
TDCA: Improved Optimization Algorithm with
Degree Distribution and Communication Tra�c for
the Deployment of Software Components Base on
AUTOSAR Architecture
Kunpeng Zhang

Jilin University
Yanheng Liu

Jilin University
Jindong Zhang ( zhangjindong_100@163.com)

Jilin University
Guanhua Zhang

Jilin University
Jingyi Jin

Jilin University
Yunhao Li

Jilin University
Fengmin Tang

China Automotive Technology and Research Center

Research Article

Keywords: AUTOSAR, Busload, Components deploying, ECU equalization

Posted Date: December 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1131775/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1131775/v1
mailto:zhangjindong_100@163.com
https://doi.org/10.21203/rs.3.rs-1131775/v1
https://creativecommons.org/licenses/by/4.0/

Noname manuscript No.
(will be inserted by the editor)

TDCA: Improved optimization algorithm with degree
distribution and communication traffic for the deployment of
software components base on AUTOSAR architecture

Kunpeng Zhang1
· Yanheng Liu1,2

· Jindong Zhang1,2,3
· Guanhua

Zhang1
· Jingyi Jin1

· Yunhao Li1 · Fengmin Tang4,5

Received: date / Accepted: date

Abstract AUTOSAR (Automotive Open System Ar-

chitecture), as an open, standardized framework for au-

tomotive electronic software development, has gradu-

ally become the standard followed by major automotive

manufacturers and automotive electronic device suppli-

ers. The electronic software system problem improves

the development efficiency and portability of the sys-

tem by reducing the development cost of automotive

electronic software while ensuring the quality of prod-

ucts and services, which is beneficial for subsequent up-

grades and updates of the system. In order to improve

the reliability of the software component deployment

algorithm based on AUTOSAR architecture, we pro-

posed the TDCA algorithm. During the execution of the

Kunpeng Zhang
zkp0113@sina.com
Yanheng Liu
yhliu@jlu.edu.cn

Jindong Zhang
zhangjindong 100@163.com
Guanhua Zhang
344276932@qq.com
Jingyi Jin
jyjin20@mails.jlu.edu.cn
Yunhao Li
lyh2833495@126.com
Fengmin Tang
tangfengmin@catarc.ac.cn

1 College of Computer Science and Technology, Jilin
University, Changchun 130012, China
2 Key laboratory of symbol computation and knowledge
engineering of the ministry of education, Jilin University,
Changchun, China
3 State key laboratory of automobile simulation and con-
trol,Jilin University, Changchun, China
4 College of Mechanical Engineering, Hebei University of
Technology, Tianjin 300132, China
5 China Automotive Technology and Research Center,
Tianjin 300300, China

algorithm, communication volume and communication

degree are introduced to improve the accuracy of the de-

ployment plan by optimizing the bus load and ECU bal-

ancing. Algorithm comparison experiments show that

comparing heuristic and linear optimization algorithms,

the TDCA algorithm proposed in this paper has signif-

icant advantages in reducing bus load and ECU uti-

lization. The algorithm can reduce the communication

between cores and balance ECU load according to the

constraints of AUTOSAR architecture.

Keywords AUTOSAR · Busload · Components

deploying · ECU equalization

1 Introduction

The traditional development model of automotive elec-

tronic software is no longer suitable for today’s increas-

ingly complex software systems. There is an urgent need

for new and efficient automotive electronic software ar-

chitecture to replace the traditional automotive elec-

tronics software development. In response to the intri-

cate design of automotive electronic systems, leading

automotive original equipment manufacturers and Tier

1 suppliers jointly established AUTOSAR, which de-

fines a set of support for function-driven, distributed

automotive electronic software development methods

and software on ECUs Architecture standards to ap-

ply to different automotive ECU platforms [1–3]. AU-

TOSAR is an open and standardized framework for de-

veloping automotive electronic software, with the con-

cept of ”cooperating on standards and competing in im-

plementation.” The purpose is to solve the renewal and

replacement of automotive electronic systems and effi-

ciently carry out more complex tasks. The development

of the automotive electronic software system improves

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www.editorialmanager.com/soco/download.aspx?id=683801&guid=d47f0e04-1a9c-4848-ac8d-196befd24ff6&scheme=1
https://www.editorialmanager.com/soco/download.aspx?id=683801&guid=d47f0e04-1a9c-4848-ac8d-196befd24ff6&scheme=1

2 Kunpeng Zhang1 et al.

the software’s reusability, reduces the development cost,

and solves low software portability and software inte-

gration difficulties [3].

AUTOSAR originated in Europe. At first, it was

only applied to some sizeable international automobile

manufacturers. The applied products were also mini-

mal, only partially applied in engine control modules,

body control modules, and gateway modules [4]. Be-

sides, there were only controllers with relatively simple

functions in the car at that time, and the software ac-

counted for a small proportion of the entire car elec-

tronic control system [5]. It was easy to transplant a

complete software system to different hardware plat-

forms.

The application rate of AUTOSAR is relatively low.

However, with the rapid development of new technolo-

gies in recent years, more and more artificial intelli-

gence and Internet of Things technologies have gradu-

ally begun to be applied to automotive electronic sys-

tems, such as automatic parking, remote upgrades, fa-

tigue monitoring, workshop communication, lane moni-

toring and alarm, Pedestrian detection and other func-

tions. The most significant feature of these technolo-
gies is that the software algorithms are very compli-
cated, and the software has become the core of the en-

tire automotive system. Therefore, complex car embed-

ded systems need to integrate various essential or crit-

ical application functions, and car systems have been

upgraded to distributors with many ECUs(Electronic

Control Units) [6]. The number of software components

implemented as application functions increases to more

than tens of thousands with the increase of automo-

biles’ complex functions. At the same time, it will be

more complex while the software executes on the ECU.

AUTOSAR defines an architecture based on component

standardized interfaces, which improves the reusability

of components by extracting functions from the hard-

ware [7].

AUTOSAR contains three layers of the automotive
embedded system from top to bottom, shown as Fig.1.

Application software layer which composed of software

components of different granularities. RTE(Runtime En-

vironment) is the heart of AUTOSAR ECU architec-

ture. It is the realization (for particular ECU) of the in-

terfaces of the AUTOSAR VFB(Virtual Function Bus)

RTE maps all the runnable of each component in local
ECU to the OS tasks and builds the existing intra-ECU
communications among them. The AUTOSAR Basic

Software layer(BSW) is mainly used to provide essential

software services, including standardized system func-

tions and functional interfaces. It comprises of a series

of essential service software components, including sys-

tem services, memory services, communication services,

etc. [4,8]. The deployment of SWC to ECU is an essen-

tial step in system configurations [9]. For a system com-
posed of ECUs, there are many feasible solutions for de-
ploying SWC to ECUs. The conventional software com-

ponent deployment problem has been proved to be NP-

hard [10, 11]. Therefore, we purpose an improved algo-

rithm to configure and deploy the SWC to ECU instead

of manual operation [12]. However, the initial ECU of

the CAT [6] algorithm is randomly selected. Facing the

SWC with a low communication degree in the complex

communication network, because the CAT algorithm

cannot effectively optimize the ECU’s internal commu-

nication traffic, it will increase bus traffic. On the one
hand, the initial ECU communication degree is small,

and the busload increases, and on the other hand, it

will increase the algorithm execution time.

In this paper, we optimized based on the CAT algo-
rithm [6] and proposed a faster and more effective de-

ployment of SWC based on the traffic degree and com-

munication traffic clustering algorithm named TDCA.

TDCA has the following unique functions. First, TDCA

sorts SWCs by degree distribution statistics, selects k
SWCs with the enormous degree value as the initial

ECU cluster center, and deploys other SWCs to ECUs.
Second, we defined a penalty function in the traffic-

dependent clustering process to adjust the ECU load

factor’s weight value dynamically. We use the current

ECU utilization and the parameters defined in advance

to calculate the penalty function value’s function value.

When deploying all SWCs, the system’s ECU can bal-

ance the load and effectively control the communication
network’s bus speed. The main contributions of this pa-

per are summarized as follows.

(1)We formulate the optimization deployment prob-
lem of SWC to ECU in AUTOSAR architecture to op-

timize the bus traffic and ECU load.

(2)A clustering optimization algorithm based on de-

gree distribution and traffic (TDCA) is proposed for

solving the optimization problem. TDCA introduces
the degree value and traffic of SWC to optimize the

algorithm performance and algorithm execution time
during the deployment of SWC to ECU. The TDCA
algorithm has more advantages in optimizing bus traf-

fic and ECU load.

(3)The performance of the proposed method is veri-
fied by performing the simulation. For comparison, TD-

SCA(Traffic-Degree-Subset-Cluster-Algorithm) , a heuris-

tic optimization algorithm and linear optimization al-

gorithm are introduced to evaluate the proposed TDCA

algorithm’s performance in the deployment of SWC to

ECU. Moreover, the stability of the algorithm under

different data models was tested.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Title Suppressed Due to Excessive Length 3

Fig. 1 AUTOSAR architecture

The rest of this paper is organized as follows. Re-

lated research is described in Section II. The concept

of component-based distributed systems is described

in Section III. Section IV formulates the deployment

problems and parameter simulation of SWC. Section

V proposes the TDCA and TDSCA algorithm. Section

VI introduces the experimental evaluation and result

analysis. Section VII presents a summary of findings

and conclusions.

2 Related research

Most researchers investigating multi-processor task de-

ployment have utilized integer programming [13], sim-

ulated annealing and tabu search heuristic algorithm

[14], particle swarm optimization [15], dynamic pro-

gramming [16] and ant colony algorithm [17]. Heuris-

tic algorithm [18], the greedy grouping strategy [19]

has essential reference significance for component map-

ping problems [20, 21]. The CTMC model [22] is used

to handle distributed systems’ availability and uses a
rule-based hierarchical genetic algorithm with random
scheduling strategies to complete task deployment [6].

However, the algorithm does not consider load bal-
ancing [23, 24]. Dougherty focuses on the deployment
of distributed real-time embedded systems of software
components [25]. The bin packing algorithm has been

used in this problem, but the communication between

tasks has not been considered [6].

Zhang Ming, and Z.Gu formulated and solved two

optimization problems: mapping SWC to ECU, the pur-

pose is to minimize the busload; for a given SWC to

ECU mapping, mapping the runnable entities on each

ECU To the OS task, and assign a data consistency

mechanism to each shared data item to minimize the

memory size requirement on each ECU, while ensuring

the schedulability of the task set on all ECUs [17].

Faragardi, Hamid Reza introduced a heuristic algo-
rithm to compare the task granularity of all runnable

entities whose tasks are hosted on the same core, which

improves the flexibility of assigning runnable entities

to each core [20]. Faragardi, Hamid Reza, proposed to

reduce the overall network communication time and

meet the given timing and priority constraints, with-
out considering the load balance of ECU. Saidi, Salah
Eddine, et al. proposed an ILP (Integer Linear Pro-

gramming) equation for AUTOSAR running mapping

process on a multi-core architecture, aiming to mini-

mize inter-core communication and balance the proces-

sor load [26]. Ran, Zheng, et al. proposed a traffic-based

software component deployment algorithm, CAT algo-
rithm, under the premise of optimizing bus communi-
cation costs while balancing the ECU load [6].

3 Background

3.1 Software components and Runnable entities

In the AUTOSAR architecture, the automotive elec-
tronics application software consists of software com-
ponents located on the AUTOSAR RTE [27]. The spe-

cific behavior of software components depends on the

cooperation of runnable entities. Generally, a software

component contains one or more runnable entities. In

the AUTOSAR architecture, a runnable entity is a piece

of program code used to implement a simple algorithm

or a specific function.

There are n SWCs communicating with each other

in the automotive software system, denoted by A =
{ai | i = 1, 2, . . . , n}, let ai = {bi,j | j = 1, 2, . . . ,mi},

bi,j is the set of runnable entities of the software com-

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4 Kunpeng Zhang1 et al.

ponent ai, where mi,j is the number of runnable enti-

ties. bi,j = (P (bi,j), e(bi,j), I(bi,j), O(bi,j)) among them,
P (bi,j) is the execution period of bi,j , e(bi,j) is the worst

execution time of a runnable entity bi,j , I(bi,j) is the or-

der of the runnable entity in the software component of

bi,j ,O(bi,j) is the activation offset offset value of bi,j .
According to AUTOSAR, all runnable entities are

activated by RTE-Event. Two runnable entities are de-

fined in AUTOSAR RTE, Category1: No waiting time,

execute immediately, offset=0. Category2: contains at

least one waiting time, or when the server calls, it needs

to wait for response feedback. There are 12 RTE-Events

defined in Classic AUTOSAR. Most of the RTE-Events

in AUTOSAR is periodic; that is, they will be triggered

at intervals. However, periodic events are divided into
RTE-Events with a strict instruction period and RTE-
Events with a non-strict instruction period. The under-

lying timing triggers directly trigger RTE-Events with

strict instruction periods. In contrast, other periodic

RTE-events are generated by periodic runnable enti-

ties, that is, a series of periodic runnable entities may

generate a series of events during operation. RTE-event.

We assume that all runnable entities are triggered peri-

odically, and each runnable entity is equal to the timer

period. We defined the period of the runnable entity

bi,j as P (bi,j) [6].
In AUTOSAR, the runnable entity is responsible

for SWC communication, and its code requirements are

as simple as possible to meet reuse requirements and

response time constraints. Because the function and

structure of the runnable entity are relatively simple,

usually, the runnable entity’s worst execution time is

much shorter than its period e(bi,j) >P (bi,j) [6].

3.2 Bus architecture

The SWC communication with each SWC by RTE through
such as CAN, local interconnect network(LIN), FlexRay,

and automotive Ethernet to provide communication to
higher layers through a uniform interface [6, 28–30].
A typical hardware topology composed of three parts,

with three buses and 9 ECUs, is shown as Fig.2. The

ECU0 and ECU1 connect to BUS0, ECU2, and ECU3

connect to BUS1, and ECU4 to ECU6 connect to BUS1.

Gateway0 is a gateway that acts as a bridge between

BUS0 and BUS1, and Gateway1 is a gateway that acts
as a bridge between BUS0 and BUS2.

In the current automotive electronic system, the

hardware topology is more complicated, and the num-
ber of buses is more extensive than before. For complex
hardware topology, the gateway can be used as a node
to isolate and analyze the entire hardware topology. In

the experiment, we presume that the ECU has the same

Fig. 2 Example of bus architecture hardware topology

performance indicators on the bus, so we only need to
focus on the performance indicators on a single bus in
a distributed system.

3.3 Communication Network

AUTOSAR defines different ports and interfaces for

communication between SWCs according to the com-

munication direction and communication type, includ-
ing Provide-Port for data output and Receive-Port data
requests. At the same time, AUTOSAR divides the ap-

plication’s overall function into a combination of several

SWCs (including atomic SWC and non-atomic SWC).

Non-atomic SWC can be divided into multiple inter-

connected atomic SWC. SWC communicates through

runnable located inside SWC. The communication be-

tween runnable entities is divided into software com-

ponent internal communication, and software compo-

nent communication. Runnable entities deployed in the

same software component communicate through shared

variables in the software component, and runnable enti-

ties deployed in different software components commu-

nicate through ports. AUTOSAR software components
provide well-defined connection points, namely ports.
Three types of ports are defined in AUTOSAR: demand

port Require-In, supply port Provides-Out, Provide-

Require InOut (introduced in AUTOSAR 4.1) demand

ports. Naturally, the AUTOSAR port can refer to the

following types of interfaces: send-receive interface Sender-
Receiver; client-server interface client-server; mode switch

interface mode switch; non-volatile data interface non-

volatile data; parameter interface Parameters; Trigger

interface trigger. A software component contains mul-

tiple interface ports, which are used for data access and

function calls.

In this case, the communication network Com(A, com)

is defined to represent the communication between SWCs.

It is represented by atomic SWC in the communica-

tion network. As the data rate between atomic SWC,

Com(A, com) is expressed as Com is expressed as

Com = {com(ai, aj) | ai, aj 2 A}. Where the definition

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Title Suppressed Due to Excessive Length 5

Fig. 3 SWC communications network based on AUTOSAR
architecture

com (ai, aj) =
Pp=mi,q=mj

p=1,q=1,bi,p2ai^bj,q2aj

com(bi,p,bj,q)
P(bi,p)

. De-

fine SD, TR, DC as flows.

com (bi,p, bj,q) =

p=mi,q=mj
X

p=1,q=1,bi,p2ai^bj,q2aj

{SD, TR,DC}

=
X

8

<

:

{sd (bi,p, bj,q)}

{tr (bi,p, bj,q)}
{dc (bi,p, bj,q)}

Data sharing belongs to SWC internal variables and

does not participate in busload. Reduce or optimize

the communication relationship between SWC, reduce

communication from the SWC trigger. TR: trigger re-
lationship; SD: data sharing; DC: communication re-

lationship. Fig.3 shows the communication network be-

tween 4 SWCs.

In Fig.3, the communication traffic between b2,1 and
b3,2 is tr(b2,1, b3,2), and the communication traffic be-

tween b2,2 and b3,2 is dc(b2,2, b3,2). The communica-

tion rate between SWC2 and SWC3 is
tr(b2,1,b3,2)
Period(b2,1)

+
dc(b2,2,b3,2)
Period(b2,2)

.

4 Problem simulation

The method proposed in this paper is mainly to find

the optimal deployment plan for SWC deployment to

ECU. Assume that there are n SWCs and need to be
deployed to k ECUs in a unique bus architecture. The

deployment problem could be transformed into a com-

munication network N cut and optimized into n (N =

(n1[n2[· · ·[nn)) small communication networks and

deploy the n communication into k ECUs. In order to

obtain better system performance, we need to consider

the factors as follows.

4.1 Traffic and traffic degree

There two types of traffic are in AUTOSAR. One is in-
ternal traffic in the same ECU, and the other one is bus

traffic. The internal traffic means that the SWCs com-

municate by internal or shared data. The total commu-

nication traffic Tall is a fixed network that is constant.

The transmission of a large amount of data through

the bus will lead the bus congestion, and the sharing of

data within the ECU will not increase the bus traffic. To

reduce the bus congestion caused by data communica-

tion, therefore, when we optimize bus traffic in TDCA,

we need to make the internal traffic of each T (ecul) as

more significant as possible. Therefore, the bus traffic

Tbus as the total traffic minus the traffic inside the ECU

T (ecul).

Tbus = Tall �

k
X

l=1

T (ecul) (1)

4.2 The number of ECU

For selecting the number of ECUs, for the mapping pro-

cess from SWC to ECU in the AUTOSAR architecture,
we define the minimum k value.

kmin =

2

6

6

6

Pn

i=1

Pj=mi

j=1,bi,j2ai

e(bi,j)
p(bi,j)

0.69

3

7

7

7

(2)

In fact, in the number of deployed ECUs, the mini-
mum k value will lead to the optimal ECU load, which

will result in some SWCs without target ECU deploy-
ment. Therefore, the value of k is used as a reference

value for the minimum number of ECUs, and the num-
ber of ECUs is usually more significant than the value

of k.

4.3 ECU equalization

Because if the SWC is deployed only based on the amount

of communication, it will not only lead to unbalanced

ECU utilization among ECUs but also cause specific

tasks in the ECUs to fail to be scheduled for execution.

Therefore, in the deployment process, we need to use

W (ecul) the total utilization of the ECU as a reference

for the tasks in each ECU that can be executed and

scheduled. The
e(bi,j)
P (bi,j)

is the utilization of bi,j deployed

on the ECU.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6 Kunpeng Zhang1 et al.

W (ecul) =

i=n
X

i=1,ai2A^M(ai)=ecul

j=mi
X

j=1,bi,j2ai

e (bi,j)

P (bi,j)
(3)

For a distributed operating system, each ECU ob-
tains approximately the same ECU utilization rate to

obtain better performance. Now we use the standard

deviation of W (Standard Deviation) as a measure of

ECU equalization [31].

STD(W) =

v

u

u

t

1

k

k
X

l=1

[E(W)� E(ecul)]2 (4)

Where E(W) is the mathematical expectation of

E(ecul), we treated the STD as the reference for ECU

equalization.

5 TDCA algorithm and TDSCA algorithm

In this section, a faster and more effective Traffic-Degree-

Clustering-Algorithm and Traffic-Degree-Subset-Clus-

tering-Algorithm are used to deploy SWCs to ECUs.

The TDCA and TDSCA algorithm is described as fol-

lows.

For evaluating deployment quality for TDCA, we

use the utility function utility (ecui, aj) and to dynam-

ically adjust the ECU load balance and bus traffic. The

value of the utility function is directly proportional to

the deployment quality of ECU load and traffic bus.

utility(ecui, aj) is the product of the communication

traffic ct (ecui, aj) between SWC aj and ecui and fit-
ness value f(ecui).

In order to better evaluate TDCA algorithm, we

add communication subsets to TDCA algorithm to con-

struct TDSCA algorithm, and optimize the deployment

of the relationship between communication subsets of

SWCs with large degree value.

Here, the optimization problem equation is as fol-

lows. Find all SWC mapping functions M(ai) = ecul.

Goal 1: Minimize bus communication traffic in the

system, that is find the maximum internal traffic of all

ECUs,
Pk

l=1 T (ecul).

Goal 2: On the premise of ensuring that each ECU

can be dispatched, ECU load balancing is realized.

5.1 T-Traffic

Define ct(ecui, aj) as the traffic between ECU ecui and

SWC aj , which represents the communication traffic

SWC(j)
Degree=46

SWC(i)
Degree=35

3 3421 33 35…

1 2 3 44 45 46…

Fig. 4 Communication subset Description.

between current software component aj and the all SWCs

that deployed on ECU ecui.

ct (ecui, aj) =
X

8aq2A,M(aq)2ecui

com (aq, aj) (5)

5.2 D-Degree

In the TDCA process deployment, we defined the traffic

degree Di the value that SWC has a communication
relationship with other SWCs of each SWC.

Di =

(

P

1, if Net(ai, aj) 6= 0, i, j 2 (1, n);

0, if Net(ai, aj) = 0, i, j 2 (1, n);
(6)

TD is defined as the degree matrix of the network.

The larger the TD value, the more other SWCs are

communicating with the SWC. Therefore, selecting a

larger SWC can ensure that the SWC that has a close

communication relationship with the SWC is deployed

to the same ECU, which can effectively increase the

internal communication traffic of the ECU, reduce the
busload and algorithm execute time.

TD =

2

4

D1 . . . 0

0 . . . 0

0 . . . Dn

3

5 =

2

6

4

Pj=n

j=1 d1,j . . . 0

0 . . . 0

0 . . .
Pj=n

j=1 dn,j

3

7

5

(7)

5.3 S-Subset

The communication relationship in modern automotive

electronics is complex, and the same communication

targets may exist between SWCs with multiple com-

munication objects. Therefore, we introduced the con-

cept of communication subsets and defined communica-

tion subsets based on the degree of communication, as

shown in Fig.4.It means that the different SWCs with

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Title Suppressed Due to Excessive Length 7

large degree may have some common communication

relationship with others. For example there are 35 de-

grees and 46 degrees for ai and aj , we can inform that

from Fig.4 that the communication subset of ai and aj
is Subset(ai, aj) = 5, and it shown in the middle part

colored with dark blue in Fig.4. The definition of subset

is shown in formula(8).

Subseti,j =
X

i,j2(1,n);i 6=j

si,j =
X

i,j2(1,n);i 6=j

ai,(1:n). ⇤ aj,(1:n)

(8)

5.4 C-Cluster algorithm

The fitness function f(ecui) can automatically adjust
the effectiveness function value in the clustering pro-

cess. At the beginning of the algorithm, the deploy-

ment of SWC is mainly based on ECU internal com-

munication. As ECU utilization increases, the fitness

function value decrease rapidly. Therefore, the deploy-

ment of SWC gradually depends on the ECU load as

the algorithm executes. In the end, both bus traffic and

ECU load have been optimized.

In the iterative calculation process of the TDCA al-

gorithm, the initial ECUs will select by degree value.

The SWC will be deployed to the ECU with the max-

imum utility value if Judge < 0.69. After completing

the iteration, update the initial SWC and communica-

tion traffic in the ECU, respectively, and redeploy until

no better deployment plan can be obtained. At the be-

ginning of the TDCA algorithm, the k SWCs with an

enormous degree value are selected as the cluster center

points of the initial k ECUs.
The specific operation is as follows, select {C1, C2, ..., Ck}

to become the current cluster corresponding to the ECU.

For SWC ai that has not been deployed to any ECU,

recalculate the distance from ai to all clusters to obtain
{ct(ecu1, ai), ct(ecu2, ai), . . . , ct(ecuk, ai)}. Then calcu-

late the utility value of each SWC through the fitness

function, {utility(ecu1, ai), . . . , utility(ecuk, ai)}. SWC

ai will be deployed on the ECU with the highest utility

value.

According to the RM schedule strategy in 1973 [32],

the ECU will be non-schedulable when the utilization

is more significant than 0.69. Therefore, the utilization

of each ECU and the ECU’s average utilization should
both be less than 0.69. Assuming that SWC ai is de-

ployed on ECU ecuj , SWC ai included in cluster Cj ,

cluster Cj will become more extensive, and then the

distance will be updated. Cj = Cj [ai, and the utiliza-

tion rate of ECU ecuj has been updated. The Judge

is a function to verify whether the ECU task can be
scheduled when the SWC is deployed to the ECU.

Judge = W (ecuj) +
X

8bi,q2ai

e (bi,q)

P (bi,q)
(9)

W (ecuj) =

(

Judge, if Judge < 0.69;

W (ecuj) , else;
(10)

The bus traffic Tbus needs to be calculated to deter-

mine whether the stop condition is met after the itera-
tion. If necessary, to continue the iterative calculation,
the SWC with the enormous internal communication

traffic in each ECU will become the new cluster center

for the next iteration.

5.5 Fitness function

To ensure that each ECU is schedulable and ECU equal-

ization in the TDCA algorithm, the f(ecui) is defined to

correct the utility value in the TDCA algorithm, shown

as follows.

f (ecui) = 1�

✓

W (ecui)

EW + η

◆3

= 1�

0

@

k ⇤W (ecui)

η +
Pn

i=1 η
j=mi

j=1,i,j2ci

e(bi,j)
p(bi,j)

1

A

3

EW 2 (0, 0.69], η 2 [0, 0.69� EW]

(11)

Among them, in order to set the weight of the TDCA

algorithm execution process bus traffic and ECU load,

the artificial setting adjustment parameter η is defined.
The more significant value of η means the internal com-

munication traffic gets more weight; a smaller value

means the ECU load gets more weight. The internal

communication traffic of the ECU and inversely pro-
portional to the ECU load.

f(ecui) is a monotonically decreasing concave func-
tion, mainly used to control the ECU load to ensure

that it can be scheduled. When the value of W (ecui) is

less than (EW � η), because f(ecui) decreases slowly,

f(ecui) has little effect on the effectiveness function.

At this time, the TDCA algorithm is mainly based

on the amount of communication. When W (ecui) 2

[EW � η, EW + η], f(ecui) decreases rapidly. Due to
the rapid decrease of f(ecui), SWC deployment will be

different from ECU. ECU load becomes the main fac-

tor of cluster quality. When W (ecui) is greater than

EW + η, the function f(ecui) is less than zero, and the

fitness function is negative. This means that the load

of ECU ecui is very heavy, and no SWC will be de-

ployed on this ECU. Therefore, the adaptive function

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8 Kunpeng Zhang1 et al.

can ensure the schedulability of ECUs and achieve a

good balance in each ECU.

5.6 Penalty function

In addition to defining a fitness function similar to CAT,

TDCA also defines a penalty function to correct the bus

traffic weight for each ECU. In order to ensure the ECU

load balance and effectively reduce the communication

between ECUs, especially the penalty function item is

added on the basis of the fitness function. The penalty

function is used to dynamically adjust the ECU load

while affecting the communication between ECUs. The

penalty function is shown as follows.

F (ecui) = f(ecui) + α1 ⇤max[0,W (ecui)� EW]

+ α2 ⇤min[0, (
Tall

k
� Tecui

Tbus

)]
(12)

In formula(12),α1 is the penalty factor for utilization,

and α2 is the penalty factor for bus load. To be fair,

we respectively defined α1 = α2 = 0.5; in this way, the

weights assigned to ECU utilization and bus load re-
main constant.

5.7 Algorithm analysis

TDCA algorithms describe as follow steps.

Step1: Initialized parameters

Net[n][n];e[bi,j];P [bi,j];MNI

go to Step2.

Step2: Calculate Each SWCs degree and update

TD

Di =
Pi=n,j=n

i=1,j=18Network(ai,aj)>0 1;

Sort TD by descending;

Select k SWCs from large to small in TD as the

initial ECU centers;

go to Step3.

Step3:Deploy the SWC to ECU

for each SWC ai, not a medoid

calculate utility[ecuj] = ct[ecuj][ai] ⇤ f(uj)

sort utilities[k]

if Judge < 0.69

ecumax = ecuj ;

deploy ai to ecumax;

update M [ai] = ecumax;

W [ecui] = [ecumax] +
P

8bi,q2ei

e[bi,q]
P [bi,q]

ct[ecumax][aj] = ct[ecumax][aj] +Net[ai][aj];

go to Step4.

else

ecumax = ecumax�1;

go to Step3.

Step4:Calculate the bus traffic Tbus

find the maximum distance ct[ecui][amax] from

ct[ecui][a1] to ct[ecui][an];

let amax be medoid of ecui and map amax to ecui,

M [amax] = ecui;

update W [ecui] =
P

8bmax,q2Amax

e[bmax,q]
P [bmax,q]

;

calculate the value of F
f
from ecui to ecuk.

if F
f
> 1

f = F
f

else

f = f

update the new centers of each ECU and set the

initial ct[ecumax][aj] = ct[ecumax][aj];

Step5:

if exit (Tbus)  MNI

end the algorithm.

else

go to Step3.

Table 1 Parameters definition table

Abbreviation Full form

Net[n][n] Communication network of SWCs
ai Software Components
bi,j Runable Entity
e(bi,j) Wrost execution time of bi,j
P (bi,j) Period of bi,j
MNI Max number of Iteration
Di Degree of SWC
TD Degree matrix of Network
Subseti,j Communication subset
F Penalty function
ecu Electronic Control Unit
ct[ecuj][ai] Communication traffic between ecuj and ai

W (ecui) Utilization of ECU
M Deployment plan of algorithm

CT [k][n] is a temporary two-dimensional array used
to store the communication traffic of ai and SWCs that

have been deployed to the current ECU ecuj , where
CT [ecuj][ai] = ct(ecui, aj). W [k] is a temporary array

of length k used to store the utilization of each ECU.

utility[k] is an array of length k used to store the valid-

ity function value, where utility[ecui] = u ⇤ f(ecui, ⇤).

The array M [n] is used to store the mapping result.

The exit(Tbus) records the bus traffic Tbus during
each iteration to determine whether to end the itera-

tion. The TDCA algorithm consists of 5 Steps: In Step1,

initialize all variables. In Step2, TD will be calculated.

In Step3, deploy SWCs to ECUs. In Step4, the W and

ct will be updated. In Step5, if there is no smaller Tbus,

or the iteration period is reached, the algorithm ends.

In order to verify whether a SWC with a larger

degree and a communication subset needs to be de-

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Title Suppressed Due to Excessive Length 9

Fig. 5 AIS data set and communication network

ployed to the same ECU, we added the concept of com-

munication subset on the basis of TDCA, constructed

the TDSCA algorithm, and calculated the degree value

and communication subset for each SWC. During the
experiment, the SWC with more communication sub-

sets was mapped to an ECU to obtain experimental

data based on the TDSCA algorithm, and shown in

Fig8,9,10,11,12,13.

6 Performance evaluation

This section conducts an experimental evaluation of the

TDCA, TDSCA, CAT, and heuristic SPA algorithms

and compares the results with ILP-based load balancing

and ILP-based non-load balancing algorithms.

6.1 Dataset description

The data set AIS is extracted from the application pro-

gram interface example and has five complex functions

provided by the AUTOSAR specification. Based on the

communication network of the data set AIS, we gener-

ated 904 atomic SWCs. The statistical analysis of the

data set AIS shows that AIS’s communication density

is λ = 0.14. The data set AIS is shown in Fig.5.

For the artificially synthesized automobile electronic

software component set, firstly generate a random con-

nection diagram according to the number of compo-

nents, and then transform it into a component commu-

nication network. Since components are mainly used for

communication, runnable entities with enormous com-

munication traffic have longer execution times, and vice

Fig. 6 PLP data set and communication network

versa. Therefore, the executable entities’ execution time

and period are combined according to the components

communication traffic. When generating the executable

entities’ execution time and period in the component,
the average utilization rate of all ECUs must be less
than 0.69. In actual automotive electronic applications,

the average utilization rate of ECUs will not be too
high.

For the synthetic experimental data set, we convert

the random connected graph into a specified number of
SWC communication network and generate the worst
execution time and period of SWC according to the

traffic. The worst execution time of runnable entities in
SWC is proportional to SWC’s communication traffic.

In the experiment process, the PLP model (Planted

l-partition model) planned by the graph segmentation
algorithm plan using the implantable segmentation model
is a multi-level Erdos Renyi model [33] to generate ran-
dom connected graphs and is expressed as (n, k, p, q).

The data set we generated based on the PLP model is
shown as Fig.6.

In the PLP mode, the degree of the vertex approxi-

mately obeys a random distribution. Because the soft-
ware fitting distribution in the AUTOSAR architecture
obeys the exponential distribution, we generate another

set of experimental data (RGE: random graph follows

the exponential distribution [33]), the parameters are

set to n SWC, the communication network distribution

λ = 0.14. Fig.7 shows an example of the parameter

RGE (400,0.14).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10 Kunpeng Zhang1 et al.

Fig. 7 RGE data set and communication network

6.2 Comparison of algorithms with ECU equalization

For the data set AIS, four algorithms are used to deploy

SWCs to 6,8,10,12,14 and 16 ECUs. For CAT, SPA,

TDSCA, and TDCA algorithms, η is set to EW/2k.

For ILP Var, we set the max utilization of each ECU
equal to the overall utilization average.

Evaluate the performance of algorithms of deploy-

ment base on bus load(Tbus), ECU balancing(STD),

and the algorithm execution time(Runtime). Fig.8 shows

the effect of the number of ECUs on bus traffic. TDCA’s
bus traffic from 700 to 1100, the value of TDSCA ranges

form 1100 to 2200, the bus traffic range of CAT is be-

tween 1200 and 1700, the value of SPA ranges from 400

to 1600, and the value of ILP Var ranges from 1300 to

1800. Compared with other algorithms, the optimiza-

tion performance of TDCA algorithm for bus traffic

is better than other algorithms, and the fluctuation is
smaller.

ECU load balancing is shown in Fig.9. Since the

maximum utilization of each ECU is manually set in
the initial stage, the ILP Var algorithm has significant

performance in ECU load. However, we can inform the
ILP Var could not decrease the bus traffic Tbus from

Fig.9. For the AIS data set, as the number of ECUs

increases, in addition to ILP Var, the best performance

in ECU equalization is the TDCA algorithm, followed

by the SPA algorithm, TDSCA algorithm and finally,
the CAT algorithm.

The execution time of algorithms is shown in Fig.10.

Compared with CAT, TDSCA, SPA, and ILP Var, TD-

SCA has the longest execution time, the execution time

of the SPA algorithm is in the middle, while TDCA,

Fig. 8 Bus traffic of AIS with algorithms

Fig. 9 The Standard Deviation of ECU utilization with al-
gorithms

CAT, and ILP Var are all less than 100ms, and TDCA

is between CAT and ILP Var in most times.

Fig.8, Fig.9, Fig.10 and Table 2 show that the TDCA

algorithm has good performance in reducing bus traffic,

optimizing ECU equalization, and algorithm execution

time during the deployment process based on the AIS

data set.Compared with other algorithms, TDCA algo-

rithm is the best in terms of comprehensive bus load,

ECU balance and algorithm running time.

For random experimental data sets generated based

on the PLP model and the RGE model. Deploy these

SWCs to 8 ECUs through CAT, TDCA, TDSCA and

SPA algorithms. Analyze deployed algorithms’ perfor-

mance by comparing bus traffic, the standard devia-
tion of ECU utilization, and algorithm execution time.

Fig.11, Fig.12, and Fig.13(a) show the results of the

PLP-based model, and Fig.11, Fig.12, and Fig.13(b)

show the RGE model data results.

1.Bus traffic: For the communication network gener-

ated by the PLP model, there are initially eight closely

connected clusters. The number of clusters is equal to

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Title Suppressed Due to Excessive Length 11

Table 2 Performance of each Algorithm for AIS.

Algorithm
Tbus Std Runtime

6 8 10 12 14 16 6 8 10 12 14 16 6 8 10 12 14 16

CAT 4 5 3 3 4 3 5 5 5 4 4 4 3 3 3 3 3 3

SPA 1 2 1 1 2 2 2 2 3 3 3 4 4 4 4 4 4 4

ILP Var 5 4 5 4 3 4 1 1 1 1 1 1 1 1 1 1 1 2

TDSCA 3 3 4 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5

TDCA 2 1 2 2 1 1 3 3 3 2 2 2 2 2 2 2 2 1

Fig. 10 The execution time of AIS with algorithms

Fig. 11 Bus traffic of PLP and RGE with algorithms

the number of ECUs, so the SPA algorithm obtains
the smallest Tbus busload. Regardless of the number of

SWCs, TDCA will achieve better performance in terms

of busload. These two methods effectively aggregated

eight original partitions, and the result is shown in
Fig.11(a). For the data set based on the RGE model, no

matter how many SWCs are deployed, the algorithms
will get an acceptable Tbus and the result is shown in

Fig.11(b).

2.ECU equalization: Fig.12(a), (b) and Table3 show

that no matter what the experimental data set is, the
standard deviation of TDCA is the smallest due to its

fitness function and penalty function. Therefore, TDCA
has the best performance in balancing ECU load.

3.Algorithm execution time: Fig.13 shows the exe-

cution time, regardless of the communication data un-
der the PLP model or the communication data under

Fig. 12 The Standard Deviation of ECU utilization

Fig. 13 Execution time of PLP and RGE with algorithms

the RGE model, the CAT algorithm, TDCA algorithm,

TDSCA algorithm and SPA algorithm is acceptable

when the number of SWCs is small. However, when

the number of SWCs increases, the TDSCA and SPA
algorithm’s execution time increases significantly, es-
pecially for TDSCA, while the TDCA algorithm and

CAT algorithm still have significant advantages in al-

gorithm execution time. Compared with other algo-

rithms, the TDCA algorithm also has advantages in

algorithm execution. In summary, compared with algo-

rithms that meet ECU load balancing, whether it is the
AIS data set or randomly generated experimental data
set, the TDCA algorithm has advantages in reducing

busload, ECU load balancing, and algorithm execution

time. With the number of ECUs and SWCs increasing,

the TDCA is more stable than others.

6.3 Comparison of algorithm without ECU
equalization

Since the clustering algorithm may not be the best, we

set up another experiment to compare and analyze the

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

12 Kunpeng Zhang1 et al.

Table 3 Performance of each Algorithm for PLP and RGE.

Data
SPA CAT TDSCA TDCA

Tbus Std Runtime Tbus Std Runtime Tbus Std Runtime Tbus Std Runtime

PLP100 4 4 1 2 3 3 3 2 4 1 1 2

PLP200 1 4 3 3 3 2 2 1 4 4 2 1

PLP300 3 3 3 4 4 5 2 2 4 1 1 1

PLP400 1 2 3 4 3 5 3 4 4 2 1 1

RGE100 1 3 1 2 1 3 3 4 4 4 2 2

RGE200 1 1 2 3 3 3 4 4 4 2 2 1

RGE300 1 3 1 2 2 3 4 4 4 3 1 2

RGE400 1 3 3 4 4 2 2 1 4 3 2 1

Fig. 14 Bus traffic with TDCA and ILP Non Var

TDCA algorithm and the ILP Non Var (integer linear

programming without ECU equalization). In the de-

ployment process of ILP Non Var, we only need to en-
sure that the utilization rate of each ECU after the al-

gorithm is executed less than 0.69. Compared with the

ILP Var algorithm, the ILP Non Var algorithm can-

not optimize the ECU load balance, so ILP Non Var
has poor performance in ECU load optimization shown

as Fig.15. This part uses ILP Non Var algorithm and
TDCA algorithms to deploy the 200 to 400 SWCs that

conform to the RGE model distribution, and the num-

ber of ECUs is set to 5. Fig.14, Fig.15, and Fig.16 re-

spectively show the bus communication, standard devi-

ation, and algorithm execution time of each algorithm.

Fig.14 shows that TDCA is better than ILP Non Var in

bus traffic. In terms of ECU equalization, the TDCA al-
gorithm’s advantages gradually weaken as the number

of SWCs increases, as shown in Fig.15. For the algo-

rithm execution time, as the number of SWC increases,

the gap between TDCA and ILP Non Var algorithm

execution time is getting smaller and smaller. Finally,

the algorithm execution time of the TDCA algorithm

is beyond ILP Non Var.

Fig. 15 The Standard Deviation of ECU utilization with
TDCA and ILP Non Var

Fig. 16 Algorithm execution time With TDCA and
ILP Non Var

7 Conclusion

This paper proposes a novel TDCA algorithm is suit-

able for the SWC deployment algorithm of AUTOSAR

architecture. TDCA introduced two improvement fac-

tors to improve the busload and ECU load balance of

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Title Suppressed Due to Excessive Length 13

the deployment plan, which software components can

be automatically deployed to ECUs in automotive elec-

tronic systems. This algorithm can reduce the bus traf-

fic while ensuring schedulability, and get a good per-

formance of ECUs equalization. Compared with CAT,

SPA, TDSCA and ILP algorithms, TDCA has an ex-

cellent performance in reducing bus traffic and ensur-

ing ECU equalization. The algorithm execution time

of TDCA is better than others. Under normal circum-

stances, the TDCA algorithm can meet the deployment

requirements of SWC to ECU under the AUTOSAR ar-

chitecture.

In actual situations, it is more complicated in the de-
ployment process of SWC to ECUs with a strict end-to-

end time limit for deployment. In the paper, the SWC
is deployed into the ECU without considering the fi-
nal time limit of the SWC. In this case, the SWC with

a strict end-to-end execution time limit can be con-

structed into a composite SWC before SWC deploy-

ment. In this way, regardless of the communication rate

of the two SWCs, the two SWCs will be deployed to

identical ECU. An ideal method is to consider the end-

to-end execution deadline of the SWC in analyzing the

SWC with greater relevance. In the follow-up research

work, the objective function will be optimized and ad-

justed according to this factor to achieve the desired

effect.

Acknowledgements This work was funded by the National
Natural Science Foundation of China(61872158, 62172186),
the National Key Research and Development Program of
China (2017-YFB0102503), Jilin Province Science and Tech-
nology Development Plan(Key Science and Technology Re-
search)Project(20210201072GX), and Jilin Province Science
and Technology Development Plan (International Coopera-
tion) Project(20190701019GH).

Compliance with ethical standards

Conflict of interest The authors declare that they
have no conflict of interest.

Ethical approval This article does not contain any
studies with human participants or animals performed

by any of the authors.

References

1. Jorge Martinez, Ignacio Sañudo, and Marko Bertogna.
End-to-end latency characterization of task communica-
tion models for automotive systems. Real-Time Systems,
56(3):315–347, 2020.

2. Anand Bhat, Soheil Samii, and Ragunathan Rajkumar.
Practical task allocation for software fault-tolerance and
its implementation in embedded automotive systems.
Real-Time Systems, 55(4):889–924, 2019.

3. Haibo Zeng and Marco Di Natale. Efficient implementa-
tion of autosar components with minimal memory usage.
In IEEE International Symposium on Industrial Embed-
ded Systems, 2012.

4. Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara
Tucci-Piergiovanni, and Sébastien Gerard. An optimiza-
tion approach for the synthesis of autosar architectures.
In 2013 IEEE 18th Conference on Emerging Technolo-
gies & Factory Automation (ETFA), pages 1–10. IEEE,
2013.

5. Wei Peng, Hong Li, Min Yao, and Zheng Sun. Deploy-
ment optimization for autosar system configuration. In
International Conference on Computer Engineering &
Technology, 2010.

6. Zheng Ran, Hua Yan, Huimin Zhang, and Yun Li.
Approximate optimal autosar software components de-
ploying approach for automotive e/e system. Interna-
tional Journal of Automotive Technology, 18(6):1109–
1119, 2017.

7. Daehyun Kum, Gwang Min Park, Seonghun Lee, and
Wooyoung Jung. Autosar migration from existing auto-
motive software. In Control, Automation and Systems,
2008. ICCAS 2008. International Conference on, 2008.

8. Gia Nghia Vo, Richard Lai, and Mohit Garg. Building
automotive software component within the autosar envi-
ronment - a case study. In International Conference on
Quality Software, 2009.

9. Rajeshwari Hegde, Geetishree Mishra, and K. S. Guru-
murthy. An insight into the hardware and software com-
plexity of ecus in vehicles. Communications in Computer
& Information Ence, 198:99–106, 2011.

10. Guojun Shen, Yanheng Liu, Geng Sun, Tingting Zheng,
Xu Zhou, and Aimin Wang. Suppressing sidelobe level of
the planar antenna array in wireless power transmission.
IEEE Access, pages 6958–6970, 2019.

11. Tingting Zheng, Yanheng Liu, Geng Sun, Lin Zhang,
Shuang Liang, Aimin Wang, and Xu Zhou. Iwormlf: Im-
proved invasive weed optimization with random muta-
tion and lévy flight for beam pattern optimizations of lin-
ear and circular antenna arrays. IEEE Access, 8:19460–
19478, 2020.

12. Yang Yang. Software synthesis for distributed embedded
systems. PhD thesis, UC Berkeley, 2012.

13. Ralf Niemann and Peter Marwedel. An algorithm for
hardware/software partitioning using mixed integer lin-
ear programming. Design Automation for Embedded Sys-
tems, 2(2):165–193, 1997.

14. Petru Eles, Zebo Peng, Krzysztof Kuchcinski, and Alexa
Doboli. System level hardware/software partitioning
based on simulated annealing and tabu search. Journal
of Design Automation for Embedded Systems, 2(1):5–32,
1997.

15. Alakananda Bhattacharya, Amit Konar, Swagatam Das,
Crina Grosan, and Ajith Abraham. Hardware software
partitioning problem in embedded system design using
particle swarm optimization algorithm. In International
Conference on Complex, 2008.

16. Ji Gang Wu, Thambipillai Srikanthan, and Guang Wei
Zou. New model and algorithm for hardware/software
partitioning. Journal of Computer Science & Technol-
ogy, 23(4):644–651, 2008.

17. Ming Zhang and Zonghua Gu. Optimization issues
in mapping autosar components to distributed multi-
threaded implementations. In IEEE International Sym-
posium on Rapid System Prototyping, 2011.

18. Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Do-
natella Sciuto, and Antonino Tumeo. Ant colony heuristic

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

14 Kunpeng Zhang1 et al.

for mapping and scheduling tasks and communications on
heterogeneous embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 29(6):911–924, 2010.

19. Eduardo HM Cruz, Matthias Diener, Laércio L Pilla,
and Philippe OA Navaux. An efficient algorithm for
communication-based task mapping. In 2015 23rd
Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pages 207–214.
IEEE, 2015.

20. Hamid Reza Faragardi, Bjorn Lisper, and Thomas Nolte.
Towards a communication-efficient mapping of autosar
runnables on multi-cores. In Emerging Technologies &
Factory Automation, 2013.

21. Hamid Reza Faragardi, Björn Lisper, Kristian Sand-
ström, and Thomas Nolte. An efficient scheduling of
autosar runnables to minimize communication cost in
multi-core systems. In 7th International Symposium on
Telecommunications (IST), 2014.

22. Shampa Chakraverty and Anil Kumar. A rule-based
availability-driven cosynthesis scheme. Design Automa-
tion for Embedded Systems, 11(2-3):193–222, 2007.

23. Yecheng Zhao and Haibo Zeng. The concept of maxi-
mal unschedulable deadline assignment for optimization
in fixed-priority scheduled real-time systems. Real-Time
Systems, 55(3):667–707, 2019.

24. Hélène Martorell, Jean-Charles Fabre, Matthieu Roy, and
Régis Valentin. Improving adaptiveness of autosar em-
bedded applications. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pages 384–390,
2014.

25. Brian Dougherty, Jules White, Jaiganesh Balasubrama-
nian, Chris Thompson, and Douglas C Schmidt. De-
ployment automation with blitz. In 2009 31st Interna-
tional Conference on Software Engineering-Companion
Volume, pages 271–274. IEEE, 2009.

26. Salah Eddine Saidi, Sylvain Cotard, Khaled Chaaban,
and Kevin Marteil. An ilp approach for mapping autosar
runnables on multi-core architectures. In Proceedings of
the 2015 Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, pages 1–8, 2015.

27. Kabsu Han, Daejin Park, and Jeonghun Cho. An fds
algorithm for synthesis of autosar architecture. Advanced
ence Letters, 23(3):1608–1612, 2017.

28. Jaeho Park and Byoung Wook Choi. Design and imple-
mentation procedure for an advanced driver assistance
system based on an open source autosar. Electronics,
8(9):1025, 2019.

29. Cristian Spirleanu and Eugen Diaconescu. Application
model in autosar software development for control sys-
tems design through fuzzy methods. In SIAR Interna-
tional Congress of Automotive and Transport Engineer-
ing: Science and Management of Automotive and Trans-
portation Engineering, pages 508–517. Springer, 2019.

30. K Senthilkumar and Ramesh Ramadoss. Optimized
scheduling of multicore ecu architecture with bio-security
can network using autosar. Future Generation Computer
Systems, 98:1–11, 2019.

31. Masoud Rabbani, Alireza Nikoubin, and Hamed
Farrokhi-Asl. Using modified metaheuristic algorithms
to solve a hazardous waste collection problem consider-
ing workload balancing and service time windows. Soft
Computing, pages 1–28, 2020.

32. Chung Laung Liu and James W Layland. Scheduling
algorithms for multiprogramming in a hard-real-time en-
vironment. Journal of the ACM (JACM), 20(1):46–61,
1973.

33. Anne Condon and Richard M Karp. Algorithms for graph
partitioning on the planted partition model. Random
Structures & Algorithms, 18(2):116–140, 2001.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

