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Abstract: The accurate prediction of strip crown is the precondition of the shape pre-set model in hot 

strip rolling. In this study, a new data-driven model of strip crown based on extreme learning machine 

(ELM) optimized by S-curve decreasing inertia weight PSO (SDWPSO) algorithm and industrial data 

is proposed. In order to simplify the model structure and save modeling time, principal component 

analysis (PCA) is used to reduce the dimension of the input data for modeling samples. The 

comprehensive performance of the proposed hybrid PCA-SDWPSO-ELM prediction model is 

evaluated by several error indexes. The superiority of the proposed model is also proved by comparing 

the prediction results with other three comparison models. The research shows that the hybrid PCA-

SDWPSO-ELM method can solve the problem of nonlinear and strong coupling in the traditional 

engineering. It is suitable for the parameters prediction and optimization of the iron and steel 

manufacturing industry, especially in the process of shape control in hot strip rolling. 
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1 Introduction 

Hot rolled strip products are widely used in the national economy (Pittner and Simaan 2011; 

Peng et al. 2015). Strip shape, including crown and flatness of strip, is one of the key indexes of 

product quality. The crown represents the difference thickness distribution between the two sides and 

the middle on the cross section of the strip and flatness represents the different elongation of the strip 

in the length direction (Peng et al. 2014). Poor strip shape quality not only affects the hot rolling 

process, but also adversely affects the subsequent processes, such as cold rolling, shearing and so on. 

So, shape control is the core, frontier and high difficulty technology in hot rolling process. Naturally, 

the researches on shape prediction and control have great theoretical significance and practical value. 

So far, many scholars have carried out intensive study in the field of shape control in rolling 

process. The common research methods of strip shape control are traditional mathematical analysis, 

finite element analysis and artificial intelligence. For strip crown control, it is generally effective to 

combine all kinds of factors affecting strip crown, such as detection device, mathematical model, load 

distribution, bending and shifting system (Pin et al. 2013), therefore, crown prediction has the 

characteristics of multivariable, nonlinear, strong coupling and so on. Its intrinsic mechanism is very 

complex and it is difficult to obtain accurate prediction model. It is the most basic method to establish 

the strip shape control model through the traditional mathematical analysis, the core idea of this 

method is to fully consider the characteristics of rolling mill model and metal flow law, and to 

calculate the elastic deformation and flexural deformation of rolling mill by using the influence 

function method (Li et al. 2010). Combined with bending roll and shifting roll strategy, the shape of 



roll gap profile is calculated to realize crown control (Peng et al. 2014). The finite element method 

can simulate the metal flow law and stress and strain of strip under various rolling conditions flexibly 

(Moazeni and Salimi 2015). Through the reasonable grid dividing and setting boundary conditions, 

it provides the most accurate representation for the roll system force and deformation of the whole 

rolling mill, so the calculation results of the shape parameters with high precision can be obtained, 

and the influence of the shape actuator on the flatness, crown and edge drop in the actual rolling 

process can be verified. (Linghu et al. 2014; Tran et al. 2015). However, it is more and more difficult 

to improve the precision of traditional shape mathematical model because of the many simplified 

conditions in the process of solving mathematical analytic method and finite element method. 

In order to continuously improve the strip shape control accuracy, the artificial intelligence 

technology with data and algorithm as the core has attracted more and more scholars' attention. Data-

driven modeling is generally realized by machine learning algorithm. The common machine learning 

algorithms mainly include artificial neural network (ANN), support vector machine (SVM), decision 

tree and random forest (RF), deep learning and so on. It is the earliest application of artificial 

intelligence in rolling field to establish rolling force prediction model of leveling rolling process using 

neural network and apply it to practical production line and good results have been obtained (Larkiola 

et al. 1998; Pican et al. 1996; Moussaoui and Abbassi 2006). The pattern recognition method is 

generally used in the shape control system, and the accurate shape standard pattern characteristic 

coefficient is the premise of the shape control, T-S cloud inference neural network (Zhang et al. 2015), 

PID neural network (Zhang et al. 2015) and radial basis function network (Zhang et al. 2016) can 

effectively identify common defects in cold rolling and improve the precision of cold rolled shape 

control. SVM is another common machine learning algorithm, which can realize model training under 



small sample size. SVM can be used to accurately predict the outlet crown of hot strip rolling (Wang 

et al. 2018). Data-driven modeling based on a single learner is prone to overfitting, and ensemble 

modeling methods can effectively solve this problem. RF is a typical integrated learning algorithm, 

which can also be used to establish outlet crown prediction model of the hot rolled strip with good 

generalization performance (Sun et al. 2021). Hybrid model is constructed based on hot rolling 

production data and deep learning network to predict strip exit crown, 97.04% absolute error of 

modeling samples is less than 5μm (Deng et al. 2019). Combining machine learning algorithm with 

heuristic intelligent optimization algorithm to establish data-driven model is also another research 

direction of intelligent modeling. Using genetic algorithm (GA) to establish multi-objective optimal 

control strategy and apply it to the identification of strip shape parameters and the setting of rolling 

schedule, the optimal values of strip crown and flatness setting values can be obtained successfully, 

and the precision of strip shape control can be improved (Nandan et al. 2005). GA and ant colony 

algorithm (ACA) are used to optimize the crown model of hot rolled strip, which proves that the 

evolutionary algorithm is practical in the optimization of rolling process parameters (Chakraborti et 

al. 2006). The relationship model between input parameters and strip shape can also be established 

by combining ANN and GA to predict the minimization flatness value of hot rolled strip (John et al. 

2008). Besides, the transfer matrix between the characteristic parameters of flatness error and the 

parameters of flatness adjustment can be established by using GA to optimize the BP neural network. 

The transfer matrix is successfully applied to the strip shape adjustment mechanism of rolling mill to 

realize the accurate control of the strip shape (Liu et al. 2005; Peng et al. 2008). Combining the shape 

control matrix with the differential evolution algorithm (DE) optimization ELM, the intelligent 

cooperative control model of the shape control mechanism of cold rolled strip can be established and 



applied to the shape control process (Yang et al. 2017). Based on the above analysis, combination of 

big data technology and artificial intelligence modeling method is a new trend to study how to further 

improve the precision of shape control in rolling process. 

In this study, a new hybrid PCA-SDWPSO-ELM forecasting model is proposed in combination 

with the artificial intelligence method and the industrial data to predict strip crown in hot rolling. The 

superiority of the proposed model is proved by contrast experiment. This paper is organized as follows: 

Section 2 introduces the basic theory of shape control. Sections 3 shows the collection and processing 

of modeling data and the related modeling process. The discussion of strip crown forecasting results 

is described explicitly in section 4 and Section 5 concludes this paper. 

2 Theory of strip crown control 

2.1 Strip crown and proportional crown 

Strip crown is the thickness difference between the center of the strip cross section and the 

reference point of the edge. In order to eliminate the effect of strip edge thinning, the edge reference 

point is usually located at the 40 mm distance from the strip edge. The definition of strip crown is 

shown in Fig.1. The proportional crown is the ratio of the strip crown to the thickness of the strip 

center. 
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Fig.1. Thickness variation in strip cross section 
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where, C  is the strip crown, mm; Ch  is the thickness of the center of the strip cross section, mm; 

Lh  and Rh  are the thickness of the reference point on the left and right side of the strip cross section, 

respectively, mm; hCp  is proportional crown of the strip. 

2.2 The unload roll gap crown model 

The traditional crown control model consists of two parts: the unload roll gap crown model and 

the uniform load roll gap crown model. The unload roll gap crown is the roll gap crown of the rolling 

mill without workpiece and without adding force, which reflects the effect of roll crown on the shape 

of strip, and it is one of the important factors that affect the shape of load roll gap. As shown in Fig.2, 

the unload roll gap crown consists of two parts: roll gap between work rolls and roll gap between 

back-up roll and work roll. 
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Fig.2. Schematic plan of unloaded roll gap 

2.2.1 Roll crown model 

The calculation of roll crown is the premise of unload roll gap crown calculation. Roll crown is 

the diameter difference between the middle and the end of the roll, which is the sum of the original 

grinding crown, equivalent crown, thermal crown and wear crown. Roll thermal crown and roll wear 

crown are the crown formed by thermal expansion and wear during rolling process. The equivalent 

crown of roll is 0 for conventional mill, and for CVC mill, it can be calculated by interpolation of 



transverse position. 

grn eqv t wR
C C C C C             (3) 

where, R
C  is roll crown, mm; 

grnC  is roll original grinding crown, mm; 
eqvC  is roll equivalent 

crown, mm; tC  is roll thermal crown, mm; wC  is roll wear crown, mm. 

2.2.2 Roll gap crown between back-up roll and work roll 

The gap crown between the back-up roll and the work roll is determined by the work roll crown 

and the back-up roll crown. Because it corresponds to the contact area between rollers, it is necessary 

to transform the crown of the work roll under the assumption that the roll crown curve is a conic 

distribution. 
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where, br-wrC  is the gap crown between the back-up roll and the work roll, mm; brC  is the back-up 

roll crown, mm; wrC  is the work roll crown, mm;  brL  is the back-up roll length, mm. wrL  is the 

work roll length. 

2.2.3 Roll gap crown between two work rolls 

Work roll gap crown is the roll gap crown between two work rolls when no load is carried, and 

the size is equal to the work roll crown. 

wr-wr wrC C           (5) 

where, wr-wrC  is roll gap crown between two work rolls, mm; wrC  is work roll crown, mm. 

2.3 The uniform load roll gap crown model 

The uniform load roll gap crown is the shape of the roll gap when the unit width rolling force is 

distributed in the contact area between the strip and the work rolls. The shape of uniform load roll 

gap depends on the unload roll gap crown, the roll system deflection and the elastic flattening 



deformation of the rolls caused by the rolling force and the bending force. The mathematical model 

of uniform load roll gap crown can be described as a function of unit width rolling force, bending 

force, strip width, roll elastic modulus, roll diameter, gap crown between back-up roll and work roll, 

and roll gap crown between two work rolls. The mathematical model is constructed as follows (Peng 

et al. 2014): 
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where, ufdC  is the uniform load roll gap crown, mm; p  is the unit wide rolling force, kN/mm; wF  

is bending force, kN; wrD  and brD  are the diameter of work roll and back-up roller, respectively, 

mm; wrE   is the elastic modulus of work roll, MPa; i
b   is the model coefficients. The model 

coefficients i
b  are cubic polynomials of the strip width: 

2 3

,0 ,1 ,2 ,3 ,     0 ~ 17
i i i i i

b c c W c W c W i             (7) 

where, W  is the strip width, mm; 
,i j

c  are polynomial coefficients. 

3 Methodology 

3.1 ELM regression modeling 

The ELM is a kind of single-hidden Layer Feedforward Neural Network (SLFN), which is 

proposed by in 2004 (Huang et al. 2004; Huang et al. 2006; Huang et al. 2012). The purpose is to 

simplify the learning parameters setting while overcoming the defect of the BP algorithm that is easy 

to fall into the local minimum and improve the learning efficiency (Lan et al. 2013). 

w  is defined as the connection weight of the input layer and the hidden layer, β  is defined as 

the connection weight of the hidden layer and the output layer. 
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b  is defined as the biases of the hidden layer neurons; n、l、m are number of neurons in input layer, 

hidden layer and output layer, respectively. 

l l

b

b

b


 
 
 
 
 
 

1

2

1

M
b =           (10) 

The input and output matrices of the training set are X  and Y , Q is the sample size. 
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 g x  is the activation function of the hidden layer neuron. T is the output of the network. 
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where,  , , ,
i i i in

w w w 1 2 Lw ; 
T

, , ,
j j j nj

x x x   1 2 Lx . 

H  is the hidden layer output matrix, the specific forms are as follows: 
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Represented by a matrix: 

Hβ = T          (15) 

If the number of neurons in the hidden layer is equal to the number of training set samples, the 

training samples can be approximated by zero error for any w  and b  for SLFN, it means that 
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However, when the number of training samples Q   is too large, in order to reduce the 

computational complexity, the number of hidden layer neurons K  usually takes a number smaller 

than Q , and the training error of SLFN can approach an arbitrary  ,   0 , that is, 

Q

j j
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
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When the activation function  g x  is infinitely differentiable, the parameters of SLFN do not 

need to be completely adjusted and w  and b  can be randomly selected before training and remain 

unchanged during training. The connection weight β  between the hidden layer and the output layer 

can be obtained by solving the least square solution of the following equations: 

min


Hβ -T          (19) 

Its solution is 

ˆ +β = H T           (20) 

Where +H  is the Moore-Penrose generalized inverse of the implicit layer output matrix H . 



3.2 S-curve decreasing inertia weight PSO algorithm 

3.2.1 Standard PSO algorithm 

The standard PSO algorithm originated from the study of the foraging behavior of birds, which 

was originally proposed by Kennedy and Eberhart (Eberhart and Kennedy 1995). All the particles in 

the group adjust velocity and position in accordance with the current global optimal solution found 

by the current individual extremum and the entire particle group that they have found. The velocity 

and position adjustment strategy are as follows: 

     0,1 0,1k k k k k k

id id id id gd id
V wV C rand P X C rand P X

     1

1 2    (21) 

k k k

id id id
X X V

  1 1
        (22) 

where the w   is inertial factor, C1   and C2   are called the acceleration constant,  0,1rand   is 

random number belong to 0-1, id
P   represents the dth dimension of the ith variable individual 

extremum, 
gd

P   represents the dth dimension of the global optimal solution and k represents the 

number of iterations. 

3.2.2 Improvement of PSO algorithm 

In the standard PSO algorithm, the default w is 1, which represents the particles always fly along 

a certain direction at a constant speed during the search process until the search boundary is reached. 

Only when the optimal solution is exactly on the particle trajectory can the optimal solution be found. 

Shi and Eberhart introduced a linear decreasing inertia weight coefficient into the particle swarm 

velocity update formula (Shi and Eberhart 1998). The linear decreasing inertial weight has the same 

decline rate, so that the region with the larger inertia weight accounts for only a small part of the total 

area. Therefore, in this paper, a S-curve decreasing inertia weight is constructed, which expands the 

area of large inertial weight. Its mathematical form is as follow: 



0.25 (1-tanh( ( 60/ )))+0.4
now iter

w a n n b          (23) 

where, now
n  is the current number of iterations, iter

n  is the maximum number of iterations, a and b 

are parameters of S-curve. 
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Fig.3. Graphs of S-curve function with different a and b 

Table 1 The parameters used in PSO. 
Parameters Values 

Size of population 100 

Acceleration factors C1=2.4 C2=1.6 

Number of iterations 100 

Parameters of S-curve a=0.15 b=10 

Different S-curves can be obtained by adjusting the value of a and b, and the process of 

decreasing inertia weight will be different. Fig.3 shows the inertia weight decline curves under 

different combinations of a and b. The SDWPSO algorithm parameter settings as shown in Table 1. 

3.3 Case study factory and modeling industrial data collection 

3.3.1 Description of hot tandem rolling mill in Chengsteel 

Hot tandem rolling mill in HBIS group Chengsteel company, as shown in Fig.4, is used to 

demonstrate the design and implementation of the hybrid PCA-SDWPSO-ELM model. The 

production line consists of furnace, vertical mill, roughing mill, flying shear, finishing mill, laminar 

cooling device, coiler and arrangement of each equipment is shown in Fig.5. 



 

Fig.4. A real hot tandem rolling mill photo of Chengsteel 
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Fig.5. Schematic layout of the hot tandem rolling mill in Chengsteel 

In the process of hot strip rolling, basic automation, process automation, man-machine interface, 

material tracking system and measurement instrument will produce a large number of real-time 

production data. Data exchange is realized through industrial ethernet, so that all functions of 

computer control system can be completed. The flow chart of the data communication is shown in 

Fig.6. 
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Fig.6. The flow chart of the data communication 

3.3.2 Data collection 



The main sources of data collected are as follows: the first part is the communication with other 

process computers. This part of rolling data mainly includes incoming data, product size data and 

performance requirements data. The incoming data include slab number, steel coil number, material, 

blank size, chemical composition, etc. The finished product size data generally include target 

thickness, target temperature and target width, etc. Performance requirements data include target yield 

strength, cooling rate and cooling temperature. The second part is the data from the instruments, 

which are mainly the actual rolling data measured in the rolling process, these data are the key data 

in the modeling process. It mainly includes the data related to the stands and the independent data of 

the stands. The relevant data of the stands mainly include the data of rolling force, the data of the roll 

gap and the speed of the motor, etc. Independent data of the stand mainly include pre-rolling and post-

rolling meter data, such as measured thickness, measured width and measured temperature. The third 

part is the process intervention data of HMI operators. The hot rolling data flow is shown in Fig.7. 
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Fig.7. The data flow in hot strip rolling 

3.3.3 Determine the input and output parameters of the model 



According to the description of the theory of strip crown in the part 2, the influencing factors of 

strip crown mainly include the following aspects: 
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Fig.8. Input and output variables of the ELM models 

 Mill roll: diameter, roll length, roll thermal expansion, roll wear, etc. 

 Strip steel: Material (yield strength), strip width, strip thickness, temperature, etc. 

 Rolling conditions: rolling force, bending force, roll shifting, roll speed, etc. 

Based on the above principles, the variables listed in Fig.8 are selected as input parameters of 

the model. The output variable is the exit strip crown after finishing mill. 

3.3.4 Data preprocessing 

A week of rolling data was collected from the data center. Due to the erroneous data and outliers 

in these raw data, it cannot be directly used in modeling. So, data preprocessing must be carried out. 

Preprocessing includes the following operations: 

1. Removal of missing values. 

2. Elimination of extraneous values. 

3. Removal of outliers which are extremely deviated from the mean. 
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Fig.9. Distribution of strip thickness on sample data sets 

A total of 1809 strip samples are used as modeling data sets through the above operations. These 

data can be divided into 8 layers according to the final rolling thickness. The sample number of each 

layer is shown in Fig.9. From the point of view of modeling, the whole data set can be divided into 

training set and test set. The sample data is normalized to [-1,1] (Han et al. 2013; Niu et al. 2016). 

Normalization formula as follows 

 
     '

min
2 1 , 1,2,3,...,

max min

i i

i

i i

x x
x i m

x x


    


     (24) 

where  max
i

x  and  min
i

x  are the maximum and minimum number of data sequences. 

3.3.5 Dimension reduction of sample data by PCA 

PCA is a multi-element statistical method for converting multiple indexes into several 

comprehensive indexes on the premise of low loss of information by using the thought of dimension 

reduction (Samarasinghe 2007). Usually, the comprehensive index generated by transformation is 

called as the principal component, in which each principal component is a linear combination of the 

original variables, and each principal component is independent of each other, which makes the 

principal component have some superior performance than the original variable. Refs. (Malvoni et al. 

2016; Franceschi et al. 2018) show the implementation strategies of PCA. From the above analysis, 



the input variable that influences the crown of strip steel is a 79-dimensional data, which is 

catastrophic for the machine learning algorithm. This paper deals with dimension reduction under the 

premise of cumulative contribution rate of 0.95. 

3.4 Models development 

Among 1809 strip steel sample data, 83% (1500) are used as training set data and 17% (309) are 

used as test set data. Four models are established and compared. Simple ELM without any 

optimization is named as single ELM model. Initial weights and biases of ELM optimized by 

SDWPSO algorithm is named as hybrid SDWPSO-ELM model. ELM optimized by PSO algorithm 

is named as hybrid PSO-ELM model. The hybrid SDWPSO-ELM model, which is modeled using 

reduction dimension of independent variables by PCA method, is named hybrid PCA-SDEPSO-ELM 

model. 
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Fig.10. Schematic layout of the proposed model. 

The four models are used to predict the exit crown of hot strip rolling and their comprehensive 



performance are evaluated. The Fig.10 shows the main flow of the proposed hybrid SDWPSO-ELM 

models. 

3.5 Model performance accuracy criteria 

R2, MAE, MAPE and RMSE are used to evaluate the comprehensive performance of each model. 

The formula for calculating the four indicators is as follows: 
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where, n is the sample size; ,
i i

y y
  is the actual output and predicted output crown of the ith strip 

sample, respectively; y  is the average actual crown of strip samples. 

4 Strip crown prediction results and discussion 

In this section, in order to show the performance of proposed hybrid PCA-SDWPSO-ELM 

model, MATLAB language is used to implement model calculation. The average value of three 

implementations for each model is taken as the comprehensive performance. 

4.1 Comparison of search efficiency between PSO and SDWPSO 

Under the same data set and network parameters, the standard PSO and the SDWPSO algorithm 

are used to optimize the initial weights and biases of the ELM. Table 2 shows the performance of the 

two optimization algorithms on the test set under the conditions of the different number of hidden 



layers’ neurons. Obviously, no matter the number of hidden layer neurons, the determination 

coefficient R2 and MSE of the SDWPSO algorithm on the test set are better than that of the PSO 

algorithm, which fully proves the superiority of the SDWPSO algorithm. 

Table 2 Performance of the PSO and SDWPSO algorithms on the test set 
Number of hidden 

layer neurons 

PSO algorithm SDWPSO algorithm 

R2 MSE R2 MSE 

20 0.5993 130.4134 0.6529 112.9932 

40 0.6272 121.3071 0.7103 94.2611 

60 0.7428 83.6819 0.7709 74.5358 

80 0.7692 80.0299 0.8337 61.2996 

100 0.8092 62.0823 0.8318 54.7187 
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Fig.11. Comparison of optimization processes between PSO and SDWPSO algorithms 

When the topology of ELM is 79-80-1, the variation of the best fitness value of the two 

algorithms is recorded. The variation rule of the best fitness value curves under the two algorithms 

are shown in Fig.11. It can be seen from the diagram that the convergence rate of the fitness curve of 

the standard PSO algorithm is slow during the iteration process, and the fitness value process 

decreases gradually during the whole iteration process. It is stable after 80 iterations. By comparison, 

the improved SDWPSO algorithm quickly reaches the best fitness after about 40 iterations. In 

addition, the best individual fitness obtained by the standard PSO algorithm is 0.0145, while the 

SDWPSO algorithm is 0.0133. The result represented by SDWPSO is more likely to be the global 



extremum of the solution space. After many tests, there is the same rule. Therefore, the SDWPSO 

algorithm proposed has more advantages because of its characteristic of finding global extremum 

accurately and quickly. 

4.2 Comparison prediction accuracy between different models 

In this section, the comprehensive performance of the hybrid PCA-SDWPSO-ELM, single ELM, 

hybrid PSO-ELM and hybrid SDWPSO-ELM models will be discussed in detail. The basic 

parameters of the models are as follows: the number of hidden layer neurons in the ELM is 80, the 

population size of the optimization algorithms is 100, number of iterations is 100, and the parameters 

of the S-curve a and b is 0.15 and 10, acceleration factors 1C  and 2C  is 2.4 and 1.6, respectively. 
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Fig.12. Models regression effect on training set and test set 

The scatter plots and regression effect of the four models on the training set and the test set are 



depicted in Fig.12, respectively. The black straight-line y=x represents the ideal prediction model, 

which means that the predicted value is exactly the same as the actual value. In the actual process, 

the prediction models are difficult to achieve zero error, so the proximity of regression line and ideal 

line is one of the important indexes to characterize its performance. In the graph, the red line 

represents the regression line of the data on the training set used for modeling, while the blue 

represents the regression line of the data on the test set. The determination coefficient R2 of models 

can evaluate proximity to the ideal case. R2=1 means that the prediction is absolutely correct and 

there is no error. The smaller the value of R2 is, the worse the performance of the model is. Clearly, 

the proposed hybrid PCA-SDWPSO-ELM model has more concentrated scatter distribution and 

presents higher R2 values (R2 values reached 0.7937 and 0.8573 on the training set and the test set, 

respectively). 

Comparison the predicted values of the four models on the training set and the test set with the 

corresponding actual values is shown in Fig.13. It can be roughly seen in the diagram that the 

predicted strip crown values of the samples are consistent with the actual values. More intuitive and 

quantitative performances of models are characterized by MAE, MAPE and RMSE. Table 3 shows 

the specific calculation results of each error index, and the histogram of error distribution is drawn 

according to Table 3, as shown in Fig.14. 

In comparison to the hybrid PSO-ELM model and single ELM model which initial weights and 

biases are not optimized, the performance of the hybrid PSO-ELM model (R2=0.762, MAE =6.280, 

MAPE=14.265%, RMSE=8.428 for training set and R2=0.769, MAE=6.441, MAPE=17.623%, 

RMSE=8.667 for test set) is far better than those of the single ELM model (R2=0.581, MAE=7.972, 

MAPE=18.458%, RMSE=11.177 for training set and R2=0.427, MAE=12.189, MAPE=35.434%, 



RMSE=15.725 for test set). This performance enhancement benefits from PSO algorithm selecting 

the optimal initial weights and biases for ELM. 
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Fig.13. Comparison between the predicted and actual values of the models. (a) training set (b) testing set  

When comparing the hybrid SDWPSO-ELM model with the hybrid PSO-ELM model, the 

performance of the hybrid SDWPSO-ELM model (R2=0.782, MAE=5.945, MAPE=13.758%, 

RMSE=8.071 for training set and R2=0.834, MAE=5.358, MAPE=13.613%, RMSE=7.357 for test 

set) is better than hybrid PSO-ELM model. The inertia weight with S-curve decreases slowly in the 

initial stage of search, and the larger inertia weight tends to global search in the middle of search. So, 

the S-curve inertia weight makes the algorithm have better ergodicity in theory. At the end of iteration, 

because the small inertia weight is more inclined to local search, the S-curve inertia weight reaches 



the smaller value more quickly and it can obtain better local search performance. 

Table 3 Calculation results of determination coefficient and error indicators 

Indices Models Training set Test set 

R2 

Single ELM 0.581 0.427 

Hybrid PSO-ELM 0.762 0.769 

Hybrid SDWPSO-ELM 0.782 0.834 

Hybrid PCA-SDWPSO-ELM 0.794 0.857 

MAE 

Single ELM 7.972 12.189 

Hybrid PSO-ELM 6.280 6.441 

Hybrid SDWPSO-ELM 5.945 5.358 

Hybrid PCA-SDWPSO-ELM 5.726 5.165 

MAPE (%) 

Single ELM 18.458 35.434 

Hybrid PSO-ELM 14.265 17.623 

Hybrid SDWPSO-ELM 13.758 13.613 

Hybrid PCA-SDWPSO-ELM 13.108 13.429 

RMSE 

Single ELM 11.177 15.725 

Hybrid PSO-ELM 8.428 8.667 

Hybrid SDWPSO-ELM 8.071 7.357 

Hybrid PCA-SDWPSO-ELM 7.842 6.814 

When comparing the hybrid PCA-SDWPSO-ELM model with the hybrid SDWPSO-ELM 

model, the performance of the hybrid PCA-SDWPSO-ELM (R2=0.794, MAE=5.726, 

MAPE=13.108%, RMSE=7.842 for training set and R2=0.857, MAE=5.165, MAPE=13.429%, 

RMSE=6.814 for test set) is better than that of the hybrid SDWPSO-ELM model. After PCA 

processing with a cumulative contribution of 0.98, the modeling independent variables are reduced 

from 79-dimensional to 14-dimensional. It has the advantages of fast training speed and simple 

topology structure to use the data set after dimension reduction. Fig.15 shows the training time for 

each model. According to Fig.15, the training time of the hybrid PCA-SDWPSO-ELM model is less 

than that of the hybrid SDWPSO-ELM model, which confirms this conclusion. Fast response is of 

great significance for industrial on-line control. So, the hybrid PCA-SDWPSO-ELM model is more 

suitable for the crown prediction in the on-line control process of hot strip rolling than other models. 
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Fig.14. Error distribution histogram of four models. (a) for training set, (b) for test set 

Synthesis of all above analysis, this study clearly demonstrates that it is effective to use industrial 

data and the hybrid PCA-SDWPSO-ELM approach to model the crown which is one of the key strip 

shape parameters in hot rolling process. This study can greatly reduce the traditional mathematical 

calculation without losing the precision. More importantly, the research method proposed in this paper 

can be extended to other model parameters prediction and optimization process, and it can effectively 

solve other nonlinear and strong coupling problems in rolling process. 
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Fig.15. Comparison of training time required for each model 

5 Conclusions 

An efficient approach for prediction of strip crown in rolling process based on machine learning 

algorithm, called hybrid PCA-SDWPSO-ELM model is proposed in this research. The purpose of 



study is to establish a soft measurement method based on production data to realize accurate 

prediction of the strip exit crown, and then to improve the precision of shape control in hot strip 

rolling. The following conclusions can be drawn by comparing the comprehensive performance of 

the proposed model with the other three models. 

1. The S-curve decreasing inertia weight PSO algorithm proposed can greatly improve the search 

efficiency of the traditional PSO algorithm and overcome the shortcoming that it is easy to fall 

into the local minimum. Based on this algorithm, the initial weights and biases of the ELM 

network are optimized and selected, the accuracy of the hybrid SDWPSO-ELM model for 

predicting the strip crown in hot rolling is improved significantly. 

2. The dimensionality reduction of independent variables is one of the effective methods to deal 

with the modeling of industrial data. Training model using data set after dimensionality reduction 

can not only improve the generalization performance of the model, but also simplify the model 

structure and save the modeling time. Less time consuming and quick response is beneficial to 

online real-time control system in industry. 

3. The combination of ELM and industrial data can be used to predict the strip crown effectively. 

This data-driven prediction method can be easily extended to other parameters prediction and 

optimization by generating the corresponding training data in rolling process. The research in 

this paper provides a new method to solve the multi-variable, strong coupling and nonlinear 

complex industrial problems which cannot be handled by traditional mathematical models, and 

provides technical support for the efficient utilization of massive data in hot strip rolling process 

and the precision control of strip shape. 
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