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A dynamic framework for updating approximations with increasing or

decreasing objects in multi-granulation rough sets

Hong Wang∗, Jingtao Guan

School of Mathematics and Computer Science, Shanxi Normal University, Shanxi, Linfen, 041000, P.R. China

Abstract

The data we need to deal with is getting bigger and bigger in recent years, and the same happens to multi-

granulation rough set, so updated schemes have been proposed with the variation of attributes or attribute values in

multi-granulation rough sets, this paper puts forward a dynamic mechanism to update the approximations of multi-

granulation rough sets when adding or deleting objects. Firstly, the relationships between the original approxima-

tions and updated approximations are explored when adding or deleting objects in multi-granulation rough sets, and

the dynamic processes of updating optimistic and pessimistic multi-granulation rough approximations are proposed.

Secondly, two corresponding dynamic algorithms are proposed to update the lower and upper approximations of op-

timistic and pessimistic multi-granulation rough sets. Finally, a great quantity of experiments had been implemented,

and the results indicate that two dynamic algorithms proposed are more effective than the static algorithm.

Keywords: Multi-granulation rough sets, Knowledge discovery, Incremental updating, Approximations

1. Introduction

As a data analysing and processing theory, rough set theory, set up by Polish scientist Z.Pawlak in 1982 [1],

had made great progress in both theory and application practice as the scientific research of intelligent computing.

Rough set theory is an effective tool to deal with imprecise, inconsistent and incomplete information without any

prior knowledge, and it had been used in data mining [2], knowledge discovery [3], machine learning [4-6] and so

on. As the basic computation of rough set, calculating the lower approximation and the upper approximation is an

essential step for knowledge discovery and attribute reduction.

With the development of big data, the data we need to deal with in recent years is updating constantly, however,

the original method can not recognise updated knowledge in time, which causes a problem: How do we get efficient

results from fast data updating? Many scholars have done a lot of research about it, and they found that the updated

data are linked to the original data. Thereby we can obtain updated knowledge via the relationship between them
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and existing knowledge, a lot of time and space will be saved. There are three main situations as follows and we can

obtain updated knowledge via set operation or matrix operation.

Updating data with the variation of objects. Shu et al. proposed the incremental method of dynamic feature selec-

tion by updating the dependency function [7]. An attribute reduction and incremental algorithm of decision rule based

on the decision matrix were proposed by Fan et al. [8]. Zhang et al. came up with a dynamic neighborhood rough

set model to deal with the dynamic change of numerical information system [9]. Chen put forward an incremental

algorithm for data when objects are added or deleted [10] based on the variable precision rough set model. An incre-

mental updating algorithm of approximate set based on the dominance relationship in ordered information system was

proposed by Li et al. [11]. Considering the data analysis of dual universes, Hu et al. studied the dynamic updating

approximations [12]. Luo et al. explored an efficient updating approach of probabilistic rough set with incremental

objects [13].

Updating data with the variation of attributes. Hu et al. proposed two matrix-based incremental strategies, which

can dynamically update the upper and lower approximations of each decision class of multi-granulation rough set

based on dominance-based relationship [14]. Lang et al. studied the incremental mechanism of updating the upper

and lower approximations with the change of attributes in the dynamic covering information system [15]. Based

on the definition of relation matrix, diagonal matrix and cut matrix in multi-granulation rough set, Hu et al. put

forward the matrix representation of upper and lower approximations in optimistic and pessimistic multi-granulation

rough set, and then gave the dynamic updated approximations based on matrix [16]. Cheng proposed an efficient

incremental algorithm for rough fuzzy approximations and applied it to attribute reduction [17]. Zhang et al. proposed

the concept of basic vector induced by relational matrix for set-valued information system and then put forward the

static and dynamic methods of rough approximations for set-valued information systems [18]. Li further put forward

a calculated method of approximations based on the dominant matrix for dominance rough set [19]. Yang et al.

proposed an approach for updating dynamic approximations in multi-granulation rough sets variation of granular

structures [20].

Updating data with the variation of attribute values, aiming at the dynamic updating of attribute values in informa-

tion system, Chen et al. first defined the concept of attribute values coarsening and refining, and designed an efficient

dynamic algorithm of approximations [21], further discussed the incremental updating of approximations based on

the dominance relationship [22]. Wang et al. put forward an incremental algorithm of attribute reduction based on

the rough set theory [23]. An incremental algorithm of updating decision rules was proposed for inconsistent deci-

sion table by Chen et al. [24]. Li et al. proposed a fast method of approximations by using matrix operation when

attribute values are updated dynamically in ordered information system [25]. Luo et al.come up with a fast algorithm

for computing rough approximations in set-valued decision systems [26]. Zeng et al. proposed a dynamical updating

method of fuzzy rough approximations for hybrid data under the variation of attribute values [27]. Hu et al. put

forward a dynamic algorithm of updating approximations in multi-granulation rough sets by using approximations’s

monotonicity directly [28].
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Most of the existing dynamic updated studies occurred under the situation of single granule, but as demanded,

there is a situation of multiple granules that we should explore its dynamic updating, i.e., multi-granulation rough

set. Professor Qian Yuhua first proposed the multi-granulation rough set [29], optimistic multi-granulation rough set

and pessimistic multi-granulation rough set were studied, approximating the concept and granulating the universe

by combining or intersecting attributes. multi-granulation rough set is very important, it can be applied to multiple

contexts and produce multiple types of multi-granulation rough set, such as Incomplete multi-granulation rough set

[30], Neighborhood-based multi-granulation rough sets [31], Multi-granulation decision-theoretic rough sets [32],

Intuitionistic fuzzy multi-granulation rough sets [33], Variable precision multi-granulation decision-theoretic fuzzy

rough sets [34], Local multi-granulation decision-theoretic rough sets [35], Generalized multi-granulation rough sets

[36], and so on.

There are few studies on the multi-granulation rough set about dynamic updating, and when adding or deleting

objects, there is no studies on multi-granulation rough set model. Thus this paper mainly focuses on this problem.

For dynamic multi-granulation rough set models, the approximations will change with the change of objects in the

universe, and sometimes objects of the target concept will change from the change of the universe, and it makes

us not able to seek approximations by using monotonicity directly. Given this situation, two dynamic algorithms

are given. We first explore the relationships between the original approximations and updating approximations and

propose the dynamic process of updating the lower and upper approximations when adding or deleting objects, and

then the corresponding dynamic algorithms are proposed in the multi-granulation rough set. Finally, the effectiveness

of two algorithms is verified by experiments.

The rest of this paper is organized as follows. The basic concepts and properties of rough sets and multi-

granulation rough sets are briefly introduced in Section 2. In section 3, the methods of updating the lower and upper

approximations are proposed when adding or deleting objects. Then the static algorithm and two dynamic algorithms

are given in Section 4. In section 5, we verify the effectiveness of the proposed dynamic algorithm experimentally.

Finally, Section 6 concludes this paper.

2. Preliminaries

In this section, we first review some concepts and propositions of rough sets and multi-granulation rough sets.

2.1. Rough sets

Definition 1. [1] Give an information system IS = 〈U, AT,V, f 〉, where U = {x1, x2, . . . , xn} is a non-empty finite

set of objects called universe; AT is a non-empty finite set of attributes, a ∈ AT is called an attribute; V =
⋃

a∈AT

Va

is a set of attributes values; where Va is a non-empty set of values of attribute a ∈ AT , called the domain of a;

f : U×AT → V is an information function that maps an object in U to exactly one value in Va such that ∀a ∈ AT, xi ∈

U, f (xi, a) ∈ Va.

Definition 2. [1] Give an information system IS = 〈U, AT,V, f 〉, Each subset of attributes B ⊆ AT determines an
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indiscernibility relation RB as follows:

RB = {(xi, yi) ∈ U × U : f (xi, a) = f (yi, a),∀a ∈ B}.

RB is an equivalence relation on U. The equivalence relation RB partitions the universe U into a family of disjoint

subsets called equivalence classes, the equivalence class including xi with respect to B is denoted as [xi]B = {y ∈ U :

(xi, y) ∈ RB}.

Definition 3. [1] Give an information system IS = 〈U, AT,V, f 〉, For any X ⊆ U, R is an equivalence relation, two

subsets of objects, called lower and upper approximations of X with respect to R, are difened as:

R(X) = {xi ∈ U : [xi]R ⊆ X},

R(X) = {xi ∈ U : [xi]R ∩ X , ∅}.

where [xi]R = {y ∈ U |(xi, y) ∈ R} is the R-equivalence class containing xi.

If R(X) = R(X), we say that X is a definable set; Otherwise, X is a rough set.

2.2. Multi-granulation rough sets(MGRS)

Definition 4. [29] Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X ⊆ U, the

optimistic multi-granulation lower and upper approximations of the set X with respect to A1, A2, . . . , Am are denoted

by
∑m

k=1 Ak
O

(X) and
∑m

k=1 Ak

O
(X), respectively, where

m∑

k=1

Ak

O

(X) = {xi ∈ U : [xi]A1
⊆ X ∨ [xi]A2

⊆ X ∨ . . . ∨ [xi]Am
⊆ X},

m∑

k=1

Ak

O

(X) =∼
m∑

k=1

Ak

O

(∼ X).

Proposition 1. [29] Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X ⊆ U, we have

the following properties:

m∑

k=1

Ak

O

(X) = {xi ∈ U : [xi]A1
∩ X , ∅ ∧ [xi]A2

∩ X , ∅ ∧ . . . ∧ [xi]Am
∩ X , ∅}.

Proposition 2. [29] Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and X,Y ⊆ U. If X ⊆ Y ,

the following properties hold:

(1)
m∑

k=1

Ak

O

(X) ⊆
m∑

k=1

Ak

O

(Y),

(2)
m∑

k=1

Ak

O

(X) ⊆
m∑

k=1

Ak

O

(Y).

Definition 5. [29] Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X ⊆ U, the

pessimistic multi-granulation lower and upper approximations of the set X with respect to A1, A2, . . . , Am are denoted

by
∑m

k=1 Ak
P
(X) and

∑m
k=1 Ak

P
(X), respectively, where

m∑

k=1

Ak

P

(X) = {xi ∈ U : [xi]A1
⊆ X ∧ [xi]A2

⊆ X ∧ . . . ∧ [xi]Am
⊆ X},

m∑

k=1

Ak

P

(X) =∼
m∑

k=1

Ak

P

(∼ X).

Proposition 3. [29] Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X ⊆ U, we have

the following properties:
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m∑

k=1

Ak

P

(X) = {xi ∈ U : [xi]A1
∩ X , ∅ ∨ [xi]A2

∩ X , ∅ ∨ . . . ∨ [xi]Am
∩ X , ∅}.

Proposition 4. [29] Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and X,Y ⊆ U. If X ⊆ Y ,

the following properties hold:

(1)
m∑

k=1

Ak

P

(X) ⊆
m∑

k=1

Ak

P

(Y),

(2)
m∑

k=1

Ak

P

(X) ⊆
m∑

k=1

Ak

P

(Y).

Table 1: An information system

U a1 a2 a3 a4

x1 1 1 1 3

x2 3 1 1 1

x3 2 1 1 3

x4 3 2 1 3

x5 2 3 2 2

x6 1 2 1 1

x7 1 3 2 3

x8 3 3 2 2

Example 1. Give an information system in Table 1, U = {x1, x2, x3, x4, x5, x6, x7, x8}, AT = {a1, a2, a3, a4},

A1 = {a1}, A2 = {a2}, A3 = {a3}, A4 = {a4}, X = {x3, x4, x5, x7, x8}. According to Definition 4 and Definition 5, we can

calculate the optimistic multi-granulation lower and upper approximations, the pessimistic multi-granulation lower

and upper approximations of the set X as follows:
∑4

k=1 Ak
O

(X) = {x3, x5, x7, x8},

∑4
k=1 Ak

O

(X) = {x1, x3, x4, x5, x7, x8},
∑4

k=1 Ak
P
(X) = {x5},

∑4
k=1 Ak

P

(X) = {x1, x2, x3, x4, x5, x6, x7, x8}.

3. Updating multi-granulation rough approximations with increasing or decreasing of objects

3.1 Updating multi-granulation rough approximations while increasing objects

In this subsection, we define the concept of optimistic multi-granulation rough set and pessimistic multi-granulation

rough set in the new information system after adding objects and then discuss the relationship between the original

approximations and updated approximations.

Definition 6. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , U = {x1, x2, . . . , xn}, X ⊆ U,

adding n
′

new objects to U, assume that the new universe is U
′

= U ∪ U+, where U+ = {xn+1, xn+2, . . . , xn+n
′ }.
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∀X
′

⊆ U
′

, the optimistic multi-granulation lower and upper approximation of X
′

in the new universe are denoted by
∑m

k=1 Ak
O∨

(X
′

) and
∑m

k=1 Ak

O∨
(X

′

), respectively,

m∑

k=1

Ak

O∨

(X
′

) = {xi ∈ U
′

: [xi]
∨
A1
⊆ X

′

∨ [xi]
∨
A2
⊆ X

′

∨ . . . ∨ [xi]
∨
Am
⊆ X

′

},

m∑

k=1

Ak

O∨

(X
′

) = {xi ∈ U
′

: [xi]
∨
A1
∩ X

′

, ∅ ∧ [xi]
∨
A2
∩ X

′

, ∅ ∧ . . . ∧ [xi]
∨
Am
∩ X

′

, ∅}.

where [xi]
∨
Ak

is the equivalence class including xi with respect to a granular Ak in the new universe.

Definition 7. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , U = {x1, x2, . . . , xn}, X ⊆ U,

adding n
′

new objects to U, assume that the new universe is U
′

= U ∪ U+, where U+ = {xn+1, xn+2, . . . , xn+n
′ }.

∀X
′

⊆ U
′

, the pessimistic multi-granulation lower and upper approximation of X
′

in the new universe are denoted by
∑m

k=1 Ak
P∨

(X
′

) and
∑m

k=1 Ak

P∨
(X

′

), respectively,

m∑

k=1

Ak

P∨

(X
′

) = {xi ∈ U
′

: [xi]
∨
A1
⊆ X

′

∧ [xi]
∨
A2
⊆ X

′

∧ . . . ∧ [xi]
∨
Am
⊆ X

′

},

m∑

k=1

Ak

P∨

(X
′

) = {xi ∈ U
′

: [xi]
∨
A1
∩ X

′

, ∅ ∨ [xi]
∨
A2
∩ X

′

, ∅ ∨ . . . ∨ [xi]
∨
Am
∩ X

′

, ∅}.

where [xi]
∨
Ak

is the equivalence class including xi with respect to a granular Ak in the new universe.

Theorem 1. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X ⊆ U, the following

results hold:

(1)
∑m

k=1 Ak
O

(X) ⊇
∑m

k=1 Ak
O∨

(X);

(2)
∑m

k=1 Ak

O
(X) ⊆

∑m
k=1 Ak

O∨
(X).

Proof. (1) ∀x ∈
∑m

k=1 Ak
O∨

(X), by Definition 6, we have ∃k ∈ {1, 2, . . . ,m}, [x]∨
Ak
⊆ X.When adding objects, by

Definition 6, we have [x]Ak
⊆ [x]∨

Ak
. Thus, ∃k ∈ {1, 2, . . . ,m}, [x]Ak

⊆ X. According to Definition 4, x ∈
∑m

k=1 Ak
O

(X).

Therefore,
∑m

k=1 Ak
O

(X) ⊇
∑m

k=1 Ak
O∨

(X);

(2) ∀x ∈
∑m

k=1 Ak

O
(X), by Proposition 1, we have ∀k ∈ {1, 2, . . . ,m}, [x]Ak

∩ X , ∅. When adding objects,

by Definition 6, we have [x]Ak
⊆ [x]∨

Ak
. Thus, ∀k ∈ {1, 2, . . . ,m}, [x]∨

Ak
∩ X , ∅. According to Definition 6, x ∈

∑m
k=1 Ak

O∨
(X). Therefore,

∑m
k=1 Ak

O
(X) ⊆

∑m
k=1 Ak

O∨
(X).

Theorem 2. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , let X+ ⊆ U+, and ∀X ⊆ U,

X
′

⊆ U
′

, if X
′

= X ∪ X+, the following results hold:

(1)
∑m

k=1 Ak
O∨

(X) =
∑m

k=1 Ak
O

(X) − ∆H1,

∆H1 = {xi ∈
∑m

k=1 Ak
O

(X) : [xi]
∨
Ak

* X,∀k ∈ {1, 2, . . . ,m}};

(2)
∑m

k=1 Ak
O∨

(X
′

) =
∑m

k=1 Ak
O∨

(X) ∪ ∆H2,

∆H2 =
⋃
{[x j]

∨
Ak

: [x j]
∨
Ak
⊆ X

′

, x j ∈ X+};

(3)
∑m

k=1 Ak

O∨
(X

′

) =
∑m

k=1 Ak

O
(X) ∪ ∆H3,

∆H3 = {xi ∈ U
′

−
∑m

k=1 Ak

O
(X) : [xi]

∨
Ak
∩ X

′

, ∅,∀k ∈ {1, 2, . . . ,m}}.

Proof. (1) ∀x ∈
∑m

k=1 Ak
O

(X), by Definition 4, we have ∃k ∈ {1, 2, . . . ,m}, [x]Ak
⊆ X. If ∃k ∈ {1, 2, . . . ,m},

[x]∨
Ak
⊆ X, then x ∈

∑m
k=1 Ak

O∨
(X); If ∀k ∈ {1, 2, . . . ,m}, [x]∨

Ak
* X, then x ∈ ∆H1. Therefore,

∑m
k=1 Ak

O∨
(X) =

∑m
k=1 Ak

O
(X) − ∆H1.
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(2) “⇒” ∀x ∈
∑m

k=1 Ak
O∨

(X
′

), by Definition 6, we have ∃k ∈ {1, 2, . . . ,m}, [x]∨
Ak
⊆ X

′

. If ∃k ∈ {1, 2, . . . ,m},

[x]∨
Ak
⊆ X, then x ∈

∑m
k=1 Ak

O∨
(X). Otherwise, ∃x j ∈ X+, [x]∨

Ak
= [x j]

∨
Ak
, i.e., x ∈ [x j]

∨
Ak
. Therefore,

∑m
k=1 Ak

O∨
(X

′

) ⊆
∑m

k=1 Ak
O∨

(X) ∪ ∆H2.

“⇐” It is obvious that ∆H2 ⊆
∑m

k=1 Ak
O∨

(X
′

) by Definition 6. By Proposition 2,
∑m

k=1 Ak
O∨

(X) ⊆
∑m

k=1 Ak
O∨

(X
′

).

Therefore,
∑m

k=1 Ak
O∨

(X) ∪ ∆H2 ⊆
∑m

k=1 Ak
O∨

(X
′

).

In conclusion,
∑m

k=1 Ak
O∨

(X
′

) =
∑m

k=1 Ak
O∨

(X) ∪ ∆H2.

(3) ∀x ∈
∑m

k=1 Ak

O∨
(X

′

), by Definition 6, we have ∀k ∈ {1, 2, . . . ,m}, [x]∨
Ak
∩ X

′

, ∅. If ∀k ∈ {1, 2, . . . ,m},

[x]Ak
∩ X , ∅, then x ∈

∑m
k=1 Ak

O
(X); Otherwise, x <

∑m
k=1 Ak

O
(X), i.e., x ∈ ∆H3. Therefore,

∑m
k=1 Ak

O∨
(X

′

) =
∑m

k=1 Ak

O
(X) ∪ ∆H3.

Table 2: An information system after adding objects

U
′

a1 a2 a3 a4

x1 1 1 1 3

x2 3 1 1 1

x3 2 1 1 3

x4 3 2 1 3

x5 2 3 2 2

x6 1 2 1 1

x7 1 3 2 3

x8 3 3 2 2

x9 1 1 2 2

x10 3 3 1 1

Example 2. (Continuation of Example 1) The Table 2 is the expansion of Table 1, let U+ = {x9, x10}, X+ = {x9},

X
′

= X ∪ X+. In the new universe, according to Theorem 2 and the results of Example 1, we can calculate the

optimistic lower approximation and the upper approximation of X
′

as follows:

U
′

= U ∪ U+ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

X
′

= X ∪ X+ = {x3, x4, x5, x7, x8, x9};

(1)
∑4

k=1 Ak
O

(X) = {x3, x5, x7, x8},

[x3]∨
A1
⊆ X, x3 < ∆H1;

[x5]∨
A1
⊆ X, [x5]∨

A2
* X, x5 < ∆H1;

[x7]∨
A1

* X, [x7]∨
A2

* X, [x7]∨
A3

* X, [x7]∨
A4

* X, x7 ∈ ∆H1;

[x8]∨
A1

* X, [x8]∨
A2

* X, [x8]∨
A3

* X, [x8]∨
A4

* X, x8 ∈ ∆H1;

Then, ∆H1 = {x7, x8},
∑4

k=1 Ak
O∨

(X) =
∑4

k=1 Ak
O

(X) − ∆H1 = {x3, x5}.

[x9]∨
A1

* X
′

, [x9]∨
A2

* X
′

, [x9]∨
A3
⊆ X

′

, [x9]∨
A4
⊆ X

′

;
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Therefore, ∆H2 = [x9]∨
A3
∪ [x9]∨

A4
= {x5, x7, x8, x9},

∑4
k=1 Ak

O∨
(X

′

) =
∑4

k=1 Ak
O∨

(X) ∪ ∆H2 = {x3, x5, x7, x8, x9}.

(2)
∑4

k=1 Ak

O

(X) = {x1, x3, x4, x5, x7, x8},

[x2]∨
A1
∩ X

′

, ∅, [x2]∨
A2
∩ X

′

, ∅, [x2]∨
A3
∩ X

′

, ∅, [x2]∨
A4
∩ X

′

= ∅, x2 < ∆H3;

[x6]∨
A1
∩ X

′

, ∅, [x6]∨
A2
∩ X

′

, ∅, [x6]∨
A3
∩ X

′

, ∅, [x6]∨
A4
∩ X

′

= ∅, x6 < ∆H3;

[x9]∨
A1
∩ X

′

, ∅, [x9]∨
A2
∩ X

′

, ∅, [x9]∨
A3
∩ X

′

, ∅, [x9]∨
A4
∩ X

′

, ∅, x9 ∈ ∆H3;

[x10]∨
A1
∩ X

′

, ∅, [x10]∨
A2
∩ X

′

, ∅, [x10]∨
A3
∩ X

′

, ∅, [x10]∨
A4
∩ X

′

= ∅, x10 < ∆H3;

Therefore, ∆H3 = {x9},
∑4

k=1 Ak

O∨

(X
′

) =
∑4

k=1 Ak

O

(X) ∪ ∆H3 = {x1, x3, x4, x5, x7, x8, x9}.

Theorem 3. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X ⊆ U, the following

results hold:

(1)
∑m

k=1 Ak
P
(X) ⊇

∑m
k=1 Ak

P∨
(X);

(2)
∑m

k=1 Ak

P
(X) ⊆

∑m
k=1 Ak

P∨
(X).

Proof. (1) ∀x ∈
∑m

k=1 Ak
P∨

(X), by Definition 7, we have ∀k ∈ {1, 2, . . . ,m}, [x]∨
Ak
⊆ X. When adding objects, by

Definition 7, we have [x]Ak
⊆ [x]∨

Ak
. Thus, ∀k ∈ {1, 2, . . . ,m}, [x]Ak

⊆ X. According to Definition 5, x ∈
∑m

k=1 Ak
P
(X).

Therefore,
∑m

k=1 Ak
P
(X) ⊇

∑m
k=1 Ak

P∨
(X);

(2) ∀x ∈
∑m

k=1 Ak

P
(X), by Proposition 3, we have ∃k ∈ {1, 2, . . . ,m}, [x]Ak

∩ X , ∅. When adding objects,

by Definition 7, we have [x]Ak
⊆ [x]∨

Ak
. Thus, ∃k ∈ {1, 2, . . . ,m}, [x]∨

Ak
∩ X , ∅. According to Definition 7, x ∈

∑m
k=1 Ak

P∨
(X). Therefore,

∑m
k=1 Ak

P
(X) ⊆

∑m
k=1 Ak

P∨
(X).

Theorem 4. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , let X+ ⊆ U+, and ∀X ⊆ U,

X
′

⊆ U
′

, if X
′

= X ∪ X+, the following results hold:

(1)
∑m

k=1 Ak
P∨

(X) =
∑m

k=1 Ak
P
(X) − ∆H4,

∆H4 = {xi ∈
∑m

k=1 Ak
P
(X) : [xi]

∨
Ak

* X,∃k ∈ {1, 2, . . . ,m}};

(2)
∑m

k=1 Ak
P∨

(X
′

) =
∑m

k=1 Ak
P∨

(X) ∪ ∆H5,

∆H5 = {x j ∈ U
′

−
∑m

k=1 Ak
P∨

(X) : [x j]
∨
Ak
⊆ X

′

,∀k ∈ {1, 2, . . . ,m}};

(3)
∑m

k=1 Ak

P∨
(X

′

) =
∑m

k=1 Ak

P
(X) ∪ ∆H6,

∆H6 =
⋃
{[xi]

∨
Ak

: [xi]
∨
Ak
∩ X

′

, ∅, xi ∈ U+}.

Proof. (1) ∀x ∈
∑m

k=1 Ak
P
(X), by Definition 5, we have ∀k ∈ {1, 2, . . . ,m}, [x]Ak

⊆ X. If ∀k ∈ {1, 2, . . . ,m},

[x]∨
Ak
⊆ X, then x ∈

∑m
k=1 Ak

P∨
(X); If ∃k ∈ {1, 2, . . . ,m}, [x]∨

Ak
* X, then x ∈ ∆H4. Therefore,

∑m
k=1 Ak

P∨
(X) =

∑m
k=1 Ak

P
(X) − ∆H4.

(2) ∀x ∈
∑m

k=1 Ak
P∨

(X
′

), by Definition 7, we have ∀k ∈ {1, 2, . . . ,m}, [x]∨
Ak
⊆ X

′

. If ∀k ∈ {1, 2, . . . ,m}, [x]∨
Ak
⊆ X,

then x ∈
∑m

k=1 Ak
P∨

(X). If ∃k ∈ {1, 2, . . . ,m}, [x]∨
Ak

* X, then x ∈ ∆H5. Therefore,
∑m

k=1 Ak
P∨

(X
′

) =
∑m

k=1 Ak
P∨

(X) ∪

∆H5.

(3) “⇒” ∀x ∈
∑m

k=1 Ak

P∨
(X

′

), by Definition 7, we have ∃k ∈ {1, 2, . . . ,m}, [x]∨
Ak
∩ X

′

, ∅. If ∃k ∈ {1, 2, . . . ,m},

[x]Ak
∩ X , ∅, then x ∈

∑m
k=1 Ak

P
(X); Otherwise, ∃xi ∈ U+, [x]∨

Ak
= [xi]

∨
Ak
, i.e., x ∈ [x]∨

Ak
= [xi]

∨
Ak
. Therefore,

∑m
k=1 Ak

P∨
(X

′

) ⊆
∑m

k=1 Ak

P
(X) ∪ ∆H6.
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“⇐” It is obvious that ∆H6 ⊆
∑m

k=1 Ak

P∨
(X

′

) by Definition 7. By Theorem 3 and Proposition 4,
∑m

k=1 Ak

P
(X) ⊆

∑m
k=1 Ak

P∨
(X) ⊆

∑m
k=1 Ak

P∨
(X

′

). Therefore,
∑m

k=1 Ak

P
(X) ∪ ∆H6 ⊆

∑m
k=1 Ak

P∨
(X

′

).

In conclusion,
∑m

k=1 Ak

P∨
(X

′

) =
∑m

k=1 Ak

P
(X) ∪ ∆H6.

Example 3. (Continuation of Example 1) The Table 2 is the expansion of Table 1, let U+ = {x9, x10}, X+ = {x9},

X
′

= X ∪ X+. In the new universe, according to Theorem 4 and the results of Example 1, we can calculate the

pessimistic lower approximation and the upper approximation of X
′

as follows:

U
′

= U ∪ U+ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

X
′

= X ∪ X+ = {x3, x4, x5, x7, x8, x9};

(1)
∑4

k=1 Ak
P
(X) = {x5},

[x5]∨
A1
⊆ X, [x5]∨

A2
* X, x5 ∈ ∆H4;

Then, ∆H4 = {x5},
∑4

k=1 Ak
P∨

(X) =
∑4

k=1 Ak
P
(X) − ∆H4 = ∅.

[x1]∨
A1

* X
′

, x1 < ∆H5;

[x2]∨
A1

* X
′

, x2 < ∆H5;

[x3]∨
A1
⊆ X

′

, [x3]∨
A2

* X
′

, x3 < ∆H5;

[x4]∨
A1

* X
′

, x4 < ∆H5;

[x5]∨
A1
⊆ X

′

, [x5]∨
A2

* X
′

, x5 < ∆H5;

[x6]∨
A1

* X
′

, x6 < ∆H5;

[x7]∨
A1

* X
′

, x7 < ∆H5;

[x8]∨
A1

* X
′

, x8 < ∆H5;

[x9]∨
A1

* X
′

, x9 < ∆H5;

[x10]∨
A1

* X
′

, x10 < ∆H5;

Therefore, ∆H5 = ∅,
∑4

k=1 Ak
P∨

(X
′

) =
∑4

k=1 Ak
P∨

(X) ∪ ∆H5 = ∅.

(2)
∑4

k=1 Ak

P

(X) = {x1, x2, x3, x4, x5, x6, x7, x8},

[x9]∨
A1
∩ X

′

, ∅, [x9]∨
A2
∩ X

′

, ∅, [x9]∨
A3
∩ X

′

, ∅, [x9]∨
A4
∩ X

′

, ∅;

[x10]∨
A1
∩ X

′

, ∅, [x10]∨
A2
∩ X

′

, ∅, [x10]∨
A3
∩ X

′

, ∅, [x10]∨
A4
∩ X

′

= ∅;

Therefore, ∆H6 = [x9]∨
A1
∪ [x9]∨

A2
∪ [x9]∨

A3
∪ [x9]∨

A4
∪ [x10]∨

A1
∪ [x10]∨

A2
∪ [x10]∨

A3
= {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

∑4
k=1 Ak

P∨

(X
′

) =
∑4

k=1 Ak

P

(X) ∪ ∆H6={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

3.2 Updating multi-granulation rough approximations while decreasing objects

In this subsection, we define the concept of optimistic multi-granulation rough set and pessimistic multi-granulation

rough set in the new information system after deleting objects and then discuss the relationship between the original

approximations and the updated approximations.

Definition 8. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , U = {x1, x2, . . . , xn}, X ⊆ U,

deleting n
′

objects from U, assume that the new universe is U
′

= U − U−, where U− is the set that n
′

objects was

deleted from U. ∀X
′

⊆ U
′

, the optimistic multi-granulation lower and upper approximation of X
′

in the new universe
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are denoted by
∑m

k=1 Ak
O∧

(X
′

) and
∑m

k=1 Ak

O∧
(X

′

), respectively,

m∑

k=1

Ak

O∧

(X
′

) = {xi ∈ U
′

: [xi]
∧
A1
⊆ X

′

∨ [xi]
∧
A2
⊆ X

′

∨ . . . ∨ [xi]
∧
Am
⊆ X

′

},

m∑

k=1

Ak

O∧

(X
′

) = {xi ∈ U
′

: [xi]
∧
A1
∩ X

′

, ∅ ∧ [xi]
∧
A2
∩ X

′

, ∅ ∧ . . . ∧ [xi]
∧
Am
∩ X

′

, ∅}.

where [xi]
∧
Ak

is the equivalence class including xi with respect to a granular Ak in the new universe.

Definition 9. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , U = {x1, x2, . . . , xn}, X ⊆ U,

deleting n
′

objects from U, assume that the new universe is U
′

= U − U−, where U− is the set that n
′

objects was

deleted from U. ∀X
′

⊆ U
′

, the pessimistic multi-granulation lower and upper approximation of X
′

in the new universe

are denoted by
∑m

k=1 Ak
P∧

(X
′

) and
∑m

k=1 Ak

P∧
(X

′

), respectively,

m∑

k=1

Ak

P∧

(X
′

) = {xi ∈ U
′

: [xi]
∧
A1
⊆ X

′

∧ [xi]
∧
A2
⊆ X

′

∧ . . . ∧ [xi]
∧
Am
⊆ X

′

},

m∑

k=1

Ak

P∧

(X
′

) = {xi ∈ U
′

: [xi]
∧
A1
∩ X

′

, ∅ ∨ [xi]
∧
A2
∩ X

′

, ∅ ∨ . . . ∨ [xi]
∧
Am
∩ X

′

, ∅}.

where [xi]
∧
Ak

is the equivalence class including xi with respect to a granular Ak in the new universe.

Theorem 5. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X
′

⊆ U
′

, the following

results hold:

(1)
∑m

k=1 Ak
O

(X
′

) ⊆
∑m

k=1 Ak
O∧

(X
′

);

(2)
∑m

k=1 Ak

O
(X

′

) ⊇
∑m

k=1 Ak

O∧
(X

′

).

Proof. (1) ∀x ∈
∑m

k=1 Ak
O

(X
′

), by Definition 4, we have ∃k ∈ {1, 2, . . . ,m}, [x]Ak
⊆ X

′

.When deleting objects, by

Definition 8, we have [x]∧
Ak
⊆ [x]Ak

. Thus, ∃k ∈ {1, 2, . . . ,m}, [x]∧
Ak
⊆ X

′

.According to Definition 8, x ∈
∑m

k=1 Ak
O∧

(X
′

).

Therefore,
∑m

k=1 Ak
O

(X
′

) ⊆
∑m

k=1 Ak
O∧

(X
′

).

(2) ∀x ∈
∑m

k=1 Ak

O∧
(X

′

), by Definition 8, we have ∀k ∈ {1, 2, . . . ,m}, [x]∧
Ak
∩ X

′

, ∅. When deleting objects,

by Definition 8, we have [x]∧
Ak
⊆ [x]Ak

. Thus, ∀k ∈ {1, 2, . . . ,m}, [x]Ak
∩ X

′

, ∅. According to Proposition 1, x ∈

∑m
k=1 Ak

O
(X

′

). Therefore,
∑m

k=1 Ak

O
(X

′

) ⊇
∑m

k=1 Ak

O∧
(X

′

).

Theorem 6. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , let X− = U−∩X, and ∀X
′

⊆ U
′

,

X ⊆ U, if X
′

= X − X−, the following results hold:

(1)
∑m

k=1 Ak
O

(X
′

) =
∑m

k=1 Ak
O

(X) − ∆H7,

∆H7 = {xi ∈
∑m

k=1 Ak
O

(X) : [xi]Ak
* X

′

,∀k ∈ {1, 2, . . . ,m}};

(2)
∑m

k=1 Ak
O∧

(X
′

) =
∑m

k=1 Ak
O

(X
′

) ∪ ∆H8,

∆H8 = {x j ∈ X
′

−
∑m

k=1 Ak
O

(X
′

) : [x j]
∧
Ak
⊆ X

′

,∃k ∈ {1, 2, . . . ,m}};

(3)
∑m

k=1 Ak

O∧
(X

′

) =
∑m

k=1 Ak

O
(X) − U− − ∆H9,

∆H9 = {xi ∈
∑m

k=1 Ak

O
(X) − U− − X

′

: [xi]
∧
Ak
∩ X

′

= ∅,∃k ∈ {1, 2, . . . ,m}}.

Proof. (1) ∀x ∈
∑m

k=1 Ak
O

(X), by Definition 4, we have ∃k ∈ {1, 2, . . . ,m}, [x]Ak
⊆ X. If ∃k ∈ {1, 2, . . . ,m},

[x]Ak
⊆ X

′

, then x ∈
∑m

k=1 Ak
O

(X
′

); If ∀k ∈ {1, 2, . . . ,m}, [x]Ak
* X

′

, then x ∈ ∆H7. Therefore,
∑m

k=1 Ak
O

(X
′

) =
∑m

k=1 Ak
O

(X) − ∆H7.
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(2) ∀x ∈
∑m

k=1 Ak
O∧

(X
′

), by Definition 8, we have ∃k ∈ {1, 2, . . . ,m}, [x]∧
Ak
⊆ X

′

. If ∃k ∈ {1, 2, . . . ,m}, [x]Ak
⊆ X

′

,

then x ∈
∑m

k=1 Ak
O

(X
′

). If ∀k ∈ {1, 2, . . . ,m}, [x]Ak
* X

′

, because of
∑m

k=1 Ak
O∧

(X
′

) ⊆ X
′

, then x ∈ ∆H8. Therefore,
∑m

k=1 Ak
O∧

(X
′

) =
∑m

k=1 Ak
O

(X
′

) ∪ ∆H8.

(3) ∀x ∈
∑m

k=1 Ak

O
(X) − U−, by Proposition 1, we have ∀k ∈ {1, 2, . . . ,m}, [x]Ak

∩ X , ∅. If ∀k ∈ {1, 2, . . . ,m},

[x]∧
Ak
∩ X

′

, ∅, then x ∈
∑m

k=1 Ak

O∧
(X

′

); If ∃k ∈ {1, 2, . . . ,m}, [x]∧
Ak
∩ X

′

= ∅, then x <
∑m

k=1 Ak

O∧
(X

′

), and because

X
′

⊆
∑m

k=1 Ak

O∧
(X

′

), then x < X
′

, thus x ∈ ∆H9. Therefore,
∑m

k=1 Ak

O∧
(X

′

) =
∑m

k=1 AO
k

(X) − U− − ∆H9.

Table 3: An information system with deleting objects

U
′

a1 a2 a3 a4

x1 1 1 1 3

x2 3 1 1 1

x3 2 1 1 3

x4 3 2 1 3

x5 2 3 2 2

x7 1 3 2 3

Example 4. (Continuation of Example 1) The Table 3 is the reduction of Table 1, let U− = {x6, x8}, X− =

U− ∩ X, X
′

= X − X−. According to Theorem 6 and the results of Example 1, we can calculate the optimistic lower

approximation and the upper approximation of X
′

in the new universe as follows:

U
′

= U − U− = {x1, x2, x3, x4, x5, x7},

X− = U− ∩ X = {x8},

X
′

= X − X− = {x3, x4, x5, x7},

(1)
∑4

k=1 Ak
O

(X) = {x3, x5, x7, x8};

[x3]A1
⊆ X

′

, x3 < ∆H7;

[x5]A1
⊆ X

′

, x5 < ∆H7;

[x7]A1
* X

′

, [x7]A2
* X

′

, [x7]A3
* X

′

, [x7]A4
* X

′

, x7 ∈ ∆H7;

[x8]A1
* X

′

, [x8]A2
* X

′

, [x8]A3
* X

′

, [x8]A4
* X

′

, x8 ∈ ∆H7;

Then, ∆H7 = {x7, x8},
∑4

k=1 Ak
O

(X
′

) =
∑4

k=1 Ak
O

(X) − ∆H7 = {x3, x5}.

[x4]∧
A1

* X
′

, [x4]∧
A2
⊆ X

′

, x4 ∈ ∆H8;

[x7]∧
A1

* X
′

, [x7]∧
A2
⊆ X

′

, x7 ∈ ∆H8;

Therefore, ∆H8 = {x4, x7},
∑4

k=1 Ak
O∧

(X
′

) =
∑4

k=1 Ak
O

(X
′

) ∪ ∆H8 = {x3, x4, x5, x7}.

(2)
∑4

k=1 Ak

O

(X) = {x1, x3, x4, x5, x7, x8},

[x1]∧
A1
∩ X

′

, ∅, [x1]∧
A2
∩ X

′

, ∅, [x1]∧
A3
∩ X

′

, ∅, [x1]∧
A4
∩ X

′

, ∅, x1 < ∆H9;

Therefore, ∆H9 = ∅,
∑4

k=1 Ak

O∧

(X
′

) =
∑4

k=1 Ak

O

(X) − U− − ∆H9 = {x1, x3, x4, x5, x7}.
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Theorem 7. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , and ∀X
′

⊆ U
′

, the following

results hold:

(1)
∑m

k=1 Ak
P
(X

′

) ⊆
∑m

k=1 Ak
P∧

(X
′

),

(2)
∑m

k=1 Ak

P
(X

′

) ⊇
∑m

k=1 Ak

P∧
(X

′

).

Proof. (1) ∀x ∈
∑m

k=1 Ak
P
(X

′

), by Definition 5, we have ∀k ∈ {1, 2, . . . ,m}, [x]Ak
⊆ X

′

.When deleting objects, by

Definition 9, we have [x]∧
Ak
⊆ [x]Ak

. Thus, ∀k ∈ {1, 2, . . . ,m}, [x]∧
Ak
⊆ X

′

.According to Definition 9, x ∈
∑m

k=1 Ak
P∧

(X
′

).

Therefore,
∑m

k=1 Ak
P
(X

′

) ⊆
∑m

k=1 Ak
P∧

(X
′

).

(2) ∀x ∈
∑m

k=1 Ak

P∧
(X

′

), by Definition 9, we have ∃k ∈ {1, 2, . . . ,m}, [x]∧
Ak
∩ X

′

, ∅. When deleting objects,

by Definition 9, we have [x]∧
Ak
⊆ [x]Ak

. Thus, ∃k ∈ {1, 2, . . . ,m}, [x]Ak
∩ X

′

, ∅. According to Proposition 3, x ∈

∑m
k=1 Ak

P
(X

′

). Therefore,
∑m

k=1 Ak

P
(X

′

) ⊇
∑m

k=1 Ak

P∧
(X

′

).

Theorem 8. Give an information system IS = 〈U, AT,V, f 〉, A1, A2, . . . , Am ⊆ AT , let X− = U−∩X, and ∀X
′

⊆ U
′

,

X ⊆ U, if X
′

= X − X−, the following results hold:

(1)
∑m

k=1 Ak
P
(X

′

) =
∑m

k=1 Ak
P
(X) − ∆H10,

∆H10 = {xi ∈
∑m

k=1 Ak
P
(X) : [xi]Ak

* X
′

, ∃k ∈ {1, 2, . . . ,m}};

(2)
∑m

k=1 Ak
P∧

(X
′

) =
∑m

k=1 Ak
P
(X

′

) ∪ ∆H11,

∆H11 = {xi ∈ X
′

−
∑m

k=1 Ak
P
(X

′

) : [xi]
∧
Ak
⊆ X

′

, ∀k ∈ {1, 2, . . . ,m}};

(3)
∑m

k=1 Ak

P∧
(X

′

) =
∑m

k=1 Ak

P
(X) − U− − ∆H12,

∆H12 = {xi ∈
∑m

k=1 Ak

P
(X) − U− − X

′

: [xi]
∧
Ak
∩ X

′

= ∅, ∀k ∈ {1, 2, . . . ,m}}.

Proof. (1) ∀x ∈
∑m

k=1 Ak
P
(X), by Definition 5, we have ∀k ∈ {1, 2, . . . ,m}, [x]Ak

⊆ X. If ∀k ∈ {1, 2, . . . ,m},

[x]Ak
⊆ X

′

, then x ∈
∑m

k=1 Ak
P
(X

′

); If ∃k ∈ {1, 2, . . . ,m}, [x]Ak
* X

′

, then x ∈ ∆H10. Therefore,
∑m

k=1 Ak
P
(X

′

) =
∑m

k=1 Ak
P
(X) − ∆H10.

(2) ∀x ∈
∑m

k=1 Ak
P∧

(X
′

), by Definition 9, we have ∀k ∈ {1, 2, . . . ,m}, [x]∧
Ak
⊆ X

′

. If ∀k ∈ {1, 2, . . . ,m}, [x]Ak
⊆ X

′

,

then x ∈
∑m

k=1 Ak
P
(X

′

). If ∀k ∈ {1, 2, . . . ,m}, [x]Ak
* X

′

, because of
∑m

k=1 Ak
P∧

(X
′

) ⊆ X
′

, then x ∈ ∆H11. Therefore,
∑m

k=1 Ak
P∧

(X
′

) =
∑m

k=1 Ak
P
(X

′

) ∪ ∆H11.

(3) ∀x ∈
∑m

k=1 Ak

P
(X) − U−, by Proposition 3, we have ∃k ∈ {1, 2, . . . ,m}, [x]Ak

∩ X , ∅. If ∃k ∈ {1, 2, . . . ,m},

[x]∧
Ak
∩ X

′

, ∅, then x ∈
∑m

k=1 Ak

P∧
(X

′

); If ∀k ∈ {1, 2, . . . ,m}, [x]Ak
∩ X

′

= ∅, then x <
∑m

k=1 Ak

P∧
(X

′

), and because

X
′

⊆
∑m

k=1 Ak

P∧
(X

′

), then x < X
′

, thus x ∈ ∆H12. Therefore,
∑m

k=1 Ak

P∧
(X

′

) =
∑m

k=1 Ak

P
(X) − U− − ∆H12.

Example 5. (Continuation of Example 1) The Table 3 is the reduction of Table 1, let U− = {x6, x8}, X− =

U− ∩ X, X
′

= X − X−. According to Theorem 8 and the results of Example 1, we can calculate the pessimistic lower

approximation and the upper approximation of X
′

in the new universe as follows:

U
′

= U − U− = {x1, x2, x3, x4, x5, x7},

X− = U− ∩ X = {x8},

X
′

= X − X− = {x3, x4, x5, x7};

(1)
∑4

k=1 Ak
P
(X) = {x5},

[x5]A1
⊆ X

′

, [x5]A2
* X

′

, x5 ∈ ∆H10;
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Then, ∆H10 = {x5},
∑4

k=1 Ak
P
(X

′

) =
∑4

k=1 Ak
P
(X) − ∆H10 = ∅.

[x3]∧
A1
⊆ X

′

, [x3]∧
A2

* X
′

, x3 < ∆H11;

[x4]∧
A1

* X
′

, x4 < ∆H11;

[x5]∧
A1
⊆ X

′

, [x5]∧
A2
⊆ X

′

, [x5]∧
A3
⊆ X

′

, [x5]∧
A4
⊆ X

′

, x5 ∈ ∆H11;

[x7]∧
A1

* X
′

, x7 < ∆H11;

Therefore, ∆H11 = {x5},
∑4

k=1 Ak
P∧

(X
′

) =
∑4

k=1 Ak
P
(X

′

) ∪ ∆H11 = {x5}.

(2)
∑4

k=1 Ak

P

(X) = {x1, x2, x3, x4, x5, x6, x7, x8},

[x1]∧
A1
∩ X

′

, ∅, x1 < ∆H12;

[x2]∧
A1
∩ X

′

, ∅, x2 < ∆H12;

Therefore, ∆H12 = ∅,
∑4

k=1 Ak

P∧

(X
′

) =
∑4

k=1 Ak

P

(X) − U− − ∆H12 = {x1, x2, x3, x4, x5, x7}.

4. The algorithms for updating multi-granulation approximations while adding or deleting objects

4.1. The static algorithm for computing multi-granulation approximations

In this subsection, we introduce a static algorithm for multi-granulation rough approximations, which is outlined

in Algorithm 1 [20].

Algorithm 1: Static algorithm for computing multi-granulation rough approximations

Input: IS = 〈U, AT,V, f 〉, X

Output:
∑m

k=1 Ak
O(X),

∑m
k=1 Ak

O
(X),
∑m

k=1 Ak
P(X),

∑m
k=1 Ak

P
(X)

1
∑m

k=1 Ak
O(X) = ∅,

∑m
k=1 Ak

O
(X) = ∅,

∑m
k=1 Ak

P(X) = ∅,
∑m

k=1 Ak

P
(X) = ∅

2 For each x ∈ U

3 For k= 1 to m

4 Compute [x]Ak
;

5 End

6 End

7 For each x ∈ U

8 For k= 1 to m

9 If [x]Ak
⊆ X then

∑m
k=1 Ak

O(X) =
∑m

k=1 Ak
O(X) ∪ {x}; break;

10 End

11 End

12 For each x ∈ U

13 int flag=1;

14 For k= 1 to m

15 If [x]Ak
∩ X , ∅ then flag=1;

16 else flag=0; break;

17 End

18 If flag==1 then
∑m

k=1 Ak

O
(X) =

∑m
k=1 Ak

O
(X) ∪ {x};

19 End

20 For each x ∈ U

21 int flag=1;

22 For k= 1 to m

23 If [x]Ak
⊆ X then flag=1;

24 else flag=0; break;
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25 End

26 If flag==1 then
∑m

k=1 Ak
P(X) =

∑m
k=1 Ak

P(X) ∪ {x};

27 End

28 For each x ∈ U

29 For k= 1 to m

30 If [x]Ak
∩ X , ∅ then

∑m
k=1 Ak

P
(X) =

∑m
k=1 Ak

P
(X) ∪ {x}; break;

31 End

32 End

33 Return
∑m

k=1 Ak
O(X),

∑m
k=1 Ak

O
(X),
∑m

k=1 Ak
P(X),

∑m
k=1 Ak

P
(X).

For Algorithm 1, Step 1 initialize the approximations and its time complexity is O(1); Steps 2-6 calculate the

equivalence class according to Definition 2, and its time complexity is O(m|U |2); Steps 7-11 calculate the lower ap-

proximation of optimistic multi-granulation rough sets according to Definition 4, and its time complexity is O(m|U |);

Steps 12-19 calculate the upper approximation of optimistic multi-granulation rough sets according to Proposition 1,

and its time complexity is O(m|U |); Steps 20-27 calculate the lower approximation of pessimistic multi-granulation

rough sets according to Definition 5, and its time complexity is O(m|U |); Steps 28-32 calculate the upper approxi-

mation of pessimistic multi-granulation rough sets according to Proposition 4, and its time complexity is O(m|U |).

Hence, the total time complexity of Algorithm 1 is O(m|U |2).

4.2 The incremental algorithm for updating multi-granulation approximations while adding objects

In this subsection, we introduce an incremental algorithm for updating multi-granulation rough approximations

while adding objects, which is outlined in Algorithm 2.

Algorithm 2: Incremental algorithm for updating multi-granulation rough approximations while adding objects

Input: IS = 〈U, AT,V, f 〉, X, U+, X+,
∑m

k=1 Ak
O(X),

∑m
k=1 Ak

O
(X),
∑m

k=1 Ak
P(X),

∑m
k=1 Ak

P
(X)

Output:
∑m

k=1 Ak
O∨(X

′
),
∑m

k=1 Ak

O∨
(X
′
),
∑m

k=1 Ak
P∨(X

′
),
∑m

k=1 Ak

P∨
(X
′
).

1 U
′
= U ∪ U+, X

′
= X ∪ X+,

∑m
k=1 Ak

O∨(X
′
) =
∑m

k=1 Ak
O(X),

∑m
k=1 Ak

O∨
(X
′
) =
∑m

k=1 Ak

O
(X),

∑m
k=1 Ak

P∨(X
′
) =
∑m

k=1 Ak
P(X),

∑m
k=1 Ak

P∨
(X
′
) =
∑m

k=1 Ak

P
(X).

2 For each x ∈
∑m

k=1 Ak
O∨(X

′
)

3 int flag=1;

4 For k= 1 to m

5 Compute [x]∨
Ak

;

6 If [x]∨
Ak

* X then flag=1;

7 else flag=0; break;

8 End

9 If flag==1 then
∑m

k=1 Ak
O∨(X

′
) =
∑m

k=1 Ak
O∨(X

′
) − {x};

10 End

11 For each x ∈ X+

12 For k= 1 to m

13 Compute [x]∨
Ak

;

14 If [x]∨
Ak
⊆ X

′
then

∑m
k=1 Ak

O∨(X
′
) =
∑m

k=1 Ak
O∨(X

′
) ∪ [x]∨

Ak
;

15 End

16 End

17 For each x ∈ U
′
−
∑m

k=1 Ak

O∨
(X
′
)

18 int flag=1;
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19 For k= 1 to m

20 Compute [x]∨
Ak

;

21 If [x]∨
Ak
∩ X

′
, ∅ then flag=1;

22 else flag=0; break;

23 End

24 If flag==1 then
∑m

k=1 Ak

O∨
(X
′
) =
∑m

k=1 Ak

O∨
(X
′
) ∪ {x};

25 End

26 For each x ∈
∑m

k=1 Ak
P∨(X

′
)

27 For k= 1 to m

28 Compute [x]∨
Ak

;

29 If [x]∨
Ak

* X then
∑m

k=1 Ak
P∨(X

′
) =
∑m

k=1 Ak
P∨(X

′
) − {x}; break;

30 End

31 End

32 For each x ∈ U
′
−
∑m

k=1 Ak
P∨(X

′
)

33 int flag=1;

34 For k= 1 to m

35 Compute [x]∨
Ak

;

36 If [x]∨
Ak
⊆ X

′
then flag=1;

37 else flag=0; break;

38 End

39 If flag==1 then
∑m

k=1 Ak
P∨(X

′
) =
∑m

k=1 Ak
P∨(X

′
) ∪ {x};

40 End

41 For each x ∈ U+

42 For k= 1 to m

43 Compute [x]∨
Ak

;

44 If [x]∨
Ak
∩ X

′
, ∅ then

∑m
k=1 Ak

P∨
(X
′
) =
∑m

k=1 Ak

P∨
(X
′
) ∪ [x]∨

Ak
;

45 End

46 End

47 Return
∑m

k=1 Ak
O∨(X

′
),
∑m

k=1 Ak

O∨
(X
′
),
∑m

k=1 Ak
P∨(X

′
),
∑m

k=1 Ak

P∨
(X
′
)

For Algorithm 2, Step 1 calculate the new universe and the new target concept, initialize the approximate sets and

its time complexity is O(1); Steps 2-16 calculate the lower approximation of optimistic multi-granulation rough sets

according to Definition 6, and its time complexity is O(m|U′|2); Steps 17-25 calculate the upper approximation of

optimistic multi-granulation rough sets according to Definition 6, and its time complexity is O(m|U′|2); Steps 26-40

calculate the lower approximation of pessimistic multi-granulation rough sets according to Definition 7, and its time

complexity is O(m|U′|2); Steps 41-46 calculate the upper approximation of pessimistic multi-granulation rough sets

according to Definition 7, and its time complexity is O(m|U′|2). Hence, the total time complexity of Algorithm 2 is

O(m|U′|2), i.e., O(m|U ∪ U+|2), which is no more than Algorithm 1.

4.3 The incremental algorithm for updating multi-granulation approximations while deleting objects

In this subsection, we introduce an incremental algorithm for updating multi-granulation rough approximations

while deleting objects, which is outlined in Algorithm 3.

Algorithm 3: Incremental algorithm for updating multi-granulation rough approximations while deleting objects

Input: IS = 〈U, AT,V, f 〉, X, U−, X−,
∑m

k=1 Ak
O(X),

∑m
k=1 Ak

O
(X),
∑m

k=1 Ak
P(X),

∑m
k=1 Ak

P
(X)

Output:
∑m

k=1 Ak
O∧(X

′
),
∑m

k=1 Ak

O∧
(X
′
),
∑m

k=1 Ak
P∧(X

′
),
∑m

k=1 Ak

P∧
(X
′
).
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1 U
′
= U − U−, X

′
= X − X−,

∑m
k=1 Ak

O∧(X
′
) =
∑m

k=1 Ak
O(X),

∑m
k=1 Ak

O∧
(X
′
) =
∑m

k=1 Ak

O
(X),

∑m
k=1 Ak

P∧(X
′
) =
∑m

k=1 Ak
P(X),

∑m
k=1 Ak

P∧
(X
′
) =
∑m

k=1 Ak

P
(X).

2 For each x ∈
∑m

k=1 Ak
O∧(X

′
)

3 int flag=1;

4 For k= 1 to m

5 Compute [x]∧
Ak

;

6 If [x]∧
Ak

* X
′

then flag=1;

7 else flag=0; break;

8 End

9 If flag==1 then
∑m

k=1 Ak
O∧(X

′
) =
∑m

k=1 Ak
O∧(X

′
) − {x}; break;

10 End

11 For each x ∈ X
′
−
∑m

k=1 Ak
O∧(X

′
)

12 For k= 1 to m

13 Compute [x]∧
Ak

;

14 If [x]∧
Ak
⊆ X

′
then

∑m
k=1 Ak

O∧(X
′
) =
∑m

k=1 Ak
O∧(X

′
) ∪ {x};

15 End

16 End

17 For each x ∈
∑m

k=1 Ak

O∧
(X
′
) − U− − X

′

18 For k= 1 to m

19 Compute [x]∧
Ak

;

20 If [x]∧
Ak
∩ X

′
= ∅ then

∑m
k=1 Ak

O∧
(X
′
) =
∑m

k=1 Ak

O∧
(X
′
) − U− − {x}; break;

21 End

22 End

23 For each x ∈
∑m

k=1 Ak
P∧(X

′
)

24 For k= 1 to m

25 Compute [x]∧
Ak

;

26 If [x]∧
Ak

* X
′

then
∑m

k=1 Ak
P∧(X

′
) =
∑m

k=1 Ak
P∧(X

′
) − {x}; break;

27 End

28 End

29 For each x ∈ X
′
−
∑m

k=1 Ak
P∧(X

′
)

30 int flag=1;

31 For k= 1 to m

32 Compute [x]∧
Ak

;

33 If [x]∧
Ak
⊆ X

′
then flag=1;

34 else flag=0; break;

35 End

36 If flag==1 then
∑m

k=1 Ak
P∧(X

′
) =
∑m

k=1 Ak
P∧(X

′
) ∪ {x};

37 End

38 For each x ∈
∑m

k=1 Ak

P∧
(X
′
) − U− − X

′

39 int flag=1;

40 For k= 1 to m

41 Compute [x]∧
Ak

;

42 If [x]∧
Ak
∩ X

′
= ∅ then flag=1;

43 else flag=0; break;

44 End

45 If flag==1 then
∑m

k=1 Ak

P∧
(X
′
) =
∑m

k=1 Ak

P∧
(X
′
) − U− − {x};

46 End

47 Return
∑m

k=1 Ak
O∧(X

′
),
∑m

k=1 Ak

O∧
(X
′
),
∑m

k=1 Ak
P∧(X

′
),
∑m

k=1 Ak

P∧
(X
′
)

For Algorithm 3, Step 1 calculate the new universe and the new target concept, initialize the approximate sets,
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and its time complexity is O(1); Steps 2-16 calculate the lower approximation of optimistic multi-granulation rough

sets according to Definition 8, and its time complexity is O(m|U′|2); Steps 17-22 calculate the upper approximation of

optimistic multi-granulation rough sets according to Definition 8, and its time complexity is O(m|U′|2); Steps 23-37

calculate the lower approximation of pessimistic multi-granulation rough sets according to Definition 9, and its time

complexity is O(m|U′|2); Steps 38-46 calculate the upper approximation of pessimistic multi-granulation rough sets

according to Definition 9, and its time complexity is O(m|U′|2). Hence, the total time complexity of Algorithm 3 is

O(m|U′|2), i.e., O(m|U − U−|), which is no more than Algorithm 1.

5. Experimental evaluation and analysis

Many experiments were conducted to evaluate the performance of proposed incremental algorithms. We use 6

date sets available from UCI, the detailed information of these data sets is outlined in Table 4. All the experiments

are implemented on a PC with Windows 10, AMD Ryzen5 3550H CPU, 2.10 GHz and 16 GB memory. The experi-

mental comparisons between Algorithm 1 and Algorithms 2, Algorithm 1 and Algorithms 3 are made in two aspects,

respectively. One is to compare the computational time with different sized data sets, the other is to compare the

computational time with different updating ratios of the adding or deleting for objects.

Table 4: The description of data sets

No. Data sets Objects Attributes

1 Breast 286 10

2 Balance 625 5

3 Solar 1389 13

4 Chess 3196 37

5 Mushroom 8124 23

6 Nursery 12960 8

5.1 Experiments with different sized data sets when adding objects or deleting objects

In this subsection, we compare the computational time of the static and incremental algorithms with the same

updating ratio but with different sized data sets when adding objects. We assume that the updating ratio of the

incremental or reduced objects is equal to 5%. Each data set in Table 5 is divided into 10 parts of equal size firstly.

Based on the 10 equal sized sub-data sets, and the first part is viewed as the first basic data set, the combination of first

part and second part is regarded as the second basic data set, and so on. While adding objects, for each of 10 different

basic data sets, we randomly select 5% of the size of the basic data set from the next subset of data as the new data

set to be inserted. While deleting objects, for each of 10 different basic data sets, we randomly select 5% of the size

of the basic data set from the basic data set as the data set to be deleted.
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By comparing the computational time of the static and incremental algorithms, we show the efficiency of proposed

incremental algorithms, and the experimental results for computing approximations of the static and incremental

algorithms while adding or deleting objects are listed in Tables 5 and 6, respectively. More detailed change trend lines

of two proposed algorithms with the increasing size of the data sets are shown in Fig.1 and 2, respectively.

Table 5: The comparison of static and incremental algorithms versus the size of added objects

Breast Balance Solar Chess Mushroom Nursery

NO. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre.

1 0.112 0.039 0.233 0.042 0.713 0.121 4.534 0.494 11.540 1.143 7.715 0.850

2 0.252 0.045 0.396 0.067 1.366 0.169 10.707 0.635 32.352 1.741 8.765 1.321

3 0.338 0.059 0.493 0.069 2.194 0.215 19.587 0.929 57.341 2.079 16.513 1.425

4 0.405 0.055 0.641 0.096 3.350 0.243 33.600 1.075 49.075 2.372 23.339 1.737

5 0.498 0.058 0.780 0.104 4.443 0.257 33.904 0.927 62.718 2.329 33.817 2.142

6 0.513 0.053 0.964 0.115 5.822 0.293 35.181 1.239 88.771 2.651 46.082 2.657

7 0.625 0.082 1.104 0.135 7.082 0.367 43.418 1.784 117.439 3.289 59.327 3.332

8 0.720 0.073 1.298 0.142 8.237 0.389 47.542 1.590 149.876 3.575 74.426 3.901

9 0.851 0.065 1.518 0.146 11.262 0.491 51.219 1.967 184.151 4.156 90.745 4.437

10 0.903 0.076 1.710 0.164 13.533 0.574 59.941 1.995 218.581 4.560 110.957 4.982

Figure 1: Computational time of static and incremental algorithms versus the size of added objects.

In each sub-figure of Fig.1 and 2, the x-coordinate is the size of the data set, the y-coordinate is the computa-

tional time, in addition, square and point lines denote the computational time of static and incremental algorithms,
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Table 6: The comparison of static and incremental algorithms versus the size of deleted objects

Breast Balance Solar Chess Mushroom Nursery

NO. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre.

1 0.085 0.045 0.231 0.134 0.693 0.347 4.148 1.916 10.154 4.668 6.662 2.973

2 0.187 0.084 0.360 0.205 1.288 0.555 10.132 4.754 28.341 13.830 16.737 7.876

3 0.279 0.103 0.463 0.246 2.009 0.860 17.732 8.403 51.744 24.618 16.039 7.747

4 0.337 0.147 0.602 0.340 3.189 1.319 29.870 14.690 61.151 34.013 24.972 11.692

5 0.364 0.182 0.769 0.414 4.006 1.880 37.275 17.269 62.044 30.238 34.973 16.064

6 0.483 0.195 0.873 0.426 5.446 2.427 32.431 11.376 89.346 44.344 45.171 21.099

7 0.618 0.240 1.121 0.497 6.436 3.034 36.615 15.061 107.902 59.253 61.046 27.474

8 0.683 0.261 1.297 0.559 7.985 3.699 46.094 19.956 147.401 70.713 72.578 33.901

9 0.760 0.319 1.506 0.695 10.373 4.614 45.153 24.915 167.690 91.833 85.091 39.344

10 0.855 0.369 1.688 0.685 12.108 5.258 55.242 26.417 253.503 109.896 103.568 48.805

Figure 2: Computational time of static and incremental algorithms versus the size of deleted objects.

respectively. From Fig.1, it is easy to see the computation time of Algorithm 1 and Algorithm 2 usually increases

with the increase of the size of data sets, while the proposed incremental algorithm is consistently faster than the static

algorithm, and the differences of efficiency are profoundly larger when the size of the data sets increases. From Fig.2,

it is easy to see the computation time of Algorithm 1 and Algorithm 3 usually increases with the increase of the size

of data sets, while the proposed incremental algorithm is consistently faster than the static algorithm.

5.2 Experiments with different update rations of data sets when adding or deleting objects
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In this subsection, we compare the computational time of the static and incremental algorithms with the same size

of the basic data sets but with different updating ratios when adding or deleting objects. For the situation of adding

objects, We select half of the universe randomly as the basic data sets, and then select Ri
a of the objects from the

remaining 50% objects of the universe as the added objects, Ri
a is equal to 10%, 20%, . . ., 100%, respectively. For

the situation of deleting objects, we select whole universe as the basic data sets, and then select Ri
a of the objects from

the basic data sets as the deleted objects, Ri
a is equal to 10%, 20%, . . ., 90%, respectively. Algorithms 2 and 3 are

applied to update the approximations, respectively.

By comparing the computational time of the static and incremental algorithms, we show the efficiency of proposed

incremental algorithms, and the experimental results for computing approximations of the static and incremental

algorithms while adding or deleting objects are listed in Tables 7 and 8, respectively. More detailed change trend lines

of two proposed algorithms with the increasing size of the data sets are shown in Fig. 3 and 4, respectively.

Table 7: The comparison of static and incremental algorithms versus the updating rations of added objects

Breast Balance Solar Chess Mushroom Nursery

NO. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre.

1 0.412 0.117 0.870 0.193 4.896 0.962 36.793 7.029 98.507 17.244 42.701 8.057

2 0.501 0.192 1.070 0.326 5.490 1.890 35.280 9.570 112.667 33.899 59.677 16.957

3 0.531 0.254 1.118 0.422 6.155 2.753 39.778 16.161 125.729 53.827 60.791 22.318

4 0.639 0.321 1.199 0.555 6.856 3.804 41.056 27.417 138.285 70.254 70.967 32.738

5 0.671 0.358 1.307 0.756 7.584 4.810 40.320 25.279 151.907 83.778 82.254 40.761

6 0.754 0.467 1.271 0.749 8.469 6.014 42.591 30.225 168.730 95.654 88.581 48.797

7 0.835 0.569 1.442 0.913 9.247 6.946 54.640 41.294 168.863 113.764 93.026 64.467

8 0.843 0.650 1.479 1.028 11.863 9.504 59.906 49.553 182.185 133.639 99.211 72.585

9 0.883 0.726 1.567 1.143 12.513 10.347 67.339 57.147 202.941 172.190 112.888 85.562

10 0.914 0.996 1.680 1.303 14.948 11.730 80.699 71.612 218.138 186.150 126.808 107.642

Table 8: The comparison of static and incremental algorithms versus the updating rations of deleted objects

Breast Balance Solar Chess Mushroom Nursery

NO. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre. Static Incre.

1 0.824 0.413 1.640 0.711 11.195 5.275 63.688 31.734 200.307 88.628 98.763 45.732

2 0.734 0.387 1.364 0.576 8.627 3.794 50.901 24.277 154.009 80.044 97.667 39.605

3 0.727 0.334 1.122 0.457 7.185 3.218 44.443 20.893 133.876 64.992 75.115 34.136

4 0.550 0.323 1.005 0.435 5.545 2.680 30.674 17.629 103.105 51.651 62.277 29.929

5 0.479 0.299 0.731 0.348 4.534 2.031 35.032 14.685 72.416 36.850 44.945 22.278

6 0.407 0.259 0.589 0.273 3.312 1.426 33.109 14.601 52.367 25.079 30.884 15.973

7 0.315 0.167 0.486 0.240 2.308 1.027 22.072 9.678 44.052 28.147 21.062 10.301

8 0.256 0.143 0.376 0.133 1.447 0.649 12.432 5.529 26.338 16.277 16.507 9.002

9 0.113 0.089 0.202 0.086 0.657 0.300 5.758 1.907 12.638 5.132 8.544 3.274
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Figure 3: Computational time of static and incremental algorithms versus the updating rations of added objects.

Figure 4: Computational time of static and incremental algorithms versus the updating rations of deleted objects.

In each sub-figure of Fig.3 and 4, the x-coordinate is the updating ratios of the data set, the y-coordinate is the

computational time, in addition, square and point lines denote the computational time of static and incremental al-
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gorithms, respectively. From Fig.3, it is easy to see the computation time of Algorithm 1 and Algorithm 2 usually

increases with the increase of the updating ratios of the data sets, while the proposed incremental algorithm is con-

sistently faster than the static algorithm, and the differences of efficiency are profoundly larger when the updating

ratios of the data sets decreases. From Fig.4, it is easy to see the computation time of Algorithm 1 and Algorithm 3

usually decreases with the increase of the updating ratios of data sets, while the proposed incremental algorithm is

consistently faster than the static algorithm.

6. Conclusions

In this paper, incremental approximations are presented. With adding or deleting of objects, the approximations

can be calculated incrementally without computing fully updated data set, they are used to design incremental al-

gorithms for updating approximations. Our theoretical analysis guarantees the results of incremental algorithms are

right, experimental studies using 6 UCI data sets shows that proposed incremental algorithms can significantly re-

duce computing time for calculating approximations with dynamic data. Further investigations are planned, such as

tolerance-based multi-granulation incremental approximations, or multi-granulation incremental approximations with

attributes and objects changed at the same time.
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