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Abstract: The low frequency electromechanical oscillations (LFEOs) in electric power system are because of 

weaker inter-ties, uncertainties, various faults and disturbances. These LFEOs (0.2-3 Hz.) are less in magnitude 

and are responsible for lower power transfer, increased losses and also threaten the stability of power system. 

An adaptive interval type-2 fuzzy sliding mode controlled power system stabilizer (AIT2FSMC-PSS) is 

presented to neutralize the LFEOs and enhance stability under uncertainties and external disturbances. The 

AIT2FSMC is a hybridization of type-2 fuzzy logic system (T2FLS) with conventional SMC to lower the 

chattering effect, enhance the robustness of reaching phase and improve system’s performance. Here, T2FLS is 

used for estimating the unknown functions of SMC. A robust sliding surface is presented to keep the system in 

the desired plane and remain stable under disturbance conditions. A modified control law is proposed for 

selecting the control parameters and Lyapunov synthesis is used to make the error asymptotically converging to 

zero. The effectiveness of the AIT2FSMC-PSS is accessed in single and multimachine power systems subjected 

to various uncertainties and disturbances. Again, comparison of performance indices (PIs), Eigen values, 

damping ratios, oscillating frequencies, integral time absolute error (ITAE), figure of demerit (FD) and 

frequency domain plots like Bode, root locus and Nyquist plots are also analyzed to access the efficacy of the 

proposed stabilizer. The simulated responses, comparative study and frequency plots conform the supremacy of 

the proposed AIT2FSMC-PSS in suppressing the LFEOs with lesser settling characteristics, offer stable 

performance and assures transient stability of power system as compared to other stabilizers. 

 Keywords: Adaptive Interval type-2 fuzzy sliding mode control (AIT2FSMC), Low frequency 

electromechanical oscillations (LFEOs), PSS, MMPS, SMIB. 

1. Research Background 

Modern power systems are complex and extremely nonlinear in nature. They operate at increased stress 

and sometimes near their stability limits to ensure continuity of power supply. Disturbances such as faults, load 

perturbations, natural disasters etc. are responsible for the generation of LFEOs in the range of (0.2-3) Hz [1]. 

LFEOs are small in magnitude but sustain for long durations and results in degraded power transfer, loss of 

synchronism, subsequent blackouts and power outages [2]. LFEOs are classified into local and interarea mode 

of oscillations. Oscillations in local generators located in one geographical area are local oscillations (0.8-3) Hz. 

whereas, oscillations in generators located in different areas are called interarea mode oscillations (0.1-0.7) Hz. 

Among which, interarea oscillations should be handled more cautiously than local oscillations because it can 

lead to generation failure [3]-[4]. Stability of power system depend on the operating conditions. Out of different 

classes of stability, transient stability is at higher priority because it is related to maintaining synchronism 

between the generators under severe disturbance conditions. 

Conventionally, oscillation damping is achieved through fast acting high gain excitation systems. But, it 

produces negative damping torques in the power system [5]. In past decades, lead-lag based PSS are adopted to 

provide stabilizing signals to the exciter for damping the LFEOs. It has predefined parameters and provides 
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2 

 

good damping characteristics in a linearized model of power system. But, due to fixed parameters of PSS, its 

performance degrades under change in operating point which results in oscillatory instability [6]. Hence, to 

overcome the limitations of CPSS, several compositions of PSS like H-infinity [7], pole placement [8], LMI 

method [9], proportional integral derivative (PID) [10], and fractional order PID (FOPID) [11] has been 

proposed in literatures. For improved performance, various nature inspired optimization mentioned in the 

literatures [12]-[17] are used for optimizing the parameters of PSS.  

In addition to the existing control approaches, fuzzy logic control (FLC) has been extensively used for 

the design of PSS as reported in literatures [18]-[20]. Being a nonlinear control technique, FLC based PSS 

(FPSS) provide good oscillation damping performance to that of CPSS.  It is applicable to problems where 

mathematical model is not available. But, its performance gets degraded while handling nonlinearities and 

uncertainties. Hence, to overcome this limitation, adaptive control strategy based FLC is introduced [21]-[22]. 

But, it cannot offer the required oscillation damping characteristics under severe disturbances. Nowadays, a 

robust control technique called sliding mode control (SMC) was gaining popularity because of its simplest 

structure, superior disturbance elimination and insensitive to parameter variations [23]. But, it has its own 

limitations such as (i) it requires proper knowledge of system dynamics (ii) chattering phenomenon due to 

discontinuous control law. SMC performs efficiently under normal operating conditions. But its performance 

gets degraded under large and continuously varying disturbance conditions. To overcome the above said 

limitations, SMC is hybridized with FLC to ameliorate the system performance [24]. However, oscillations are 

still present under transient disturbance conditions. Hence, different higher order SMC is adopted in literature 

[25]-[28]. In this regard, an AFSMC based PSS without reaching phase is presented in [25] for damping out 

LFEOs under disturbance conditions. An indirect AFSMC-PSS is suggested by Saoudi et al. for minimizing 

oscillations in multimachine power system [26]. Again, an AFSMC-PSS is suggested in [27] for improving 

stability in SMIB and MMPS and also validated their approach in a real time simulator.  An AFSMC with PI 

surface is proposed in [28] to damp out oscillations and enhancing stability.  Although, the above said methods 

are based on type-1 FLC (T1FLC) which has limitations in dealing with large uncertainties and unexpected 

disturbances in the power system. Hence, an extension of T1FLC called type-2 FLC has been introduced. It has 

been applied in many real time applications, industrial control applications etc. T2FLC can easily handle the 

uncertainty factors more effectively because of its particular structure of its membership functions (MFs) [29]. 

Many applications of T2FLC for improvement of power system stability can be found in literature [30]-

[34]. Shokouhandeh and Jazaeri have applied a robust T2FLC based PSS for handling uncertainties due to 

loading and line parameters [30]. Sambariya et al. have implemented IT2FPSS enhancing stability in single and 

MMPS subjected to disturbances [31]. Sun et al. presented a differential evolution (DE) tuned T2FLC based 

PSS for stability improvement of power system [32]. A hybrid firefly swarm algorithm tuned IT2FOFPID-PSS 

is suggested in [33] for enhancing stability in both single and MMPS subjected to disturbances and uncertainties. 

Again, application of T2FLC based SMC can be found in [35]-[36]. Nechadi et al. proposed a T2AFSMC based 

PSS without reaching phase for damping oscillations of power system under disturbances [36]. 

Comparing the previously published papers, the following contributions are made and are presented as follows: 

1. An AIT2FSMC based PSS is presented for damping of LFEOs under various power system uncertainties 

like noise and external disturbances. 
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2. IT2FLC is used for estimating the unknown functions and a modified control law is presented to avoid 

chattering effect. Lyapunov stability criteria is used for assuring stability such that the error asymptotically 

converges to zero. 

3. Speed deviation  and accelerating power P are considered as input signals. The effectiveness and 

efficacy of AIT2FSMC-PSS is accessed in single and 2-area, 16-machine, 68 bus power system under 

uncertainties and disturbances. 

4. Comparison of PIs like settling time, overshoots, Eigen values, damping ratios, oscillating frequencies, 

ITAE, FD and frequency plots like Bode, root locus and Nyquist plots are provided to access the stability.  

5. The simulated responses, comparative study and frequency plots conform the supremacy of the proposed 

AIT2FSMC-PSS in minimizing LFEOs with lesser peak and settling characteristics and offer more stable 

performance and assures transient stability to that of AFSMC-PSS, FSMC-PSS, FPSS and CPSS. 

The paper is arranged as follows: the modelling of the power system is given in section-2. Introduction to 

AIT2FSMC is presented in section-3. Section-4 presents the simulations and the comparative analysis. Section-

6 gives the concluding remarks and future scope followed by references. 

2. Power System Modelling 

The stability analysis is performed through modelling of different power system components. The 

dynamics of various components are framed using algebraic equations. The dynamics of multimachine power 

system is characterized by an ith synchronous generator, exciter and other components. These equations are 

formulated by assuming fixed input mechanical power under disturbance conditions. The expressions 

representing the rotor dynamics of generator-i are given by [37]. 

i

i s

d

dt


                              (1) 

Where, , ,
i i s
   denote rotor angle, synchronous speed and base speed. 

The change in rotor angle of ith generator in terms of swing equation is given by:  
2

2

2
. mi ei

s

H d
T T

dt




                (2) 

Where, , ,
m e

H T T are called inertia, mechanical and electrical torques. The electrical torque of ith 

generator is calculated from the sub transient model. Hence, Eq. (2) can be rewritten as: 

   
 

 
 

 
 

 
 

 

1 2

2

qi lsi qi qidi lsi di di

mi i s qi qi di qi di di qi di
i s

di lsi di lsi qi lsi qi lsi

qi di qi di

X X X XX X X X
T D E I I E I Id

X X X X X X X X
dt H

X X I I

    
       
      

      
 
    

(3)                 

Where, ,di qiI I denote the stator currents in d and q-axis, 1 2,di qi  represent d and q-axis transient and 

sub-transient EMFs, , ,di di diX X X  and , ,qi qi qiX X X  represent synchronous, transient and sub-transient 

reactances in d and q-axis. 
lsi

X is the leakage reactance of armature.  

The expression of transient EMFs are as follows:  

   
 

  12

1qi di di

qi di di di di di lsi di qi fdi

doi di lsi

dE X X
E X X I X X I E E

dt T X X


                         
                                  (4) 

   
 

  22

1 qi qidi

di qi qi qi qi qi lsi qi di

qoi
qi lsi

X XdE
E X X I X X I E

dt T X X


                          

                                         (5) 
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Where, ,doi qoiT T  denote transient time constants in d and q-axis. ,di qiE E  represent transient voltage in d 

and q-axis, fdiE is the field voltage of d-axis. 

The expression for transient and sub-transient EMFs are as follows: 

 1

1

0

1di

di qi di lsi di

d i

d
E X X I

dt T


       

                                                                                                           (6) 

 2

2

0

1qi

qi di qi lsi qi

q

d
E X X I

dt T


       

                                                    (7) 

The expressions representing stator dynamics of generator-i are as follows: 

   
 

 
  1cos 0

di lsi di di

i i i qi di si qi di di

di lsi di lsi

X X X X
V E R I X I

X X X X
  

   
      

  
                                                                (8) 

   
 

 
  2sin 0

qi lsi qi qi

i i i di qi si di qi di

qi lsi qi lsi

X X X X
V E R I X I

X X X X
  

   
      

  
                                                                 (9) 

Where, ,
i si

V R denote terminal voltage and armature resistance of ith synchronous generator.  

The saturation function of exciter is given by: 

  s fdB E

E fd sS E A e                       (10) 

Where, ,
s s

A B are the saturation constants.  

The algebraic equations representing the dynamics of excitation system are as follows: 

1tri
tri ti

ri

dV
V V

dt T
                                                                                                                                              (11) 

1
ex fdiB Efdi

Ei fdi fdi ex ri

Ei

dE
K E E A e V

dt T
    
                                                                                                       (12) 

 1ri Ai Fi Ai Fi
Fi Ai refi tri fdi ri

Ai Fi Fi

dV K K K K
R K V V E V

dt T T T

 
     

 
                                                                        (13) 

1Fi
Fi fdi

Fi

dR
R E

dt T
                                                                                                                                          (14) 

Where, ,tri tiV V represent measured voltage state variable and terminal voltage. 

The expression of ith PSS is given as: 

w 1i 3i
PSSi PSSi

w 2i 4i

sT 1+ sT 1+ sT
V = K

1+ sT 1+ sT 1+ sT

   
   
   

         (15) 

Where, 1 2 3 4, , , ,w i i i iT T T T T denote washout and lead-lag time constants. 

3. Adaptive Interval Type-2 Fuzzy Sliding Mode Control (AIT2FSMC) 

3.1. Type-2 Fuzzy Logic Systems (T2FLS) 

T2FLS are the extension of T1FS. It was presented by Lotfi Zedeh in 1975 and then developed by Karnik 

and Mendel in 1999 [38]. It uses the concept of fuzzy sets for handling uncertainties, nonlinearities and 

unexpected disturbances. The T1FLS has a two dimensional MF representing crisp values [0,1] whereas T2FLS 

have a 3D membership function. A T2FS denoted by A is expressed as  0 , 1
A

x u  , x X  , 

 0,1xu J    which consisting of upper MF (UMF)  A
x  and lower MF (LMF)  A

x separated by a 

footprint of uncertainty (FOU) as shown in Fig. 1 (a).  When  , 1
A

x u  ,  0,1xu J    then, iy is called as 

an interval type-2 MF and also called IT2FSs.  
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The control diagram of T2FLC is given in Fig. 1 (b).  The functioning of each blocks are described as follows 

[33], [39]. 

1. Fuzzifier 

Fuzzifier converts crisp values (e1, e2….en)
T into IT2FS xA . A singleton type fuzzifier is adopted here.  

(a)   (b)   

Fig. 1. (a) Interval Type-2 fuzzy MF (b) Control diagram of an IT2FLS 

2. Rule Base 

The rule base of IT2FLS are similar to T1FLS and are formulated based on the user’s knowledge.  

Basically, the rth rules of IT2FLS are expressed as follows:  

Rj : If e1 is 1

r
F and e2  is 2

r
F then y is 

i
G :   r=1,…,P.                                                     (16) 

Where,
r

i
F ,

r
G are the input states, e1,e2 are the inputs whereas y is the output. P denotes the rules.  

3. Inference   

The inference engine in IT2FLS combines the rules to generate the output. Here, a product t-norm based 

inference engine is adopted and is given by:  

     ,r r r
F x f x f x                                           (17) 

Where,      
1 2

1 2r r
r

F F
f x x x   and      

1 2
1 2r r

r

F F
f x x x   . 

4. Type Reducer 

The function of type reducer is to reduce the type of T2FS to T1FS. Here, a centre of sets (COS) type 

reducer is adopted and is given by:  

 
   

 
1 1

cos

1 1

... .... ,
r N r r N r

N N
r r r

l r

r ry Y y Y f F x f F x

Y x f f y y y
    

   
 
                                       (18) 

The expression of two end points (yl) and (yr) are computed as follows: 

1 1

N N
r r r

l l l l

r r

y f y f
 

                          (19) 

1 1

N N
r r r

r r r r

r r

y f y f
 

                                                                                           (20) 

5. Defuzzification 

In defuzzification process, the crisp inputs are extracted from type reduced T1FS. This process computed 

by taking average of the end points. 

 
2


 l r

output

y y
y x                                           (21)  
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3.2. Sliding Mode Control based Power System Stabilizer (SMC-PSS) 

SMC is a most promising robust control approach that offer superior disturbance rejection characteristics 

under parametric variations and uncertainties. The execution of SMC involves two phases such as reaching and 

sliding phase. Out of these phases, the system is exposed to disturbances in reaching phase of SMC. Hence, 

exclusion of reaching phase enhances system stability [23]-[27].The purpose of SMC is to keep the error on the 

sliding surface by neglecting the consequences of reaching phase and chattering.  

The nonlinear model of power system under disturbance is expressed as [23]: 

   
1 2

2 , ,

x x

x f x t g x t u


  

           (22) 

Where,   n
x t R and   m

u t R are state and control vectors,  f x is a nonlinear function. Here, state 

vector,   2T
x P M R    ; where m e

P P P   , u R is the input signal. 

The tracking error (e) is the difference among trajectory state (x) and command  dx is given by: 

d
e x x                            (23) 

The sliding surface of SMC is expressed as follows: 

    1
2 1 2 10 0S x βx e x βx                                 (24) 

Where,  is a constant,    1 20 , 0x x are the states.  

Taking time derivative of Eq. (24) as          

    1
2 2 2 10 0S x βx e x βx                              (25) 

Using Eq. (25), the condition in Eq. (26) can be satisfied using the following theorems. 

0SS                                                                                                (26) 

Theorem-1: For the nonlinear system expressed in Eq. (20), a control law is selected by neglecting the effects of 

reaching phase. 

      1 1
2 2 2

0 ; 0
S

u g x f x x e x
  

       
 

 


                                                                                    (27)   

Proof: The Lyapunov function (V) is given by: 

1

2

T
V S S ,             (28) 

Where, , T
S S denote sliding surface and its transpose. 

Substituting Eq. (24)-(25) in Eq. (28) and taking time derivative we get: 

    
        

1

2 2 2 1

1

2 2 1

2

0 0

0 0

T
V S S

S x x e x x

S f x g x u x e x x

S

 

 









     
      

 
  

 

                                  (29) 

For stability, following criterion must be satisfied. 

0V                                                                                               (30) 

Remark-1: In the Control law expressed in Eq. (27), calculation of ρ is difficult and tedious process and cannot 

be computed directly. Again, calculation of  ,f x t and  ,g x t are also difficult. Therefore, a modified control 

law is presented in the next subsection to overcome the above limitations. 
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3.3. Adaptive Interval Type-2 Fuzzy Sliding Mode Power System Stabilizer 

AIT2FSMC is a modification of AFSMC by type-2 fuzzy systems. The details of AIT2FSMC-PSS can 

be found in [36]. In this paper, the concept of AIT2FSMC is used for designing a stabilizer for damping out 

LFEOs under disturbance conditions. The proposed AIT2FSMC-PSS can easily handle nonlinearities and 

uncertainties of power system and has the unique ability to estimate the nonlinear functions [36]. 

The nonlinear functions,  ,f x t and  ,g x t estimated using universal approximation theorem (UAT) is given 

by: 

   ˆ , T
f ff x x                                                                                                                                              (31)  

   ˆ , T
g gg x x                                                                                                                                              (32) 

Where, 1 2, ,...... m       , 1 2, ,...... m       represent vectors of parameter and fuzzy basis function (FBF). 

1

2

T T T
f r l fr fl                                                                                                                                              (33) 

1

2

T T T
g r l gr gl                                                                                                                       (34) 

Where, 1 2, ,.....,
T

m
l l l l       , 1 2, ,.....,

T
m

r r r r       , 1 2, ,.....,r r r mr      and 1 2, ,.....,l l l ml       . 

The approximation error   as:  

f gu                                                                                                                                                           (35) 

Where, 

    *T
f ff x x                         (36) 

    *T
g gg x x                                                                                                                                             (37) 

Where, *
f , *

g  are optimal approximation parameters. 

*
f f f                                                                                                                                                           (38) 

*
g g g                                                                                                                                                            (39) 

Theorem-2: To ensure stability and robustness, a modified control law is selected.  

        1 1
2 2 1 2

ˆˆ 0 0
S

u g x f x x e x x 


  
       

 
                                                                                  (40) 

The adaptation laws are given below: 

 1 1f fS x                                                                                                                                                 (41) 

 2 2g gS x                                                                                                                                                 (42) 

Proof:   

Selecting the Lyapunov function (V) as: 

1 2

1 1 1

2 2 2

T T T
f f g gV S S    

 
                                                                                                                       (43) 

Applying time derivative to Eq. (43), we get: 

   
1 2

2 2
1 2

1 1

2 2

1 1ˆˆ , ,

T T T
f f g g

T T T
g f f f g g

V S S

S
S x g x u f x

  

 
       

 

   
 

     
 

                                                  (44) 
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         

   

2
1 2

2
1 2

1 1ˆ ˆ, ,

1 1

T T T
f g f f g g

T T T T T
f g f f g g

S
S f x f x g x g x u

S
S x x u

 
         

 
 

        
 

     
 

        
 

    

Substituting the adaptation laws mentioned in Eq. (41)-Eq. (44), we get: 

2

T T
f f g g

S
V S    


                                                                                                                                 (45) 

The inequality conditions are given below: 

2
*1 1

2 2

T T
f f f f f                                                                                                                                        (46) 

2
*1 1

2 2

T T
g g g g g                                                                                                                                        (47) 

Now, the expression of V is given by: 

2 2
* *

2

1 1 1 1

2 2 2 2

T T
f f g g f g

S
V S      



 
       
 

                                                                                   (48) 

Assuming, 1 22

2
min , ,  



 
   

 
and

2 2
* *1 1

2 2
f g S      . 

V V                                                                                                                                                           (49) 

Multiplying both sides of Eq. (49) by 
at

e , we get: 

 at atd
Ve e

dt
                                                                                                                                                   (50) 

Integrating Eq. (50) in the range between 0 to t: 

   0 0 at
V t V e

     
 

 
 

                                                                                                                           (51) 

   0 0V t V



                                                                                                                                              (52) 

 0 V t                                                                                                                                 (53) 

 0V



                                                                                                                                                        (54) 

 
Fig. 2. Control process of the proposed AIT2FSMC-PSS. 
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Applying Barbalat’s Lemma, it is found that, sliding surface  S and derivative of sliding surface  S

are bounded and also small approximation error   ,
f and 

g are also bounded. The control process of the 

proposed AIT2FSMC-PSS is depicted in Fig. 2. 

The proof is completed. 

Remark-2: It is clear that, the proposed control scheme satisfies the stability criterion and the error 

asymptotically converges to zero.   

4. Simulation Results and Discussion 

In this section, the viability of the proposed AIT2FSMC-PSS is analysed under uncertainties and 

disturbances. The proposed scheme is implemented using MATLAB/ Simulink environment and verified in both 

single and multimachine power systems. Different small and transient disturbance scenarios are considered to 

analyse the performance of the proposed AIT2FSMC-PSS and the results are compared with AFSMC-PSS, 

SMC-PSS, FPSS and CPSS based on their PIs, Eigen values, damping ratios, oscillating frequencies, ITAE and 

FD.  The inputs to the proposed stabilizer are speed deviation   and accelerating power  P . Type-2 fuzzy 

triangular MFs shown in Fig. 3 (a)-(b) are considered for the stability analysis. 25 fuzzy rules with 05 linguistic 

variables like negative big (NEB), negative medium (NEM), zero (ZER), positive medium (POM) and positive 

big (POB) given in Table-1 are considered. 

Table-1 Type-2 fuzzy rule base 

 P  

NEB NEM ZER POM POB 

 

 

  

NEB POB POB ZER ZER POM 

NEM POM POB NEB POM NEB 

ZER POB POM NEB NEB ZER 

POM ZER POB ZER NEB ZER 

POB ZER ZER POB POM POM 

(a)

1.00.80.60-1.0 0.4-0.4-0.6-0.8

POM POBZERNEMNEB

0.0

0.8

0.6

0.4

0.2

1.0

D
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ee

 o
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M
e
m

b
e
rs

h
ip

Fuzzy sets of speed deviation
(b)

POM POBZERNEMNEB

0.0

0.8

0.6

0.4

0.2

1.0

D
eg

re
e 

of
 M

em
b

er
sh

ip

1.00.80.60-1.0 0.4-0.4-0.6-0.8

Fuzzy sets of accelerating power
 

Fig. 3 Membership functions of IT2FLC (a) speed deviation (b) accelerating power 

 Small signal stability analysis is executed on a linearized model of power system. The state equations 

are framed from the state space model of the linearized system and the corresponding Eigen values, damping 

ratios and oscillating frequencies are obtained. From the location of Eigen values in the S-plane, the stabilities of 

the power system can be analysed.  

The procedure for calculating Eigen values, damping ratios and oscillating frequencies are as follows: 

From the characteristics equation given in Eq. (55), the Eigen values  λ can be calculated as follows:  

 det 0sI A                                                                                                                                              (55) 

 det 0A I                                                                                                                        (56) 

 eig A                                                                                                                          (57) 
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The expression for calculating damping ratio   and oscillation frequency    is given by [23]: 

  , 1.2,........,
i i
δ = real λ i n                                                                                                                             (58) 

, 1.2,........,2 2

i i i i
ξ = -δ δ + β i n                                                                                                                     (59) 

, 1.2,........,i

i

βσ = i n
2π

                 (60) 

The expression for calculating ITAE and FD are given as follows [40]: 

  
1 0

.

simSD
tN

i
i

ITAE t dt


                                                                                              (61) 

      22 2

,

1

1
3000 3000

FDN

i i s i

SD i

FD MP US T
N 

                                                                                         (62) 

Where, NFD is the number of signals, MP, US, denote the under and overshoots, Ts is the settling time.  

4.1. Single Machine Infinite Bus (SMIB) Power System 

This sub-section, the assessment of stability is performed in SMIB system as given in Fig. 4. The SMIB 

system comprises of a 200 MVA synchronous generator feeding power to the infinite bus (rest power system) 

through 100 km line. As, the power system is an elementary one, it can give an idea of small signal stability 

under various uncertainties and disturbance conditions.   

To testify the efficacy and robustness of the proposed stabilizer and to determine its supremacy over 

aforesaid stabilizers, 04 different disturbance scenarios are considered.   The disturbances are selected that, they 

cover the uncertainties and disturbances of the power system.  The disturbance scenarios in SMIB power system 

are as follows: 

 Scenario-1: Normal loading with 5% increase in line parameters. 

 Scenario-2: 10% increase in loading and 10% increase in line parameters. 

 Scenario-3: 20% increase in loading and 15% increase in line parameters. 

 Scenario-4: A 3-φ fault in the transmission line. 

Adaptive Interval Type-2 

Fuzzy Sliding Mode PSS

 (AIT2FSMC-PSS)

Automatic 

Voltage 

Regulator

Governor

Exciter

Valve



VrefEfd0

Vt

Rest  of the 

power  system



Turbine

Δω 

ω 

ωref 
+

-

UPSS

+

-

+

Ra jXd , jXq

Synchronous 

Generator

Rt + jXt

Ps + jQs Px + jQx

Rt + jXt

Pt + jQt

RL + jXL

RL + jXL

C.B C.B

C.B C.B

C.B C.B

C.B C.B C.B

C.B

s sV θ X XV θt tV θ

Ze

Step-up 

Transformers

Transmission 

Lines
Infinite Bus

Δω 

ΔP 

Fig. 4. Structure of SMIB power system. 

With the increase in loading conditions, stability margin gets reduced and entire system is pushed 

towards instability. In this regard, a gradual increase in loading by 5%, 10% and 15% is applied at t=0 seconds 

for the first three disturbance scenarios. The impacts of variations in loading and transmission line parameters 

are observed in deviations in speeds of corresponding synchronous generators. In scenario-1, under normal 
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loading condition and 5% increase in line parameters, the speed deviations depicted in Fig. 5 (a) are maximum 

in case of CPSS and the oscillations go on reducing with the presented stabilizers. The proposed AIT2FSMC-

PSS show minimum peak and settling characteristics with maximum of Eigen values, damping ratios and ensure 

superior oscillating damping performance. Similarly, in scenario-2 and scenario-3, the loadings are increased by 

10% and 20% and the transmission line parameters are increased by 10% and 15%. As observed from the 

simulated responses depicted in Fig. 5 (b) and Fig. 5 (c), that the increase in loading and line parameters greatly 

impacts the stability of the power system. The system is highly oscillatory under these disturbance scenarios. 

Maximum oscillations are present in case of CPSS and also settling time is quite high than other stabilizers. The 

Eigen values and its corresponding damping ratios are very close to the origin of s-plane. The performance of 

CPSS under these disturbances are close to instability. Again, there are oscillations observed in case FPSS, 

FSMC-PSS and AFSMC-PSS.  But, the proposed AIT2FSMC-PSS easily manages the disturbances with 

minimum peak values and settling time than other stabilizers. Again, Eigen values and electromechanical modes 

damping ratios are found to be shifted well within the left half of s-plane which assures stability of the proposed 

stabilizer. In scenario-4, the most severe fault called 3φ fault is applied as a disturbance. The simulated response 

is given in Fig. 5 (d). While accessing stability of the proposed stabilizer under this severe fault disturbance, it is 

observed that the system is oscillatory. Especially, CPSS possesses maximum settling time and overshoot time 

than others. Again, while comparing the Eigen values, it is clear that the roots are closer to unstable region than 

other stabilizers. Whereas, the proposed stabilizer shows superior oscillation damping characteristics with 

minimum of settling time of 2.34 seconds and peak overshoot of 4.6 p.u. to that of other stabilizers. The 

comparison of Eigen values, damping ratios and oscillating frequencies of SMIB system under the 

aforementioned disturbance scenarios are presented in Table-2.  

 
                                             (a)                                                                                      (b) 

 
                                              (c)                                                                                     (d) 

Fig. 5. Simulation response of SMIB system under (a) scenario-1 (b) scenario-2 (c) scenario-3 (d) scenario-4 
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Table 2 Comparison of Eigen value for SMIB system 
 

Disturbances Methodology Eigen values Damping ratios 

Scenario-1 

IT2AFSMC-PSS -3.864 ± j9.365 0.758 
AFSMC-PSS -3.152 ± j6.325 0.568 

FSMC-PSS -1.221 ± j4.256 0.335 

FPSS -0.684 ± j3.256 0.221 

CPSS -0.225 ± j2.256 0.063 

Scenario-2 

IT2AFSMC-PSS -3.635 ± j7.985 0.535 
AFSMC-PSS -2.365 ± j5.745 0.498 

FSMC-PSS -1.745 ±j4.201 0.274 

FPSS -0.965 ±j3.246 0.154 

CPSS -0.365 ±2.632 0.067 

Scenario-3 

IT2AFSMC-PSS -3.689± j7.855 0.458 
AFSMC-PSS -2.722± j6.325 0.357 

FSMC-PSS -1.985± j5.214 0.254 

FPSS -1.652 ±j4.226 0.091 

CPSS -0.632 ±j1.568 0.021 

Scenario-4 

IT2AFSMC-PSS -3.932 ± j6.819 0.653 
AFSMC-PSS -3.013 ± j5.442 0.452 

FSMC-PSS -2.766 ± j4.128 0.376 

FPSS -2.119 ±j3.917 0.153 

CPSS -1.766 ±j1.766 0.118 
 

 

4.2. Multimachine Power System 

In this sub-section, the viability of the proposed stabilizer is implemented in a 16-machine, 68-bus power 

system to illustrate its efficacy in a multimachine power system. Fig. 6 shows the studied multimachine power 

system comprising 16-generators, 25 transformers and 83 transmission lines and are divided into five areas 

located at different geographical regions as shown in Fig. 2. The five areas of MMPS are New England Power 

System (NEPS) in area-5 comprising of generators (G1-G8), New York Power System (NYPS) in area-3 

comprising of generators (G9-G12) and three areas consisting of generators G13, G14 and G15. The five areas 

are linked with each other through tie-lines for assuring smooth interarea power flow. The generators in 

different areas will swing against each other and undergo local and interarea mode oscillations followed by a 

disturbance.  

3 18 17 24
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57
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G6

59

G1

G8

53 60
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G11

33

35
64

45
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Fig. 6. Structure of multimachine power system [38].
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Different disturbance scenarios are considered to testify the effectiveness of the proposed stabilizer are 

mentioned in the subsequent subsections. The simulation results in terms of speed deviations for different 

disturbances are shown in Fig. (7)-(10) respectively. A performance comparison is performed for the proposed 

AIT2FSMC-PSS (black colour bold line), AFSMC-PSS (red colour dash-dot line), FSMC-PSS (green colour 

dotted line), FPSS (brown colour dashed line) and CPSS (blue colour dotted line).  

4.2.1. Small Signal Stability Analysis 

In this sub-section, analysis of small signal stability of the proposed AIT2FSMC-PSS is performed for 

small disturbance. A 10% step increase in load demand is applied to bus-21 of area-5 at t=1 second and the  

corresponding speed deviation in generators G13, G14, G15, G12 and G5 located at deferent areas of MMPS 

representing local mode of oscillations are given in Fig. 7 (a)-(e) respectively. The simulation responses of 

different generators reveal that the proposed AIT2FSMC-PSS is efficient in damping LFEOs than that of 

AFSMC-PSS, FSMC-PSS, FPSS and CPSS. This establishes the effectiveness of the proposed AIT2FSMC-PSS 

in the improvement small signal stability with lesser oscillations in peak overshoot and settling time.  

(a) (b)  

 (c) (d)  

(e)  

Fig. 7. Speed deviation in (a) G13 of area-1 (b) G14 of area-2 (c) G15 of area-3 (d) G12 of area-4 (e) G5 of area-5.  
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4.2.2. Transient Stability Analysis 

In this sub-section, investigation of transient stability is performed to validate the efficacy of the 

proposed stabilizer in handling transient disturbances like 3-φ faults. Different disturbances considered for the 

analysis of transient stability are as follows: 

 Scenario-1: 3-φ fault of 100ms duration is applied at bus-36 of area-3. 

 Scenario-2: A 6-cycle 3-φ fault at bus-18 of area-5. 

 Scenario-3: A line outage between bus-30-31 of area-5. 

The simulations are performed for various speeds deviations of generators located at different 

geographical areas showing local and interarea oscillations are presented in Fig. (8)-(10) respectively. The 

stability analysis under these aforementioned fault disturbances are discussed below. 

In scenario-1, a 3-φ fault disturbance of 200ms duration is created at bus-36 of area-3 at t=1 seconds to 

analyse the stability performance. Under this severe fault disturbance, the system undergoes oscillations which 

is replicated through deviations in speeds of synchronous generators at different areas. To analyse the stabilities 

of the proposed AIT2FSMC-PSS, difference in speed deviations between generators of different areas such as  

G10-G13, G9-G12 and G15-G3 representing local and interarea mode oscillations are shown in Fig. 8 (a)-(c)  are 

considered. The simulated responses clearly shows the impact of 3-φ fault disturbance with maximum 

oscillations in the speed of the generators. The speed deviation using CPSS is highly oscillatory in all the three 

cases and the oscillations go on reducing in case of FPSS, FSMC-PSS and AFSMC-PSS. But, the proposed 

AITFSMC-PSS easily tackle the severe fault disturbance and show minimum oscillations in peak overshoot and 

settling time. The Eigen value analysis under this disturbance scenario is presented in Table-3. By verifying the 

Eigen values and damping ratios, it clearly seen that, the Eigen are values well within the left of the S-plane in 

case of the proposed AITFSMC-PSS. This conforms the stability of the proposed stabilizer.            

(a)  (b)  

(c)  

Fig. 8. Speed deviation in scenario-1 
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In scenario-2, a 6-cycle, 3-φ fault disturbance is created at bus-18 of area-5 at t=1 seconds. The resulting 

speed deviations among G10-G13, G3-G7 and G1-G14 representing local and interarea mode oscillations under the 

aforementioned fault disturbance are depicted in Fig. 9 (a)-(c) respectively. Under this fault disturbance, the 

speeds of the synchronous generators oscillates from its rated speed. But, due to the application of proposed 

stabilizers, these oscillations settle back to their nominal value of 1 p.u. More oscillations are seen in case of 

CPSS whereas comparatively lesser in case of FPSS, FSMC-PSS, and AFSMC-PSS. The proposed AITFSMC-

PSS shows minimum oscillations with minimum peak values and settling time to that of other approaches. 

Again, Eigen value analysis presented in Table-4 also supports the stability study. It is seen that the roots are 

more negative in case of AIT2FSMC-PSS than that of other stabilizers. This proves the efficacy and 

effectiveness of the proposed stabilizer handling transient disturbances and enhancing stability under a 3-φ fault 

disturbance.      

(a) (b)  

(c)   

Fig. 9. Speed deviation in scenario-2 

In scenario-3, the effectiveness of the proposed AIT2FSMC-PSS is studied for a line outage disturbance.  

In this scenario, the line connecting bus-30-31 of area-5 is tripped at t=1 seconds and reclosed after 3-cycles. 

The corresponding speed deviations between generators G11-G13, G10-G12 and G15-G3 representing local and 

interarea mode oscillations under the aforementioned fault disturbance are depicted in Fig. 10 (a)-(c) 

respectively. The impact of line outage disturbance is reflected on the simulation results, as it undergoes 

oscillations in speed deviations. The proposed approaches efficiently damps out the oscillations under this fault 

disturbance. The response of CPSS is quite oscillatory to that of FPSS, FSMC-PSS and AFSMC-PSS. The 

proposed AIT2FSMC-PSS exhibits efficient oscillation damping with minimum of peak values and settling 

characteristics. Again, Eigen value analysis in Table-5 supports the stability as that the roots are shifted towards 

left half of S-pale in case of proposed AIT2DSMC-PSS. This proves the robustness of the proposed approach in 

handling the line outage disturbance. 
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(a) (b)  
 

 (c)  

Fig. 10. Speed deviation in scenario-3 

Table-3 Comparison of Eigen value for scenario-1 

Modes λ ξ σ 

Local 

mode 

-3.256 ±j5.325 5.356 2.359 
-2.658± j3.895 7.689 1.958 

-1.635 ±j6.328 5.254 1.476 

-1.012 ±j7.256 6.457 0.957 

-0.785 ±1.257 11.35 0.663 

Interarea 

mode 

-1.856 ±j5.458 2.358 0.985 

-1.325± j2.359    18.22 0.689 

-0.635 ±j4.258 23.25 0.224 

Table-4 Comparison of Eigen value for scenario-2 

Modes λ ξ σ 

Local 

mode 

-3.256 ±j6.375 6.778 2.214 

-2.985± j4.235 6.325 2.023 

-2.487 ±j8.658 7.259 1.758 

-2.024 ±j6.325 4.265 1.359 

-1.568 ±j8.112 7.968 0.958 

Interarea 

mode 

-1.985 ±j6.358 3.258 0.884 

-1.487± j6.359 20.38 0.698 

-0.368 ±j8.859 17.89 0.227 

Table-5 Comparison of Eigen value for scenario-3 

Modes λ ξ σ 

Local 

mode 

-3.256 ± 2.658 5.365 2.689 

-2.968± j4.226 6.598 2.359 

-2.389 ±j7.635 4.238 1.987 

-1.895 ±j7.859 6.658 1.256 

-0.759 ±j6.325 10.86 0.658 

Interarea 

mode 

-1.764 ±j3.256 2.598 0.968 

-0.927± j2.598 23.27 0.538 

-0.685 ±j7.256 19.84 0.157 
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4.3. Uncertainty Analysis 

This section is presented to confirm the viability of the proposed AIT2FSMC-PSS in handling 

uncertainties of power system. Uncertainties are due to error in measurement, disturbances, parameter variations, 

noise etc. The AI2TFSMC-PSS has shown its effectiveness in tackling various small and transient disturbances. 

In order to verify the performance of AIT2FSMC-PSS to deal with uncertainties, a random noise is 

supplemented with the input signal  e t [23]. 

    randne t e t   
                                                            (50) 

Where, randn denotes random numbers,  represents uncertainty level and its value is taken as 0.05 [34]. 

The simulation results are presented in Fig. 11 (a)-(c) respectively. As observed, the proposed stabilizer 

can easily handles the noise present in the power system and it shows lesser peak and settling characteristics to 

the response of the stabilizer with noise. A comparison of ITAE values with and without noise is given in Table-

6. Both simulation and comparison proves the effectiveness of AIT2FSMC-PSS in handling uncertainties 

present in the power system.  

Table-6 Comparison of ITAE values 
 Scenario-1 Scenario-2 Scenario-3 

Without noise 0.38 0.47 0.45 

With noise 3.76 5.44 4.37 

(a) (b)  

(c)  

Fig. 11. Simulation response under uncertainties. 
 

4.4. Comparative Analysis 
 

This sub-section presents a quantitative performance analysis of the designed stabilizers. Different PIs 

like maximum peak overshoot (Mp), settling time (Ts), integral of time absolute error (ITAE) and figure of 

demerit (FD) are considered for evaluating the performance of the stabilizers. A comparison of PIs of responses 

of SMIB system under different disturbance scenarios are presented in Table-7. As analysed in the previous 

subsections, the proposed AIT2FSMC-PSS shows superior oscillation damping with minimum of its PIs under 

different disturbance scenarios. The results are bolded to show its superiority over others.  
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Table 7 Comparison of PIs of SMIB power system 
 

Scenarios Approaches Mp Ts 

Scenario-1 

AIT2FSMC-PSS 1.574×10-3 0.731 sec. 
AFSMC-PSS 4.891×10-3 2.421 sec. 

FSMC-PSS 8.179×10-3 3.555 sec. 

FPSS 9.862×10-3 5.445 sec. 

CPSS 12.64×10-3 7.921 sec. 

Scenario-2 

AIT2FSMC-PSS 2.862×10-3 1.211 sec. 

AFSMC-PSS 4.961×10-3 2.564 sec. 

FSMC-PSS 7.612×10-3 3.831 sec. 

FPSS 11.21×10-3 7.211 sec. 

CPSS 13.82×10-3 9.862 sec. 

Scenario-3 

AIT2FSMC-PSS 3.461×10-3 1.764 sec. 

AFSMC-PSS 6.892×10-3 3.142 sec. 

FSMC-PSS 7.874×10-3 4.545 sec. 

FPSS 11.72×10-3 7.412 sec. 

CPSS 16.76×10-3 10.63 sec. 

Scenario-4 

AIT2FSMC-PSS 4.661×10-3 2.344 sec. 

AFSMC-PSS 8.172×10-3 3.441 sec. 

FSMC-PSS 10.83×10-3 5.912 sec. 

FPSS 13.22×10-3 7.736 sec. 
CPSS 17.46×10-3 13.64 sec. 

Table- 8 Signal stability analysis in MMPS 

Stability analysis under 10% decrease in load demand 

Approaches 

Δω13  Δω14 Δω15 Δω12 Δω5 

Mp  

(×10-3) 

 Ts  

(sec.) 

Mp  

(×10-3) 

 Ts  

(sec.) 

Mp  

(×10-3) 

 Ts  

(sec.) 

Mp  

(×10-3) 

 Ts  

(sec.) 

Mp  

(×10-3) 

 Ts  

(sec.) 

AIT2FSMC-PSS 1.921 2.322 2.133 2.467 3.249 2.318 2.512 2.635 1.522 2.235 

AFSMC-PSS 6.742 3.163 3.699 3.092 5.228 3.114 5.471 4.342 3.363 3.061 

FSMC-PSS 10.64 5.098 8.036 4.476 8.384 4.226 7.141 5.871 8.524 3.924 

FPSS 11.83 7.589 9.451 6.354 9.239 5.823 11.72 7.402 9.661 6.028 

CPSS 14.54 9.814 10.71 9.808 10.06 7.553 13.59 9.509 12.72 10.31 
 

Table- 9 Transient stability analysis in MMPS 

Scenario-1: 3-φ fault of 100ms applied at bus-36 of area-3. 

Approaches 
Δω10 - Δω13 Δω9 – Δω12 Δω15 - Δω3 

Mp Ts Mp Ts Mp Ts 

AIT2FSMC-PSS 2.701×10-3 2.733 sec. 3.081×10-3 2.292 sec.     2.715×10-3 2.689 sec. 

AFSMC-PSS 5.288×10-3 3.687 sec. 6.611×10-3 3.217 sec. 4.647×10-3 3.506 sec. 

FSMC-PSS 8.575×10-3 5.408 sec. 9.676×10-3 4.785 sec. 8.312×10-3 4.844 sec. 

FPSS 12.11×10-3 7.204 sec. 11.15×10-3 7.553 sec. 8.019×10-3 7.206 sec. 

CPSS 13.04×10-3 14.75 sec. 13.03×10-3 14.44 sec. 12.32×10-3 10.84 sec. 

Scenario-2: A 6-cycle, 3-φ fault at bus-18 of area-5. 

Methodology 
Δω10 - Δω13 Δω3 - Δω7 Δω1 - Δω14 

Mp Ts Mp Ts Mp Ts 

AIT2FSMC-PSS 2.093×10-3 2.207 sec. 3.099×10-3 2.434 sec. 2.081×10-3 1.713 sec. 

AFSMC-PSS 5.063×10-3 2.828 sec. 4.849×10-3 3.832 sec. 4.288×10-3 2.814 sec. 

FSMC-PSS 8.457×10-3 3.973 sec. 8.109×10-3 4.596 sec. 6.346×10-3 4.642 sec. 

FPSS 10.33×10-3 5.429 sec. 9.871×10-3 6.858 sec. 9.172×10-3 5.673 sec. 

CPSS 14.83×10-3 8.941 sec. 14.22×10-3 8.252 sec. 14.63×10-3 8.211 sec. 

Scenario-3: A line outage between bus-30-31 of area-5. 

Methodology 
Δω11 - Δω13 Δω10 – Δω12 Δω15 - Δω3 

Mp Ts Mp Ts Mp Ts 

AIT2FSMC-PSS 1.697×10-3 2.502 sec. 1.428×10-3 2.423 sec. 1.219×10-3 2.584 sec. 

AFSMC-PSS 4.792×10-3 3.544 sec. 3.734×10-3 3.147 sec. 5.183×10-3 3.291 sec. 

FSMC-PSS 8.851×10-3 4.471 sec. 8.428×10-3 4.112 sec. 8.834×10-3 4.149 sec. 

FPSS 10.41×10-3 5.944 sec. 8.643×10-3 7.098 sec. 10.78×10-3 5.099 sec. 

CPSS 14.06×10-3 7.743 sec. 13.78×10-3 8.242 sec. 13.32×10-3 6.017 sec. 
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Again a comparison of PIs of MMPS is presented in Table-8 and Table-9 respectively. Small signal 

stability analysis is given in Table-8 whereas transient stability analysis is given in Table-9. Both small signal 

and transient stability analysis indicate the robust performance of the proposed AIT2FSMC-PSS with least 

values of its peak and settling characteristics.  

A comparison of ITAE values and FD values of the proposed stabilizers are presented in bar chats as 

presented in Fig. 12 (a)-(c) and Fig. 13 (a)-(c) respectively. The least values of these indices indicate better 

stability performance of the stabilizers.  The bar chats indicate that AIT2FSMC-PSS possesses minimum of 

ITAE and FD values to that of other stabilizers. It proves the improved stability performance of the proposed 

stabilizer.  

 (a) (b)                                 

(c)  

Fig. 12. ITAE values under (a) scenario-1 (b) scenario-2 (c) scenario-3. 

(a) (b)  

(c)  

Fig. 13. Figure of demerit values (a) scenario-1 (b) scenario-2 (c) scenario-3. 
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4.5. Frequency Domain Analysis  

This sub-section presents frequency stability analysis using Bode, root locus and Nyquist plot shown in 

Fig. 14 (a)-(d). From the linearized model, state matrices are derived and the above said plots are plotted. The 

root locus and its zoomed response are depicted in Fig. 14 (a)-(b). The plot clearly shows that the roots are more 

negative and located farther from the origin than that of other stabilizers. It shows the stable performance of the 

proposed stabilizer. Again, Bode plot in Fig. 14 (c) shows stable performance as both gain margin (GM) and 

phase margin (PM) are quite small in case on no control action which makes the system unstable. Whereas, GM 

and PM lies within infinity and -1800 in case of the proposed AIT2FSMC-PSS than others The large values of 

GM and PM guarantee performance without loss of stability. Again, Nyquist plot shown in Fig. 14 (d) show 

stable performance of the proposed AIT2FSMC-PSS as the critical point (-1+j0) is encircled in counter clock 

wise direction which guarantees the stability. 

(a)  (b)  

(c)  (d)  

Fig.  14. Stability performance by means of (a) Root Locus (b) zoomed root locus (c) Bode plot (d) Nyquist plot.                                 

5. Conclusion 

A robust AIT2FSMC-PSS is presented for damping LFEOs in both SMIB and MMPS subjected to 

various uncertainties involving noises and external disturbances. A robust sliding surface is implemented to 

keep the system stable under disturbance conditions. A modified control law is presented to avoid chattering 

phenomenon select the parameters of IT2FLS.  Lyapunov synthesis is adopted for the stability analysis and to 
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assure the error asymptotically converges to zero even under uncertainties and external disturbances. Different 

uncertainties and fault disturbance scenarios are considered to authorize the efficacy of the proposed stabilizer. 

A comparison of PIs, ITAE, FD values along with Eigen values, damping ratios and oscillating frequencies are 

presented to support the simulations. Again, frequency domain stability analysis is also performed to ensure the 

stabilities of the proposed stabilizers. Both simulation and comparative analysis suggest the dominance of the 

proposed stabilizer in damping LFEOs in the power system than that of other stabilizers under different 

disturbance scenarios.     

Appendix I 

Parameters of SMIB system:  

System Parameters: b
 =314 rad/sec; b

S =160 MVA; b
V =15 kV. 

Generator Parameters: d
X =1.7 p.u.; qX =1.64 p.u.; d

X  =0.245 p.u.; 0d
T  =5.9 sec.; H =2.37; D =0. 

Parameters for Excitation System: A
K =50; A

T =0.045 sec. 

Parameters for Transmission line: e
R =0.02 p.u.; e

X =0.5 p.u. 

Rated Parameters: P =140 MW; Q =91.2 MVAR; t
V =12.4 kV∠18.40; infV =15 kV∠00; =49.160. 

Parameters of CPSS: 

PSS
K =50, w

T =10s, 1T =1.99, 2T =0.025s, 3T =0.81, 4T =0.004. 

Declarations  

Ethical approval  

This article does not contain any studies with human participants or animals performed by any of the authors. 

Funding Details 

No funding is provided for the preparation of manuscript.  

Conflict of interest  

The authors declare that they have no conflict of interest. 

Informed consent  

The manuscript is submitted with the consent of all authors 

6. References 

[1] P. Kundur, Power system stability and control, McGraw-Hill, New York, 1994.  

[2] P. M. Anderson, A. A. Fouad, Power system control and stability, 2nd ed., Wiley, 2003. 

[3] S. R. Paital, P. K. Ray, A. Mohanty, Comprehensive review on enhancement of stability in multimachine 

power system with conventional and distributed generations, IET Renewable Power Generation, 12 (16),  

(2018) 1854-1863. 

[4] Z. A. Obaid, L. M. Cipcigan, M. T. Muhssin, Power system oscillations and control: Classifications and 

PSSs’ design methods: A review, Renewable and Sustainable Energy Reviews, 79 (2017) 839-849. 

[5] F. P. deMello, C. A. Concordia, Concept of synchronous machine stability as affected by excitation 

control, IEEE Trans PAS, 103 (1969) 316–29. 

[6] M. A. Hannan, N. N. Islam, A. Mohamed, A., et al., Artificial intelligent based damping controller 

optimization for the multi-machine power system: A review, IEEE Access, 6 (2018) 39574-39594. 

[7] S. Chen, O. P. Malik, H-infinity optimization-based power-system stabilizer design, IEE Proceedings-

Generation Transmission and Distribution, 142 (2) (1995) 179-184. 

[8] M Kashki, M. A. Abido, Y. L. Abdel-Magid, Pole placement approach for robust optimum design of PSS 

and TCSC-based stabilizers using reinforcement learning automata, Electrical Engineering 91(7) (2010) 

383-394. 

[9] H. Werner, P. Korba, T. C. Yang, Robust tuning of power system stabilizers using LMI-techniques, IEEE 

Transactions on Control Systems Technology 11(1) (2003) 147-152. 



22 

 

[10] P. K. Ray, S. R. Paital, A. Mohanty, T. K. Panigrahi, M. Kumar, H. Dubey, Swarm and bacterial foraging 

based optimal power system stabilizer for stability improvement, In IEEE Region 10 Conference 

(TENCON), 2016, pp. 1916-1920. 

[11] L. Chaib, A. Choucha, S. Arif, Optimal design and tuning of novel fractional order PID power system 

stabilizer using a new metaheuristic Bat algorithm, Ain Shams Engineering Journal  8(2) (2017) 113-125. 

[12] P.K. Ray, S.R. Paital, A. Mohanty, F. Y. Eddy, A. Krishnan, H. B. Gooi, and G. A. J. Amaratunga, 2018, 

May. Firefly algorithm scaled fractional order fuzzy PID based PSS for transient stability improvement. 

In 2018 19th International Carpathian Control Conference (ICCC) (pp. 428-433). IEEE. 

[13] H. Shayeghi, H. A. Shayanfar, A. Safari, R. Aghmasheh, A robust PSSs design using PSO in a multi-

machine environment, Energy Conversion and Management  51(4) (2010) 696-702. 

[14] D. Chitara, K. R. Niazi, A. Swarnkar, N. Gupta, Cuckoo Search Optimization Algorithm for Designing of 

a Multimachine Power System Stabilizer, IEEE Transactions on Industry Applications 54, (4) (2018) 

3056-3065. 

[15] E. S. Ali, Optimization of power system stabilizers using BAT search algorithm, International Journal of 

Electrical Power & Energy Systems 61 (2014) 683-690. 

[16] S. M. Abd-Elazim, E. S. Ali, A hybrid particle swarm optimization and bacterial foraging for optimal 

power system stabilizers design, International Journal of Electrical Power & Energy Systems 46 (2016) 

334-341. 

[17] M. Singh, R. N. Patel, D. D. Neema, Robust tuning of excitation controller for stability enhancement 

using multi-objective metaheuristic Firefly algorithm, Swarm and evolutionary computation 44 (2019) 

136-147. 

[18] A. Hariri, O. P. Malik, A fuzzy logic based power system stabilizer with learning ability, IEEE 

Transactions on Energy Conversion 11(4) (1996) 721-727. 

[19] D. K. Sambariya, R. Gupta, R. Prasad, Design of optimal input–output scaling factors based fuzzy PSS 

using bat algorithm, Engineering Science and Technology, an International Journal 19(2) (2016) 991-

1002. 

[20] S. R. Paital, P. K. Ray, A. Mohanty, November. Firefly-swarm optimized fuzzy adaptive PSS in power 

system for transient stability enhancement, In IEEE Progress in Electromagnetics Research Symposium-

Fall (PIERS-FALL), 2017, pp. 1969-1976. 

[21] T. T. Lie, A. M. Sharaf, An adaptive fuzzy logic power system stabilizer, Electric power systems 

research 38(1) (1996) 75-81. 

[22] T. Hussein, M. S. Saad, A. L. Elshafei, A. Bahgat, Damping inter-area modes of oscillation using an 

adaptive fuzzy power system stabilizer, Electr Pow Syst Res. 80 (2010) 1428–36. 

[23] S. R. Paital, P. K. Ray, S. R. Mohanty, S.R. and A. Mohanty, 2021. An adaptive fractional fuzzy sliding 

mode controlled PSS for transient stability improvement under different system uncertainties. IET Smart 

Grid, 4(1), pp.61-75. 

[24] S. R. Paital, P. K. Ray, A. Mohanty and G. Panda, 2021, March. Neuro-Fuzzy Sliding Mode Control 

based Wide Area Power System Stabilizer For Transient Stability Improvement. In 2020 3rd 

International Conference on Energy, Power and Environment: Towards Clean Energy Technologies (pp. 

1-6). IEEE. 

[25] E. Nechadi, M. N. Harmas, A. Hamzaoui, N. Essounbouli, A new robust adaptive fuzzy sliding mode 

power system stabilizer, International Journal of Electrical Power & Energy Systems, 42(1) (2012) 1-7. 

[26] K. Saoudi, M. N. Harmas, Enhanced design of an indirect adaptive fuzzy sliding mode power system 

stabilizer for multi-machine power systems, International Journal of Electrical Power & Energy Systems 

54 (2014) 425-431. 

[27] P. K. Ray, S. R. Paital, A. Mohanty, F. Y. Eddy, H. B. Gooi, A robust power system stabilizer for 

enhancement of stability in power system using adaptive fuzzy sliding mode control, Applied Soft 

Computing 73 (2018) 471-481. 

[28] M. Farahani, S. Ganjefar, Intelligent power system stabilizer design using adaptive fuzzy sliding mode 

controller, Neurocomputing 226 (2017) 135-144. 

[29] O. Castillo, P. Melin, A review on the design and optimization of interval type-2 fuzzy controllers, 

Applied Soft Computing 12(4) (2012) 1267-1278. 

[30] H. Shokouhandeh, M. Jazaeri, An enhanced and auto‐tuned power system stabilizer based on optimized 
interval type‐2 fuzzy PID scheme, International Transactions on Electrical Energy Systems 28(1) (2018) 

2469. 

[31] D. K. Sambariya, R. Prasad, Design and small signal stability enhancement of power system using 

interval type-2 fuzzy PSS, Journal of Intelligent & Fuzzy Systems 30(1) (2016) 597-612. 



23 

 

[32] Z. Sun, N. Wang, D. Srinivasan, Y. Bi, Optimal tuning of type-2 fuzzy logic power system stabilizer 

based on differential evolution algorithm, International Journal of Electrical Power & Energy Systems  62 

(2014) 19-28. 

[33] P. K. Ray, S. R. Paital, A. Mohanty, Y. E. Foo, A. Krishnan, H. B. Gooi, G. A. Amaratunga, A hybrid 

firefly-swarm optimized fractional order interval type-2 fuzzy PID-PSS for transient stability 

improvement, IEEE Transactions on Industry Applications 55(6) (2019) 6486-6498. 

[34] F. M. Adjeroud, F. Djahli, A. Mayouf, T.Devers, A coordinated genetic based type-2 fuzzy stabilizer for 

conventional and superconducting generators, Electric Power Systems Research 129 (2015) 51-61. 

[35] T. M. R. Akbarzadeh, S. A. Hosseini, M. B. Naghibi-Sistani, Stable indirect adaptive interval type-2 

fuzzy sliding-based control and synchronization of two different chaotic systems, Applied Soft 

Computing 55 (2017) 576-587. 

[36] E. Nechadi, M. Harmas, Multi-machine power system stabilizer using type-2 adaptive fuzzy sliding mode 

controller, Eur J Adv Eng Technology 2(8) (2015) 1-8. 

[37] R. Devarapalli, B. Bhattacharyya, N. K. Sinha and B. Dey, 2021. Amended GWO approach based multi-

machine power system stability enhancement. ISA transactions, 109, pp.152-174. 

[38] J. M. Mendel, Type-2 fuzzy sets and systems: An overview, IEEE Comput. Intell. Mag. 2(1) (2007) 20–
29. 

[39] S. R. Paital, P. K. Ray and S. R. Mohanty, 2021. A robust dual interval type-2 fuzzy lead-lag based 

UPFC for stability enhancement using Harris Hawks Optimization. ISA transactions. 

[40] Y. Hashemi, H. Shayeghi, M. Moradzadeh, Design of dual-dimensional controller based on multi-

objective gravitational search optimization algorithm for amelioration of impact of oscillation in power 

generated by large-scale wind farms, Applied Soft Computing 53 (2017) 236-261. 

 


