Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Multi-view Support Vector Machines with Sub-view
Learning

Qi Hao
Tianjin University of Technology

Wenguang Zheng (3% wenguangz@tjut.edu.cn)
Tianjin University of Technology

Yingyuan Xiao
Tianjin University of Technology

Wenxin Zhu
Tianjin Agricultural University

Research Article

Keywords: Multi-view learning, Support vector machines, Sub-views, Privileged information
Posted Date: September 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1779269/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License


https://doi.org/10.21203/rs.3.rs-1779269/v1
mailto:wenguangz@tjut.edu.cn
https://doi.org/10.21203/rs.3.rs-1779269/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 BTEX template

Multi-view Support Vector Machines with Sub-view Learning

Qi Hao'?, Wenguang Zheng!?", Yingyuan Xiao"?" and Wenxin Zhu?

1School of Computer Science and Engineering, Tianjin University of Technology, Tianjin,
300384, China.
2Engineering Research Center of Learning-Based Intelligent System, Ministry of
Education, Tianjin, 300384, China.
3College of Basic Science, Tianjin Agricultural University, Tianjin, 300384, China.

*Corresponding author(s). E-mail(s): wenguangz@tjut.edu.cn; yyxiao@tjut.edu.cn;
Contributing authors: haoqi@stud.tjut.edu.cn; zhuwenxin@tjau.edu.cn;

Abstract

Multi-view learning improves the performance of existing learning tasks by using complementary
information between multiple feature sets. In the latest research, multi-view learning model using
privilege information is proposed, specific models such as PSVM-2V and MCPK. In these mod-
els, views complement each other by acting as privileged information policies, However, a single
view contains privilege information that can guide the classifier, and the existing framework does
not consider it. In order to use this information to correct multi-view support vector machine clas-
sifier, we propose a framework for generating a series of small-scale views based on information
hidden in a single view, which extends the original multi-view parallel structure to a hierarchical
structure with sub-view mechanism. In this paper, two sub-view learning structures SL-PSVM-2V
and SL-MCPK are constructed. The two new models fully exploit the data features in the view.
Similarly, they follow the principles of consistency and complementarity. We use the standard
quadratic programming solver to solve the new model. In 55 groups of classification experiments
and noise sensitivity tests, the new model has better performance than the benchmark model.
Statistical comparison shows that the new method is significantly different from the existing methods.

Keywords: Multi-view learning, Support vector machines, Sub-views, Privileged information

1 Introduction

In recent years, multi-view learning has become an
active research direction of machine learning, and
has been applied to learning problems in differ-
ent fields. Such as image classification (Han et al,
2018; Sun et al, 2019; Zhang et al, 2020), brain
network analysis (Ahmed et al, 2017; Appice and
Malerba, 2016a), treatment research (Chao et al,
2019).

Multi-view data are directly collected in the
real world or extracted by different feature extrac-
tion methods. Studies have shown that various
viewpoints are interrelated and complementary.
Compared with single-view training and direct
connection of different view data, multi-view
learning can mine more information.

The classification models of multi-view learn-
ing research are mainly divided into three
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categories: co-training style algorithms, co-
regularization style algorithms, and margin-
consistency. In the co-training style algorithm,
the machine learning method trains alternately on
different views. For example, multi-view collabo-
rative clustering algorithm (Appice and Malerba,
2016b) and Kim et al (2019) uses multiple col-
laborative training for document -classification.
The co-regularization style algorithm takes the
divergence between different viewpoints as a new
regularization term or constraint in the learning
objective function. The typical methods are SVM-
2K (Farquhar et al, 2005), multi-view LS-TSVMs
(Xie, 2018), multi-view LSSVMs (Houthuys et al,
2018), multi-view RSVMs (Li et al, 2018), etc.
Margin-consistency algorithm has the edge con-
sistency style, they model the marginal variables
of multiple views as close as possible, so that the
machine learning model can use the potential con-
sistency of the classification results from multiple
views, and the representative algorithms include
MVMED (Li et al, 2018), SMVMED (Sun and
Chao, 2013) and MED-2C (Chao and Sun, 2016).

Most SVM-based multi-view models only con-
sider the consensus principle, while ignoring the
complementarity principle. The consensus princi-
ple is to maximize the consistency between mul-
tiple views. The complementary principle empha-
sizes that each view contains some knowledge that
other views do not have, and the complementary
information is shared between the views to com-
prehensively describe the data. In summary, the
principle of consistency and complementarity is an
important basis for multi-view learning.

Learning using privileged information(LUPT)
is proposed for accompanying or hidden informa-
tion in the learning model (Vapnik et al, 2007).
Using privileged information for learning has been
widely used in many tasks, such as text cluster-
ing (Sinoara et al, 2014), image recognition (Guo
et al, 2018; Yan et al, 2016), etc. In classification
tasks, this information can provide an effective
supplementary strategy for classification. Vapnik
and Vashist first proposed a SVM-based model
under LUPI: SVM+ (Vapnik et al, 2007). In order
to reduce the calculation time, L.Niu constructed
a new LUPI model using the improved L2 norm
(Niu and Wu, 2012). M. Lapin assigns different
weights to samples with privileged information
(Lapin et al, 2014). For support vector machines

with different tasks, the version of privileged infor-
mation learning is introduced. Xu et al (2019) pro-
posed an autonomous learning model using priv-
ileged information. Liang and Cherkassky (2007)
used group information as privileged information.
The training data can be grouped according to a
feature attribute, and a formal optimization for-
mula is sorted out. Che et al (2021) proposed a
twin support vector machine model for privileged
information learning based on LUPI paradigm .
Some other models have been improved in the
SVM with privileged information to make the
model more robust (Li et al, 2021).

LUPI can be used for information comple-
mentarity and information interaction. Under the
principles of consensus and consistency, A series
of classification models applying privilege infor-
mation to multi-view learning are proposed. The
initial model is PSVM-2V (Tang et al, 2018b),
and then a version that can realize multiple views
(more than two views) is proposed: IPSVM-MV
(Tang et al, 2018a). PSVM-2V and IPSVM-MV
give full play to the performance of complemen-
tary information between views, but the con-
sistency constraint of regularization makes the
model solving too complex and time consuming in
application. In the latest research, Tang proposed
the MCPK (coupled privileged kernel method for
multi-view learning) model. MCPK uses coupling
terms in the original target to minimize error com-
binations in all views, thus ensuring consistency.
At the same time, due to the existence of cou-
pling terms, the complexity of model optimization
is greatly reduced (Tang et al, 2019).

PSVM-2V and MCPK use privileged informa-
tion as complementary constraints between views.
However, each view also has its own privileged or
structural information, which will guide the clas-
sifier to work better. We can get inspiration from
using group information as privileged informa-
tion and propose the concept of sub-view learning.
Sub-views are generated from the original view
and trained in the LUPI paradigm, which can
form multiple sub-view correction planes to cor-
rect multi-view learning. Based on the existing
multi-view learning methods, this paper expands
the view framework and proposes a classification
model based on sub-view learning.

The following is a brief description of our
contribution:
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e In this paper, a new multi-view learning method
is proposed by using the sub-view mechanism.
This new method is easy to implement and can
effectively use the hidden features in multi-view
data.

® Two new classification methods with sub-view
paradigm, SL-PSVM-2V and SL-MCK, are con-
structed by using PSVM-2V and MCPK multi-
view models, respectively. The solution strategy
based on quadratic programming is given.

® Compared with multiple multi-view learning,
analyze their compliance with the consistency
principle and complementary principle, and sort
out the transformation method between each
model.

® The effectiveness of the new method and the
classification performance of each data set
are verified through multiple sets of experi-
ments, and the performance of each classifica-
tion method in the noise data set is compared.
At the same time, non-parametric tests are
carried out to verify the significant differences
between models.

The paper is organized as follows. Section
2 describes the main related work, including
learning using privileged information principle,
PSVM-2V and MCPK. Section 3 introduces two
new classification models: SL-PSVM-2V and SL-
MCPK. Section 4 analyzes and compares several
algorithms, and shows the transformation method.
Section 5 shows the experimental results and anal-
ysis. Section 6 is the summary of this paper and
the prospect of future research.

2 Related works

2.1 Learning Using Privileged
Information

Privileged information can be used as an addi-
tional feature to help specific classifiers work bet-
ter. Training data are used according to privilege
information, which contains additional informa-
tion provided only in the training process rather
than in the test process. privileged information is
ubiquitous and useful.

Vapnik et al (2007) developed the earliest
LUPI model: SVM+ by incorporating privileged
knowledge into SVM. Many experiments have
proved a comprehensive theoretical explanation

and algorithm description of privileged informa-
tion learning are carried out to ensure and improve
the prediction performance .

SVM+ appears in the form of privilege fea-
tures. These features are used not only to estimate
the relaxation of constraints, but also to establish
an upper bound for the risk of decision functions.
The purpose of LUPI is to use privileged informa-
tion to learn a model, so as to further constrain
the solution in the original space. The SVM model
that realizes LUPI at the training stage can be
expressed as follows:

w,w*,b,d

1 n
min = [wll” + 2" + CY ' -ai +d)

st yi(w-x) >1— (w -z} +d),
w* i +d>0i=1,..,n.

(1)

where w and w* represent the weight vector, b and
d represent the bias term, C' is used to balance
the loss, and « balances the weight of privileged
information in the privileged space. The optimal
parameter w and b are solved for classification pre-
diction, and this w is the result of correcting the
standard classification plane through the correc-
tion plane. The final function for decision making
is:

h(z) = sign(w - x + b) (2)

2.2 PSVM-2V

PSVM-2V introduces LUPI paradigm into multi-
view learning. The basic idea of PSVM-2V is
that two views complement each other as priv-
ileged information. The learning structure uses
the regularization term to bridge the gap between
the two classifiers and correct the classification
hyperplane.

Considering a multi-view classification prob-
lem, the training data is:

S = {x?"rLB7yb 'li=1 = (xiAv 1)a('rLB7 1) é=17

where the label y; € {—1,41}, and each training
sample is independently distributed. In data z#
and 2P, there is a constant term (1) connection at
the end of each feature data to express the classi-
fier without clear bias term. PSVM-2V is formally
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built as Eq.(3):

. 1 2 2
min —(||w =+ yl|w
oo min 5 (lwall® +7llwsll)

! I !
+CaY &+ C> P +C> m,
i=1 i=1 i=1

st |wa-da(zd) —wa - op@P)| <e+mi,
yi(wa - pa(z) =1 - &,
yi(wp - ¢p(a])) >1 - €7,
& > yi(wp - ¢p(x)),
&7 > yi(wa - da(a))),
208 >0m>0i=1,.1

where wy and wp are the weight vectors of view
A and view B respectively. Under the excitation
of LUPI paradigm, PSVM-2V limits the non-
negative slack variables £ and P of view A and
view B through the unknown non-negative correc-
tion function determined by view B and view A
respectively. Thus the complementary principle is
realized. The first constraint w4 - ¢4 (xZA) —wy -
o5 (xP)| < e+n; realizes the consistency between
the two views, and uses the slack variable 7; to
weigh the number of points that fail to meet the
similarity. C4,Cp and C are non-negative penalty
parameters. 7y is a nonnegative tradeoff parameter
that weighs two views.

2.3 MCPK

MCPK is a simple and effective multi-view learn-
ing privileged coupling kernel method (Tang et al,
2018a). To inherit the advantages of PSVM-2V
directly, MCPK takes one view as main infor-
mation and another view as privileged informa-
tion. This pair view, namely the main view and
privileged view, shares complementary informa-
tion. Similarly, MCPK models the complementary
point of view by drawing on the idea of LUPI to
achieve the complementary principle. In order to
complete the consensus principle, MCPK intro-
duces a coupling term to establish a bridge for
two different viewpoints. This term forces the pre-
diction error combination of the two views to be
small. Therefore, information from both views is
merged into the model, and the high error vari-
able of a sample in one view can be compensated
by the corresponding low error variable in another

view. Formally, MCPK classification optimization
problem can be built as follows:

, 1 2 2
min —({lw + v||w
Lomin o o(fwal? oy lws]?)

l l l
+COAY 40> P+ glel,
=1 =1 =1

st yi(wa-da(z)) =1-¢,
yi(wp - ¢p(xl)) >1- &P,
& > yi(wp - ¢p(2F)),
&7 > yi(wa - pa(a))),
>0, >0i=1,..,1

(4)

where w4 and wp are the weight vectors of view
A and view B, respectively, and the two views are
weighed by the non-negative trade-off parameter
~. As slack variables, 5;4 and 5;4 are constrained
by the correction functions determined by the two
views. The coupling term C 22:1 f;“ng makes the
product of error variables of the two views as small
as possible. When classifiers constructed from dif-
ferent views are more consistent, errors from both
views are small, resulting in smaller couplings.
Therefore, its consistency can be fully ensured. C
is a non-negative coupling parameter that controls
the influence of the coupling term. Cy and Cp are
non-negative penalty parameters.

3 Our proposed method

3.1 Primal problem

In multi-view learning base on LUPI, views are
located in parallel and corrected as privileged
information. However, each view also contains
information that helps to achieve classification.
Such information may come from the practical
significance of a feature, or may come from the fea-
ture distribution of the data. Either way, it can be
used as privileged information. We use this hidden
information to divide the original view data into
multiple groups. Since this subset is part of the
view, we call it a sub-view. Sub-views be divided
by the privileged information of the original view
itself (illustrated in Fig.1), or dividing foundation
based on other views (illustrated in Fig.2). Sub-
views can form a classification space different from
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the main view (Source view of sub-view), provid-
ing more accurate guidance for classification. The
sub-views formed by the mutual guidance of dif-
ferent views can allow different views to share this
privileged information and more strictly follow the
principle of complementarity.

AAAEA

AAAEA
I

AR
[ [ [ [ []
L
AR

Sub-views of view A View A

Sub-views of view B

Fig. 1 Dividing sub-views by their own privileged infor-
mation

AR
[ T [ [ 1]

[ [ [ [ ¢
L]
AR

AR
[ [ [ ]|
L]

Sub-views of view A

Sub-views of view B

Fig. 2 Dividing sub-views through privileged information
from different views

The sub-view learning considers multi-view
training learning with privileged information.
The training data are S = {z, 2By}l | =
{(z 1),(=B; 1)Y_,, where y; € {-1,+1},
sub-views stored by T, T' = {T4,Tg}, Sub-view
data indexes in view A and view B in T4 and
T'p, respectively. Sub-view regularization term and
constraints on slack variables are added to transfer
sub-view information, and kernel technique maps
sub-view data to different feature spaces. As the
sub-view learning framework shown in Fig.3, The

final classification hyperplane is not only com-
posed of information from two views, but also
the correction plane formed by sub-views is cor-
rected by LUPI paradigm. Sub-views are only used
in the training classifier stage, and do not exist
in the prediction classification result stage. Two
multi-view sub-view learning version classification
models are introduced in 3.2 and 3.3 respectively.

View B

Privileged information

Claxsnﬁer Chssxf fier

Privileged information

W e Y .

Subviews correction hyperplane

= e e o= = =i

Fig. 3 The framework of sub-view learning

In order to clearly explain the model in the
paper, the main symbols and their meanings are
Table 1:

Table 1 Summary of notation

Notation Description
(zf, 2B, y) i — th training samples
wa,WR Weight vectors for views A and B

Weight vectors for the r-th sub-view
of view A and view B
Mapping to high-dimensional feature

T T
WaAsub» WBsub

¢a(),¢5() spaces (view A and view B)

- ” Mapping to high-dimensional feature
Pasub () PBaup () spaces (r-th sub-view of view A and B)
Ka(zd, A) Kernel function(¢a(zf) - ¢.a(zf))
Kp(zB,z5) Kernel function(¢p(z) - ¢5(zF))

Krsub(sz’xi)
KF sub(zz » Ly )

Ty, Tr . . .
AT B contained in sub-views

Kernel funct%on(¢>gsub(a:g;) . ¢r43ub($%))
Kernel function(¢’, ., (277) - OB sus(®))
The sets of indexes for storing samples

3.2 Sub-views learning for
PSVM-2V

Sub-views learning for PSVM-2V(SL-PSVM-2V)
adds a regularization term of sub-view under the
framework of PSVM-2V, and adds new constraints
to the slack variables of the original model by
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using the privileged information learning strategy.
SL-PSVM-2V model can be built as follows:

i L (lwall
min —(|lwa
wa,wp 468w w2
M
+ YA Z ||w:48ubH2)
r=1
N
(IIwBII2 +98 Y [wheusl?)
r=1

l l
+Coad ¢ +CBZ£F +C> m,
=1 1=1 =1

st |wa-pa(zd) —wp ~¢B(
yi(wa - da(z)) >1-
yi(wp - ¢p(xf)) > 1
& > yi(wp - QJ)B(sz))v
&7 > yi(wa - ga(ai),
Yi(Whgup - Pasup (7)) > 1 =

yi(wBsub ' ¢Bsub(aj )) >1-
€A >0,68>0m>0,i= 1,...,1.

B)| §5+77i7

(5)

In this model, |wa||? and ||wp||? are regular-
ization terms of view A and view B, respectively.
W ell? denotes the r-th sub-view regulariza-
tion term of view A, and [|w’,,||* is the r-th
sub-view regularization term of view B. and are
non-negative slack parameters. v is the balance
parameter to balance the weight of two views. 4
and g are the balance parameters of balance view
A data and its sub-view and balance view B data
and its sub-view, respectively.

pa(z) and ¢p(xP) represent the mapping of
two view data. ¢7y_,,(z) in the constraint is the
mapping transformation of the r — th sub-view
data of view A,and ¢, (z5)in the constraint is
the mapping transformation of the r —th sub-view
data of view B.

In the constraint y; (wAsub Oy (T)) > 1A
and y; (W, P Beus (TB)) > 1-E8 denote that the
slack variables are constramed by the correction
hyperplane formed by sub-views, so the slack vari-
ables 5;4 and &P can not only achieve the purpose
of correlation correction between two views, but
also achieve the purpose of correction of the orig-
inal view by the sub-view under the background

Ar=1.M,icTy,
Br=1.N,icTg,

of sub-view learning. C4 and C'p are non-negative
penalty parameters.

The SL-PSVM-2V non-negative slack variable
7; is used to control the gap between the classifiers
associated with the two views, so as to ensure their
consistency principle. C' is a nonnegative penalty
parameter, £ is an error parameter that allows
violation of constraints.

In order to obtain the solution of Eq.(5), we
conduct dual optimization. The Lagrange function
is:

M
1
L =5 ([[wall* +va D sl
r=1

N
Ylwsl + 78 Y lwpawl?)

r=1
l l l
+CAD G +CpY P HCd s
=1 =1 =1
l
+) BN
i=1

!
+Y B2 (ws - ¢5(x) — (wa - da(zf)) —e—m)

i=1
l
+ Za{‘(l — & —yi(wa - Pa(z)))
i=1
l
+D af(l-
=1
l
+ > M wilws - ¢p(f) — &)
i=1

l
+ 3 NP (yi(wa - ga(af)) - €F)

(wa - pa(a])) — (wp - ¢p(x

&8 —vi(wp - op(2?)))

le
r=1i€T}
M
r=14i€eT}

l l
=D =Y ePBE i
=1 =1
(6)

A B B AN A B
where o', SADLAD S

negative Lagrange multlpher vectors. According

are non-

11*3))—5—771‘)
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to the KKT(Karush-Kuhn-Tucker) principle, we
can get the following equation:

l

oL — A A B B A
oy WA~ ;w yi = B+ 8P = \Pyi)oa ()
=0.
(7)
l
oL =Ywp — Z(aByi + 8 = BF = My op(a?)
8w3 P 2 7 7 7 7
=0.
(8)
oL r > A Ar A
awz . =YAW pgyb — Z Z 122 yz¢r (l’ -
Su TAZ ’LET}_;
ieTy,r=1,..,M.
(9)
N
oL
r :’y’waTBsub - Z Z :uszz(bf(xB =
oWy ,
sSu Tg TETE
ieThr=1,..N.
(10)
ggLA =Ca—(af + N +plt+8MH=0,i=1,..1
) ()
oL B B B B
8573:03—(0&1- +A Fur +67)=0i=1,...,1
Z (12
gL —BA+Bl+m)=0i=1,..,1. (13)
at(1=&r —yi(wa-da(xf))) = 0,i = z (14)
af (1- fB—yz(wB ¢B($ZB))) =1,..,0. (15)
A (yi(ws - dp (=) - )= ,l (16)
AP (yi(wa - pa(zi)) —5?) =0,i=1,..,I. (17)

Substitute formula Eq.(7)- (17) to Eq (6), The
objective function of the dual problem can be
transformed. Since 8{*, 32,7, > 0, we can con-
clude that o + A\ +puft < Ca, aP+A\B+uP < COp,
BA+BP < C are constraints. By substitution,

the original dual problem can be reorganized as
Eq.(18):

l l
. 1
min 3> ((afyi = 87 + 51 = APy)

i=1 j=1

KA(LCQL‘,CU?)(C% Yi — ﬂZB +ﬂ£4 - )‘iByi)

1

S (adty 87 = B = APy)

KB(x?, e (eityi + 87 — B = M)
Z Z M leAsub i 7 €T )Mz yl)
r=15€T}

Z Z My leAsub Q0 ] ):uz yl)

2’7“/3 Ty

st alt + A+ ut < Oy,
af + AP +uf < Op,
BA + 5.3 <C,
ot abB, B AANE u P > 0.
(18)

This is a quadratic convex programming prob-
lem, which can be solved by the quadratic convex
programming method. Solving the optimal param-
eters aA* abBx pAx pBx \Ax /\B*,uf‘*,uiB* ,We
use the KKT condition to get the optimal result
w? and wip.

l

wi =Y (ay = Ay )eala),  (19)
=1
l
wp = Z(az‘B*yi — Ay op (). (20)
=1

After getting the optimal w¥ and w}, use the fol-
lowing formula to predict the labels of the new
samples (24, 28) from view A and view B:
fa = sign(fa(@")) = sign(wi " ¢a(z{")), (21)
f5 = sign(fp(x")) = sign(wi ' ¢p(=f)). (22)
The final predictor of multi-views can be con-
structed as the average prediction factor of each
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f = sign(3 ala®) + 1fB@cB»
(23)
)+ swh 65(a")).

= sign(%wZTqSA(
Taking into account the absence of views in the
test phase, if the absence of views can be used
Eq.(21) or Eq.(22) to obtain results, otherwise
use the multi-view classification decision function
Eq.(23).

In order to express clearly, the process of
SL-PSVM-2V is given in Algorithm 1:

Algorithm 1 QP Algorithm for SL-PSVM-2V

{3324’%373}1‘}; T =
{(z; 1), (2P; 1)} _+Yi € {+1,—1}; Sub-
views element mdex T = {(T},T5)}; Initial
parameters: v,v4,7v8,Ca,Cp,C > 0.

Ensure: Decision functions fa,f5,f.

: Select kernel function kernels function of view
A and view B: K4 (z#, J) Kp(z2, j) The
kernel of the sub-views of A.KAsub( Az,
kernel of sub-views of B:K%,_ (28, z ) And
initializing kernel parameters.

2: Create and solve quadratic programming
problem Eq.(18) and using cross validation to
determine the optimal parameters.

3. Solving quadratic programming Eq.(18)
and retaining optimal result parameters
af, o, B B NN i nlr, Get

the optimal weight w? and wj by substituting
formula Eq.(19), Eq.(20).

4: The final decision function is solved by param-

eters w and wg:

Require: Data set: S =

3.3 Sub-views learning for MCPK

Sub-views learning for MCPK(SL-MCPK) is a
sub-view learning version of MCPK, and the cou-
pling term is retained in the framework to achieve

consensus principle and complementary principle.
The model can be established as Eq.(24):

) 1
min ) *(HwA”Q
WA, WB ’£A7£B thsub’w}Bsub

M
+74 Z ||w:45ubH2)
r=1

N

+y(lwsl® + 78 ) lwhawl®)

r=1

l l l
+cAfo+CBZ£f+CZ£;“ 2,
i=1 i i=1

s.t. yi(wa - galz] ))>1—
yi(wp - ¢p(x])) > 1 -
& > yi(ws - ép (ﬂ%B)),
&7 > yi(wa - dpalxf))
Yi(Whsup * ¢Asub(${4)) 1-
) =

yl(wBsub (ZSBsub(‘r )
¢ >08P>0i=1,..1

)

(24)

Similar to SL-PSVM-2V, |wal|? and ||wg|* are
regularization terms for view A and view B, w'; .,
represents the r — th sub-view regularization of
view A, and wi,,,, represents the r — th sub-view
regularization of view B.

Parameters &4 = [¢1,..,&4] and €8 =
[€P,...,¢P] are non-negative slack parameter.
Under the background of sub-view learning, slack
variables ¢4 and ¢P can not only achieve the pur-
pose of correction of the two views, but also realize
the correction of the original view by the sub-view.
As a coupling term, contains the sub-view infor-
mation on the basis of the original balance of the
errors of the two views.

Parameters C4 and Cp are non-negative
penalty parameters. In the constraint formula,
da(zi?), ¢p(x;B),are different mappings for two
views, @7, (z7')is a mapping transformation of
the 7 — th sub-view data of view A,¢% ., () is
the mapping transformation of the r —th sub-view
data of view B. yl(wAsub qusub(xA)) >1 -t
and y; (Wl .y O e (T2)) > 1—EP represents that
the correction plane generated by the privileged
information of the sub-view constrains the slack

A r=1..MieTy,
1-¢Pr=1.NieTy,
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variables to achieve the purpose of correcting the
classification hyperplane.

Solving the optimal w? and w}j in the above
problem to construct multi-view classifier. The
dual optimization of Eq.(24) is established. The
Lagrangian function is as Eq.(25):

M

1
=5 (lwall* + 72 D el
r=1

N
Ylwsl + 78 Y o)

r=1

l l l
+CAY G +CY P +0) P
=1 =1 =1

l
+ Zaf(l -
i=1

I
+ Zaf(l - &7 —yi(wp - ¢(x])))

=1

!
+ Zx\f(yi('LUB -op(zl)) — &)

i=1

!
+ 3 AP iwa - da(af)) - €F)

i=1

N

r=14€T)

+ZZ% 1-¢

r=1i€Tg

l l
=Y st =Y ¢Psl
i=1 =1

&' —yi(wa - pa(zi)))

(25)
where o, A2, u, B4, aP AB uB, BP as nonneg-
ative Lagrange multiplier vectors. According to
KKT principle, we can get:

oL !

gE _ E Ay \By,. Ay — 0.

a’lUA wA i=1(az Yi )‘z yl)(bA(xz ) 0 (26)
oL - 4 B

Jug = VWB E (e yi — Alyi)pp(z) = 0.

=1

(27)

(wBsub ¢Bsub( B)))

oL
m :7AwAsub Z Z Mz yl i ) — 07

Ty i€T)
ieTh,r=1,.,M.

(28)
N
8wBTL =YYBWBsub — Z Z pryidy (af) =
Bsub TL ieTs
i€Th,r=1,..,N.
(29)
oL B AL NA_ A pA
afA =Ca+C&7 — (af + A +pi +87) =
i=1,..,1.
(30)
9L A B__\B_ B B
a¢b =Cp + 0§ — (a7 + A+ +B7) =
i=1,..1.
(31)
at(1-&! —yi(wa-da(a ))): 1.1 (32)
af (1=€6F —yi(wp-dp(xl))) = 1.0 (33)
M (yi(ws - () — ZA)Z =1 1o (34)
A (yi(wa - da(af) —€F) =0,i=1,...0. (35)
2B =0,6PpF = O,z = 17 Ll (36)

Substituting the results into Formula Eq.(25), the
following optimization form can be obtained :

l l
. 1
min 33 ((af = AP )wiKaal, o) e = APy,

i=1j—1
1
2 (0F =Nk p (P aP) e = AP)
M
11 Ay KT (o
5D D K (e oty
VA LD jery
+%ZzuzleBsub i ])M]yj)
r=1jeTg

+ 52 (o + A0+ + 5 - Ca)

@
Il
-

Ql~
&MN

(af + AP +pul + 8P - Cp)

l
- Z(O‘iA +af)

A
s.t. z y & )‘ >‘z nu'z 7.“2 ’

A BE > 0.
(37)
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In Eq.(37), according to the conclusion
AEB >0, a + M+ pf — CEP < Cy and
aB + 2B+ P — ¢t < Cp participate as con-
straints. Therefore, the optimization problem can
be transformed into Eq.(38):

l l
. 1
min 53S0 — K alet, 2 (o) = Ay

»a
<.
Il
—

(af - A?)yiKB(xB i) = A)y;)

Z i yZKAsub g 7 j )/J’j Yj

r= 1]ETT

72 Z i leBsub ] j ):u] y])

r=1jeTg
1 1
= (ot o)+ 5 > el
i=1 i=1
st o + AP+ pt — 0P < Oy,
aB+AB+uf—C§A < Cjg,
PP it w468 > 0.
(38)
Like SL-PSVM-2V, quadratic convex pro-
gramming is used to solve the problem.
Through the quadratic programming prob-
lem Eq.(38), solving the optimal parameters
a ol g pBx N B A B in the best
case w’ and wip:

l

wi =Y (af"y = APy da(al), (39)
i=1
l
wi = (@l y = N y)op(al). (40)
i=1

After getting the optimal w? and wj, the labels
for predicting new samples (z?,27) from view
A and view can be derived from the following
formula:

fa = sign(fa(e?)) = sign(w " ¢a(xf), (41)

f5 = sign(fz(x")) = sign(wy ¢p(=)). (42)

For multi-view final predictions:

>+1fB<xB>>
)+ b 65(").

R ———— .

1,
= szgn(iwATgi)A(

The process of SL-MCPK is given in algorithm 2:

Algorithm 2 QP Algorithm for SL-MCPK

{x?7 x?a yi}l =
{(z; 1), (2P; 1)} _,»¥i € {+1,—1}; Sub-
views element mdex T = {(T},T5)}; Initial
parameters: v,v4,7v8,Ca,Cp,C > 0.

Ensure: Decision functions fa,fp,f.

1: Select kernel function kernels function of view
A and view B: Ka(zf, J) Kp(zB, ]) The
kernel of the sub-views of A'KAsub( i ),
kernel of sub-views of B:K%,_ (¢, 28), And
initializing kernel parameters.

2: Create and solve quadratic programming
problem Eq.(38) and using cross validation to
determine the optimal parameters.

3: Solving quadratic programming Eq.(38)
and retaining optimal result parameters
01;4*,CY‘B*75A*,B‘B*7>\A*,)\‘B*7N1 *Mu’iB*ﬂ Get,
the optimal weight w? and w¥ by substituting

formula Eq.(40) and Eq.(41).

4: The final decision function is solved by param-

eters w and wg:

Require: Data set: S =

fa = sign(fa(z™)) = sign(w} " da(zf)),

fr = sign(f(2®)) = sign(wy " o5(xP)),

f= sign(%fA(a:A

4 Model comparison and
transformation method

In this section, the classification models
SL-PSVM-2V  and SL-MCPK with sub-view
structure are compared with three related multi-
view classification models: PSVM-2V, MCPK
and SVM-2K.
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As an extension of the multi-view learning
structure, the sub-view learning structure trans-
forms the original multi-view model in the objec-
tive function and constraint term. The expan-
sion of the structure does not affect the com-
pliance of the original model with the principles
of consistency and complementarity. PSVM-2V
integrates LUPI learning framework and KCCA
style consistency constraints into a unified frame-
work. MCPK can be used as an improved and
more effective version of PSVM-2V and SVM-
2K in multi-view learning. Therefore, SL-MCPK
can be considered as an evolutionary version of
SL-PSVM-2V. For the complementarity principle,
SVM-2K ignores it. In contrast, PSVM-2V and
SL-PSVM-2V implement it by connecting multi-
ple views and privileged information, and MCPK
and SL-MCPK-2V also leverage the LUPI con-
cept. For each individual view, it can receive com-
plementary information from other views. Sev-
eral models can be transformed into each other
through the transformation of the model. These
transformations can also show that the new model
can complete the tasks that the old model can-
not consider while having the characteristics of the
old model. The transformation method is shown
in Fig.4.

SVM-2K

AddLUPLfrom | ¢ > g, (wp - dp(af))
constraint slack B A
variables & = yilwa - oa(ai))

Remove original consistency
constraint and add slack
variable coupling

PSVM-2V - MCPK
oy gl

Add sub-views |
regularization !

Add sub-views
regularization
and constraint

and constraint 3

items

Yi(Whsub - Opsun (7))

SL-PSVM-2V SL-MCPK

Fig. 4 The transformation methods among the five multi-
view models

5 Experiments

In this section, we show the experimental results
of the new model. The experiment is carried out

Yi(Whsup Broun (@) > 1€
items By s ¢k

on multiple data sets, including 15 sets of data
set constructed from Digits, 40 sets of data set
constructed from Corel, and Ionosphere noise
data set constructed to explore the model noise
sensitivity. The experimental environment is a
computer with i7-6500 CPU and 8 GB memory.
The program runs in MATLAB 2018b in Windows
10 operating system. All the comparison algo-
rithms are solved by CVX convex optimization
toolbox (Grant and Boyd, 2014).

5.1 Datasets and experimental
design

5.1.1 Datasets

Digits dataset extracted from Dutch utility maps.
It consists of (0-9) handwritten digits, each of
which consists of 200 examples digitizing binary
images (Sun et al, 2015). These data are repre-
sented in the following six views: 1) mfeat-fou:
76 Fourier coefficients of the character shapes.
2) mfeat-fac: 216 profile correlations. 3) mfeat-
kar: 64 Karhunen-Love coecients. 4) mfeat-pix:
240 pixels averages in a 2 by 3 window. 5)
mfeat-zer: 47 Zernike moments. 6) mfeat-mor: 6
morphological features. we construct two classes
(positive class and negative class) from the data
set, with the original label of 0-4 as the pos-
itive class and 5-9 as the negative class. Each
class randomly selected 100 samples, each group of
experiments a total of 200 samples. The privileged
information used to guide the partition of sub-
views is the different numeric labels in each class
(positive and negative): for example, referring to
{{1,7},{2,4,6} {0, 3,5,7},{8,9}}, the two views
are divided into four sub-views.

Corel consists of 599 classes with 97-100
images representing semantic topics such as ele-
phants, roses, horses, etc. To be exact, Category
238 contains 97 samples, Categories 342 and 376
contain 99 samples, and the rest contain 100 sam-
ples. Each image has eight pre-extracted feature
representations that can be tested as eight differ-
ent views. Three different pre-extracted features
(Color Structure, Color Layout, Dominant Color)
are selected from this data as different views for
experiments (Eidenberger, 2004). Using the data
of the first 200 classes in 599 classes (each class
is 100 samples). 20 experimental groups are com-
posed of 10 classes, and the first 5 classes in
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each group are set as positive classes, and the
last 5 classes are set as negative classes. We used
the strategy of Color Structure vs. Color Layout,
Dominant Color vs. Color Layout for experiments.
The sub-views of another view are divided by the
instruction of the privileged information of differ-
ent views. For example, the information division
serial number group {{1,2,7},{3,4,5,6},{8,9}}
in view A guides view B to divide three sub-
views, and the privileged information serial num-
ber group {{1,7},{2,3,6,8},{4,9},{5}} in view
B guides view A to divide four sub-views.

Tonosphere contains 351 samples (225 pos-
itive samples and 126 negative samples). The
positive example is the example of the radar
return, which shows a certain structure in the
ionosphere, the signal through the ionosphere, and
the negative example is not. Each method can per-
form well in noise-free Ionosphere data. Therefore,
this data is suitable for exploring the anti-noise
ability of existing methods and new methods.
Two types of experiments are carried out on the
Tonosphere data set. Gaussian distribution and
standard deviation are used to generate noisy sam-
ples, namely, the standard deviation o; of the
i-th feature in the training data is calculated, and
the Gaussian noise with a range of [0,0;] and
a size of (I,1) .The Gaussian noise is randomly
added to the sample data as an increment in pro-
portion [0,0.05,0.1,0.15,0.2,0.25,0.3], Therefore,
seven groups of training sets with different pro-
portions of noise can be generated. In addition, we
randomly change the label symbol in proportion
to compare the performance of different models in
the experiment with noise labels.

5.1.2 Benchmark methods

SL-PSVM-2V and SL-MCPK are compared with
the following benchmark methods.

SVM+_A and SVM+4_B: SVM+ method
uses the non-negative correction function deter-
mined by privileged information to replace the
slack variable of standard SVM. View B is used as
privileged information in SVM+_A, and view A is
used as privileged information in SVM+_B.

SVM-2K : The SVM-2K method combines
KCCA (Kernel Canonical Correlation Analysis)
with two SVM models for two-view classification.
It is the earliest multi-view SVM model and the
basis of this series of classification methods.

PSVM-2V: PSVM-2V model uses privileged
information to meet two principles of multi-view
learning.

MCPK: MCPK method uses coupling term
and LUPI framework for two-view classification

5.1.3 Standard of comparison

Average accuracy(Acc.) and average standard
deviation (Std.) are derived from 10 replicate
experiments to measure the performance of differ-
ent methods and give average rankings. Further-
more, the receiver operating characteristic(ROC)
curve is used to demonstrate the performance
improvement of the new method (Beck and
Shultz, 1986). The average CPU running time of
quadratic programming on CVX is selected to
compare the computational complexity of different
methods.

5.1.4 Parameter Setting

Grid search strategy and five-fold cross valida-
tion method are used to select the best parame-
ters. Gaussian RBF kernel function K (z;,z;) =

exp(—M) as the kernel function of each
model. The kernel parameter o for the Gaus-
sian RBF kernel function is selected from
[1073,1072,10~1,1, 10, 10%,10%], set C4 = Cp =
C and select over [1073,1072,1071, 1,10, 10%,103].
The tradeoff parameter v, v4 and vp tuned in the
range [103,102,101, 1,10, 102, 10%].

5.2 Experimental results
5.2.1 Performance on Digits

The performance on the Digits dataset is shown in
Table 2. The sub-view partition method in these
15 groups of experiments is based on the features
of the view itself. The sub-view learning versions
of SL-MCPK and SL-PSVM-2V are more com-
petitive than the original MCPK and PSVM-2V.
SL-MCPK model has the highest average accu-
racy. In 15 groups of experiments, the average
ranking was 1.1538, only one ranking is 3, and
its ranking is the first with absolute advantage.
SL-PSVM-2V of the sub-view learning version
is also better than PSVM-2V in accuracy. The
experimental results are shown in Fig.5. in the
form of the line graph, which can more intuitively
compare the differences of each model.
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Table 2 Performance on Digits (Acc.% (Std.%))

SVM+_A SVM+_B SVM-2K PSVM-2V  SL-PSVM-2V MCPK SL-MCPK
fac vs. fou  91.46(2.38) 87.57(7.23) 95.93(3.03) 95.98(3.89) 97.48(1.69)  97.51(1.81) 97.51(1.87)
fac vs. kar  96.56(2.75) 95.43(2.28) 96.40(3.01) 97.95(2.11) 98.50(1.37)  98.89(2.21) 98.96(1.45)
fac vs. mor  95.11(5.03) 82.98(4.60) 94.53(4.03) 95.50(3.68) 96.57(3.70)  96.99(3.27) 97.00(1.12)
fac vs. pix  95.49(3.30) 96.55(2.79) 95.44(2.19) 97.04(2.05) 98.01(3.26)  97.54(1.65) 98.54(1.34)
fac vs. zer 94.04(2.14) 91.48(2.95) 96.45(2.35) 94.13(3.54) 98.43(1.43) 97.91(3.21) 97.97(2.10)
fou vs. kar  95.92(3.23) 96.40(3.15) 94.00(1.21) 96.97(1.01) 96.65(2.62)  97.99(2.07) 98.44(2.22)
fou vs. mor 87.89(4.08) 87.69(7.78) 90.79(5.05) 91.17(4.66) 93.15(5.41)  95.00(1.75) 95.35(3.32)
fou vs. pix  93.77(4.22) 95.51(1.79) 94.28(1.90) 97.41(1.57) 95.87(3.27)  96.70(2.16) 97.85(2.98)
fou vs. zer  91.54(2.03) 91.97(5.74) 93.99(1.26) 94.66(2.95) 96.59(2.57)  96.01(1.16) 97.01(2.36)
kar vs. mor 92.56(1.19) 84.32(5.64) 93.28(3.62) 92.16(2.29) 97.07(2.01)  96.98(2.15) 97.08(1.85)
kar vs. pix  95.56(3.82) 97.06(2.96) 95.75(2.61) 96.57(2.18) 98.56(1.32)  98.17(1.70) 98.59(2.09)
kar vs. zer  95.07(1.50) 93.66(2.31) 95.96(1.45) 97.01(2.11) 97.87(2.72)  97.81(3.34) 97.94(2.15)
mor vs. pix 88.94(5.62) 94.64(5.98) 92.57(3.86) 95.28(3.47) 96.61(1.22)  96.77(3.02) 97.97(2.42)
mor vs. zer  89.51(6.50) 9 87(4.13)  94.24(1.94) 94.40(2.02) 94.76(2.36)  94.57(6.19) 97.45(0.38)
pix vs. zer  97.50(1.77) 94.50(1.13) 95.47(2.75) 96.01(2.83) 98.02(2.08)  98.01(1.39) 98.51(1.36)
Avg. Acc. 93.39 92.04 94.61 95.48 96.95 97.08 97.78
Avg. Rank. 6.1538 5.9231 5.6154 4.1538 2.6923 2.3077 1.1538

the average accuracy index. SL-MCPK ranks first
I e S T S ———— and SL-PSVM-2V ranks second. Their average

SLPSVMY —F—MCPK

Fig. 5 The performance of 15 groups of experiments of
various methods on Digits

5.2.2 Performance on Corel

On the Corel dataset, the division of sub-views
is formed by the mutual guidance of two views.
We have done two sets of multi-view exper-
iments: Color structure vs. Color Layout and
Dominant Color vs. Color Layout, respectively.
The experimental results of Color structure vs.
Color Layout are shown in Table 3. In 20 sets of
experiments, SL-PSVM-2V and SL-MCPK using
sub-view learning have achieved good results in

rankings are better than other models. SL-MCPK
does not have the highest ranking in Ex6, Ex11
and Ex13, but it is close to the best model per-
formance. The experimental results of Dominant
Color vs. Color Layout are shown in Table 4. The
average accuracy of SL-MCPK on this dataset is
81.04%, with an average ranking of 1.3846, which
is a leading result in many methods. The second
is MCPK, with an average ranking of 2.3077. This
is because the coupling structure has achieved
good results in the experiment. In the experiment,
SVM-2K does not take into account the comple-
mentarity of views, and SVM+ considered the
view more simply, so their classification perfor-
mance could not achieve the desired results. For
the original versions of PSVM-2V and MCPK, the
corresponding multi-view classification model of
sub-view versions has achieved good performance
scores.In order to facilitate comparison, the exper-
iment results are displayed visually in Fig.6 and
Fig.7.

5.3 ROC curve and AUC

A good classifier will try to minimize two types
of errors: false positive rate and true positive
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Table 3 Performance on experiments of Color structure vs. Color Layout. (Acc.% (Std.%))

SVM+_A SVM+_B SVM-2K PSVM-2V  SL-PSVM-2V  MCPK SL-MCPK
Ex.1 50.84(4.31) 58.61(2.91) 68.42(4.29) 68.65(6.78) 72.50(1.22)  68.42(3.95) 72.98(1.96)
Ex.2 59.57(4.83) 61.07(3.48) 70.27(8.92) 74.89(7.58) 84.32(1.30)  78.38(4.50) 85.37(1.19)
Ex.3 70.59(1.22) 57.02(1.32) 67.46(2.25) 75.61(7.48) 76.32(2.13)  73.17(6.47) 76.79(1.22)
Ex.4 71.41(4.97) 62.69(4.14) T71.72(6.22) 73.41(3.13) T74.36(4.56)  80.56(9.74) 74.36(1.98)
Ex.5 63.10(2.66) 62.71(6.01) 71.83(5.21) 73.68(8.32) 80.83(1.99)  79.55(9.73) 81.82(1.11)
Ex.6 66.54(2.82) 64.29(5.42) 71.94(6.98) 76.19(4.54) 77.42(4.95)  80.00(5.87) 78.57(1.16)
Ex.7 59.49(0.89) 67.69(4.70) 75.68(9.31) 76.61(2.90) 80.20(4.39)  77.54(5.93) 81.41(5.16)
Ex.8 60.61(0.91) 59.09(4.26) 74.72(5.99) 77.51(9.03) 70.11(2.65)  77.52(8.40) 78.58(1.55)
Ex.9 64.27(1.53) 57.84(0.58) 72.97(2.30) 74.36(4.14) SL58(2.57)  76.32(5.19) 82.05(2.03)
Ex.10 65.63(3.31) 60.94(1.54) 74.81(5.71) 78.05(8.74) 80.03(2.98)  80.03(2.03) 80.56(2.81)
Ex.11 70.03(4.17)  72.31(2.14) 76.48(9.93) 77.27(9.19) 77.92(L.11)  79.55(4.94) 77.27(2.18)
Ex.12 59.68(1.95) 57.36(2.73) 67.63(6.93) 70.27(6.68) 72.97(1.02)  74.37(1.20) 78.38(9.29)
Ex.13 61.95(6.01) 65.71(0.71) 72.42(7.24) 71.43(7.02) 82.58(3.71)  71.79(7.80) 82.23(1.19)
Ex.14 60.01(0.13) 72.06(4.77) 79.49(9.10) 80.66(6.49) S81.47(1.02)  79.49(9.28) 81.85(1.32)
Ex.15 71.43(1.12)  62.45(5.56) 72.50(2.25) S1.08(2.83) 73.68(1.34)  75.04(2.07) 85.37(3.69)
Ex.16 66.67(3.62) 64.25(4.71) 76.92(1.74) 77.01(5.33) SL68(5.99)  76.92(5.62) 82.93(2.94)
Ex.17 72.73(3.62) 61.62(3.50) 67.77(8.99) 72.95(2.15) 71.79(2.99)  71.43(2.19) 74.29(1.01)
Ex.18 69.26(0.26) 71.64(9.91) 79.53(2.56) 81.20(2.55) 83.33(2.55)  83.33(4.19) 83.33(2.55)
Ex.19 81.08(2.15) 74.91(5.56) 89.90(3.27) 94.74(4.70) 95.55(242)  97.37(5.90) 97.37(2.50)
Ex.20 69.70(6.14) 70.18(6.08) 76.32(4.61) 78.02(3.05) 84.68(1.36)  76.32(4.88) 85.41(2.34)
Avg. Acc. 63.12 69.36 70.48 73.24 78.38 75.53 79.48
Avg. Rank. 6.6923 5.6154 4.7692 3.8462 2.6154 3.3077 1.1538

‘ \;Psv‘w,‘{fsv‘m‘s lifsv‘mvz»(‘ P;vmvzv‘—fP‘SLPsvlJ\JV A‘I»mc‘w oo 9 ‘ \L}sv‘m‘, L}ﬁsv‘m‘, 4‘§75\/‘Mvzx‘ P‘svmvzv"fjf‘stﬂsvlhw A‘Q—MC‘PK ; SL—V‘V\CPK‘

6 7 8 9 10 1" 12 13 1% 15 16 17 18 19 20
Corel experiment(Color Structure vs. Color Layout)

Fig. 6 20 groups of experimental performance of various
methods on Corel (Color structure vs. Color Layout)

Corel experiment{Dominant Color vs. Color Layou)

5 6 7 8 9 10 M 12 13 u 5 % 17 18 19 20

Fig. 7 20 groups of experimental performance of various
methods on Corel (Dominant Color vs. Color Layout)

rate. Two corresponding errors can be obtained
by changing the threshold, and then a ROC curve
can be obtained. In order to comprehensively com-
pare and show the performance improvement of
the sub-view learning model based on the original
model, we compare the ROC curves of PSVM-
2V, SL-PSVM-2V, MCPK and SL-MCPK. Area

Under Curve(AUC) under ROC curve can mea-
sure the performance of a classifier. The higher
the AUC value is, the better the classification per-
formance is. In Fig.8, the results of the first 8
groups of digits experiments are shown. In Fig.9
and Fig.10, the ROC and AUC of the first 8 groups
of Corel dataset multi-view experiment are shown.
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Table 4 Performance on experiments of Dominant Color vs. Color Layout. (Acc.% (Std.%))

SVM+_A  SVM+B  SVM-2K  PSVM-2V  SL-PSVM-2V MCPK SL-MCPK
Ex.1 55.88(1.46) 59.80(6.14) 62.16(4.18) 63.27(9.46) 63.83(5.41)  65.24(3.66) 67.57(5.41)
Ex.2 58.25(3.79) 59.22(3.79) 69.70(3.46) 74.04(5.80) 80.49(1.56)  75.70(4.32) 82.32(1.22)
Ex.3 64.42(2.35) 67.31(2.35) 70.48(7.82) 74.60(4.15) 78.79(1.90)  77.50(2.68) 79.39(2.91)
Ex.4 62.75(0.29) 63.73(0.29) 67.84(5.11) 69.01(9.96) 78.29(1.32)  71.38(1.88) 78.95(1.32)
Ex.5 71.88(6.02) 73.96(6.02) 66.01(4.78) 70.11(3.17) 77.70(1.35)  78.38(9.93) 81.08(3.32)
Ex.6 56.44(1.66) 68.32(1.66) 71.03(8.08) 71.27(7.64) 79.49(5.11)  74.36(6.83) 80.13(1.28)
Ex.7 66.67(0.23) 60.78(0.23) 69.55(5.33) 73.84(1.67) 79.40(1.28)  77.89(3.03) 78.44(4.58)
Ex.8 60.82(0.92) 61.86(0.92) 65.57(5.83) 77.38(8.13) 82.74(1.19)  77.66(4.76) 82.74(3.01)
Ex.9 64.95(1.67) 65.98(1.67) 74.91(5.68) 72.12(5.63) 79.79(2.32)  74.79(2.55) 79.79(2.32)
Ex.10 56.44(2.53) 70.30(2.53) 73.05(5.16) 72.10(1.63) 72.44(1.28)  72.59(2.56) 73.08(3.31)
Ex.11 60.58(6.25) 79.81(6.25) 76.04(7.15) 76.33(1.73) 78.85(1.28)  75.27(1.06) 79.89(2.21)
Ex.12 60.40(0.23) 77.23(0.23) 67.06(6.01) 73.58(3.93) 73.13(1.25)  69.61(7.78) 78.38(7.78)
Ex.13 62.37(2.52) 59.14(2.52) 64.73(6.94) 68.70(4.44) 84.21(2.86)  70.56(2.82) 84.21(3.68)
Ex.14 66.67(1.19) 70.97(1.19) 72.97(3.37) 71.11(6.14) 77.38(2.38)  72.02(3.59) 78.57(4.12)
Ex.15 58.76(0.23) 72.16(0.23) 69.38(6.86) 73.70(5.76) 77.16(1.63)  73.44(2.38) 78.12(3.07)
Ex.16 61.68(5.84) 76.64(5.84) 68.46(2.41) 70.36(6.92) 79.27(2.44)  78.95(3.36) 80.49(2.44)
Ex.17 61.90(6.47) 64.76(6.47) 69.68(4.58) 72.22(4.54) 75.02(2.41)  72.50(3.37) 75.01(5.61)
Ex.18 62.75(3.87) 78.43(3.87) 73.42(6.22) 78.05(9.96) 80.49(4.14)  82.93(5.41) 79.88(1.22)
Ex.19 75.51(2.46) 80.61(2.46) 83.75(4.91) 87.68(5.68) 92.31(5.17)  89.90(4.03) 94.87(4.03)
Ex.20 73.33(6.09) 76.19(6.09) 73.85(4.10) 75.52(5.93) 76.88(1.25)  80.13(1.09) 76.88(1.25)
Avg. Acc.  66.17 64.22 73.93 76.68 79.15 77.84 81.04
Avg. Rank.  6.3077 6.5385 4.9231 3.6154 2.9231 2.3077 1.3846

The model parameters of the prediction category
are the best results in the quintuple. It can be
seen in the diagram that the model with sub-view
learning structure performs better than the model
without sub-view learning structure.

5.4 Average computer time

In this section, we give the average training time
and average prediction time and solve all mod-
els by CVX tools solver. The experimental data
is constructed based on Ionosphere, the view A
dimension is 54 and the view B dimension is 25,
the data length is 200, and the test set length
is 40. All models adopt RBF Gaussian kernel
function and run fairly in the same solution envi-
ronment. According to Fig.11, since the coupling
term replaces the consistency term, MCPK con-
sumes less training time than other SVM-based
multi-view benchmark test methods, and the data
dimension used by SVM+ method is the size of a
single view, so it is not included. MCPK is an effec-
tive learning model with less time consumption.
In the corresponding sub-view learning method,

SL-MCPK also requires less solving time than
SL-PSVM-2V. However, due to the addition of
constraints and regularization terms, the sub-view
method will linearly increase the scale of quadratic
programming. However, the solving time of SL-
MCPK is second only to MCPK method, and it is
still in the front position compared with SVM-2K
and PSVM-2V. In the category prediction time
consumption, the sub-view structure is not used
in the classification decision stage, so the solution
time is consistent with other multi-view methods.

5.5 Performance on noisy data

The experimental results on the noise data are
shown in Fig.12. Whether the noise exists in the
feature data or in the label, the sub-view ver-
sion model SL-MCPK and SL-PSVM-2K are less
sensitive to noise than other multi-view support
vector machine models without sub-view struc-
ture. In the absence of noise, all models have
good performance. With the increase of noise
ratio, the accuracy of the multi-view support
vector machine model of the sub-view learning
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version decreases slightly. It is worth noting that
the PSVM-2V model has better anti-noise abil-
ity than the MCPK model. SL-PSVM-2V inherits
this character as a sub-view learning version of
PSVM-2V, and the SL-MCPK model has the
learning strategy of the sub-view structure, which

to some extent makes up for the noise sensitivity
of MCPK.

5.6 Non-parametric statistical test

We use the nonparametric statistical Wilcoxon
test to further study the performance differences
between the proposed sub-view learning method
and other methods. The test ranks the perfor-
mance differences between the two classifiers of
each data set, ignores the positive and negative
symbols, and compares the rankings of positive
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and negative differences (Wilcoxon, 1992; Demsar,
2006). Let d; be the difference between the per-
formances (Acc.) of the two classifiers on i-th out
of N datasets. R* be the sum of the ranks of the
data sets of one algorithm over another, and R~
be the sum of the ranks of the opposite algorithms.
Ranks of are d; = 0 split evenly among the sums.

1
+ ) .
R = E rank(d;) + 3 dE rand(d;),

d; >0 =0

R = Z rank(d;) + % Z rand(d;).
d

d; <0 =0

(44)

Let T be the smaller of the sums, T =

min(R"™, R™), The wilcoxon test value p-value
T—L1N(N+1)

L N(N+1)(2n+1))

obtained by z-value (z-value = —
24

between methods.

We all know that if the test value is less than
the confidence level of o = 0.05, there is a sig-
nificant difference between the proposed method
and the baseline. From the information in Table
5, it can be seen that the performance of the pro-
posed method and the comparison method are
significantly improved. Compared with two mod-
els with sub-view structure, SL-MCPK has better
performance.
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(a) average running time of model training

(b) average running time of model prediction

Fig. 12 Average running time of proposed method and the baselines

Table 5 Wilcoxon signed ranks test result(c = 0.05)

Comparison Rt R™ p-value
SL-PSVM-2V vs. SVM+ 450 0 1.3328e-12
SL-PSVM-2V vs. SVM-2K 435 5 1.4933e-09
SL-PSVM-2V vs. PSVM-2V 421 9 1.8570e-07
SL-PSVM-2V vs. MCPK 230 220 0.036
SL-PSVM-2V vs. SL-MCPK 121 329 1.0928e-05
SL-MCPK vs. SVM+ 450 0 1.3328e-12
SL-MCPK vs. SVM-2K 450 0 1.8189e-12
SL-MCPK vs. PSVM-2V 419 31 3.6379e-12
SL-MCPK vs. MCPK 422 28 4.2559¢e-06

6 Conclusion and future works

This paper presents a multi-view support vector
machine strategy called sub-view learning. This
method extends the model structure of multi-
view support vector machine based on privileged
information learning. The sub-views are divided
by considering the privileged information in the
view, which can be solved by the dual prob-
lem of quadratic programming. Through the given
model transformation method, the specific mod-
els SL-PSVM-2V and SL-MCPK are the sub-view
learning versions of PSVM-2V and MCPK, respec-
tively. We conducted experiments on 55 multi-
view datasets to verify that the new method has
better performance and can effectively use more
comprehensive data feature information to guide
the generation of classifier. At the same time, the
experimental results on noisy data sets show that
the new method has better anti-noise ability. In
the future work, we plan to consider more basis for
dividing sub-views and try to apply the multi-view
learning containing sub-views to the regression
task.
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