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Abstract

This study proposes a novel and lightweight bio-inspired computation technique named biological survival optimizer (BSO), which

simulates the escape behavior of prey in the natural environment. This algorithm consists of two important courses, escape phase

and adjustment phase. Specifically, in the escape phase, each search agent is required to updates its location using the best, the worst

and a neighboring individual of the population. The adjustment phase is implemented using the simplex algorithm for search better

location of the worst agent within a small region. The effectiveness of the BSO is validated on the CEC2017 benchmark problems

and three classical engineering structural problems. Simulation comparison results considering both convergence and accuracy

simultaneously show that BSO can present competitive performance compared with other state-of-art optimization techniques.

Keywords: biological survival optimizer, engineering structural problem, heuristic, escape behavior

1. Introduction

Global optimization is a process of searching the best solu-

tions of a defined problem with maximum or minimum objec-

tion functions involved in different areas. With the rapid de-

velopment of science and knowledge, optimization problems

have been endowed with diverse characteristics, such as non-

convex, discontinue, high-dimension and so on, therefore, the

demand of high quality optimization algorithms becomes more

urgent than before. Inspired by different biology mechanis-

m or nature phenomena, scholars have designed diverse opti-

mization algorithms. In general, these optimization algorithms

can be grouped into derivation-based and stochastic algorithm-

s. The former utilizes substantial gradient information of ob-

jective function to built the search direction for obtaining better

solutions. For some simple or ideal models, derivation-based

algorithms can obtain competitive results using less computa-

tion cost. However, they also show several disadvantages, pre-

mature convergence, gradient dependence, instability for com-

plicated or difficult optimization problem. The latter can deal

with the drawbacks mentioned above based on individual co-

operation mechanism, since stochastic algorithms use a search

population of random solutions sampled in feasible region to

approximate better candidate solution.

The main feature of stochastic algorithm includes explo-

ration and exploitation during the whole optimization course

[1]. Exploration ability aims to help the search agents for ex-

ploring promising areas in feasible space broadly. On the con-

trary, exploitation ability refers to guide the population agents

∗Corresponding author: Qingyang Zhang
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for converging toward the best member in the promising areas

obtained in exploration phase. It is worth mentioning that a

good tradeoff between exploration and exploitation should be

maintained during the search process, since favoring explo-

ration benefits to improve diversity for local optima avoidance,

and emphasizing exploitation benefits to a faster convergence.

Recently, a growing number of new optimization algorithm-

s or modifying the existing ones are proposed in this field.

The reason of this phenomenon may derived from The No

Free Lunch (NFL)[2], which indicates that designing a general-

purpose optimization algorithm is impossible. It is obvious that

the NFL theorem makes this field of research open, scholars are

encouraged to modify the current methodologies for optimiz-

ing various problems or design novel algorithms for generating

promising results with respect to the current algorithms.

The main work of this paper includes as follows, on the one

hand, two different behaviors were extracted by simulating the

escape behavior of Oryx named escape phase and adjustmen-

t phase, which are modeled mathematically. Then, biological

survival optimizer (BSO) is proposed. On the other hand, un-

like to other stochastic search algorithms, BSO is a parameter-

less method and utilizes the simple algorithm as local genera-

tion strategy for searching promising individuals. The advan-

tage of this operator is that it not only performs effective local

search but also generates agents that are better than the previous

ones, which are widely used in various algorithms.

The following provides the basic organizational structure of

this paper: Section 2 provides the literature review of the exist-

ing optimization algorithms. The background and the principles

of BSO are summarized in Section 3. In Section 4, CEC2017

test problems are employed to evaluate the effectiveness of B-

SO. In Section 5, the proposed algorithm is utilized to solve
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three constrained engineering design issues. Section 6 con-

cludes the main work of this paper.

2. Literature review

Over the past two decades, inspired by various laws or phe-

nomena of nature, Many heuristic optimization methods have

been designed and applied to solve different practical problem-

s successfully. According to the inspiration, the existing op-

timization methods can be classified into three different cate-

gories: evolution-based, physics-based and swarm-based algo-

rithms.

Evolution-based algorithm is a kind of methods inspired by

the evolution mechanism of nature. Genetic algorithm (GA),

a representative method in this branch, mimics the Darwinian

evolution theory [3-4]. Crossover and mutation operators are

the main mechanisms for generating new offspring individuals

and improving the quality of search population over the course

of iterations in GA. Biogeography-Based Optimizer (BBO) im-

itates natural biogeography phenomenon that biological species

tend to migrate to better habitats for living [5]. Some other algo-

rithms are evolution strategy (ES)[6] and Differential Evolution

(DE)[7].

Physics-based algorithms, the second category, simulate

physical phenomena or rules, which is different from the

Evolution-based algorithms. Gravitational Search Algorithm

(GSA) is designed by imitating the Newtonian gravity and the

laws of motion. All agents update their positions by the gravi-

tational attraction force between them during iteration [8]. The

heavier the mass, the bigger the attractive force. Big-Bang Big-

Crunch (BBBC) is designed by imitating the big bang and big

crunch principles, which is utilized to generate random direc-

tions and gather the search agents for moving toward the best

point obtained so far [9]. Some other algorithms are Multi-

Verse Optimizer (MVO) simulates the theory of multi-verse

[10], Artificial raindrop algorithm (ARA) simulates the phe-

nomenon of natural rainfall [11], Mine Blast algorithm (MBA)

simulates the concept of mine bomb explosion [12]. States of

Matter Search (SMS) devises from the simulation of the states

of matter concept [13], Ray optimization (RO) simulates the

Snell’s light refraction law [14].

Swarm-based algorithms, the third category, mimic the swar-

m behaviors of animals in nature. Particle swarm optimization

(PSO), one of the most population algorithms, imitates the for-

aging actions of bird in nature [15-16]. PSO utilizes multiple

agents for generating new search individuals, which means that

each search agent updates position considering its own best po-

sition obtained so far as well as the best position of the search

swarm found so far. Bat algorithm (BA) is designed by imi-

tating ultrasonic echolocation foraging behavior, which is used

for sensing distance and to differentiate between prey and ob-

stacles. Two update formula and random walking strategy are

the core parts of the algorithm [17]. Grey wolf optimizer (G-

WO) imitates the leadership hierarchy and hunting mechanism

of grey wolves. The group of wolves is classified into four hi-

erarchies, alpha, beta, delta, and omega. Adaptive control pa-

rameters and different computation operators are implemented

to perform optimization [18]. Some other algorithms are Moth-

flame optimization (MFO) simulates the flight mechanism of

Moths [19], Cuckoo Search (CS) simulates breeding parasitism

behavior [20], Sine Cosine Algorithm (SCA) simulates math-

ematical model based on sine and cosine functions [21], and

whale optimization algorithm (WOA) simulate the social habit-

s of humpback whales [22].

This section list shows that there are many swarm-based al-

gorithms proposed so far, and most of them are inspired by

hunting and search phenomena. To the best of our knowledge,

there is no swarm-based method imitating the escaping behav-

ior of Oryx, which motivates us to design a new optimization

technique by modelling the escaping behavior mathematically

for solving benchmark functions and engineering design prob-

lems.

3. Biological Survival Optimizer (BSO)

This section mainly includes two segments, on the one hand,

the background of BSO is described broadly. On the other hand,

the proposed calculation model of BSO is presented in detail.

3.1. Background

The Oryx is one of the most intelligent animals in nature. In

the real world, escaping behavior is an common phenomenon,

where Oryx needs to cooperate and exchange information to-

gether for survival. On the one hand, with the purpose of

improving the successful probability of prey, predator usual-

ly tends to attack the weak side of Oryx group. On the other

hand, the leaders of Oryx group guide other group individual-

s away from the hunting. Besides that, the individuals should

keep close to their neighbors and should avoid collisions with

their neighbors. We use a topological structure for simulating

the interactive relationships between individuals, no matter how

close or how far away those individuals are. However, some O-

ryx individuals may not escape from the hunting successfully.

In other words, each individual has a certain escape probability.

The stronger the individual is, the higher successful probability

is. After getting away from the threat, the group arrives a new

place temporarily. To avoid being attacked easily, the leaders

must guide the individual in weaker side. toward a better and

suitable location [23-30]. Fig.1 presents four inspiration curves

of the whole process. Specifically, (a) a image of Oryx group;

(b) the Oryx group is getting away from chase by lion; (c) the

leaders help to adjust the position of the worst individual; (d)

Arrive a safe place.

We have to admit that there are many behaviors or rules in

real world. However, for simplicity, as mentioned before, the

proposed algorithm only considers the following rules in this

paper.

1. The weaker side of Oryx group is attacked by predator

easily. (Rule 1)

2. Each member has a escape probability value. (Rule 2)

3. Each search individual updates its position according to

the best individual and its neighbors.(Rule 3)

4. Two best members guide the individual in weaker side to

modify its current position. (Rule 4)
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(a) (b)

(c) (d)

Figure 1: The inspiration curves of BSO (a)Oryx group (b)Getting away from

chase by lion (c)Adjust the position of member (d)Arrive a safe place

3.2. Calculation model

In this section, the calculation models including escape phase

and adjustment phase are first presented through converting the

above rules properly. Then, we outline the pseudo codes and

discuss the basic principle of BSO.

3.2.1. Group generation

It is assumed that the search population (Pop) is comprised

of N feasible solutions (Xi, i = 1, 2, 3...,N), which are generated

randomly using the following equations.

Xi(t) = (x1
i (t), x2

i (t), ..., xD
i (t)), i = 1, 2, ...,N (1)

xk
i (t) = LBk + r × (UBk − LBk), k = 1, 2, ...,D (2)

Pop(t) = (X1(t), X2(t), ..., XN(t))

where N and D refers to the member of search members and

dimension of issue, respectively. t denotes the current number

of generation, r denotes a random number generated from (0,

1). LB and UB are the lower and upper boundaries of variables,

respectively.

3.2.2. Escape phase

This section mainly simulates the behavior that the leader-

s help other species members away from the hunting. Due to

predator usually attacks the weak side of population (Rule 1).

The individual in the weak side is caught by the hunter easi-

ly. In BSO, we use the roulette strategy to set probability for

determining whether the current agent will be caught (Rule 2).

Obviously, in terms of fitness, the better the individual is, the

lower probability it has. If the current individual is caught, it

will be replaced by a new one. Besides that, Rule 3 shows that

each agent modifies its position according to the best individ-

ual and its neighbors. To define the neighborhood structure of

an individual, a ring topology structure (see Fig.2) is utilized in

this paper [31]. If the index of individual is i, the index of the

selected neighbor is i + 1. If the index of agent is N, the index

of the selected neighbor is 1. Here, we assume that the best in-

dividual has the best fitness, the worst member is opposite. The

following provides the calculation equations.

newXi = Xi + δi(popbest − popworst)+

ϕi(Xneigh,i − Xi)
(3)

where each number of δi and ϕi are generated from (0,1),

popbest and popworst are the best and worst individual of popu-

lation, respectively, Xneigh,i is the neighbor of Xi.

Figure 2: The ring topology structure

Fig.4 (a) depicts that the pursuer attacks the animal popula-

tion labeled by black dot. In Fig.4 (b), it is assumed that the best

individual (popbest) is described by blue, the worst (popworst)

is red, the current individual (Xi) is purple, and its neighbor

(Xneigh,i) is green. They move in the opposite direction of attack

and modify their positions according to Eq. (3).

3.2.3. Adjustment phase

The phase main simulates the Rule 4, the leaders guide the

other members in the weak side of the population toward safer

place. This action is commanded by the two best individuals of

the population. From the view of optimization, this phase aims

to make the worst individual better with the assistance of two

best solutions of the population. Therefore, we define that this

course is implemented using the simplex algorithm (Fig.3)[32],

which is a popular technique launched by the previous solution-

s.

Figure 3: Schematic view of the simplex method

As shown in Fig.4 (c), the best member and the second best

agent are labeled by blue and pink, respectively. The worst
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(a) (b)

(c) (d)

Figure 4: The whole search course curves of BSO

individual (red dot) moves toward new place with the help of

the other best members using the simple algorithm. The red dot

will arrive a new position as shown in Fig.4 (d).

In other words, the movement within the region may ensure

that the search individual will find better position. Finally, after

the above mentioned phases, the initialization population can

move toward a new domain. The quality of population will be

improved over the course of generation. The main pseudocode

of BSO is summarized in Algorithm 1.

3.3. Discussion

Similar to other heuristic algorithms, BSO also employs a

population of candidate solutions initialized randomly in the

search space to proceed to the global optimum. The difference

is that the simple algorithm, a determination operator, is inte-

grated into BSO. Totally, BSO has two main courses, escape

phase and adjustment phase.

The first phase consists of a ring topology structure, the

roulette strategy and a stochastic operator. The ring topolo-

gy, inspired from the notion of neighborhood, connects the in-

dex of individual, where the first individual is the neighbor of

the last individual and vice versa. It also can be regarded as

a neighborhood technique, which aims to maintain diversity of

the solutions and improve the exploration capability of algorith-

m. The roulette strategy is very close to Darwinian evolution

theory, which means that the worst individual is eliminated eas-

ily, while the better member can survive. We use this strategy

to keep the elitism solution and determine whether the worse

individual will be replaced by a new one with a probability. It

is generally known that to prevent premature convergence dur-

ing the process of evolution, it is necessary to sample the whole

search space systematically and generate new solutions diverse

Algorithm 1 Biological Survival Optimizer

Input: N: the population size;

D: the dimension of optimization problem;

UB, LB: the lower and upper bounds of variables, respectively;

Control factors: Expansion factor (α), Contraction factor(β);

MaxIter: the termination criterion ;

Generate an initial population(Pop = X1, X2, ..., XN ) using Eq.(1) and (2);

Evaluate the objective function values: f (X1), f (X2), ..., f (XN );

while the termination criterion is not satisfied do

sort the population based on fitness;

set the probability (Pr) of each agent using roulette;

(Escape Phase)

Find the best solution (popbest) and the worst solution popworst of pop-

ulation;

Find the neighbor of each agent

for i = 1 : N (each solution (Xi) in population) do

if rand < Pr(i) then

Generate new solution(newXi)using Eq.(2);

else

Generate new solution(newXi)using Eq.(3);

end if

end for

Evaluate f (newX)

if f (newX) < f (Xi) then

Xi = newX;

f (Xi) = f (newX);

end if

(Adjustment Phase)

Find the two best members and the worst individual of population

Execute the simplex algorithm (Appendix 1) based on the three solu-

tions ;

end while

Output the best candidate solution;

enough. Therefore, the stochastic search operator is used to

improve diversity of the population and guarantee that each a-

gent can move toward other places randomly. This not only

generates some potential solutions distributed in the search s-

pace, but also improves the probability of finding the optimal

solution. The second phase is implemented by the simplex al-

gorithm, which simulates the Rule 4. Another important reason

is that the simplex algorithm is a good algorithm, which can

generate better solutions in each generation. According to the

characteristics, the simplex algorithm is able to guide the search

agents to move toward better place from generation to gener-

ation. It not only benefits to strengthen the local search, but

also provides accurate search direction during the optimization

process. Besides that, BSO is also a parameter-less method ex-

cept two basic parameters used in the simple algorithm, which

makes the algorithm simple and convenient.

4. Numerical experiments

This section aims to evaluate the effectiveness of BSO by

solving a set of CEC2017 test problems with various character-

istics.

4.1. Benchmark Problems

The CEC2017 benchmark problems is very suitable to e-

valuate the performance of an optimization algorithm compre-

hensively, since it has diverse features including multimodal,
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non-separable, asymmetrical and different variables subcom-

ponents. According to the literature [33], these function-

s can be classified into four categories, unimodal ( f1 − f2),

multimodal( f3− f9), hybrid ( f10− f19) and composition ( f20− f29)

parts. More details about the basic characteristics of these prob-

lems can be found in corresponding literature.

4.2. Evaluation indicator

This study adopts the following indicators for evaluating the

effectiveness of algorithm.

• fmean and std: refer to the average value and standard de-

viation of the function error, respectively;

• Wilcoxon’s rank sum tests [34]: determines whether there

exist statistically different between two algorithms for

each problem at a 0.05 significance level, p-value less than

0.05 means that the effectiveness of two competitive meth-

ods is statistically different with 95% (h = 1), otherwise,

there is no significant difference (h = 0). Besides that, the

relevant comparison results are recorded at the bottom of

each Table, and ‡, † and ≀ used in this manuscript indicate

that the performance of BSO is better than, worse than and

similar to that of the corresponding algorithm, respective-

ly.

4.3. Parameter settings

By reference [33], the stopping condition is set to the max-

imum number of iterations (MaxIter), which is defined as

10, 000 for all algorithms. 30 runs are independently carried

out to reduce the computation error. In addition, eight exist-

ing optimization algorithms are utilized to compare the perfor-

mance of BSO, the following provides the relevant descriptions

and involved parameters according to corresponding references,

DEDVR[35], MGSCA[36], MGWO[37], WSSA[38], GLFG-

WO[39], QGDA[40], SGLSCA[41], CMAES[42], Two impor-

tant parameters used in the simple algorithm are set as α = 2, β

= 0.5 in BSO, respectively.

4.4. Experiment results

The experimental results calculated by all algorithms are

recorded in Table 1-4. In addition, with the purpose of compar-

ing the convergence rate of BSO with the other compared algo-

rithms, several evolution curves of the benchmark problems are

shown in Fig.5-6.

For f1− f2 unimodal problems, it is can be observed from Ta-

ble 1 that although the proposed algorithm has the same fmean

and std values as CMAES on f2, CMAES has the best fmean val-

ue and standard deviation with respective to its peers. Accord-

ing to the obtained p-value and h-value results, BSO performs

significantly better than the other seven compared algorithms,

performs similar to CMAES on f2. Fig.5 plots the convergence

graphs of f1, as may be observed, the potential convergence per-

formance of BSO is slightly slower than QGDA and GLFGWO

at the beginning of generations, but it is second and outperforms

other competitors finally.
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multimodal functions
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Table 1: Experiment results obtained by all methods on CEC2017 unimodal functions
Function Index DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

f1 fmean 1.0319e+03‡ 4.2261e+06‡ 1.9800e+04‡ 3.6504e+03‡ 4.8786e+05‡ 1.8372e+08‡ 3.5722e+09‡ 1.0000e+02† 4.6116e+02

std 3.8638e+02 1.0583e+07 1.0076e+04 3.9511e+03 1.9762e+06 5.0147e+08 1.0923e+09 0 8.7671e+02

p 5.5999e-07 3.0199e-11 3.0199e-11 7.0430e-07 3.6897e-11 3.0199e-11 3.0199e-11 1.2118e-12 -

h 1 1 1 1 1 1 1 1 -

f2 fmean 1.9440e+03‡ 4.4142e+02‡ 3.0043e+02‡ 3.0000e+02‡ 3.2334e+02‡ 3.4845e+02‡ 9.4498e+03‡ 3.0000e+02≀ 3.0000e+02

std 4.7565e+02 9.7015e+01 1.0002e+01 2.3479e-12 2.1443e+01 6.7504e+01 2.8366e+03 0 0

p 1.2118e-12 1.2118e-12 1.2118e-12 1.1941e-12 1.2118e-12 1.2118e-12 1.2118e-12 9.7285e-01 -

h 1 1 1 1 1 1 1 0 -

‡ - 2 2 2 2 2 2 0 -

† - 0 0 0 0 0 0 1 -

≀ - 0 0 0 0 0 0 1 -

Table 2: Experiment results obtained by all methods on CEC2017 simple multimodal functions
Function Index DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

f3 fmean 4.0301e+02‡ 4.0732e+02‡ 4.0387e+02‡ 4.0434e+02‡ 4.0783e+02‡ 4.2439e+02‡ 5.6436e+02‡ 4.0000e+02† 4.0004e+02

std 1.3954e-01 2.7442e+01 4.2161e-01 1.4809e+00 3.0968e+00 5.0127e+01 6.4458e+01 0 1.5096e-02

p 3.0199e-11 3.0199e-11 3.0199e-11 5.5707e-10 3.0199e-11 3.0199e-11 3.0199e-11 1.2118e-12 -

h 1 1 1 1 1 1 1 1 -

f4 fmean 5.2146e+02‡ 5.1762e+02‡ 5.0355e+02† 5.2908e+02‡ 5.1631e+02‡ 5.4301e+02‡ 5.6585e+02‡ 5.5157e+02‡ 5.0904e+02

std 2.1212e+00 6.2897e+00 1.5048e+00 1.3297e+01 8.2291e+00 1.9088e+01 9.0383e+00 6.7282e+01 3.8641e+00

p 4.9024e-11 2.9831e-07 1.4137e-08 6.5869e-11 5.0544e-06 5.9778e-11 2.9747e-11 5.6126e-05 -

h 1 1 1 1 1 1 1 1 -

f5 fmean 6.0000e+02‡ 6.0143e+02‡ 6.0015e+02‡ 6.1376e+02‡ 6.0193e+02‡ 6.1626e+02‡ 6.4262e+02‡ 6.8356e+02‡ 6.0000e+02

std 6.1728e-06 1.2792e+00 9.3692e-02 1.0078e+01 1.7962e+00 1.1214e+01 6.4100e+00 2.9818e+01 2.0868e-06

p 6.6716e-11 1.9879e-11 1.9879e-11 1.9879e-11 1.9779e-11 1.9879e-11 1.9879e-11 1.9879e-11 -

h 1 1 1 1 1 1 1 1 -

f6 fmean 7.3365e+02‡ 7.3485e+02‡ 7.1752e+02† 7.4821e+02‡ 7.3101e+02‡ 7.4236e+02‡ 8.1405e+02‡ 1.1649e+03‡ 7.1771e+02

std 5.0879e+00 1.0534e+01 2.4691e+00 1.5366e+01 8.6605e+00 1.4267e+01 1.3692e+01 5.2062e+02 4.3839e+00

p 1.4643e-10 1.5581e-08 1.0035e-03 6.0658e-11 1.5581e-08 3.0199e-11 3.0199e-11 1.5581e-08 -

h 1 1 1 1 1 1 1 1 -

f7 fmean 8.2285e+02‡ 8.1681e+02‡ 8.0422e+02† 8.2862e+02‡ 8.1712e+02‡ 8.2623e+02‡ 8.5274e+02‡ 8.6766e+02‡ 8.0779e+02

std 3.6567e+01 5.1419e+00 2.0365e+00 6.9803e+00 7.2748e+00 1.0669e+01 9.8752e+00 5.9622e+01 3.1801e+00

p 2.9747e-11 2.8865e-09 4.9140e-05 4.4354e-11 2.5739e-08 1.3103e-10 2.9747e-11 9.9816e-10 -

h 1 1 1 1 1 1 1 1 -

f8 fmean 9.0000e+02‡ 9.0820e+02‡ 9.0001e+02‡ 9.5237e+02‡ 9.0866e+02‡ 9.3377e+02‡ 1.4395e+03‡ 4.2185e+03‡ 9.0000e+02

std 3.6348e-09 1.4796e+01 1.9278e-02 9.7694e+01 1.2484e+01 5.8966e+01 1.8562e+02 1.3868e+03 0

p 1.2118e-12 1.2118e-12 1.2118e-12 1.2118e-12 1.2118e-12 1.2118e-12 1.2118e-12 1.2118e-12 -

h 1 1 1 1 1 1 1 1 -

f9 fmean 1.9604e+03‡ 1.5229e+03‡ 1.2977e+03≀ 1.9744e+03‡ 1.7004e+03‡ 2.0066e+03‡ 2.2256e+03‡ 2.5278e+03‡ 1.2964e+03

std 1.4274e+02 2.3080e+02 1.3024e+02 2.5098e+02 3.1052e+02 3.2275e+02 1.9424e+02 4.7510e+02 2.1766e+02

p 6.6955e-11 2.3885e-04 6.5204e-01 2.6099e-10 1.6062e-06 2.6099e-10 3.6897e-11 4.5043e-11 -

h 1 1 0 1 1 1 1 1 -

‡ 7 7 3 7 7 7 7 6 -

† 0 0 3 0 0 0 0 1 -

≀ 0 0 1 0 0 0 0 0 -

Table 2 summarizes the calculation results on f3 − f9, it is

obvious that CMAES obtains the best results on f3, although

BSO performs slightly weaker than MGWO on f4, f6 and f7,

BSO performs significantly better than other compared algo-

rithms on most simple multimodal problems according to the

Wilcoxon’s test values. This situation is ascribed to the pow-

erful exploration capability. BSO has the simplex algorithm

and two main stochastic search operators, which are designed

to guarantee that each search individual is able to move toward

potential regions randomly, and generate promising offspring a-

gent. Besides that, it can be observed from Fig.5 that BSO has

better convergence performance with respect to its competitors.

Different from the above two types of functions, hybrid prob-

lems ( f10 − f19) usually require various techniques to optimize

different subcomponents partitioned on variables. The statisti-

cal and comparison results recorded in Table 3 demonstrate that

BSO has better performance than its competitors on f10, f13 and

f14, performs slightly worse than DEDVR on five test problems

and performs similar to MGWO on f11, f15 and f16. Besides

that, Fig.6 provides three evolution graphes, it is appear that

although BSO is slight worse than CMAES and MGWO, it is

significant better than other compared methods over the course

of iterations.

The last category is composition functions ( f20− f29) with the

properties of non-separable, asymmetrical and different proper-

ties around different local optima, they are much difficult to be

optimized effectively. It is can be summarized from the exper-

imental data provided in Table 4 that the proposed algorithm

obtain the best results on f21, f23 and f26 problems. Although

BSO is slightly weaker than DEDVR and MGWO considering

f24 and f29, respectively, there are no great differences between

them according to the Wilcoxon’s test results. From the given

convergence graphs in Fig.6, BSO has the best convergence rate

compared with its peers.

4.5. Sensitivity analysis

As mentioned before, the proposed algorithm consists of t-

wo different key components. This subsection aims to discuss

the role that each component plays in dealing with CEC2017

benchmark functions. Specifically, To demonstrate that the s-

tochastic search operator has important effect on the proposed
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Table 3: Experiment results obtained by all methods on CEC2017 simple hybrid functions
Function Index DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

f10 fmean 1.1057e+03‡ 1.1151e+03‡ 1.1033e+03‡ 1.1889e+03‡ 1.1189e+03‡ 1.1670e+03‡ 1.8949e+03‡ 1.1747e+03‡ 1.1013e+03

std 1.0402e+00 7.2890e+00 1.4765e+00 8.5037e+01 1.1331e+01 5.9502e+01 3.0846e+02 4.7645e+01 1.3658e+00

p 2.3715e-10 3.6897e-11 4.8011e-07 3.0199e-11 3.6897e-11 3.0199e-11 3.0199e-11 3.0180e-11 -

h 1 1 1 1 1 1 1 1 -

f11 fmean 1.2200e+05‡ 7.5625e+05‡ 5.7710e+03≀ 2.2254e+06‡ 6.4264e+05‡ 2.3054e+06‡ 8.5132e+07‡ 1.8196e+03† 1.0425e+04

std 5.4748e+04 1.2051e+06 3.1402e+03 2.4257e+06 7.9201e+05 5.2739e+06 5.9002e+07 3.0055e+02 1.5451e+04

p 4.9752e-11 8.1014e-10 5.7459e-02 9.9186e-11 1.0702e-09 7.3803e-10 3.0199e-11 1.0907e-05 -

h 1 1 0 1 1 1 1 1 -

f12 fmean 1.3194e+03† 1.4637e+04‡ 1.5714e+03‡ 1.7273e+04‡ 1.0310e+04‡ 1.3416e+04‡ 8.0589e+05‡ 1.6669e+03‡ 1.4407e+03

std 3.9944e+00 1.1205e+04 1.5995e+02 1.1622e+04 6.4914e+03 9.2361e+03 7.7186e+05 1.7989e+02 1.7997e+02

p 2.5974e-05 3.0199e-11 1.8916e-04 3.0199e-11 3.0199e-11 3.3384e-11 3.0199e-11 8.2919e-06 -

h 1 1 1 1 1 1 1 1 -

f13 fmean 1.4523e+03‡ 1.4879e+03‡ 1.4470e+03‡ 1.5706e+03‡ 1.4769e+03‡ 1.4953e+03‡ 3.8262e+03‡ 1.5025e+03‡ 1.4289e+03

std 2.7682e+01 3.2775e+01 1.2736e+01 1.5509e+02 2.6420e+01 4.2734e+01 1.2448e+03 1.5219e+02 1.2017e+01

p 3.4971e-09 1.7769e-10 1.2860e-06 3.0199e-11 3.8202e-10 5.4941e-11 3.0199e-11 2.0283e-07 -

h 1 1 1 1 1 1 1 1 -

f14 fmean 1.5733e+03‡ 1.6541e+03‡ 1.5410e+03‡ 2.3745e+03‡ 1.6108e+03‡ 2.1643e+03‡ 6.5653e+03‡ 1.6281e+03‡ 1.5246e+03

std 6.3252e+01 1.7567e+02 1.9387e+01 7.7494e+02 1.1700e+02 1.0846e+03 2.8249e+03 9.1079e+01 2.9586e+01

p 3.1573e-05 4.8011e-07 1.0035e-03 3.3384e-11 7.0430e-07 3.3384e-11 3.0199e-11 3.0811e-08 -

h 1 1 1 1 1 1 1 1 -

f15 fmean 1.6013e+03† 1.6525e+03‡ 1.6099e+03‡ 1.6980e+03‡ 1.6772e+03‡ 1.8447e+03‡ 2.0133e+03‡ 1.8617e+03‡ 1.6193e+03

std 5.0948e-01 4.9493e+01 1.2461e+01 9.1508e+01 6.7634e+01 1.4750e+02 7.3641e+01 1.7255e+01 3.2407e+01

p 1.1228e-02 2.1327e-05 4.6427e-01 1.8608e-06 3.0939e-06 1.8567e-09 3.0199e-11 1.5581e-08 -

h 1 1 0 1 1 1 1 1 -

f16 fmean 1.7791e+03‡ 1.7395e+03‡ 1.7253e+03‡ 1.7629e+03‡ 1.7603e+03‡ 1.7722e+03‡ 1.8308e+03‡ 1.8610e+03‡ 1.7298e+03

std 5.5023e+01 1.2164e+01 9.2811e+00 1.5649e+01 3.0490e+01 3.9448e+01 2.7842e+01 1.7017e+02 1.9892e+01

p 4.1825e-09 1.4932e-04 7.9584e-01 2.9215e-09 2.5721e-07 1.1023e-08 8.9934e-11 1.8567e-09 -

h 1 1 0 1 1 1 1 1 -

f17 fmean 1.8115e+03† 3.1469e+04‡ 3.9474e+03‡ 2.7241e+04‡ 1.7953e+04‡ 2.3253e+04‡ 2.7890e+06‡ 1.9000e+03≀ 1.9467e+03

std 2.6486e+00 1.4379e+04 3.7592e+03 1.4925e+04 1.2230e+04 1.5074e+04 3.0927e+06 4.9960e+01 1.6381e+02

p 3.0199e-11 3.0199e-11 1.2023e-08 3.0199e-11 3.3384e-11 3.6897e-11 3.0199e-11 5.0114e-01 -

h 1 1 1 1 1 1 1 0 -

f18 fmean 1.9007e+03† 2.0424e+03‡ 1.9238e+03‡ 3.4512e+03‡ 1.9496e+03‡ 2.5892e+03‡ 6.7892e+04‡ 1.9432e+03‡ 1.9144e+03

std 1.6273e-01 4.6810e+02 1.5957e+01 2.5705e+03 3.3129e+01 1.1593e+03 4.3396e+04 2.5426e+01 2.1034e+01

p 3.0199e-11 2.4386e-09 3.0059e-04 7.3891e-11 9.2603e-09 1.6132e-10 3.0199e-11 5.1857e-07 -

h 1 1 1 1 1 1 1 1 -

f19 fmean 2.0000e+03† 2.0368e+03‡ 2.0174e+03‡ 2.1145e+03‡ 2.0596e+03‡ 2.1613e+03‡ 2.2601e+03‡ 2.4745e+03‡ 2.0136e+03

std 3.5883e-10 1.0302e+01 8.4467e+00 5.9893e+01 3.4872e+01 6.8849e+01 3.7570e+01 2.5073e+02 1.0446e+01

p 5.2847e-10 1.9512e-10 1.5007e-02 3.0104e-11 6.0473e-11 3.0104e-11 3.0104e-11 3.0104e-11 -

h 1 1 1 1 1 1 1 1 -

‡ 5 10 7 10 10 10 10 8 -

† 5 0 0 0 0 0 0 1 -

≀ 0 0 3 0 0 0 0 1 -

Table 5: Results obtained by different versions of BSO on unimodal functions

Function Index BSOV BSOVV BSO

f1 fmean 2.6190e+04‡ 2.6691e+04‡ 4.6116e+02

std 7.4271e+03‡ 8.9279e+03‡ 8.7671e+02

p 3.0199e-11 3.0199e-11 -

h 1 1 -

f2 fmean 5.4363e+03‡ 5.4697e+03‡ 3.0000e+02

std 5.1681e+03‡ 4.8619e+03‡ 0

p 1.2118e-12 1.2118e-12 -

h 1 1 -

‡ 2 2 -

† 0 0 -

≀ 0 0 -

strategy, BSOV is designed by removing the stochastic opera-

tor, in the other words, BSOV just has the second search mech-

anism. Similarly, to study the role of the simple algorithm, B-

SO is also modified by excluding the second search strategy,

called BSOVV. These two variants are compared with the orig-

inal BSO, and Tables 5-8 report the corresponding computing

and comparison results.

It is not difficult to observe from the results that BSO out-

performs two modified variants (BSOV and BSOVV) for al-

most all test problems. This means that each search strategy

indeed helps improve the quality of population in varying en-

vironments. The reason may originate from the fact that the

stochastic operator is designed by using different individual-

s, which helps to generate promising solutions to some extent.

The comparisons between the two different variants and the o-

riginal BSO illustrate that each part has an significant effect on

the performance of BSO, and removing any of them reduces

performance. Therefore, it is necessary to combine them to-

gether and format the BSO algorithm.

Apart from the component analysis, there are two important

parameters in BSO named the expansion factor (α) and con-

traction factor (β). The discussion on the influence of two pa-

rameters will not appear here. The reason is that much effort

has been devoted to designing effective parameter combination-

s, and different parameters may suitable for different problem-

s. This paper only defines a base case of α = 2 and β = 0.5

for computing the optimization problems. In our future work,

scholars who are interested in this can also investigate it and

further improve the search performance of the algorithm.

5. Engineering optimization problems

To further explore the effectiveness of the proposed algorith-

m in practice, three widely used practical engineering problems
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Table 4: Experiment results obtained by all methods on CEC2017 Composition functions
Function Index DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

f20 fmean 2.2631e+03† 2.2571e+03≀ 2.2596e+03† 2.2108e+03† 2.2948e+03≀ 2.2706e+03≀ 2.2475e+03† 2.3577e+03‡ 2.3042e+03

std 4.2121e+01 5.9784e+01 5.2951e+01 3.1756e+01 4.7238e+01 7.5002e+01 2.1824e+01 7.7927e+01 2.8500e+01

p 1.3017e-03 5.7929e-01 1.2023e-08 9.0632e-08 8.2357e-02 9.1171e-01 8.4687e-09 5.9659e-03 -

h 1 0 1 1 0 0 1 1 -

f21 fmean 2.3042e+03‡ 2.2984e+03‡ 2.2981e+03‡ 2.3011e+03‡ 2.3077e+03‡ 2.3244e+03‡ 2.6108e+03‡ 3.7032e+03‡ 2.2943e+03

std 5.8261e-01 2.0934e+01 1.8483e+01 1.7564e+01 3.2662e+00 5.4777e+01 9.8475e+01 1.0902e+03 2.5632e+01

p 4.0721e-11 2.8290e-08 1.4419e-03 1.5951e-07 3.3342e-11 3.0161e-11 3.0161e-11 9.7383e-04 -

h 1 1 1 1 1 1 1 1 -

f22 fmean 2.6227e+03‡ 2.6195e+03‡ 2.6056e+03† 2.6239e+03‡ 2.6210e+03‡ 2.6767e+03‡ 2.6788e+03‡ 2.8921e+03‡ 2.6112e+03

std 3.2453e+00 8.0289e+00 2.0200e+00 7.7408e+00 6.2892e+00 3.8734e+01 7.8490e+00 5.0972e+02 4.2478e+00

p 2.6099e-10 1.8682e-05 7.0881e-08 2.9215e-09 1.0666e-07 4.0772e-11 3.0199e-11 9.2113e-05 -

h 1 1 1 1 1 1 1 1 -

f23 fmean 2.7210e+03‡ 2.7283e+03‡ 2.7308e+03‡ 2.7457e+03‡ 2.7316e+03‡ 2.7762e+03‡ 2.7978e+03‡ 2.7292e+03‡ 2.7107e+03

std 6.7883e+01 7.4916e+01 2.7531e+00 4.7357e+01 6.3029e+01 1.0244e+02 3.2613e+01 4.3556e+01 8.4185e+01

p 4.7120e-04 2.6795e-04 1.3843e-06 1.4908e-06 1.4419e-03 1.5951e-07 3.9613e-08 2.7530e-03 -

h 1 1 1 1 1 1 1 1 -

f24 fmean 2.9002e+03≀ 2.9267e+03‡ 2.9233e+03≀ 2.9296e+03‡ 2.9264e+03‡ 2.9228e+03≀ 3.0949e+03‡ 2.9284e+03‡ 2.9207e+03

std 3.1173e+00 2.1598e+01 2.3952e+01 2.4702e+01 2.3342e+01 2.3860e+01 6.4755e+01 2.3328e+01 2.4978e+01

p 8.0725e-01 5.0775e-03 7.2402e-02 4.0564e-02 6.3692e-03 1.3726e-01 2.9991e-11 3.2003e-02 -

h 0 1 0 1 1 0 1 1 -

f25 fmean 2.9000e+03† 2.9380e+03† 2.8969e+03≀ 2.8922e+03† 2.9190e+03† 3.0436e+03≀ 3.2686e+03‡ 3.0913e+03≀ 3.0131e+03

std 8.8982e-08 3.9913e+01 1.7824e+01 9.2643e+01 7.5609e+01 3.4903e+02 9.2795e+01 4.1270e+02 2.7170e+02

p 7.3246e-02 7.4573e-03 1.3194e-01 1.4157e-09 4.0744e-02 5.7930e-02 7.0900e-08 4.6235e-01 -

h 1 1 0 1 1 0 1 0 -

f26 fmean 3.0992e+03‡ 3.0952e+03‡ 3.0991e+03‡ 3.0939e+03≀ 3.0962e+03‡ 3.1377e+03‡ 3.1099e+03‡ 3.1231e+03‡ 3.0902e+03

std 1.5293e+01 1.4304e+01 3.1735e+00 3.1169e+00 9.1386e+00 4.4610e+01 4.5527e+00 1.4034e+02 1.4199e+00

p 5.5246e-04 8.9756e-04 1.1395e-07 3.7242e-01 4.1068e-09 2.9506e-11 2.9506e-11 3.5236e-11 -

h 1 1 1 0 1 1 1 1 -

f27 fmean 3.1002e+03† 3.2117e+03† 3.2438e+03≀ 3.2095e+03† 3.3463e+03≀ 3.3540e+03≀ 3.3918e+03≀ 3.2376e+03† 3.3272e+03

std 3.3724e-01 7.3251e+01 1.5621e+02 1.0239e+02 1.0340e+02 1.4536e+02 5.8015e+01 1.4392e+02 1.6981e+02

p 6.0083e-05 4.0640e-02 8.8752e-01 3.1444e-02 1.3457e-01 4.9813e-01 6.1689e-02 3.1582e-02 -

h 1 1 0 1 0 0 0 1 -

f28 fmean 3.1943e+03‡ 3.1610e+03‡ 3.1409e+03† 3.2100e+03‡ 3.1993e+03‡ 3.3218e+03‡ 3.2927e+03‡ 3.2625e+03‡ 3.1539e+03

std 8.6483e+00 3.1496e+01 9.3159e+00 5.5219e+01 4.9965e+01 1.1496e+02 6.0272e+01 9.3095e+01 2.7673e+01

p 3.0811e-08 4.5146e-02 3.9167e-02 1.1937e-06 7.0881e-08 2.8716e-10 1.3289e-10 4.5726e-09 -

h 1 1 1 1 1 1 1 1 -

f29 fmean 7.9258e+04† 1.3130e+05† 3.2456e+04≀ 1.1131e+05† 7.4018e+05‡ 3.2929e+06‡ 1.2713e+06‡ 2.1635e+05≀ 3.8183e+05

std 4.4614e+04 3.0366e+05 1.4904e+05 2.5013e+05 7.9459e+05 4.1827e+06 7.9934e+05 3.9900e+05 5.7220e+05

p 2.7084e-02 4.2064e-02 9.1171e-01 2.4155e-02 5.5601e-04 9.5299e-07 3.1192e-06 6.5667e-01 -

h 1 1 0 1 1 1 1 0 -

‡ 5 6 3 5 7 6 8 8 -

† 4 3 3 4 1 0 1 0 -

≀ 1 1 4 1 2 4 1 2 -

Table 9: Experimental results of all methods for Tension/compression spring design problem
Variables DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

x1 0.06899395 0.05003490 0.06899846 0.05000000 0.06900761 0.05655288 0.05000000 0.05155974 0.05146060

x2 0.93343179 0.31815726 0.93356942 0.31277075 0.93392044 0.48540956 0.31474035 0.35361405 0.35124589

x3 2.00000000 13.9736461 2.00000000 14.6634210 2.00000000 6.42231835 14.3898574 11.4733015 11.6171624

fmean 0.01777315 0.01271599 0.01777653 0.01327191 0.01778504 0.01278983 0.01320437 0.01308636 0.01267585

std 3.5696e-14 1.4994e-05 2.1943e-06 6.8107e-04 5.3640e-06 9.4641e-05 9.9265e-05 5.6142e-04 1.3885e-05

are adopted [43-45]. Note that the stopping condition, the num-

ber of runs and the other relevant settings keep the same as that

in previous subsection 4.3. In addition, to deal with the con-

strains involved in problems, an effective constraint handling

technique is utilized [1]. Tables 9-11 summarize the experimen-

t results considering the mean error value ( fmean) and standard

deviation (std) on the corresponding statistical results.

5.1. case 1

The main target of compression spring problem aims to op-

timize the weight considering four different constraint condi-

tions, which involves three control variables (x1,x2 and x3). E-

q.(4) and Fig.7 provide the mathematical model and architec-

ture graph, respectively.

P P

d

D

Figure 7: The schematic of the tension/compression spring design problem
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Table 10: Experimental results of all methods for Pressure vessel design problem
Variables DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

x1 0.96099558 0.78240189 0.96168907 1.32487442 0.96318757 1.08351033 1.23020054 0.78574452 0.77816864

x2 0.47502063 0.38683703 0.47566403 0.65488612 0.47640431 0.53556283 0.61133921 0.38839392 0.38464916

x3 49.7925162 40.5375510 49.8201449 68.6463432 49.9037386 56.1372281 63.5981424 40.7121513 40.3196187

x4 99.9998919 197.002772 99.8162183 10.2633410 99.1322577 56.0581137 18.6301442 194.606888 200.000000

fmean 6277.01738 6187.94631 6281.12298 7345.38581 6458.13436 6541.70494 21545.1717 6191.41452 5885.33277

std 4.1044e+04 5.1283e+02 1.4507e+00 1.1898e+03 3.5407e+02 5.5648e+02 7.9909e+03 2.5431e+02 6.3882e-07

Table 11: Experimental results of all methods for three-bar truss design problem
Variables DEDVR MGSCA MGWO WSSA GLFGWO QGDA SGLSCA CMAES BSO

x1 0.78867513 0.78729684 0.78872584 0.78850149 0.78916276 0.78826187 0.78872136 0.78867513 0.78869913

x2 0.40824828 0.41216083 0.40810531 0.40873964 0.40687971 0.40941930 0.40811755 0.40824828 0.40818042

fmean 263.895843 263.898089 263.896030 263.897180 263.897041 263.897738 265.705696 263.895843 263.895843

std 1.7345e-13 1.7897e-03 2.1630e-04 2.6230e-03 9.5081e-04 1.5539e-03 1.1997e+00 6.4193e-07 6.0960e-07

Table 6: Results obtained by different versions of BSO on multimodal functions

Function Index BSOV BSOVV BSO

f3 fmean 4.1485e+02‡ 4.0968e+02‡ 4.0004e+02

std 2.6003e+01‡ 1.1468e+01‡ 1.5096e-02

p 3.0199e-11 3.0199e-11 -

h 1 1 -

f4 fmean 5.2176e+02‡ 5.1984e+02‡ 5.0904e+02

std 9.0752e+00‡ 8.9914e+00‡ 3.8641e+00

p 1.0901e-08 3.7715e-07 -

h 1 1 -

f5 fmean 6.0784e+02‡ 6.0969e+02‡ 6.0000e+02

std 4.7525e+00‡ 9.1876e+00‡ 2.0868e-06

p 1.9879e-11 1.9879e-11 -

h 1 1 -

f6 fmean 7.2487e+02‡ 7.2479e+02‡ 7.1771e+02

std 6.3683e+00‡ 7.2606e+00‡ 4.3839e+00

p 5.4620e-06 4.9426e-05 -

h 1 1 -

f7 fmean 8.1754e+02‡ 8.1859e+02‡ 8.0779e+02

std 8.0160e+00‡ 7.2340e+00‡ 3.1801e+00

p 1.1365e-07 4.1333e-09 -

h 1 1 -

f8 fmean 9.3477e+02‡ 9.5782e+02‡ 9.0000e+02

std 7.3327e+01‡ 1.1255e+02‡ 0

p 1.2118e-12 1.2118e-12 -

h 1 1 -

f9 fmean 1.9584e+03‡ 2.0749e+03‡ 1.2964e+03

std 4.1013e+02‡ 3.7811e+02‡ 2.1766e+02

p 2.3897e-08 9.9186e-11 -

h 1 1 -

‡ 7 7 -

† 0 0 -

≀ 0 0 -

0.05 6 x1 6 2, 0.25 6 x2 6 1.3, 2 6 x3 6 15,

In this problem, the results listed in Table 9 clearly show that

the performance of BSO is remarkable with respect to other op-

timizers on different evaluate indicators. Although the standard

deviation values of BSO is a little weaker than that of DED-

VR, MGWO and GLFGWO, it generates the best ’ fmean’ val-

ues, which means that the proposed algorithm is able to obtain

a set of optimal design with minimum weight compared to other

competitors.

5.2. Case 2

The main target of pressure vessel problem aims to opti-

mize overall cost including material, forming and welding cost-

Table 7: Results obtained by different versions of BSO on Hybrid functions

Function Index BSOV BSOVV BSO

f10 fmean 1.1759e+03‡ 1.1793e+03‡ 1.1013e+03

std 3.8546e+01‡ 3.6104e+01‡ 1.3658e+00

p 3.0199e-11 3.0199e-11 -

h 1 1 -

f11 fmean 2.0631e+05‡ 1.7235e+06‡ 1.0425e+04

std 5.0873e+05‡ 3.5606e+06‡ 1.5451e+04

p 1.1937e-06 1.6980e-08 -

h 1 1 -

f12 fmean 2.0979e+04‡ 9.7821e+03‡ 1.4407e+03

std 1.6778e+04‡ 1.2767e+04‡ 1.7997e+02

p 3.0199e-11 3.3384e-11 -

h 1 1 -

f13 fmean 4.0764e+04‡ 5.6419e+03‡ 1.4289e+03

std 6.5606e+03‡ 8.4343e+03‡ 1.2017e+01

p 3.0199e-11 3.0199e-11 -

h 1 1 -

f14 fmean 1.8689e+04‡ 2.3807e+04‡ 1.5246e+03

std 2.2476e+04‡ 3.3025e+04‡ 2.9586e+01

p 3.0199e-11 3.0199e-11 -

h 1 1 -

f15 fmean 1.9033e+03‡ 1.8608e+03‡ 1.6193e+03

std 1.7681e+02‡ 1.7894e+02‡ 3.2407e+01

p 9.7555e-10 2.4386e-09 -

h 1 1 -

f16 fmean 1.8012e+03‡ 1.8137e+03‡ 1.7298e+03

std 5.9060e+01‡ 9.1546e+01‡ 1.9892e+01

p 1.0702e-09 7.3803e-10 -

h 1 1 -

f17 fmean 2.5597e+04‡ 2.5414e+04‡ 1.9467e+03

std 1.7230e+04‡ 1.7241e+04‡ 1.6381e+02

p 3.0199e-11 3.3384e-11 -

h 1 1 -

f18 fmean 1.3042e+04‡ 1.7495e+04‡ 1.9144e+03

std 1.2275e+04‡ 2.7275e+04‡ 2.1034e+01

p 3.0199e-11 3.0199e-11 -

h 1 1 -

f19 fmean 2.1574e+03‡ 2.1256e+03‡ 2.0136e+03

std 6.8306e+01‡ 7.6621e+01‡ 1.0446e+01

p 3.0199e-11 3.0104-11 -

h 1 1 -

‡ 10 10 -

† 0 0 -

≀ 0 0 -

s, which are expressed by four different constraint condition-

s, two discrete control variables (x1 and x2) and two continu-

ous control variables (x3 and x4). Eq.(5) and Fig.8 provide the

mathematical model and architecture graph, respectively.
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Table 8: Results obtained by different versions of BSO on Composition func-

tions
Function Index BSOV BSOVV BSO

f20 fmean 2.2972e+03‡ 2.2863e+03≀ 2.3042e+03

std 4.7518e+01‡ 5.3210e+01≀ 2.8500e+01

p 4.2259e-03 3.7108e-01 -

h 1 0 -

f21 fmean 2.3027e+03‡ 2.3025e+03‡ 2.2943e+03

std 1.6113e+01‡ 1.7252e+01‡ 2.5632e+01

p 1.0690e-09 2.0317e-09 -

h 1 1 -

f22 fmean 2.6501e+03‡ 2.6439e+03‡ 2.6112e+03

std 2.2711e+01‡ 1.8447e+01‡ 4.2478e+00

p 1.4643e-10 1.0937e-10 -

h 1 1 -

f23 fmean 2.7623e+03‡ 2.7552e+03‡ 2.7107e+03

std 5.0628e+01‡ 6.9058e+01‡ 8.4185e+01

p 2.9186e-09 2.0134e-08 -

h 1 1 -

f24 fmean 2.9300e+03‡ 2.9326e+03‡ 2.9207e+03

std 2.8083e+01‡ 2.7825e+01‡ 2.4978e+01

p 2.7063e-02 3.9137e-02 -

h 1 1 -

f25 fmean 2.9960e+03† 3.1126e+03‡ 3.0131e+03

std 9.6000e+01† 3.7122e+02‡ 2.7170e+02

p 4.3953e-04 4.3953e-04 -

h 1 1 -

f26 fmean 3.1563e+03‡ 3.1729e+03‡ 3.0902e+03

std 4.7452e+01‡ 4.2231e+01‡ 1.4199e+00

p 2.9486e-11 2.9413e-11 -

h 1 1 -

f27 fmean 3.5139e+03‡ 3.5171e+03‡ 3.3272e+03

std 2.3893e+02‡ 2.8614e+02‡ 1.6981e+02

p 4.3531e-03 7.1971e-03 -

h 1 1 -

f28 fmean 3.2730e+03‡ 3.2630e+03‡ 3.1539e+03

std 7.1359e+01‡ 6.7949e+01‡ 2.7673e+01

p 1.2870e-09 1.2870e-09 -

h 1 1 -

f29 fmean 2.5894e+06‡ 2.5661e+06‡ 3.8183e+05

std 1.8642e+06‡ 4.1742e+06‡ 5.7220e+05

p 9.0595e-08 5.5979e-07 -

h 1 1 -

‡ 9 9 -

† 1 0 -

≀ 0 1 -

Min. f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4

+19.84x2
1x3

s.t. g1(x) = 0.0193x3 − x1 6 0

g2(x) = 0.00954x3 − x2 6 0

g3(x) = −πx2
3x4 −

4

3
πx3

3 + 1296000 6 0

g4(x) = x4 − 240 6 0

(5)

0 6 x1, x2 6 100, 10 6 x2, x4 6 200

Table 10 clearly testifies that the proposed algorithm delivers

better results under the same run circumstance and termination

criterion, and the superiority is statistically significant with re-

spective to other competitors considering the obtained fmean and

standard deviation results. That means BSO is able to generate

L

RR

Th
Ts

Figure 8: The schematic of the pressure vessel design problem

a set of parameter combinations such that the optimization ob-

jective is optimal.

5.3. case 3

The main target of three-bar truss design problem aims to

optimize the weight considering stress, deflection, and buckling

constraints, which are expressed by seven different constraint

conditions, two decision variables(x1 and x2) and some control

parameters. Eq.(6) and Fig.9 provide the mathematical model

and architecture graph, respectively.

Min. f (x) = (2
√

2x1 + x2) × l

s.t. g1(x) =

√
2x1 + x2√

2x2
1
+ 2x1x2

P − σ 6 0

g2(x) =
x2√

2x2
1
+ 2x1x2

P − σ 6 0

g3(x) =
1

√
2x2 + x1

P − σ 6 0

(6)

where, l = 100cm, P = 2kN/cm2,σ = 2kN/cm2, 0 6 x1 6 1,

0 6 x2 6 1.

Figure 9: The schematic of the three-bar truss design problem

According to the experimental results listed in Table 11, al-

though the standard deviation value of BSO is weaker than that

of DEDVR, BSO, CMAES and DEDVR obtain the best results,

and sufficiently outperform other optimization algorithms with

the same termination criterion and run circumstance. Such evi-

dence indicates that the proposed algorithm will be an attractive

alternative optimizer for generating satisfactory results on chal-

lenging optimization problems in future.

6. Conclusion

In this paper, inspired by the Oryx escape and survival phe-

nomenon in nature, a new heuristic optimization technique

10



named biological survival optimizer is proposed. The simplex

method and several stochastic operators are introduced for ex-

ploring and exploiting the feasible region effectively. The sensi-

tivity analysis of the proposed algorithm is also discussed from

the view of principle. To evaluate the performance of BSO, a re-

cent test suite of CEC2017 benchmark functions with different

characteristics and three different engineering design problems

are utilized. Experimental results compared with eight existing

optimization algorithms demonstrate that BSO has better per-

formance than the other algorithms on most cases, showing the

proposed algorithm has a good tracking ability. Besides that,

the sensitivity analysis on the role of each component in the

proposed algorithm is also analysed and discussed extensively.

In future work, BSO will be further improved or modified as

tool for addressing diverse practical applications in real world.

Acknowledgment

The authors express sincerely appreciation to the anonymous

reviewers for their helpful opinions. This work is supported by

the National Natural Science Foundation of China under Grants

62006103 and 61872168, in part by the Jiangsu national science

research of high education under Grand 20KJB110021.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

All data/figure files are available after acceptance of the

manuscript for publication.

Reference

[1] X. S. Yang, “Nature-inspired metaheuristic algorithms,” in Luniver press,

2nd ed., 2010.

[2] D. H. Wolpert, and W. G. Macready, “ No free lunch theorems for optimiza-

tion,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

[3] H. Akcan, “A genetic algorithm based solution to the Minimum-Cost

Bounded-Error Calibration Tree problem,” Appl. Soft. Comput., vol. 73, pp.

83–95, 2018.

[4] M. Sami, N. Nejah, V. D. B. Adrien, “V. Thierry. Improved Many-objective

optimization algorithms for the 3D indoor deployment problem,” Arab. J.

Sci. Eng., vol. 44, pp. 3883–3904, 2019.

[5] A. H. Ali, W. Ejaz, and M. A. Taei, et al. “Solving MAX-SAT Problem by

Binary Biogeograph-based Optimization Algorithm,” 2019 IEEE 10th An-

nual Information Technology, Electronics and Mobile Communication Con-

ference (IEMCON), 2019.

[6] B. Rafal, “ Handling bound constraints in CMA-ES: An experimental study”

, Swarm. Evol. Comput., vol. 52, 100627, 2020.

[7] C. Pinar, B. Erkan. “Bernstain-search differential evolution algorithm for

numerical function optimization,” Expert. Syst. Appl., vol. 138, 112831,

2019.

[8] G. Ricardo, J. L. Luis, A. L. Julio. “A Memetic Chaotic Gravitational

Search Algorithm for unconstrained global optimization problems,” Appl.

Soft. Comput., vol. 79, pp. 14–29, 2019.

[9] P. Doddy, M. Y. Cheng, Y. W. Wu, et al. “Differential Big Bang - Big Crunch

algorithm for construction-engineering design optimization,” Utomat. Con-

stra., vol. 85, pp. 290–304, 2018.

[10] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimzer: a

nature-inspired algorithm for global optimization,” Neural. comput. appl.,

vol. 27, no. 2, pp. 495–513, 2016.

[11] Q. Jiang, L. Wang, and Y. Lin, et al.“An efficient multi-objective artificial

raindrop algorithm and its application to dynamic optimization problems in

chemical processes,” Appl. Soft. Comput., vol. 58, pp. 354–377, 2017.

[12] S. M. E. Abd, E. S. Ali. “Optimal locations and sizing of capacitors in

radial distribution systems using mine blast algorithm,” Electr. Eng., vol.

100, pp. 1–9, 2016.

[13] J. K. Li, S. B. Song, Y. Tang, et al. “Approximate logic neuron model

trained by states of matter search algorithm,” Knowl-based. syst., vol. 163,

pp. 120–130, 2019.

[14] B. Amin, V. Vahid, S. Miadeza, P. S. Joao. “Multiobjective ray optimiza-

tion algorithm as a solution strategy for solving non-convex problems: A

power generation scheduling case study,” Elect. Power. Energy Syst., vol.

119, 105967, 2020.

[15] M. lsiet, G. Mohamed. “Self-adapting control parameters in particle swarm

optimization,” Appl. Soft. Comput., vol. 83, 105653, 2019.

[16] M. Sami, N. Nejah, V. D. B. Adrien, V. Thierry. “A new multi-agent par-

ticle swarm algorithm based on birds accents for the 3D indoor deployment

problem,” Isa. Trans., vol. 91, pp. 262–280, 2019.

[17] Q. Liu, L. Wu, et al, “A novel hybrid bat algorithm for solving continuous

optimization problems,” Appl. Soft. Comput., vol. 73, pp. 67–82, 2018.

[18] C. Lu, L. Gao. J. Yi. “Grey wolf optimizer with cellular topological struc-

ture,” in Expert. Syst. Appl.., vol. 107, pp. 89–114, 2018.

[19] W. Yamany, M. Fawzy, and A. Tharwat, et al, “Moth-flame optimization

for training multi-layer perceptrons,” in Proc. ICENCO, Cairo, Egypt, 2015,

pp. 267–272.

[20] A. S. Joshi, K. Omkar, G. M. Kakandikar, V. M. Nandedkar. “Cuckoo

Search Optimization- A Review,” Mater. today., vol. 4, pp. 7262–7269, Nov.

2017.

[21] A. L. Hafez, H. M. Zawbaa, E. Emary, and A. E. Hassanien, “Sine co-

sine optimization algorithm for feature selection,” in Proc. INISTA, Sinaia,

Romania, pp. 223–233, 2016.

[22] S. Mirjalili, and A. Lewis, “The Whale optimization algorithm,” Adv. Eng.

Softw., vol. 95, pp. 51–67, 2016.

[23] IUCN SSC Antelope Specialist Group, “ Oryx leucoryx,” IUCN Red List

of Threatened Species. Version 2008.

[24] O. Gilad, W. E. Grant, and S. David, “ Simulated dynamics of Arabian

Oryx (Oryx leucoryx) in the Israeli Negev: Effects of migration corridors

and post-reintroduction changes in natality on population viability” , Ecolo.

Model., vol. 210, no. 1-2, pp. 169–178, Jan. 2008.

[25] M. Zafar-ul Islam, P.M. Basheer, W. Rahman,and A. Boug, “ An attack by

ratel mellivora capensis on pre-release asian Houbara bustards chlamydotis

macqueenii in central saudi arabia” , Small Carni. Conse., vol. 44, pp. 35–

37, 2011.

[26] C. Stephen, T. Arshad, S. Ahmed, et al, “Incidental findings of Cysticercus

tenuicollis metacestodes in five oryx species,” in Asian. Pac. J. Trop. Bio..,

vol. 6, pp. 90–92, 2016.

[27] F. Mads, M. Osma, W. Tobias, et al, “The hairy lizard: heterothermia

affects anaesthetic requirements in the Arabian oryx ,” Vet. Anaesth. analg.,

vol. 44, pp. 899–904, 2017.

[28] D. Braha, “ Global civil unrest: contagion, self-organization, and predic-

tion” , PLoSONE., vol. 7, no. 10, pp. 1–9, 2012.

[29] M. Ballerini, N. Cabibbo, R. M. Candelier, and V. Zdravkovic, “Interaction

ruling animal collective behavior depends on topological rather than metric

distance: evidence from a field study.,” in Proc. Natl. Acad. Sci, USA, 2008,

pp. 1232–1237.

[30] E. Abdulhakeem, A. Mohammad, et al, “CIDR estrous synchronization in

the Arabian Oryx” , Theriogenology., vol. 132, pp. 113–117, 2019.

[31] J. Kennedy and R. Mendes, “Population structure and particle swarm per-

formance,” in Proc. IEEE Cof. Evolu. Comput., Honolulu, USA, 2002, pp.

1671–1676.

[32] Y. Q. Zhou, Y. X. Zhou, Q. F. Luo, and M. Abdel-Basset, “ A simplex

method-based social spider optimization algorithm for clustering analysis,”

, Eng. Appl. Artif. Intel., vol. 64,pp. 67–82, 2017.

[33] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang and B. Y. Qu, , ”Prob-

lem Definitions and Evaluation Criteria for the CEC 2017 Special Session

and Competition on Single Objective Real-Parameter Numerical Optimiza-

tion,” Nanyang Technological University, Jordan University of Science and

Technology and Zhengzhou University, Tech. Rep., 2016.

11



[34] Y. Wang, Z.X. Cai, and Q.F Zhang, “ Differential evolution with composite

trial vector generation strategies and control parameters” , IEEE Trans. Evol.

Comput., vol. 15, no. 1, pp. 55–66, 2011.

[35] A. Ghosh, S. Das, A. Kr. Das, and L. Gao, ”Reusing the Past Difference

Vectors in Differential EvolutionłA Simple But Significant Improvement” ,

IEEE T. Cybernetics, vol. 50, no. 11, pp. 4821–4834, 2020.

[36] S. Gupta and K Deep, and A. Engelbrecht, ”A memory guided sine cosine

algorithm for global optimization” , ENG. Appl. Artif. Intel., vol. 93, 103718,

2020.

[37] S. Gupta and K Deep, ”A memory-based Grey Wolf Optimizer for global

optimization tasks” , Appl. Soft. Comput., vol. 93, 106367, 2020.

[38] H. Ren, J. Li, H. l. Chen, C. Y. Li, ”Adaptive levy-assisted salp swarm al-

gorithm: Analysis and optimization case studies” , Math. Comput. Simulat.,

vol. 181, pp. 380–409, 2021.

[39] S. Gupta and K Deep, ”Enhanced leadership-inspired grey wolf optimizer

for global optimization problems” , Eng. Comput., vol. 36, pp. 1777–1800,

2020.

[40] C. Yu, Z. Cai, X. Ye, M. Wang, X. Zhao, G. Liang, H. Chen, and C.

Li, ”Quantum-like mutation-induced dragonfly-inspired optimization ap-

proach” , Math. Comput. Simulat, vol. 178, pp. 259–289, 2020.

[41] W. Zhou, P. Wang, A. Heidari, M. Wang, X. Zhao and H. Chen, ”Multi-

core sine cosine optimization: Methods and inclusive analysis” , Expert.

Syst. Appl., vol. 164, 113974, 2021.

[42] N. Hansen, A. Ostermeier, ”Completely derandomized self-adaptation in

evolution strategies” , Evol. Comput., vol. 9, no. 2, pp. 159–195, 2001.

[43] Q. Zhang, R. Wang, J. Yang, et al. “Biology migration algorithm: a new

nature-inspired heuristic methodology for global optimization” , Soft. Com-

put., vol. 23, pp. 7333–7358, 2019.

[44] S. Mirjalili, “The Ant Lion Optimizer” , Adv. Eng. Softw., vol. 83, pp.

80–98, 2015.

[45] A. Askarzadeh, “A novel metaheuristic method for solving constrained en-

gineering optimization problems: Crow search algorithm” , Comput struct.,

vol. 169, pp. 1–12, 2016.

12


