator. In addition to exchanging information with leaders, each
staff could also obtain new message by summing its own experience in the opposite direction,
which is represented as follows

zt+1
i,j =

{

rt+1
i,j yt+1

i,j ≥ cj

pt+1
i,j otherwise

i ∈ [1, N ], j ∈ [1, D], t ∈ [1, T ]. (6)

rt+1
i,j =

{

φ(x̄j + xj − yt+1
i,j , cj) |yt+1

i,j − cj| < φ(0, 1) · |x̄j − xj|

φ(xj, x̄j + xj − yt+1
i,j ) otherwise

(7)

pt+1
i,j =

{

φ(cj, x̄j + xj − yt+1
i,j ) |yt+1

i,j − cj| < φ(0, 1) · |x̄j − xj|

φ(x̄j + xj − yt+1
i,j , x̄j) otherwise

(8)

cj =
x̄j + xj

2
. (9)

where zt+1
i,j is the jth value of the ith reflective solution at t+ 1th iteration.

(4) Internal competition operator. In order to guarantee that staffs with better perfor-
mance could be conserved to promote the company’s market competitiveness, the following
competition operator is applied

xt+1
i =

{

yt+1
i F (yt+1

i ) ≤ F (zt+1
i )

zt+1
i otherwise

i ∈ [1, N ], t ∈ [1, T ], (10)

where F (y) is the fitness value of the solution y.
The pseudo-code of the CSA algorithm is shown in Table 1 and the sketch map of team

communication mechanism is given in Fig. 2.
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Fig. 2. Sketch map of the team communication mechanism in the CSA method.

Table 1: Pseudo-code of the CSA method.

Algorithm 1. Cooperation Search Algorithm (CSA).

Begin:

1. Initialize population x1 by Eq.(1).

2. Evaluate the fitness value of individuals.

While (the termination condition is not satisfied)

3. Update M global best solutions gbesttm.

4. Update N personal best solutions pbestti.

5. Generate N communication solutions yt+1
i by Eq.(4.3)-Eq.(5) for global exploitation.

6. Generate N reflective solutions zt+1
i by Eq.(6)-Eq.(9) to increase population divesity.

7. Evaluate the fitness value of the communication and reflective solutions.

8. Apply Eq.(10) to select N better solutions for the next iteration.

end

9. Output the global best individual as the final optimal solution for the target problem.

End

3. Mutation and crossover based cooperation search algorithm (CCSA)

3.1. Motivation of the work

For an optimization problem with D decision variables, the fitness value of a solution is
determined by the solution structure in all the D dimensions, that is

F (xi) = F (xi,1, xi,2, xi,3, . . . , xi,D). (11)

It is natural to think that individuals whose fitness values are slightly worse may have good
solution structure in some particular dimensions, and thus learning from these individuals can
help a individual gain knowledge as much as possible [18, 44]. The search mechanism of CSA
implies the dependency of the search directions on the leading individuals, which will cause
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the good solution structure that some slightly worse individuals hold in some dimensions to
be neglected and cause the population to lose diversity, increasing the possibility of getting
trapped at local optima and decreasing the convergence accuracy of population. Though the
reflective learning operator can increase population diversity and thus can alleviate this issue
to some extent, it still has some blindness in the search process.

In order to make full use of every individual’s excellent solution structure during the search
process and enhance the exploration and exploitation capability of the CSA, the CSA algo-
rithm is modified by incorporating a DE/best/1 mutation operator and a binomial crossover
operator, which is named CCSA.

3.2. Search principle of the CCSA algorithm

The search principle of the CCSA algorithm is described as follows.
(1) Team building phase. Generate a initial population to form the team of an enter-
prise by Eq.(1). Determine the leaders in the board of directors (M number of global best
solutions {gbest1m}

M
m=1) and the board of supervisors (N number of personal best solutions

{pbest1i }
N
i=1) as well as the chairman (a randomly selected solution gbest1cha,j from the M

global best solutions).
(2) Team communication operator. Ordinary staffs learn from leaders in the board of
directors and the board of supervisors as well as the chairman simultaneously to gain new
knowledge by Eq.(4.3)-Eq.(5).
(3) Mutation operator. In order to strengthen the collaboration among individual staffs
and explore the neighborhood potential areas of the personal best states of individual staffs,
we utilize the personal best solution pbest1i of each individual and modify the DE/best/1
mutation operator in differential evolution algorithms as follows to help individual staffs gain
new knowledge.

st+1
i = pbestti + k(xt

r1
− xt

r2
), i ∈ [1, N ], t ∈ [1, T ]. (12)

where st+1
i is the ith mutation solution, xr1 and xr2 are two randomly selected individuals

in the current population. The learning coefficient k controls the influence of the difference
vector. The high value of k supports extensive exploration and the small value of k encourages
local exploitation. In this study, we set k as a variable, which is linearly decreased from the
initial value 1.5 to the final value 0.
(4) Crossover operator. To make full use of the good solution structure of individual staffs,
the binomial crossover operator in DE is utilized to merge the messages obtained from team
communication and mutation operator, which is expressed as

gt+1
i,j =

{

yt+1
i,j φ(0, 1) < CR

st+1
i,j otherwise

(13)

where gt+1
i,j is the jth value of the ith crossover solution, CR is the crossover probability fixed

as 0.5 in our study. yt+1
i is the team communication solution obtained from Eq.(4.3) and st+1

i

is the mutation solution obtained from Eq.(12).
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(5) Reflective learning operator. Each individual gain new knowledge by summing its
experience in the opposite direction, which is expressed as below:

zt+1
i,j =

{

rt+1
i,j gt+1

i,j ≥ cj

pt+1
i,j otherwise

i ∈ [1, N ], j ∈ [1, D], t ∈ [1, T ]. (14)

rt+1
i,j =

{

φ(x̄j + xj − gt+1
i,j , cj) |gt+1

i,j − cj| < φ(0, 1) · |x̄j − xj|

φ(xj, x̄j + xj − gt+1
i,j ) otherwise

(15)

pt+1
i,j =

{

φ(cj, x̄j + xj − gt+1
i,j ) |gt+1

i,j − cj| < φ(0, 1) · |x̄j − xj|

φ(x̄j + xj − gt+1
i,j , x̄j) otherwise

(16)

cj =
x̄j + xj

2
. (17)

where gt+1
i,j is jth value of the ith crossover solution obtained from Eq.(13) and zt+1

i,j is the jth
value of the ith reflective solution in t+ 1th iteration.
(6) Greedy selection. In an enterprise, staffs with better performance are usually conserved
for promoting the company’s market competitiveness. To realize this goal, the following
greedy selection is applied

xt+1
i =











yt+1
i F (yt+1

i ) < min(F (gt+1
i ), F (zt+1

i ))

gt+1
i F (gt+1

i ) < min(F (yt+1
i ), F (zt+1

i ))

zt+1
i F (zt+1

i ) ≤ min(F (yt+1
i ), F (gt+1

i ))

(18)

Table 2 gives the pseudo-code of the proposed CCSA algorithm.

Table 2: Pseudo-code of the CCSA algorithm.

Algorithm 2. CCSA Algorithm

Begin:

1. Initialize population x1 by Eq.(1).

2. Evaluate the fitness value of individuals.

While (the termination condition is not satisfied)

3. Update M global best solutions gbesttm.

4. Update N personal best solutions pbestti.

5. Generate N communication solutions yt+1
i by Eq.(4.3)-Eq.(5) for global exploitation.

6. Generate N mutation solutions st+1
i by Eq.(12) to strengthen collaboration.

7. Merge the solutions between yt+1
i and st+1

i by Eq.(13) to generate N crossover solutions gt+1
i

to make full use of the good solution structure of individuals.

8. Generate N reflective solutions zt+1
i by Eq.(14)-Eq.(17) to increase population diversity.

9. Evaluate the fitness of the team communicaiton, crossover and reflective solutions.

10. Use Eq.(18) to select N best solutions to form a new population.

end

12. Output the global best solution as the final optimal solution for the target problem.

End
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The traits of the CCSA algorithm are summarized as below:
(1) In the team communication phase of CCSA, new direction for movement of a individual

is guided by M Gbest and N Pbest and a randomly selected Gbest solution, i.e. cumulative
effect of all three is considered, which can help the population find the promising regions and
accelerate convergence effectively.

(2) The mutation operator implemented on personal best solution and the crossover op-
erator can significantly increase population diversity, guaranteeing the exploration capability
of the algorithm.

(3) The reflective learning operator enables the search of a individual to be transferred
from one region to another, which can help population jump out of local optima. Compared
with the well known Quasi-opposition learning strategy, in which the value range of the Quasi-
opposite point of a point gi,j is (x̄j + xj − gi,j,

x̄j+xj

2
) or (

x̄j+xj

2
, x̄j + xj − gi,j), the value range

of the reflective point is wider, and thus the reflective points of the population can be more
dispersed. Consequently the CCSA possesses an excellent exploration ability.

(4) The greedy selection enables the population to seek out high-quality solutions for the
next iteration to accelerate the convergence.

(5) The swarm is able to achieve an appropriate balance between global exploitation and
local exploration via the operators above, increasing the probability of approximating the
global optimal solution.

3.3. Time complexity analysis of CCSA

Time complexity is a key factor to evaluate the efficiency of an intelligent algorithm in
solving problems. It is supposed that the population sizeN and T iterations are involved in the
optimization procedure of a target problem with D decision variables. Besides, it is assumed
that the fitness value evaluation per solution is much more complicated than that of other
calculations. In the optimization process of the target problem with the CCSA algorithm,
N solutions are evaluated in the original team building phase, then N team communication
solutions, N crossover solutions and N reflective solutions are evaluated in each iteration.
Therefore the total number of evaluations with the CCSA algorithm is N + 3NT .

4. Conceptual comparative analysis of CCSA with other metaheuristic algorithms

In general, all nature-inspired metaheuristics present two features i.e. adaptability and
choice of the fittest, so nature-inspired metaheuristics apparently looks quite similar. In fact,
their solution updating mechanism differs from each other. In this section, the updating
mechanism of the proposed CCSA algorithm is compared with that of the particle swarm
optimization (PSO), the genetic algorithms(GA), and the squirrel search algorithm (SSA).

4.1. CCSA versus PSO

Both the CCSA and PSO utilize the cumulative effect of global best information and
personal best information to guide the evolution of the population, however technically they
present several differences in their formulation and updating mechanism. Some of the major
differences are described as follows:
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(1) The PSO utilizes one global best solution while the CCSA utilizes M number of global
best solutions to guide the search direction.

(2) In PSO, the solution updating of a individual xi just involves its own personal best
solution pbesti and the global best solution gbest, while in CCSA, the solution updating
involves the collective knowledge form all personal best solutions {pbesti}

N
i=1 and M glob-

al best solutions {gbesti}
M
i=1. More importantly, a randomly selected global best solution

gbestcha plays an important and even conclusive role in the solution updating.
(3) The mutation and crossover operator as well as the reflective learning operator are

employed in the CCSA to maintain population diversity, whereas PSO does not utilize them.

4.2. CCSA versus GA

The mutation and crossover operators are involved in both the CCSA and GA algorithms,
but the meaning of the two operators in CCSA and the meaning of the two operators in GA
are totally different.

(1) In GA, all the updating operators are implemented on chromosomes encoded by an
array of parameter values. In contrary, for CCSA all the updating operators are implemented
on the parameter values directly.

(2)The crossover operator in GA swaps a subsequence of two of the chosen chromosomes
to create two offspring. In CCSA, for two given solutions, a crossover solution is generated
by randomly choose each of its parameter value form two candidate solutions.

(3) The mutation operator in GA means that randomly flips individual bits in the chro-
mosomes (turning a 0 into a 1 and vice versa). While in CCSA, the mutation operator means
probabilistic neighbourhood selection, i.e. basically replaces one solution vector by an arith-
metic recombination of the solution vector and the difference vector of two randomly selected
solution vectors.

4.3. CCSA versus SSA

Squirrel search algorithm is a novel nature-inspired metaheuristic algorithm, inspired by
the dynamic foraging behaviour of flying squirrels and their efficient gliding flight. The typical
assumptions of the SSA algorithm are:

(a) There are N number of flying squirrels in forest, each of which is considered to be on
a tree and searches for food individually.

(b) There are three kinds of trees in the forest: one hickory tree FSht (hickory nuts food
source), three acorn trees FSat (acorn nuts food source) and the remaining normal trees FSnt.

The position updating mechanism of the squirrel search algorithm include the following
three cases:

Case 1. Flying squirrels on acorn trees (FSt
at) may move towards the hickory tree (FSt

ht),
which can be represented as:

FSt+1
at =

{

FSt
at + dg ×Gc × (FSt

ht − FSt
at), R1 ≥ Pdp,

Random location, otherwise.

where dg is a gliding distance, Gc is a gliding constant that controls the balance between
exploration and exploitation of SSA, R1 is a random number uniformly distributed in [0,1],
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Table 3: Unimodal benchmark functions.

Function Dim Lb Ub fmin

F1(x) =
∑n

i=1 x
2
i 30 -100 100 0

F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 -10 10 0

F3(x) =
∑n

i=1(
∑i

j=1 xi)
2 30 -100 100 0

F4(x) = maxi |xi|, 1 ≤ i ≤ n 30 -100 100 0

F5(x) =
∑n−1

i=1 (100(xi+1 − x2
i )

2 + (xi − 1)2) 30 -30 30 0
F6(x) =

∑n
i=1([xi + 0.5])2 30 -100 100 0

F7(x) =
∑n

i=1 ix
4
i + random[0, 1) 30 -1.28 1.28 0

Pdp is the predator presence probability.
Case 2. Some of the flying squirrels on normal trees (FSt

nt) may move towards the acorn
trees for food, which can be represented as:

FSt+1
nt =

{

FSt
nt + dg ×Gc × (FSt

at − FSt
nt), R2 ≥ Pdp,

Random location, otherwise.

where R2 is a random number uniformly distributed in [0,1].
Case 3. The remaining flying squirrels on normal trees (FSt

nt) may move towards the hickory
tree (FSt

ht) for food, which can be represented as:

FSt+1
nt =

{

FSt
nt + dg ×Gc × (FSt

ht − FSt
nt), R3 ≥ Pdp,

Random location, otherwise.

where R3 is a random number uniformly distributed in [0,1].

Both the CCSA and SSA work on effective division of labour, which gives them a similar
appearance superficially, however their population updating mechanisms are entirely different.

(1)In SSA, the pattern matrix is divided into three regions and SSA employs three strate-
gies in different regions of pattern matrix. On the contrary, in CCSA, the whole pattern
matrix utilizes a universal updating strategy, which is much easier to implement.

(2)In the mutation operator of CCSA, the difference information of two randomly selected
individuals is used to increase population diversity. While in SSA, this goal is achieved by
introducing predator presence, which is modelled using a probabilistic behaviour.

5. Numerical experiments

5.1. Numerical experiments on 23 classic benchmark functions

In this section, experimental studies are carried out on 23 well known benchmark functions
[22] to verify the performance of the CCSA algorithm. These benchmark functions include
the unimodal functions F1-F7 in Table 3, the multimodal functions F8-F13 in Table 4, and
the fixed dimensional multimodal functions F14-F23 in Table 5.

The optimization result of the proposed CCSA algorithm is compared with those of 6
existing metaheuristic algorithms, including the PSO [4], GWO [5], mGWO [18], QISCA [22],
SSA[7] and the CSA algorithm. For the sake of fairness, each algorithm will run on each
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Table 4: Multimodal benchmark functions.

Function Dim Lb Ub fmin

F8(x) =
∑n

i=1 −xisin(
√

|xi|) 30 -500 500 -418.9829*d
F9(x) =

∑n
i=1(x

2
i − 10 cos 2πxi + 10) 30 -5.12 5.12 0

F10(x) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e 30 -32 32 0

F11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi
√

i
) + 1 30 -600 600 0

F12(x) =
π
n
{10 sin2(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+
∑n

i=1 u(xi, 10, 100, 4)
30 -100 100 0

yi = 1 + xi+1
4

, u(xi, a, k,m) =











k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

F13(x) = 0.1 sin2(3πx1) +
∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)] 30 -50 50 0
+

∑n
i=1 u(xi, 5, 100, 4)

Table 5: Fixed-dimension multimodal benchmark functions.

Function Dim Lb Ub f

F14(x) = ( 1
500

+
∑25

j=1
1

j+
∑

2

i=1
(xi−aij)6

)−1 2 -65 65 1

F15(x) =
∑11

i=1[ai −
x1(b

2

i+bix2)

b2
i
+bix3+x4

] 3 -5 5 0.0003

F16(x) = 4x2
1 − 2.1x4

1 + 1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 2 -5 5 -1.0316

F17(x) = (x2 − 5.1
4π2

x2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
) cosx1 + 10 2 -5 5 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 16x1x2 + 3x2

2)]× [30 + (2x1 − 3x2)2 2 -2 2 3
×(18− 32x1 + 12x2 + 48x2 − 36x1x2 + 27x2

2)]

F19(x) = −
∑4

i=1 ciexp(−
∑3

j=1 aij(xj − pij)
2) 3 0 1 -3.86

F20(x) = −
∑4

i=1 ciexp(−
∑6

j=1 aij(xj − pij)
2) 6 0 1 -3.2

F21(x) = −
∑5

i=1[(X− ai)(X− ai)
T + ci]

−1 4 0 10 -10.1532

F22(x) = −
∑7

i=1[(X− ai)(X− ai)
T + ci]

−1 4 0 10 -10.4028

F23(x) = −
∑10

i=1[(X− ai)(X− ai)
T + ci]

−1 4 0 10 -10.5363
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Table 6: Parametric settings of the 10 algorithms.

Algorithms Parameters Value
PSO w,C1, C2 0.9, 2, 2
GWO amin, amax 0, 2
mGWO amin, amax, k 0, 2, 1→0
QISCA a, δ 2, [0.001, 0.01]
SSA n1, n2, Gc, Pdp 3, 9, 1.9, 0.1
CSA α, β,M 0.1, 0.15, 3
OBPSO w,C1, C2 0.72984, 1.49618, 1.49618
ISSA n1, n2, Gc, Pdp,maxseed,minseed 3, 9, 1.9, 0.1, 5, 2
SCA-PSO w,C1, C2, r2, r3, r4, α 0.9 → 0.4, 2, 2, 2π·rand, 2·rand, 2
CCSA α, β,M, k 0.1, 0.15, 3, 1.5→0

benchmark function independently for 20 times and the values of these parameters are set as
suggested by their authors. Table 6 displays the parameter configuration of these algorithms.
Simulation experiment configuration is Matlab-2016b, Intel(R) Core(TM) i7-10510U CPU @
1.80GHz 2.30 GHz, 16GB.

In the comparative experiments, the population size N and the maximum iteration num-
ber T in these algorithms are set as 50 and 500 respectively. The statistical results of these
algorithms in experiments are displayed Table 7. Here, we mark the best and the second
best result obtained by those algorithms on each test function with bold font and with un-
derlined respectively. To evaluate the advantages and disadvantages of these algorithms, the
last row of Table 7 displays the Wilcoxon rank-sum-test results of the comparison algorithms,
where the ”+/=/−” in each comparison algorithm represents its number of functions ”supe-
rior/comparable/inferior” to the CCSA method.

From Table 7, it can be found that the CCSA method achieves the best or sub-best result
on 21 out of 23 benchmark functions, 15 of which are the best result. Besides, the CCSA
uniformly converges to the theoretical optimum in 20 independent experiments in F1, F3,
F9, F11, F17. Table 8 provides the detection value P in the Wilcoxon rank-sum-test, where
the boldface data implies that there is no obvious difference between the CCSA and the
corresponding comparison algorithm when α = 0.05.

In order to reflect the search efficiency of each algorithm more intuitively, the convergence
trajectory of the 7 methods for several benchmark functions are shown in Fig. 3. It can
be seen from Fig. 3 that the CCSA algorithm can quickly seek out the most satisfying
solutions during the early iterations compared with the other algorithms; At the end of
iteration, the CCSA algorithm can usually yield a solution of the best quality among these
algorithms. This might because the team communication operator enables the algorithm
to conduct global exploration and determine the promising search area quickly. While the
crossover and reflective learning operator enable the algorithm to do exploration in different
areas within the search space, which are helpful for the algorithm to jump out of local optima
as well as to enhance convergence speed and solution accuracy. These results show that the
performance of the CCSA algorithm is superior to that of the other comparison algorithms
in terms of convergence speed and solution accuracy.

To explore the distributions of optimal values obtained in different runs, Fig. 4 shows
the Box plot of the 7 algorithms for several benchmark functions. As shown in Fig. 4 that
the objective distribution range of the CCSA algorithm is smaller than the other algorithms,
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Table 7: Statistical results of 7 metaheuristic methods for 23 classic benchmark functions.

Function Algorithm
PSO SSA GWO mGWO QISCA CSA CCSA

F1 Ave 7.7836E+00 5.4296E-05 2.1329E-59 1.4127E-26 0.0000E+00 0.0000E+00 0.0000E+00

Std 3.3028E+00 3.3612E-05 4.5923E-59 3.0036E-26 0.0000E+00 0.0000E+00 0.0000E+00

F2 Ave 3.9247E+00 7.3560E+01 2.3177E-35 4.5441E-16 7.7740E-188 3.1952E-216 6.6372E-220

Std 2.0989E+00 6.0385E+01 3.0479E-35 3.4568E-16 0.0000E+00 0.0000E+00 0.0000E+00

F3 Ave 2.8314E+02 2.8885E+01 4.2538E-15 2.3232E-02 2.0487E-298 0.0000E+00 0.0000E+00

Std 1.0976E+02 1.3363E+01 1.5697E-14 2.7145E-02 0.0000E+00 0.0000E+00 0.0000E+00

F4 Ave 8.7519E+00 7.2140E+00 6.9181E-16 5.0644E-04 2.0241E-175 3.2451E-205 1.8149E-205

Std 2.7523E+00 2.2830E+00 1.1455E-15 5.6985E-04 0.0000E+00 0.0000E+00 0.0000E+00

F5 Ave 3.0636E+02 6.4232E+01 2.8068E+01 2.6197E+01 2.7495E+01 2.8612E+01 2.7291E+01
Std 1.8358E+02 5.6696E+01 6.6778E-01 4.8425E-01 5.6708E-01 1.8116E-01 4.2872E-01

F6 Ave 8.8800E+01 1.9000E+01 0.0000E+00 0.0000E+00 0.0000E+00 2.9333E+00 1.3333E-01
Std 5.1813E+01 5.6821E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.3345E+00 3.5187E-01

F7 Ave 4.8963E-02 3.6341E-02 3.0317E-04 3.7144E-03 1.6463E-05 2.7970E-04 2.2548E-04
Std 2.2267E-02 1.3369E-02 3.4566E-04 1.8799E-03 2.0098E-05 2.5527E-04 2.1723E-04

F8 Ave -6.0999E+03 -7.3678E+03 -5.0509E+03 -5.0958E+03 -8.3591E+03 -4.3425E+03 -8.1156E+03
Std 6.6475E+02 1.3540E+03 9.1746E+02 3.9819E+02 8.3722E+02 1.0639E+03 5.5188E+02

F9 Ave 3.7309E+01 1.4781E+02 0.0000E+00 2.5090E+01 0.0000E+00 0.0000E+00 0.0000E+00

Std 1.2738E+01 4.1612E+01 0.0000E+00 1.1142E+01 0.0000E+00 0.0000E+00 0.0000E+00

F10 Ave 4.4481E+00 9.6723E+00 6.3400E-15 5.6800E-01 8.8800E-16 8.8800E-16 8.8800E-16

Std 9.0549E-01 6.4586E+00 1.8300E-15 1.1900E+00 0.0000E+00 0.0000E+00 0.0000E+00

F11 Ave 1.0955E+00 1.4279E-02 0.0000E+00 5.2064E-03 0.0000E+00 0.0000E+00 0.0000E+00

Std 5.9029E-02 8.2055E-03 0.0000E+00 8.0194E-03 0.0000E+00 0.0000E+00 0.0000E+00

F12 Ave 4.3787E+00 7.8472E+00 2.0821E-01 1.6587E-02 2.4410E-02 3.0744E-01 3.7500E-04

Std 1.9901E+00 2.9781E+00 7.5396E-02 1.3047E-02 6.2998E-03 6.7840E-02 7.7840E-04

F13 Ave 3.2444E+01 2.0035E+01 2.0774E+00 1.8312E-01 9.5163E-01 2.3310E+00 6.5051E-01
Std 1.6755E+01 1.2957E+01 3.8634E-01 1.7186E-01 1.6426E-01 4.2832E-01 1.6527E-01

F14 Ave 2.5803E+00 9.9800E-01 8.2294E+00 9.9800E-01 3.0885E+00 5.1962E+00 9.9800E-01

Std 1.8173E+00 2.3700E-16 4.9016E+00 8.8600E-13 3.6423E+00 3.8378E+00 1.4500E-16

F15 Ave 3.0749E-04 8.7100E-04 3.0952E-03 1.6972E-03 7.4920E-04 1.8598E-03 7.2750E-04
Std 3.5900E-18 3.1986E-04 7.0184E-03 5.1678E-03 2.2510E-04 4.3296E-03 2.1800E-04

F16 Ave -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0314E+00 -1.0316E+00
Std 5.9300E-17 2.1400E-16 1.0400E-08 1.8000E-09 7.4500E-10 8.1300E-04 5.6300E-07

F17 Ave 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01

Std 0.0000E+00 0.0000E+00 2.6100E-07 4.2500E-08 6.7400E-08 2.7300E-06 0.0000E+00

F18 Ave 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00
Std 1.4200E-15 4.6100E-15 8.4300E-06 2.4000E-08 1.5700E-07 1.3700E-08 2.1100E-15

F19 Ave -3.8628E+00 -3.8628E+00 -3.8611E+00 -3.8628E+00 -3.8612E+00 -3.8628E+00 -3.8628E+00

Std 7.1200E-16 5.2900E-15 2.9708E-03 3.9700E-07 2.7809E-03 9.6900E-06 6.5000E-16

F20 Ave -3.2903E+00 -3.2583E+00 -3.2619E+00 -3.2545E+00 -3.2233E+00 -3.2299E+00 -3.2903E+00

Std 5.4422E-02 6.1659E-02 9.3191E-02 5.8808E-02 6.4620E-02 6.9585E-02 5.4422E-02

F21 Ave -6.4560E+00 -7.3018E+00 -9.4759E+00 -1.0153E+01 -4.3085E+00 -9.5361E+00 -1.0153E+01

Std 2.8289E+00 3.2689E+00 1.7858E+00 2.6809E-04 2.0183E+00 1.9400E+00 1.7100E-15

F22 Ave -9.0321E+00 -8.3298E+00 -1.0402E+01 -1.0402E+01 -4.8248E+00 -9.5066E+00 -1.0403E+01

Std 2.8846E+00 3.1126E+00 5.5575E-04 3.1476E-04 3.0357E+00 2.3477E+00 2.9600E-15

F23 Ave -7.3785E+00 -9.1006E+00 -1.0536E+01 -1.0536E+01 -3.0255E+00 -8.4707E+00 -1.0536E+01

Std 3.5980E+00 2.4647E+00 6.0761E-04 2.8625E-04 6.6967E-01 3.5551E+00 3.1800E-15

+/=/− 1/5/17 1/3/19 0/4/19 2/1/20 1/8/14 0/8/15
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Fig. 3. Comparison of convergence curves of 7 algorithms for some of the 23 benchmark functions.
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Table 8: P -value obtained from Wilcoxon rank-sum test on 23 classic benchmark functions.

Function PSO SSA GWO mGWO QISCA CSA
P P P P P P

F1 6.9E-07 6.9E-07 6.9E-07 6.9E-07 NaN NaN

F2 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06
F3 6.9E-07 6.9E-07 6.9E-07 6.9E-07 3.5E-01 NaN

F4 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.1E-02
F5 3.4E-06 1.1E-03 1.9E-03 3.4E-05 8.9E-02 2.8E-05
F6 1.3E-06 1.2E-06 1.6E-01 1.6E-01 1.6E-01 6.2E-06
F7 3.4E-06 3.4E-06 4.6E-01 3.4E-06 7.5E-06 4.1E-01

F8 2.5E-04 2.4E-01 1.8E-04 1.8E-04 1.9E-01 1.8E-04
F9 6.9E-07 6.9E-07 NaN 6.9E-07 NaN NaN

F10 6.9E-07 6.9E-07 4.3E-07 6.8E-07 NaN NaN

F11 6.9E-07 6.9E-07 NaN 1.8E-02 NaN NaN

F12 3.4E-06 3.4E-06 3.4E-06 5.7E-05 3.4E-06 3.4E-06
F13 3.4E-06 3.4E-06 3.4E-06 7.5E-06 1.6E-04 3.4E-06
F14 6.0E-04 1.9E-02 1.6E-06 1.6E-06 1.6E-06 1.7E-06
F15 3.4E-06 2.5E-01 7.0E-03 5.8E-04 9.7E-01 6.2E-01

F16 1.0E+00 8.5E-05 2.2E-05 2.2E-05 2.2E-05 1.0E-02
F17 NaN NaN 6.9E-07 6.9E-07 6.9E-07 3.5E-01

F18 8.0E-01 1.1E-04 2.9E-06 2.9E-06 2.9E-06 6.8E-03
F19 2.9E-01 1.2E-05 2.1E-06 2.1E-06 2.1E-06 1.4E-05
F20 6.0E-01 3.5E-04 2.2E-03 6.6E-04 4.4E-05 8.9E-05
F21 3.5E-05 3.1E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06
F22 6.0E-03 1.7E-05 2.4E-06 2.4E-06 2.4E-06 2.4E-06
F23 2.1E-03 1.0E-04 2.1E-06 2.1E-06 2.1E-06 2.1E-06

demonstrating the strong robust of the CCSA algorithm.
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Fig. 4. Box plot of 7 algorithms for some of the 23 benchmark functions.

5.2. Numerical experiments on Benchmark suite: CEC2017

To fully verify the performance of the CCSA algorithm on solving high-dimensional com-
plex optimization problems, we use the CCSA algorithm to solve the latest collection of
benchmarks CEC 2017 [45] and compares the results with 6 latest metaheuristic algorithms,
including the OBPSO[26], SCA-PSO [27], QISCA [22], mGWO [18], ISSA [25] and the CSA
algorithm. In the CEC 2017 test, the population size N and the maximum iteration number
T are set as 50 and 1000 respectively. Table 9 shows the average Ave, standard deviation
and the sorting rank of the 7 algorithms running independently for 20 independent runs in
the 50 dimensions. The second row to the bottom of Table 9 provides the total ranking of
the 29 test functions for each algorithm and the last row provides the total running time of
each algorithm. Table 10 shows the detection value P in the Wilcoxon rank-sum-test with the
significance level α = 0.05. Besides, Fig. 5 and Fig. 6 display the comparison of convergence
curves and Box plot of 9 test functions solved by the 7 algorithms.

As shown in Table 9, the CCSA algorithm performs best on 19 out of 29 test functions with
a total ranking 47. While the total ranking of the comparison algorithm OBPSO, SCA-PSO,
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QISCA, mGWO, NOSSA and CSA are 174, 100, 88, 117, 100, 186 respectively. Besides, the
Wilcoxon rank-sum-test result of the 6 comparison algorithms are 0/0/29, 3/0/26, 5/0/24,
4/0/25, 6/0/23, 0/0/29 respectively. Fig. 5 and Fig. 6 reveal that the CCSA has a fast
convergence rate and a high convergence accuracy. It is clear from the obtained results that
the CCSA outperforms other comparison algorithms significantly.

The tests results on 23 classic benchmark functions and 29 CEC 2017 benchmark functions
demonstrate that the CCSA has excellent local exploitation performance in dealing with
unimodal problems and has the ability to jump out of local optima in dealing with multimodal
problems. Besides, as shown in Table 7-Table 9, the results obtained by the CCSA algorithm
are much better than those obtained by the CSA in solving multimodal problems, indicating
that the exploration capability of the CSA algorithm is greatly improved after incorporating
these modifications. This may because the probabilistic neighbourhood selection in mutation
operator and the merging of different dimensional information of various solutions in crossover
operator can help population to find more excellent solutions in different areas, and thus the
population has a high probability of jumping out of local optima. Consequently, the CCSA
can yield better optimization result than other comparison algorithms in general. Given the
excellent optimization performance of the proposed CCSA algorithm, we apply the CCSA
algorithm to solve the multi-degree reduction problems of Ball Bézier surfaces.
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Table 9: Statistical results of CCSA and 6 metaheuristic methods for CEC 2017 benchmark suite.

F OBPSO SCA-PSO QISCA SSA ISSA CSA CCSA
F1 Ave 4.797E+10 7.038E+09 5.052E+08 7.368E+04 4.470E+03 4.794E+10 3.444E+07

STD 9.218E+09 3.216E+09 6.584E+08 5.243E+04 6.172E+03 6.430E+09 1.124E+08
Rank 7 5 4 2 1 6 3

F3 Ave 1.974E+05 5.722E+04 9.256E+04 2.722E+04 1.328E+03 2.234E+05 1.396E+05
STD 5.029E+04 1.382E+04 1.538E+04 9.672E+03 1.155E+03 5.397E+04 4.701E+04
Rank 6 3 4 2 1 7 5

F4 Ave 9.318E+03 8.435E+02 7.106E+02 6.340E+02 6.090E+02 1.124E+04 5.412E+02

STD 3.332E+03 1.177E+02 7.940E+01 3.978E+01 3.604E+01 2.296E+03 4.063E+01

Rank 6 5 4 3 2 7 1
F5 Ave 1.055E+03 8.306E+02 7.975E+02 9.907E+02 1.037E+03 9.826E+02 7.263E+02

STD 7.137E+01 5.632E+01 4.699E+01 8.882E+01 9.160E+01 4.441E+01 2.964E+01

Rank 7 3 2 5 6 4 1
F6 Ave 6.766E+02 6.437E+02 6.357E+02 6.787E+02 6.815E+02 6.776E+02 6.360E+02

STD 6.454E+00 7.678E+00 6.405E+00 1.073E+01 1.063E+01 7.252E+00 7.662E+00
Rank 4 3 1 6 7 5 2

F7 Ave 2.063E+03 1.237E+03 1.311E+03 1.615E+03 1.613E+03 1.588E+03 1.185E+03

STD 1.860E+02 7.913E+01 9.060E+01 1.351E+02 2.250E+02 1.082E+02 1.065E+02

Rank 7 2 3 6 5 4 1
F8 Ave 1.355E+03 1.151E+03 1.118E+03 1.316E+03 1.320E+03 1.313E+03 1.049E+03

STD 4.320E+01 3.595E+01 4.508E+01 7.761E+01 8.025E+01 4.152E+01 4.375E+01

Rank 7 3 2 5 6 4 1
F9 Ave 2.072E+04 1.569E+04 1.701E+04 2.025E+04 1.958E+04 2.376E+04 7.195E+03

STD 5.086E+03 7.200E+03 2.953E+03 4.691E+03 4.950E+03 5.135E+03 1.970E+03

Rank 6 2 3 5 4 7 1
F10 Ave 1.138E+04 9.625E+03 8.274E+03 9.511E+03 8.971E+03 1.322E+04 7.915E+03

STD 1.065E+03 1.012E+03 8.717E+02 1.058E+03 1.141E+03 1.155E+03 1.854E+03

Rank 6 5 2 4 3 7 1
F11 Ave 1.032E+04 2.282E+03 3.654E+03 1.495E+03 1.460E+03 1.667E+04 1.335E+03

STD 4.698E+03 3.540E+02 8.699E+02 9.491E+01 8.942E+01 3.212E+03 9.391E+01

Rank 6 4 5 3 2 7 1
F12 Ave 8.065E+09 7.461E+08 8.488E+07 7.902E+07 6.242E+07 1.891E+10 1.467E+07

STD 4.737E+09 6.183E+08 4.544E+07 3.903E+07 3.156E+07 6.020E+09 8.234E+06

Rank 6 5 4 3 2 7 1
F13 Ave 2.625E+09 1.933E+08 1.124E+06 1.488E+05 2.555E+05 7.886E+09 1.263E+05

STD 4.097E+09 2.649E+08 5.849E+05 8.016E+04 1.555E+05 4.027E+09 6.222E+04

Rank 6 5 4 2 3 7 1
F14 Ave 2.525E+06 4.268E+05 7.798E+05 3.166E+05 9.379E+04 2.415E+07 2.357E+05

STD 3.500E+06 2.940E+05 4.806E+05 3.033E+05 5.676E+04 1.326E+07 2.471E+05
Rank 6 4 5 3 1 7 2

F15 Ave 4.557E+07 1.314E+07 1.504E+05 1.129E+05 9.292E+04 5.814E+08 4.222E+04

STD 1.287E+08 2.009E+07 6.497E+04 9.969E+04 8.443E+04 6.439E+08 1.919E+04

Rank 6 5 4 3 2 7 1
F16 Ave 4.934E+03 3.637E+03 4.096E+03 4.821E+03 4.424E+03 5.975E+03 3.551E+03

STD 4.816E+02 4.079E+02 5.789E+02 1.220E+03 5.602E+02 8.029E+02 4.451E+02

Rank 6 2 3 5 4 7 1
F17 Ave 4.018E+03 3.285E+03 3.530E+03 3.907E+03 4.010E+03 4.105E+03 3.209E+03

STD 4.673E+02 2.886E+02 4.293E+02 3.724E+02 4.174E+02 5.326E+02 3.863E+02

Rank 6 2 3 4 5 7 1
F18 Ave 7.140E+06 4.147E+06 4.338E+06 2.558E+06 9.530E+05 5.112E+07 1.674E+06

STD 1.519E+07 2.610E+06 2.930E+06 1.638E+06 7.836E+05 3.803E+07 1.182E+06
Rank 6 4 5 3 1 7 2

F19 Ave 6.823E+07 8.083E+06 1.579E+05 2.955E+06 1.941E+06 1.409E+08 7.170E+04

STD 1.906E+08 9.817E+06 9.589E+04 1.921E+06 9.987E+05 1.765E+08 4.743E+04

Rank 6 5 2 4 3 7 1
F20 Ave 3.607E+03 3.408E+03 3.043E+03 3.804E+03 3.614E+03 3.905E+03 2.987E+03

STD 3.375E+02 3.037E+02 2.867E+02 2.995E+02 3.748E+02 3.597E+02 3.420E+02

Rank 4 3 2 6 5 7 1
F21 Ave 2.923E+03 2.641E+03 2.641E+03 2.882E+03 2.918E+03 2.888E+03 2.537E+03

STD 7.636E+01 5.417E+01 6.515E+01 9.167E+01 1.195E+02 6.764E+01 4.358E+01

Rank 7 2 3 4 6 5 1
F22 Ave 1.326E+04 1.071E+04 8.855E+03 1.180E+04 1.034E+04 1.502E+04 9.602E+03

STD 9.650E+02 1.183E+03 2.836E+03 1.803E+03 1.116E+03 1.493E+03 1.937E+03
Rank 6 4 1 5 3 7 2

F23 Ave 3.809E+03 3.078E+03 3.120E+03 3.767E+03 3.781E+03 4.125E+03 3.014E+03

STD 1.724E+02 5.882E+01 6.740E+01 2.215E+02 2.267E+02 2.463E+02 5.353E+01

Rank 6 2 3 4 5 7 1
F24 Ave 4.064E+03 3.216E+03 3.307E+03 4.055E+03 3.885E+03 4.456E+03 3.154E+03

STD 2.039E+02 6.574E+01 6.894E+01 2.389E+02 1.385E+02 1.708E+02 6.264E+01

Rank 6 2 3 5 4 7 1
F25 Ave 7.675E+03 3.401E+03 3.234E+03 3.104E+03 3.058E+03 7.919E+03 3.120E+03

STD 1.898E+03 1.784E+02 6.788E+01 3.438E+01 3.335E+01 9.966E+02 2.640E+01
Rank 6 5 4 2 1 7 3

F26 Ave 1.444E+04 7.241E+03 6.590E+03 1.572E+04 1.537E+04 1.358E+04 8.620E+03
STD 1.754E+03 4.241E+02 2.045E+03 2.606E+03 2.565E+03 1.148E+03 1.609E+03
Rank 5 2 1 7 6 4 3

F27 Ave 4.474E+03 3.404E+03 3.487E+03 4.158E+03 3.841E+03 6.131E+03 3.679E+03
STD 5.314E+02 5.715E+01 9.799E+01 3.574E+02 2.216E+02 6.384E+02 1.196E+02
Rank 6 1 2 5 4 7 3

F28 Ave 7.732E+03 3.546E+03 3.682E+03 3.367E+03 3.336E+03 8.174E+03 3.380E+03
STD 1.361E+03 1.413E+02 6.115E+02 3.561E+01 3.932E+01 7.004E+02 5.216E+01
Rank 6 4 5 2 1 7 3

F29 Ave 8.028E+03 5.023E+03 4.796E+03 7.211E+03 6.738E+03 1.215E+04 4.757E+03

STD 1.658E+03 3.767E+02 3.270E+02 9.525E+02 9.229E+02 4.462E+03 3.522E+02

Rank 6 3 2 5 4 7 1
F30 Ave 2.241E+08 9.650E+07 5.180E+06 9.010E+07 6.323E+07 6.675E+08 4.642E+06

STD 1.627E+08 3.353E+07 2.072E+06 2.904E+07 1.910E+07 3.036E+08 1.509E+06

Rank 6 5 2 4 3 7 1
+/=/− 0/0/29 3/0/26 5/0/24 4/0/25 6/0/23 0/0/29
Total Rank 174 100 88 117 100 186 47
CPUtime(s) 7.51E+02 1.63E+03 1.91E+03 5.81E+02 1.89E+03 1.02E+03 1.86E+03
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Table 10: P -value obtained from Wilcoxon rank-sum test on CEC 2017 benchmark suite.

Function OBPSO SCA-PSO QISCA mGWO NOSSA CSA
P P P P P P

F1 6.80E-08 6.80E-08 6.01E-07 6.80E-08 6.80E-08 6.80E-08
F3 2.47E-04 6.80E-08 4.17E-05 6.80E-08 6.80E-08 2.92E-05
F4 6.80E-08 6.80E-08 6.80E-08 1.05E-06 9.75E-06 6.80E-08
F5 6.80E-08 9.13E-07 6.67E-06 6.80E-08 6.80E-08 6.80E-08
F6 6.80E-08 3.97E-03 7.76E-01 6.80E-08 6.80E-08 6.80E-08
F7 6.80E-08 4.68E-02 5.09E-04 9.17E-08 2.22E-07 9.17E-08
F8 6.80E-08 9.13E-07 8.29E-05 6.80E-08 7.90E-08 6.80E-08
F9 6.80E-08 6.01E-07 7.90E-08 9.17E-08 7.90E-08 6.80E-08
F10 2.36E-06 5.25E-05 3.15E-02 1.29E-04 2.14E-03 1.20E-06
F11 6.80E-08 6.80E-08 6.80E-08 1.81E-05 2.22E-04 6.80E-08
F12 6.80E-08 6.80E-08 6.92E-07 6.80E-08 1.20E-06 6.80E-08
F13 6.80E-08 6.80E-08 6.80E-08 4.25E-01 1.78E-03 6.80E-08
F14 8.35E-03 1.14E-02 9.28E-05 2.29E-01 2.07E-02 6.80E-08
F15 3.29E-05 6.80E-08 1.06E-07 5.31E-02 3.05E-04 6.80E-08
F16 1.23E-07 6.75E-01 2.56E-03 1.60E-05 8.60E-06 6.80E-08
F17 7.58E-06 5.98E-01 1.93E-02 1.10E-05 3.07E-06 3.07E-06
F18 5.61E-01 3.38E-04 1.01E-03 7.64E-02 4.68E-02 6.80E-08
F19 6.80E-08 7.90E-08 2.75E-04 9.17E-08 1.66E-07 6.80E-08
F20 1.81E-05 4.16E-04 6.55E-01 2.96E-07 3.29E-05 2.96E-07
F21 6.80E-08 2.06E-06 5.17E-06 6.80E-08 6.80E-08 6.80E-08
F22 6.80E-08 5.31E-02 5.43E-01 6.22E-04 1.81E-01 6.80E-08
F23 6.80E-08 1.78E-03 1.25E-05 6.80E-08 6.80E-08 6.80E-08
F24 6.80E-08 5.56E-03 7.95E-07 6.80E-08 6.80E-08 6.80E-08
F25 6.80E-08 6.80E-08 9.17E-08 1.02E-01 2.36E-06 6.80E-08
F26 6.80E-08 3.38E-04 2.56E-03 1.43E-07 7.90E-08 6.80E-08
F27 9.17E-08 1.43E-07 1.81E-05 1.38E-06 4.70E-03 6.80E-08
F28 6.80E-08 8.60E-06 8.29E-05 9.25E-01 4.60E-04 6.80E-08
F29 6.80E-08 3.15E-02 6.17E-01 6.80E-08 5.23E-07 6.80E-08
F30 6.80E-08 6.80E-08 5.25E-01 6.80E-08 6.80E-08 6.80E-08

22



F4

0 100 200 300 400 500 600 700 800 900 1000

iteraton

102

103

104

105

106

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r
OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F8

0 100 200 300 400 500 600 700 800 900 1000

iteraton

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F12

0 100 200 300 400 500 600 700 800 900 1000

iteraton

107

108

109

1010

1011

1012

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F14

0 100 200 300 400 500 600 700 800 900 1000

iteraton

104

105

106

107

108

109

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F16

0 100 200 300 400 500 600 700 800 900 1000

iteraton

103

104

105

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F19

0 100 200 300 400 500 600 700 800 900 1000

iteraton

104

105

106

107

108

109

1010

1011

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F21

0 100 200 300 400 500 600 700 800 900 1000

iteraton

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F24

0 100 200 300 400 500 600 700 800 900 1000

iteraton

3500

4000

4500

5000

5500

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

F30

0 100 200 300 400 500 600 700 800 900 1000

iteraton

106

107

108

109

1010

1011

be
st

 s
co

re
 o

bt
ai

ne
d 

so
 fa

r

OBPSO
SCA-PSO
QISCA
SSA
ISSA
CSA
CCSA

Fig. 5. Comparison of convergence curves of 7 algorithms for some of the CEC 2017 benchmark suite.
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Fig. 6. Box plot of 7 algorithms for some of the CEC 2017 benchmark suite.

6. The optimal multi-degree reduction of Ball Bézier surfaces

6.1. Ball Bézier surfaces and their degree reduction

Definition 1. A Ball is defined as the following point set

〈po, ro〉 = 〈(xo, yo, zo), ro〉 = {x, y, z ∈ R3|(x− xo)
2 + (y − yo)

2 + (z − zo)
2 ≤ r2o}, (19)

where po = (xo, yo, zo) is the center point and ro > 0 is the radius of the ball.
Definition 2. Given (m+1)× (n+1) control balls {〈pi,j, ri,j〉}

m,n
i,j=0, a Ball Bézier surface

of degree (m× n) is defined as [37]

〈P〉(u, v) =

m,n
∑

i,j=0

Bm
i (u)Bn

j (v)〈pi,j, ri,j〉, (u, v) ∈ [0, 1]2, (20)

where Bm
i (u) is the ith Bernstein basis function of degree m and Bn

j (v) is the jth Bernstein
basis function of degree n.
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Since a Ball surface 〈P〉(u, v) can be reformulated into

〈P〉(u, v) =
〈

m,n
∑

i,j=0

Bm
i (u)Bn

j (v)pi,j,

m,n
∑

i,j=0

Bm
i (u)Bn

j (v)ri,j

〉

, (u, v) ∈ [0, 1]2, (21)

a Ball surface can be viewed as consisting of two parts:
(1) the center surface

S(u, v) =

m,n
∑

i,j=0

Bm
i (u)Bn

j (v)pi,j, (22)

(2) the radius function

R(u, v) =

m,n
∑

i,j=0

Bm
i (u)Bn

j (v)ri,j. (23)

Definition 3. The degree reduction of a Ball Bézier surface 〈P〉(u, v) of degree (m× n)
means to search for a Ball Bézier surface of degree (m1 × n1) (m1 ≤ m;n1 ≤ n)

〈Q〉(u, v) =〈C(u, v), G(u, v)〉

=
〈

m1,n1
∑

i,j=0

Bm1
i (u)Bn1

j (v)qi,j,

m1,n1
∑

i,j=0

Bm1
i (u)Bn1

j (v)gi,j

〉

, (u, v) ∈ [0, 1]2,
(24)

such that
{〈P〉(u, v)|0 ≤ u, v ≤ 1} ⊂ {〈Q〉(u, v)|0 ≤ u, v ≤ 1}, (25)

and the radius of 〈Q〉(u, v) is as small as possible [42].
Since the inclusion condition in Eq.(25) is not easy to deal with, it is usually substituted

by
G(u, v) ≥ R(u, v) + ‖C(u, v),S(u, v)‖, (u, v) ∈ [0, 1]2, (26)

where S(u, v) and R(u, v) are the center surface and radius function of the original Ball
Bézier surface 〈P〉(u, v) respectively, and C(u, v) and G(u, v) are the center surface and
radius function of the lower-degree Ball Bézier surface 〈Q〉(u, v) respectively, and for a fixed
set of parameters (u, v),

‖C(u, v),S(u, v)‖ =
[(

Cx(u, v)−Sx(u, v)
)2
+
(

Cy(u, v)−Sy(u, v)
)2
+
(

Cz(u, v)−Sz(u, v)
)2] 1

2 .

In the previous literature, the constrain in Eq.(26) is usually further simplified by

G(u, v)−R(u, v) ≥ d ≥ ‖C(u, v),S(u, v)‖, (u, v) ∈ [0, 1]2. (27)

Simplifying the constrain condition Eq.(26) to Eq.(27) will result in the radius of the obtained
Ball Bézier surface being greater than that of the theoretical optimum. More importantly,
the degree reduction problems under different interpolation constrains, such as degree reduc-
tion without interpolation constrains, degree reduction with endpoints interpolation or with
boundaries interpolation, need to be analyzed and solved using different methods respectively
and the consequent derivation and calculation are also quite complicated, , which makes the
degree reduction procedure complex and thus hinders the data transmission of Ball Bézier
surface among different CAD/CAM systems.
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6.2. The algorithm for the optimal multi-degree reduction of Ball Bézier surfaces

In some cases, there are no interpolation constraints on the degree-reduced Ball surfaces,
while in some cases the degree-reduced Ball surfaces are required to interpolate some endpoints
or boundaries of the original one, which means that some of the control balls of the degree-
reduced Ball surfaces need to be fixed and the others are movable (or unknown). In order
to determine the optimal positions and radiuses of the unknown control balls, we separate
the fixed and unknown control balls first. Let I1 = {0, 1, · · · ,m} × {0, 1, · · · , n}, I2 =
{0, 1, · · · ,m1} × {0, 1, · · · , n1}, and M ⊂ I2 be a subset which contains pairs formed by row
and column indices of the unknown control balls of the Ball Bézier surface 〈Q〉(u, v) or is
empty.

Similar to the works in [42], the center surface and radius function of a Ball Bézier surface
are regarded as two independent parts. Therefore the procedure of the multi-degree reduction
of a Ball Bézier surface consists of the following two steps:

Step 1. The optimal multi-degree reduction of center surface.
Step 2. The optimal multi-degree reduction of radius function.
In this study, for a Ball Bézier surface, the optimal multi-degree reduction of its center

surface and radius function are formulated as two optimization problems. The change of
different interpolation constrains are treated as the change of decision variables while the
objective function and constraint conditions keeping unchanged, and thus we can use an
optimization method to deal with all these cases.

6.2.1. The optimal multi-degree reduction of center surface

As for the optimal multi-degree reduction of center surface in Step 1, we formulate the
problem as an optimization one in which the objective function is defined based on the distance
between the original (m× n)th-degree center Bézier surface and the low-(m1 × n1)th-degree
center Bézier surface as follows:

F1[C;S] =

∫ 1

0

∫ 1

0

‖C(u, v)− S(u, v))‖2dudv. (28)

By separating the fixed and unknown control balls of the low-(m1 × n1)th-degree Ball
Bézier surface 〈Q〉(u, v), its center surface C(u, v) can be represented as [46]

C(u, v) = mM + rM (29)

where

mM(u, v) =
∑

(i,j)∈M

Bm1
i (u)Bn1

j (v)qi,j, rM(u, v) =
∑

(k,l)∈I2\M

Bm1
k (u)Bn1

l (v)qk,l.

Then the objective function F1[C;S] in Eq.(28) can be rewritten as

F1[C;S] =

∫ 1

0

∫ 1

0

(mM + rM − S,mM + rM − S)dudv

=

∫ 1

0

∫ 1

0

(mM,mM) + 2(mM, rM − S) + (rM − S, rM − S)dudv

(30)

26



Since the Bernstein bases have the following properties

Bn
i (u)B

m
j (u) =

(

n

i

)(

m

j

)

(

n+m

i+j

) Bn+m
i+j (u),

∫ 1

0

Bn
i (u)du =

1

n+ 1
, (31)

we can obtain

∫ 1

0

∫ 1

0

(mM,mM)dudv

=

∫ 1

0

∫ 1

0

(

∑

(i,j)∈M

Bm1
i (u)Bn1

j (v)qi,j,
∑

(i,j)∈M

Bm1
i (u)Bn1

j (v)qi,j

)

dudv

=
∑

(i,j)∈M

∑

(i1,j1)∈M

Aiji1j1(qi,j,qi1,j1)

(32)

where

Aiji1j1 =

∫ 1

0

∫ 1

0

Bm1
i (u)Bn1

j (v)Bm1
i1

(u)Bn1
j1
(v)dudv

=
1

(2m1 + 1)(2n1 + 1)

(

m1

i

)(

m1

i1

)

(

2m1

i+i1

)

(

n1

j

)(

n1

j1

)

(

2n1

j+j1

)

Analogously,

∫ 1

0

∫ 1

0

(mM, rM − S)dudv

=
∑

(i,j)∈M

∑

(k,l)∈I2\M

Bijkl(qi,j,qk,l)−
∑

(i,j)∈M

∑

(s,t)∈I1

Cijst(qi,j,ps,t)
(33)

where

Bijkl =
1

(2m1 + 1)(2n1 + 1)

(

m1

i

)(

m1

k

)

(

2m1

i+k

)

(

n1

j

)(

n1

l

)

(

2n1

j+l

) ,

Cijst =
1

(m+m1 + 1)(n+ n1 + 1)

(

m1

i

)(

m

s

)

(

m+m1

i+s

)

(

n1

j

)(

n

t

)

(

n+n1

j+t

) .

Let

φ =

∫ 1

0

∫ 1

0

(rM − S, rM − S)dudv (34)

Thus, the objective function in Eq.(28) can be expressed as

F1[C;S] =
∑

(i,j)∈M

∑

(i1,j1)∈M

Aiji1j1(qi,j,qi1,j1) + 2
∑

(i,j)∈M

∑

(k,l)∈I2\M

Bijkl(qi,j,qk,l)

− 2
∑

(i,j)∈M

∑

(s,t)∈I1

Cijst(qi,j,ps,t) + φ,
(35)
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To solve the quadratic minimization problem F1[C;S] → min, we take the partial deriva-
tives of Eq.(35) with respect to the unfixed control points and establish the following linear
system

∂F1[C;S]

∂qi,j

= 0, (i, j) ∈ M, (36)

the ith row of which can be represented as
∑

(i1,j1)∈M

Aiji1j1qi1,j1 =
∑

(s,t)∈I1

Cijstps,t −
∑

(k,l)∈I2\M

Bijklqk,l, (i, j) ∈ M. (37)

Thus the positions of the unfixed control points {qi,j}(i,j)∈M of the degree reduced center
surface C(u, v) could be determined by solving the linear system Eq.(37).

In previous works, the degree reduction problem of center curves were usually solved based
on Chebyshev polynomials, which can only achieve 1-degree reduction one time[42]. For the
problem of multi-degree reduction, repeated operation is required, greatly increasing the error.
While in our method, the positions of the unknown control points of the approximate center
curve can be determined by solving a linear system directly, simplifying the degree reduction
procedure of center surface remarkably.

When the center surface of 〈Q〉(u, v) is determined, it is essential to computer the distance
between the original center surface and the approximate one. Take sufficient uniform sampling
points {(ui, vj)}

K1,K2

i,j=1 ∈ [0, 1]2, compute and store the discrete distance for {(ui, vj)} between
the center curves before and after degree reduction

di,j = ‖C(ui, vj),S(ui, vj)‖, i = 1, 2, . . . , K1; j = 1, 2, . . . , K2. (38)

for the next step, here we let K1 = K2 = 20.

6.2.2. The optimal multi-degree reduction of radius function

As for the optimal multi-degree reduction of the radius function of Ball Bézier surface
〈P〉(u, v) in Step 2, we formulate the problem as the following optimization one.

Objective function

Minimiz F2[G;R] =

K1,K2
∑

i,j=1

[

G2(ui, vj)− λmin
(

G(ui, vj)−R(ui, vj)− di,j, 0
)]

, (39)

where R(u, v) and G(u, v) denote the radius functions of the Ball Bézier surface before and
after degree reduction respectively, di,j is the discrete distance between the original and the
approximate center surface for (ui, vj).

Variable ranges
rmin ≤ gi,j ≤ dmax + krmax, (i, j) ∈ M, (40)

where the decision variables {gi,j}(i,j)∈M of the optimization problem are the unknown control
radiuses of the low-(m1 × n1)th-degree Ball Bézier surface 〈Q〉(u, v), and

rmin = min
(i,j)∈I1

{ri,j}, rmax = max
(i,j)∈I1

{ri,j}, dmax =
K1,K2
max
i,j=1,1

{di,j}.
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In Eq.(39),
∑K1,K2

i,j=1 G2(ui, vj) is employed to ensure that the approximate radius function

G(u, v) is as small as possible, while
∑K1,K2

i,j=1

[

min
(

G(ui, vj)−R(ui, vj)− di,j, 0
)]

is applied

to guarantee G(u, v) ≥ R(ui, vj) + di,j for any (ui, vj) for fulfilling the inclusion condition in
Eq.(25). λ is a weighting coefficient, and after trial and error we set λ = 100. In Eq.(40), k
is a parameter determined by the reduced degree.

The optimization problem can be solve using an metaheuristic method, with which we
search within the variable range for the optimal set of control radiuses of the lower-degree
Ball Bézier surface 〈Q〉(u, v) to determine the approximate radius function. Combining the
approximate center surface C(u, v), the optimal low-(m1 × n1)th-degree Ball Bézier surface
〈Q〉(u, v) can be obtained. Table 11 gives the implementation steps of the proposed degree
reduction algorithm for Ball Bézier surface.

Table 11: Implementation steps of the optimal multi-degree reduction of Ball Bézier surface.

Algorithm 3: Algorithm of the Optimal Multi-degree Reduction of Ball Bézier Surface

Step 1: Input the original Ball Bézier surface 〈P〉(u, v) and the degree it need to be reduced.

Step 2: Determine the approximate center surface C(u, v) by solving the linear system Eq.(37).

Step 3: Take sufficient uniform sampling points in {(ui, vj)}
K1,K2
i,j=1,1 in [0, 1]2, calculate and restore

{R(ui, vj) + ‖C(ui, vj),S(ui, vj)‖}
K1,K2
i,j=1,1 .

Step 4: Solve problem Eq.(39) using the proposed CCSA algorithm with the data obtained in Step 3, determine

Step 5: Output the optimal degree reduced Ball Bézier surface according to C(u, v) and G(u, v).

6.3. Experiments to verify the optimal multi-degree reduction algorithm

To verify the effectiveness of the proposed algorithm, the degree reduction results of dif-
ferent Ball Bézier surfaces without interpolation constrains, with four endpoints interpolation
and with two boundaries interpolation are provided in Fig. 7-Fig. 9 respectively. In these
examples, the parameter k in Eq.(40) is set as 3.
Example 1. Given a Ball Bézier surface of degree (5× 5), Fig. 7 shows the optimal approx-
imate Ball Bézier surface of degree (4× 4) under no interpolation constrains.
Example 2. Given a Ball Bézier surface of degree (7× 7), Fig. 8 shows the optimal approx-
imate Ball Bézier surface of degree (5× 5) with the interpolation of the four endpoints of the
original Ball surface.
Example 3. Given a Ball Bézier surface of degree (7× 7), Fig. 9 shows the optimal approx-
imate Ball Bézier surface of degree (7 × 5) with the interpolation of two boundaries of the
original Ball surface.

6.4. Results discussion

(1). As shown in Fig. 7(b)-Fig. 9(b), the center surfaces after degree reduction are
very close to the input ones. The boundary curves of the center surface before and after
degree reduction basically coincide, and there are quite a bit of overlapping regions between
the degree reduced center surface and the original one. All these indicate that the proposed
multi-degree reduction method works well under different interpolation conditions.
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Fig. 7. The optimal multi-degree reduction from a Ball Bézier surface of degree (5 × 5) to one of degree
(4× 4) without interpolation constrains. (a) The original Ball Bézier surface. (b) The original center surface
and the optimal approximate center surface obtained by the proposed method. (c) Convergence curves of
the objective function F2[G;R] in Eq.(39) with the proposed CCSA and 6 existing metaheuristic algorithms.
(d) Comparison between the function R(u, v) + ‖C(u, v),S(u, v)‖ and the optimal radius function G(u, v)
obtained using the CCSA. (e) The optimal low-(4×4)th-degree Ball Bézier surface obtained using the CCSA.
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Fig. 8. The optimal multi-degree reduction from a Ball Bézier surface of degree (7 × 7) to one of degree
(5× 5) with four endpoints interpolation. (a) The original Ball Bézier surface. (b) The original center surface
and the optimal approximate center surface obtained by the proposed method. (c) Convergence curves of
the objective function F2[G;R] in Eq.(39) with the proposed CCSA and 6 existing metaheuristic algorithms.
(d) Comparison between the function R(u, v) + ‖C(u, v),S(u, v)‖ and the optimal radius function G(u, v)
obtained using the CCSA. (e) The optimal low-(5 × 5)th-degree Ball Bézier surface obtained by the CCSA,
where the four endpoints are those of the original Ball surface and are drawn in red.
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Fig. 9. The optimal multi-degree reduction from a Ball Bézier surface of degree (7 × 7) to one of degree
(7×5) with two boundaries interpolation. (a) The original Ball Bézier surface. (b) The original center surface
and the optimal approximate center surface obtained by the proposed method. (c) Convergence curves of
the objective function F2[G;R] in Eq.(39) with the proposed CCSA and 6 existing metaheuristic algorithms.
(d) Comparison between the function R(u, v) + ‖C(u, v),S(u, v)‖ and the optimal radius function G(u, v)
obtained using the CCSA. (e) The optimal low-(7 × 5)th-degree Ball Bézier surface obtained by the CCSA,
where the control balls of the two unchanged boundaries are drawn in red.
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(2). Form Fig. 7(d)-Fig. 9(d), we can see that the green surface i.e. the radius function
after degree reduction, is always above the yellow surface i.e. the original radius function,
indicating that for any (u, v) ∈ [0, 1]2 the condition G(u, v) ≥ R(u, v) + ‖C(u, v),S(u, v)‖ is
satisfied. Under this condition, G(u, v) approximates R(u, v) + ‖C(u, v),S(u, v)‖ as close as
possible for different original Ball Bézier surfaces, which demonstrates that both the inclusion
condition in Eq.(25) and the constrain that the radius of the lower-degree Ball Bézier sur-
face should be as small as possible can be fully satisfied by using the proposed multi-degree
reduction method for radius function.

(3). It is obvious from the convergence curves of the CCSA and other existing meta-
heuristic algorithms in Fig. 7(c)-Fig. 9(c) that the CCSA algorithm has better performance
both on convergence speed and accuracy in solving the degree reduction problems of radius
functions.

(4). It can be seen in each example that the Ball Bézier surfaces before and after degree
reduction are similar both in shape and thickness.

The experiment results show that the proposed degree reduction method for Ball Bézier
surfaces can deal with various interpolation conditions flexibly and can achieve good degree
reduction effect.

7. Conclusion

This study proposes an improved cooperation search algorithm (CCSA) by incorporating
a mutation and a crossover operator. The mutation operator is adopted to enhance popu-
lation diversity and the crossover is employed to avoid the ignorance of obtained potential
message of the search space. These operators can help enhance the collaborative strength of
the team and maintain an appropriate balance between exploration and exploitation. Numer-
ical experiments on 23 classic benchmark functions and 29 CEC 2017 benchmark functions
demonstrate the superior performance of the proposed CCSA algorithm in terms of search-
efficiency, solution accuracy. Beside, we propose a new universal method for the multi-degree
reduction of Ball Bézier surfaces under different interpolation constrains by applying the
proposed CCSA algorithm. The simulation results under different interpolation constrains
show that the proposed method is effective and flexible, which achieves the automatic and
intelligent multi-degree reduction of Ball Bézier surfaces.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 51875454).

Author Contributions

The authors contributed to each part of this paper equally. The authors read and approved the final
manuscript.

33



Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Human and animal rights This article does not contain any studies with human participants
performed by any of the authors.

Informed consent Informed consent was obtained from all individual participants included in the
study.

References
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