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Abstract
This paper aims to assess and deal with the challenges experienced by medical professionals caring for infectious diseases. In
Pakistan, public health is still a serious concern and the main contributor to morbidity and mortality is infectious diseases. The
major issue is a resemblance in the clinical symptoms of infectious diseases such as tuberculosis, hepatitis, COVID-19, dengue,
and malaria. Early detection of infectious disease is crucial in order to start treatment with counseling and medication. This
can only be done if several infections with similar clinical traits can be diagnosed depending on several criteria, including the
availability of various kits, the ability to carry out diagnostic procedures, money, and technical staff. But woefully Pakistan’s
economy is badly battered due to several circumstances. Therefore, we are unable to provide patients with enough diagnostic
testing kits and broadly accessible therapy choices, which makes diagnosis more difficult and create hesitancy with fuzziness
and randomness. For this purpose, we introduced the new concept of the complex probabilistic hesitant fuzzy N-soft set.
We defined its fundamental operations (like restricted and extended union, restricted and extended intersection, weak, top
and bottom weak complements, as well as soft max-AND or soft min-OR) with examples. We also discussed their many
properties with their proofs and theorems. Furthermore, we developed the algorithms for decision-making where doctors
use the complex probabilistic hesitant fuzzy N-soft information to identify a particular disease. Furthermore, we explained
numerical illustration of two case studies. Moreover, a sensitive and comparative analysis is discussed. In the last, we conclude
the whole study.

Keywords Complex probabilistic hesitant fuzzy N-soft set · Operations · Properties · Algorithms · Applications for
decision-making · comparative analysis

1 Introduction

Decision-making plays a crucial role in our unrealistic world
environment. In this enterprising environment, our motive is
to figure out the best alternative for any objective or desire
from the multifold criteria. Nonetheless, picking out only
the prime alternative does not sort out our problem, but the
appropriate ranking of all accessible choices is required to
be completed to comprehend their classification and nature,
so we go ahead with further inspection. The use of decision-
making techniques is helpful for those who have to make
decisions while keeping both favorable and unfavorable cir-
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cumstances in mind. But in many real-world circumstances,
it might be difficult for decision-makers to evaluate the alter-
natives due to various types of uncertainties or ambiguity in
data. This is a result of incomplete knowledge or errors made
by humans when processing data in our daily lives.

In this real world, experts in a variety of sectors, including
economic analysis, social sciences, medicine, data sciences,
artificial intelligence, physical sciences, natural sciences,
environmental sciences, control theory, and engineering,
are increasingly understanding the constraints of precise
research. Research in these areas is extremely important
because we know that the real world is rife with ambiguity,
vagueness, and uncertainty. Such issues require the appli-
cation of mathematical concepts based on uncertainty and
imprecision. These days, the procedure of decision-making
with multiple criteria is on the rise and usually involves the
three steps below.
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• Select the appropriate scale to classify the objects you
are provided with.

• Assemble the data using the appropriate method to deter-
mine each object’s score value.

• To choose the best items, rank the available options.

Due to the significant amount of uncertainty existing in
the information, especially when the data exists in crisp
form, the decision-making process is becoming more and
more complicated. Crisp refers to dichotomous, yes-or-no
types instead of more-or-less types. For example, a state-
ment can only be true or false in traditional logic, with
nothing in-between. Zadeh (1965) investigated fuzzy the-
ory to overcome these constraints. It is intended to represent
the deterministic uncertainty for which he developed the
concept of membership function. Making decisions is signif-
icantly assisted by fuzzy theory. But sometimes people had
a difficult time handling group decision-making issues when
they had to choose amongmany possible membership values
for an element in the set. Consider the following scenario:
Two experts are debating whether x belongs in category A,
and one of them wants to assign a score of 0.6 while the
other wants to give a score of 0.7. As a result, the range of
possible values has some degree of uncertainty. In order to
overcome these restrictions, Torra presented a hesitant fuzzy
set to deal with hesitant situations (Torra 2010). In this case,
he developed the membership function as a set of possible
membership values, namely h(x), where h(x) is a finite subset
of [0, 1]. With time, hesitant fuzzy sets have gained popu-
larity and have been applied to a variety of tasks, including
medical diagnosis, information retrieval, cluster analysis, and
decision-making issues which play a crucial role in decision-
making. Researchers in Zhu et al. (2012) presented themodel
of dual hesitant fuzzy soft set to group forecasting. They used
the pharmaceutical company as an example, where the board
of directors had to determine the priorities for future invest-
ments in the subsidiaries upon net income, a wind power
plant site selection algorithms based on hesitancy in Ashraf
et al. (2022a, b), etc.

But in many situations in real life during taking decisions,
people faced a combination of deterministic and random
ones. For instance,weather patterns are both partially random
and partially forecastable. To deal with these kinds of cir-
cumstances, Meghdadi Meghdadi and Akbarzadeh-T (2001)
introduced the concept of probabilistic fuzzy logic. In appli-
cations including power systems (Pidre et al. 2003), robotic
control systems (Valavanis and Saridis 1991), fog-haze factor
Assessment problem (Batool et al. 2020), signal processing
(Deshuang et al. 1996), drug selection to treat COVID-19
(Ashraf et al. 2022c), control systems (Liu and Li 2005) and
in decision-making (Khan et al. 2020; Ashraf et al. 2022d;
Batool et al. 2021), probabilisticmodeling is a crucial tool for
dealing with random uncertainties. Many scholars work with

other hybridmodels using probabilistic fuzzy set such asHan
et al. (2022); Zhu et al. (2023); Han and Zhan (2023) which
plays a very significant role in solving real-life problems. It
has been determined from the aforementioned theories that
they only have the ability to address vagueness and uncer-
tainty that exist in data while evaluating the decision-making
issues under the fuzzy set and its generalizations. These are
unable to adequately depict the variations in data at a specific
point in time. A complex fuzzy set was introduced by Ramot
to solve these constraints (Ramot et al. 2002). Unlike a con-
ventional fuzzy membership function, this range extends to
the complex plane’s unit circle rather than being constrained
to the range [0, 1]. The Complex Fuzzy Set drew researchers’
attention to itself, and researchers developed many theories
related to the complex fuzzy set. For instance, Zhang et al.
(2009) on its operation and equalities, Ullah et al. (2020)
on some distance measures of complex Pythagorean fuzzy
sets and their applications in pattern recognition, Alkouri and
Salleh (2012) on complex fuzzy computing to time series
prediction and many more.

According toMolodtsov, one major issue with these theo-
ries is their inadequate use of parameterizations tools, such as
the individual’s ability to determine their level ofmembership
based on the information they receive, making them suscep-
tible to subjective perspectives. Furthermore, it is important
to consider all the features of a situation together. In 1999,
Molodtsov (1999) created a soft set computing approach to
work around these constraints. The soft set theory has the
advantage of having problems that take into account several
attributes. It has excellent potential to solve issues and is
extremely important in many industries (Feng et al. 2016;
Feng and Li 2013). Researchers enhanced and developed the
soft set theory. Babitha presented the appearance of a fuzzy
soft set and described its relations and functions (Babitha
and Sunil 2010). Many researchers applied soft set theory
to decision-making problems (Roy and Maji 2007; Alcantud
2016; Atagün et al. 2018) rule mining (Herawan and Deris
2011), and business (Xu et al. 2014). The semantics of soft
sets are nowwell studiedwith the help of the article (Yang and
Yao 2020). There are multifold hybrid extensions presented
by the investigators. But in reality, non-binary evaluations
are common in many contexts in daily life, including (Alcan-
tud and Laruelle 2014) who discuss ternary voting situations
in a social choice environment. Rating or ranking systems
frequently use non-binary evaluations. Real-world examples
demonstrate how ratings may take the form of a star rating,
such as “five stars,” “four stars,” “three stars,” “two stars,”
or “one star.” Therefore, Fatimah et al. (2018) expanded the
soft set model and presented the idea of the N-soft set and
discussed the great importance of ordered grades in practical
situations. They created decision-making processes for the
N-soft set as well. The semantics of N-soft sets are now well
studiedwith the help of the article (Alcantud 2022). Thework
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on N-soft set theory by Akram et al. (2018a) is remarkable.
The theory of N-soft set play an interesting and advantageous
role therefore many scholars work with this model such as
hesitant fuzzy N-soft set (Akram et al. 2019a), complex Fer-
matean fuzzy N-soft sets (Akram et al. 2022), reduction of
N-soft sets (Akram et al. 2021a), complex Pythagorean fuzzy
N-soft sets (Akram et al. 2021b) and belief interval valuedN-
soft sets (Ali et al. 2021) and complex spherical fuzzy N-soft
sets (Akram et al. 2021c).

This article aims to broaden the applicability of N-soft
set theory where grades yield a parameterized interpretation
of alternatives of the universe and most of the time people
face difficulty in decision making with the combination of
fuzziness, hesitancy, and randomness of uncertain data with
a parameterized family of subsets and grades of alternatives
of the universe. For example, doctors face many difficulties
in dealing with infectious diseases such as lower respira-
tory infections, heart disease, COVID-19, TB, malaria, and
hepatitis, which are included in the top 10 diseases and the
leading cause of death globally (Top 10 diseases globally
(xxxx)). Because these diseases have common symptoms
or clinical characteristics, which create fuzziness, hesitancy,
and randomness, it makes early identification difficult, and
such complex combinations not only make diagnosis more
difficult but also place a double load on the country’s already
frail healthcare system. This is only achievable if there are
sufficient diagnostic testing kits and widely available treat-
ment options for patients. But unfortunately, Pakistan is an
underdeveloped country and in 2020 COVID-19 created a
negative impact on its economy. He was trying to stabilize
its economymeanwhile floods engulfed Pakistan. The imme-
diate effects of floods include loss of life, property damage,
agricultural devastation, animal loss, infrastructure facility
failure, and deteriorating health due to waterborne infections
which increase the rate of infectious diseases. So, at present
we cannot afford sufficient diagnostic testing kits and widely
available treatment options for patients. Therefore, we devel-
oped the novel model of complex probabilistic hesitant fuzzy
N-soft set through which doctors can accurately collect the
data from the patient in complex probabilistic hesitant fuzzy
information where the amplitude term represents to what
extent the symptom belongs to the respective disease, the
phase term is typically related to the periodicity or duration
of the appearance of the disease or symptoms, the grading
indicates the severity, and probability indicates the possibil-
ity of the occurrence of the disease. However, hesitant fuzzy
approximations increase the flexibility and richness of the
decision-maker’s analysis, thereby increasing the depend-
ability of the decisions that rely on them. We also presented
the algorithm to run this information bywhich doctors get the
result in a descending order series, which represents the hier-
archy of the diseases. This enables the doctors to identify the
particular disease and prevent the citizens from contracting

infectious diseases, which leads the nation toward develop-
ment. It is obvious that the modelization by existing theories
is insufficient to take these circumstances into account.

The rest of the paper is organized as follows. Preliminar-
ies are covered in Sect. 2, where we carefully review a few
fundamental definitions to help us explain more easily the
following sections. The notion of a complex probabilistic
hesitant fuzzy N-soft set is introduced in Sect. 3. We dis-
cussed various fundamental operations, including extended
and restricted intersection, extended and restricted union,
weak complement, top and bottom weak complement, and
soft max-AND and soft min-OR operators. Additionally,
we confirm their essential laws. Furthermore, the numeri-
cal examples have been resolved to demonstrate the validity
and superiority of the research work. In Sect. 5, two dis-
tinct decision-making algorithms were established for the
use of complex probabilistic hesitant fuzzy information in the
presence of multifold attributes. Section6 presents applica-
tions and a case study to help readers make the best choices.
In Sect. 7, we discussed the comparative analysis with the
existing studies, while we provided the paper’s conclusion in
Sect. 8.

2 Preliminaries

The definitions we used to establish themethods in this paper
are briefly reviewed in this section.

Definition 2.1 If Z is a universal set, then ˜A is a fuzzy set
defined on Z as:

˜A =
{

〈zi , μ̂A
(zi )〉

∣

∣zi ∈ Z
}

where μ
̂A
(zi ) is a membership degree of zi in ̂A and μ

̂A
:

Z → [0, 1]. If μ
̂A
(zi ) = 0, is considered to be non- mem-

bership of zi . If μ
̂A
(zi ) = 1, is considered to be the entire

membership of zi . If μ
̂A
(zi ) value among 0 and 1, is consid-

ered to be partial membership of zi (Zadeh 1965).

Definition 2.2 If Z is a universal set, then ̂B is a hesitant
fuzzy set in terms of the h function, which returns a subset
of [0,1] when it applies to Z which is denoted as:

̂B =
{〈

zi , h
̂B
(zi )

〉

∣

∣zi ∈ Z
}

where h
̂B
(zi ) is the collection of distinct finite elements in

[0,1], represents the possible membership degrees of the ele-
ment zi ∈ Z to the set ̂B Torra (2010).
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Definition 2.3 IfZ is a universal set, then̂C is a probabilistic
hesitant fuzzy set defined as:

̂C =
{〈

zi , h
̂C

(

μm(zi )
∣

∣P
̂Cm

)

〉

∣

∣zi ∈ Z
}

where h
̂C

(

μm(zi )|P̂Cm

)

is the collection of distinct finite ele-
ments (μm(zi )

∣

∣P
̂Cm

) representing thehesitant fuzzy informa-

tion along probabilities to the set ̂C, m = 1, 2, 3, ..., l where
l is the number of possible elements in h

̂C

(

μm(zi )|P̂Cm

)

,

P
̂Cm

∈ [0, 1] is the hesitant probability of zi and
∑

m
P

̂Cm
= 1

Xu and Zhou (2017).

Definition 2.4 If Z is a universal set, then ̂D is a complex
fuzzy set defined as:

̂D =
{〈

zi , r
̂D
(zi )e

2π iω
̂D
(zi )

〉

∣

∣zi ∈ Z
}

where r
̂D
(zi )e2π iω

̂D
(zi ) is a complex valued membership

degree of zi in ̂D and it might be given any value that is con-
tained in the complex plane unit circle. and r

̂D
(zi ) ∈ [0, 1],

ω
̂D
(zi ) ∈ (0, 1] and i = √−1 Ramot et al. (2002).

Definition 2.5 If Z is a universal set, then ̂E is a complex
probabilistic hesitant fuzzy set (CPHFS) defined as:

̂E =
{〈

zi , h
̂E

(

r
̂Em

(zi )e
2π iω

̂Em
(zi )

∣

∣

∣P̂
Em

)〉

∣

∣

∣zi ∈ Z
}

where h
̂E

(

r
̂Em

(zi )e
2π iω

̂Em
(zi )

∣

∣P̂
Em

)

is the collection of finite

complex elements denoting the complex hesitant fuzzy infor-
mation along probabilities to the set ̂E, r

̂Em
(zi ) ∈ [0, 1] and

ω
̂Em

(zi ) ∈ [0, 1], m = 1, 2, ..., l where l is the number of

possible elements in h
̂E

(

r
̂Em

(zi )e
2π iω

̂Em
(zi )

∣

∣P̂
Em

)

, P̂
Em

∈
[0, 1] is the complexhesitant probability of r

̂Em
(zi )e

2π iω
̂Em

(zi )

and
∑

m
P̂

Em
= 1.

Definition 2.6 Let Z is a universal set and H be the set of
attributes, for any non-empty set B ⊆ H . A pair (̂F,B) is
called soft set overZ if there exists amappinĝF : B → P(Z)

where P(Z) indicates the power set of Z .
Thus, the soft set is a parametric family of the subsets of

universal set. For each b j ∈ P , we can denote ̂F(b j ) as a
subset of universal set Z . We can also consider ̂F(b j ) as a
mappinĝF(b j ) : Z → {0, 1} and then̂F(b j )(zi ) = 1 equiv-
alent to zi ∈ ̂F(b j ), otherwise ̂F(b j )(zi ) = 0. Molodtsov
considered many examples in Molodtsov (1999) to illustrate
the soft set.

Definition 2.7 Let Z is a universal set and H be the set of
attributes, for any non-empty set B ⊆ H . A pair (̂G,B) is

called fuzzy soft set over Z if there exists a mapping ̂G :
B → I(Z) where I(Z) indicates the fuzzy power set of
Z(all possible fuzzy subsets of Z) Yao et al. (2008).

Definition 2.8 Let Z be the universal set and I(Z) indicates
the set of all fuzzy subsets ofZ and letR = {0, 1, 2, ..., N −
1} be a set of ordered grades where N ∈ {2, 3, 4, ...} and H
be the set of attributes, for any non-empty setB ⊆ H . A triple
(̂H,B, N ) is called fuzzy N-soft set over Z if there exists a
mapping ̂H : B → I(Z)× R, with the property that for each
b j ∈ B there exists a unique (zi , μ(zi ), ri j ) ∈ (I(Z) × R)

such that (zi , μ(zi ), ri j ) ∈ ̂H(b j ), b j ∈ B, zi ∈ Z and ri j ∈
R, where I(Z) × R is the collection of all fuzzy soft sets
over Z × R Akram et al. (2018b).

Example 2.9 Let Z = {z1, z2, z3} be the set of laptops, H =
{b1, b2, b3, b4, b5} be the set of attributes for the evaluations
of laptop by its features, and B ⊆ H such that B = {b1 =
storage, b2 = graphics, b3 = processor} and let R =
{0, 1, 2, 3, 4} be the set of grade evaluation. Then, (̂H,B, 5)
is the fuzzy 5-soft set as follows:

̂H(b1) =
{

(z1, 0.3, 3), (z2, 0.5, 1), (z3, 0.2, 2)
}

,

̂H(b2) =
{

(z1, 0.7, 2), (z2, 0.2, 3), (z3, 0.4, 4)
}

,

̂H(b3) =
{

(z1, 0.2, 0), (z2, 0.6, 4), (z3, 0.8, 1)
}

.

It can also be represented in tabular form as follows:

(̂H,B, 5) b1 b3 b3

z1 (0.3, 3) (0.7, 2) (0.2, 0)
z2 (0.5, 1) (0.2, 3) (0.6, 4)
z3 (0.2, 2) (0.4, 4) (0.8, 1)

For interpretation, the above table is of 5-soft set (̂H,B, 5)
created on the laptop’s storage, graphics, and processor,
where in the bottom middle cell 4 is the ordered grade (r32)
of the laptop z3 with respect to b2 = graphics. Similarly, in
the top-right cell 0, is the laptop’s ordered grade (r13) of the
laptop z1 with respect to b3 = processor. In this case, a grade
of 0 does not indicate that the evaluation was insufficient or
that the information was inadequate.

3 Complex probabilistic hesitant fuzzy
N-soft set

We created a model of a complex probabilistic hesitant fuzzy
N-soft set (CPHFNSS) as stated in the Introduction, and we
used some numerical examples to show how it works. The
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Table 1 Star evaluation by the
selection board

Z/B b1 b2 b3

z1 �� ��� ��

z2 ◦ ���� ���

z3 ����� � ��

soft max-AND and soft min-OR operators are covered along
with some fundamental operations. Also, prove their funda-
mental rules as well. The mathematical examples have also
been resolved in order to demonstrate the validity and com-
petency of the research work in this section.

Definition 3.1 Let Z be a universal set and H be the set
of attributes, for any non-empty set B ⊆ Hand let R =
{0, 1, 2, ..., N − 1} be a set of ordered grades where N ∈
{2, 3, 4, 5, ...}. A triple (̂I,B, N ) is called complex prob-
abilistic hesitant fuzzy N-soft set over Z if there exists a
mappinĝI : B → I(Z) × R with the property that for each
b j ∈ B there exists a unique (zi , ri j ) ∈ (Z × R) such that
((zi , ri j ), ĥ

I
) ∈̂I(b j ), b j ∈ B, zi ∈ Z and ri j ∈ R, where

I(Z) × R indicates the all possible complex probabilistic
hesitant fuzzy subset of Z × R. It is expressed as:

̂I(b j ) =
{〈

(zi , ri j ), ĥ
I

(

r̂
Im

(zi , ri j )e
2π iω̂

Im
(zi ,ri j )

∣

∣

∣P̂
Im

)〉

∣

∣

∣

(zi , ri j ) ∈ Z × R

}

, ∀b j ∈ B ⊆ H ,

where ĥ
I

(

r̂
Im

(zi , ri j )e
2π iω̂

Im
(zi ,ri j )

∣

∣P̂
Im

)

is the collection of

complex elements representing the complex hesitant fuzzy
information along probabilities to the set ̂I, r̂

Im
(zi , ri j ) ∈

[0, 1] and ω̂
Im

(zi , ri j ) ∈ [0, 1], m = 1, 2, ..., l where l
is the number of possible elements in

ĥ
I

(

r̂
Im

(zi , ri j )e
2π iω̂

Im
(zi ,ri j )

∣

∣P̂
Im

)

, P̂
Im

∈ [0, 1] is the com-

plex hesitant probability of r̂
Im

(zi , ri j )e
2π iω̂

Im
(zi ,ri j ) and

∑

m
P̂

Im
= 1.

Example 3.2 The evaluation of a lecturer at a university is
based on the star ratings and grades given by a selection
board, which consists of the vice chancellor, subject spe-
cialist, chairman, and psychologist. Let Z = {z1, z2, z3} be
the set of candidates attending a university interview and
B ⊆ H be the set of attributes for the evaluation, by the
selection board, such that B = {

b1 = Experience, b2 =
inter personal skills, b3 = Atti tude of
answering the questions

}

. Table 1 can be used to create
a 5-soft set, where four stars indicate excellent, three stars
indicate very good, two stars indicate good, one star indi-
cates satisfactory and hole indicates unsatisfactory.

This star rating is easily identifiable by the numbers for
example 0 represents ◦, 1 represents �, 2 represents ��, 3

Table 2 5-soft set from Table 1 (A,B, 6) b1 b2 b3

z1 2 3 2

z2 0 4 3

z3 5 1 2

represents ���, 4 represents ���� andwe can be used to create
5-soft set, as represented in Table 2.

It is sufficient when this information is accurately and
unambiguously extracted from actual data. It has to do with
the N-soft set. However, if the assessments are ambiguous,
hesitant, and random,wemight need touseCPHFNSS,which
gives us more flexibility in determining how these grades
are assigned to applicants. For this reason, the following
CPHFNSS is defined. Then, (̂I,B, 5) is the complex proba-
bilistic hesitant fuzzy 5-soft set, as represented in Table 3.

Definition 3.3 Let Z be a universal set and H be the set
of attributes, there exists non-empty set B ⊆ H . A triple
(̂J,B, N ) is called empty CPHFNSS over Z . If̂J(b j ) = φ

for all bi ∈ B.

Definition 3.4 Let M be a universal set and H be the
set of attributes, there exists non-empty set B ⊆ H . A
triple(̂K,B, N ) is called fullCPHFNSSoverZ . If̂K(b j ) = 1
for all bi ∈ B.

4 Operations of CPHFNSS

Definition 4.1 Let Z be a universal set. (̂I1,B1, N1) and
(̂I2,B2, N2) are two CPHFNSS over Z then the restricted
union is described as:

(̂L, E,K) = (̂I1,B1, N1) � (̂I2,B2, N2)

wherêL = ̂I1�̂I2, E = B1∩B2 �= φ andK = max(N1, N2);
∀e j ∈ E and zi ∈ Z ,
〈

(zi , ri j ), h
̂L

(

r
̂Lm

(zi , ri j )e
2π iω

̂Lm
(zi ,ri j )

∣

∣

∣P̂
Lm

)〉

∈ ̂L(e j )

⇐⇒ ri j = max(r �

i j , r�

i j ) and

r
̂Lm

(zi , ri j )e
2π iω

̂Lm
(zi ,ri j )

∣

∣

∣P̂
Lm

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i j )e
2π iω

̂I1m
(zi ,r

�

i j )
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,

r �

i j ), ω̂I2m
(zi , r�

i j )
}∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

with r �

i j ∈ ̂I1(b1j ) and r�

i j ∈ ̂I2(b2j ), while b1j ∈ B1 and

b2j ∈ B2.
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Table 3 Representation of
CPHF 5-SS

(̂I,B, 5) b1 b2 b3

z1

(

2,

{

0.7e2π i0.4|0.2,
0.8e2π i0.8|0.8

})

⎛

⎝3,

⎧

⎨

⎩

0.9e2π i0.8|0.2,
0.4e2π i0.2|0.3,
0.8e2π i0.1|0.5

⎫

⎬

⎭

⎞

⎠

(

2,

{

0.8e2π i0.6|0.4,
0.7e2π i0.2|0.6

})

z2

⎛

⎝0,

⎧

⎨

⎩

0.3e2π i0.7|0.2,
0.2e2π i0.4|0.2,
0.5e2π i0.3|0.6

⎫

⎬

⎭

⎞

⎠

(

4,
{

0.9e2π i0.6|1 })

(

3,

{

0.4e2π i0.9|0.1,
0.1e2π i0.6|0.9

})

z3
(

2,
{

0.1e2π i0.7|1 }) (

1,
{

0.5e2π i0.3|1 })

⎛

⎝2,

⎧

⎨

⎩

0.7e2π i0.4|0.1,
0.4e2π i0.3|0.2,
0.9e2π i0.8|0.7

⎫

⎬

⎭

⎞

⎠

Table 4 Representation of
CPHF 6-SS

(̂I1,B1, 6) b1 b2 b3

z1

(

5,

{

0.2e2π i0.4|0.1,
0.7e2π i0.7|0.9

})

(

1,
{

0.3e2π i0.9|1 })

⎛

⎝3,

⎧

⎨

⎩

0.4e2π i0.5|0.2,
0.9e2π i0.3|0.4,
0.2e2π i0.9|0.4

⎫

⎬

⎭

⎞

⎠

z2

(

4,

{

0.2e2π i0.1|0.2,
0.8e2π i0.2|0.8

})

⎛

⎝2,

⎧

⎨

⎩

0.4e2π i0.8|0.3,
0.6e2π i0.7|0.3,
0.7e2π i0.6|0.4

⎫

⎬

⎭

⎞

⎠

(

0,
{

0.9e2π i0.4|1 })

z3

(

5,

{

0.3e2π i0.1|0.1,
0.1e2π i0.4|0.9

}) (

0,

{

0.5e2π i0.7|0.5,
0.9e2π i0.3|0.5

}) (

3,

{

0.8e2π i0.5|0.3,
0.9e2π i0.4|0.7

})

Table 5 Representation of CPHF 7-SS

(̂I2,B2, 7) b1 b2

z1

⎛

⎝6,

⎧

⎨

⎩

0.8e2π i0.3|0.1,
0.6e2π i0.7|0.3,
0.5e2π i0.3|0.6

⎫

⎬

⎭

⎞

⎠

⎛

⎝4,

⎧

⎨

⎩

0.6e2π i0.7|0.1,
0.8e2π i0.6|0.4
0.9e2π i0.2|0.9

⎫

⎬

⎭

⎞

⎠

z2

(

3,

{

0.7e2π i0.1|0.3,
0.3e2π i0.2|0.7

})

(

0,
{

0.8e2π i0.5|1 })

z3
(

6,
{

0.1e2π i0.1|1 })

(

2,

{

0.9e2π i0.2|0.4,
0.4e2π i0.8|0.6

})

Table 6 Representation of the restricted union

(̂L, E, 7) b1 b2

z1

⎛

⎝6,

⎧

⎨

⎩

0.8e2π i0.4|0.01,
0.7e2π i0.7|0.27,
0.5e2π i0.3|0.6

⎫

⎬

⎭

⎞

⎠

⎛

⎝4,

⎧

⎨

⎩

0.6e2π i0.9|0.1,
0.8e2π i0.6|0.4,
0.9e2π i0.2|0.9

⎫

⎬

⎭

⎞

⎠

z2

(

4,

{

0.7e2π i0.1|0.06,
0.8e2π i0.2|0.56

})

⎛

⎝2,

⎧

⎨

⎩

0.8e2π i0.8|0.3,
0.6e2π i0.7|0.3,
0.7e2π i0.6|0.4

⎫

⎬

⎭

⎞

⎠

z3

(

6,

{

0.3e2π i0.1|0.1,
0.1e2π i0.4|0.9

}) (

2,

{

0.9e2π i0.7|0.2,
0.9e2π i0.8|0.3

})

Example 4.2 Let two CPHFNSS be represented in Tables 4
and 5, respectively.

Then, by using Definition 4.1 the restricted union is illus-
trated in Table 6:

Definition 4.3 Let Z be a universal set. (̂I1,B1, N1) and
(̂I2,B2, N2) are two CPHFNSS over Z then the extended
union is described as:

(̂M,F ,K) = (̂I1,B1, N1) � (̂I2,B2, N2)

where ̂M = ̂I1 � ̂I2, F = B1 ∪ B2 and K = max(N1, N2);
∀ f j ∈ F and zi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

̂M( f j ) =

⎧

⎪

⎨

⎪

⎩

̂I1( f 1j ), if f j ∈ B1 − B2,

̂I2( f 2j ), if f j ∈ B2 − B1,

̂I1( f 1j ) � ̂I2( f 2j ), if f j ∈ B1 ∩ B2.

Example 4.4 Consider (̂I1,B1, 6) and (̂I2,B2, 7) two
CPHFNSS as described in Example 4.2. Then, by using Def-
inition 4.3 the extended union is illustrated in Table 7:

Definition 4.5 Let Z be a universal set. (̂I1,B1, N1) and
(̂I2,B2, N2) are two CPHFNSS over Z then the restricted
intersection is described as:

(̂N, E,J ) = (̂I1,B1, N1) � (̂I2,B2, N2)

wherêN = ̂I1�̂I2, E = B1∩B2 �= φ andJ = min(N1, N2);
∀e j ∈ E and zi ∈ Z ,
〈

(zi , ri j ), h
̂N

(

r
̂Nm

(zi , ri j )e
2π iω

̂Nm
(zi ,ri j )

∣

∣

∣P
̂Nm

)〉

∈ ̂N(e j )

⇐⇒ ri j = max(r �

i j , r�

i j )and

r
̂Nm

(zi , ri j )e
2π iω

̂Nm
(zi ,ri j )

∣

∣

∣P
̂Nm
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Table 7 Representation of the
extended union

(̂M,F, 7) b1 b2 b3

z1

⎛

⎝6,

⎧

⎨

⎩

0.8e2π i0.4|0.01,
0.7e2π i0.7|0.27,
0.5e2π i0.3|0.6

⎫

⎬

⎭

⎞

⎠

⎛

⎝4,

⎧

⎨

⎩

0.6e2π i0.9|0.1,
0.8e2π i0.6|0.4,
0.9e2π i0.2|0.9

⎫

⎬

⎭

⎞

⎠

⎛

⎝3,

⎧

⎨

⎩

0.4e2π i0.5|0.2,
0.9e2π i0.3|0.4,
0.2e2π i0.9|0.4

⎫

⎬

⎭

⎞

⎠

z2

(

4,

{

0.7e2π i0.1|0.06,
0.8e2π i0.2|0.56

})

⎛

⎝2,

⎧

⎨

⎩

0.8e2π i0.8|0.3,
0.6e2π i0.7|0.3,
0.7e2π i0.6|0.4

⎫

⎬

⎭

⎞

⎠

(

0,
{

0.9e2π i0.4|1 })

z3

(

6,

{

0.3e2π i0.1|0.1,
0.1e2π i0.4|0.9

}) (

2,

{

0.9e2π i0.7|0.2,
0.9e2π i0.8|0.3

}) (

3,

{

0.8e2π i0.5|0.3,
0.9e2π i0.4|0.7

})

Table 8 Representation of the restricted intersection

(̂N, E, 6) b1 b2

z1

⎛

⎝5,

⎧

⎨

⎩

0.2e2π i0.3|0.01,
0.6e2π i0.7|0.27,
0.5e2π i0.3|0.6

⎫

⎬

⎭

⎞

⎠

⎛

⎝1,

⎧

⎨

⎩

0.3e2π i0.7|0.1,
0.8e2π i0.6|0.4,
0.9e2π i0.2|0.9

⎫

⎬

⎭

⎞

⎠

z2

(

3,

{

0.2e2π i0.1|0.06,
0.3e2π i0.2|0.56

})

⎛

⎝0,

⎧

⎨

⎩

0.4e2π i0.5|0.3,
0.6e2π i0.7|0.3,
0.7e2π i0.6|0.4

⎫

⎬

⎭

⎞

⎠

z3

(

5,

{

0.1e2π i0.1|0.1,
0.1e2π i0.4|0.9

}) (

0,

{

0.5e2π i0.2|0.2,
0.4e2π i0.3|0.3

})

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i j )e
2π iω

̂I1m
(zi ,r

�

i j )
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

min
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imin

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j )

}

∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

with r �

i j ∈ ̂I1(b1j ) and r�

i j ∈ ̂I2(b2j ), while b1j ∈ B1 and

b2j ∈ B2.

Example 4.6 Consider (̂I1,B1, 6) and (̂I2,B2, 7) two
CPHFNSS as described in Example 4.2. Then, by using
Definition 4.5 the restricted intersection is illustrated in
Table 8:

Definition 4.7 Let Z be a universal set. (̂I1,B1, N1) and
(̂I2,B2, N2) are two CPHFNSS over Z then the extended
intersection is described as:

(̂O,F ,K) = (̂I1,B1, N1) � (̂I2,B2, N2)

where ̂O = ̂I1 � ̂I2, F = B1 ∪ B2 and K = max(N1, N2);
∀ f j ∈ F and zi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

̂O( f j ) =

⎧

⎪

⎨

⎪

⎩

̂I1( f 1j ), if f j ∈ B1 − B2,

̂I2( f 2j ), if f j ∈ B2 − B1,

̂I1( f 1j ) � ̂I2( f 2j ), if f j ∈ B1 ∩ B2.

Example 4.8 Consider (̂I1,B1, 6) and (̂I2,B2, 7) two
CPHFNSS as described in Example 4.2. Then, by using
Definition 4.7 the extended intersection is illustrated in
Table 9:

Definition 4.9 Let Z be a universal set. (̂I,B, N ) is the
CPHFNSS overZ then weak CPHFNSS complement is rep-
resented by (̂Ic,B, N ) wherêIc(b j ) ∩̂I(b j ) = �; ∀b j ∈ B
and it is defined as:

̂I
c(b j ) =

{〈

(zi , ri j ), ĥ
Ic

(

(

1 − r̂
Im

(zi , ri j )
)

e2π i
(

1−ω̂
Im

(zi ,ri j )
)
∣

∣

∣

1 − P̂
Im

)〉

∣

∣

∣(zi , ri j ) ∈ Z × R

}

, ∀b j ∈ B ⊆ H .

Example 4.10 Consider (̂I,B, 5) CPHFNSS as described
in Example 3.2. Then, by using Definition 4.9 the weak
CPHFNSS complement is illustrated in Table 10.

Definition 4.11 Let Z be a universal set. For any CPHFNSS
(̂I,B, N ) over Z then bottom weak CPHFNSS complement
is represented by (̂I�,B, N ); ∀b j ∈ B and it is defined as:

̂I
�(b j ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(zi , 0), ĥ
I�

(

(

1 − r̂
Im

(zi , ri j )
)

e2π i
(

1−ω̂
Im

(zi ,ri j )
)
∣

∣

∣1 − P̂
Im

)

, if ri j > 0,

(zi , N − 1), ĥ
I�

(

(

1 − r̂
Im

(zi , ri j )
)

e2π i
(

1−ω̂
Im

(zi ,ri j )
)
∣

∣

∣1 − P̂
Im

)

, if ri j = 0.

Example 4.12 Consider (̂I,B, 5) CPHFNSS as described in
Example 3.2. Then, by usingDefinition 4.11 the bottomweak
CPHFNSS complement is illustrated in Table 11.
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Table 9 Representation of the
extended intersection

(̂O, E, 7) b1 b2 b3

z1

⎛

⎝6,

⎧

⎨

⎩

0.2e2π i0.3|0.01,
0.6e2π i0.7|0.27,
0.5e2π i0.3|0.6

⎫

⎬

⎭

⎞

⎠

⎛

⎝4,

⎧

⎨

⎩

0.3e2π i0.7|0.1,
0.8e2π i0.6|0.4,
0.9e2π i0.2|0.9

⎫

⎬

⎭

⎞

⎠

⎛

⎝3,

⎧

⎨

⎩

0.4e2π i0.5|0.2,
0.9e2π i0.3|0.4,
0.2e2π i0.9|0.4

⎫

⎬

⎭

⎞

⎠

z2

(

4,

{

0.2e2π i0.1|0.06,
0.3e2π i0.2|0.56

})

⎛

⎝2,

⎧

⎨

⎩

0.4e2π i0.5|0.3,
0.6e2π i0.7|0.3,
0.7e2π i0.6|0.4

⎫

⎬

⎭

⎞

⎠

(

0,
{

0.9e2π i0.4|1 })

z3

(

6,

{

0.1e2π i0.1|0.1,
0.1e2π i0.4|0.9

}) (

2,

{

0.5e2π i0.2|0.2,
0.4e2π i0.3|0.3

}) (

3,

{

0.8e2π i0.5|0.3,
0.9e2π i0.4|0.7

})

Table 10 Representation of
weak complement

(̂Ic,B, 5) b1 b2 b3

z1

(

2,

{

0.3e2π i0.6|0.8,
0.2e2π i0.2|0.2

})

⎛

⎝3,

⎧

⎨

⎩

0.1e2π i0.2|0.8,
0.6e2π i0.8|0.7,
0.2e2π i0.9|0.5

⎫

⎬

⎭

⎞

⎠

(

2,

{

0.2e2π i0.4|0.6,
0.3e2π i0.8|0.4

})

z2

⎛

⎝0,

⎧

⎨

⎩

0.7e2π i0.3|0.8,
0.8e2π i0.6|0.8,
0.5e2π i0.7|0.4

⎫

⎬

⎭

⎞

⎠

(

4,
{

0.1e2π i0.4|0 })

(

3,

{

0.6e2π i0.1|0.9,
0.9e2π i0.4|0.1

})

z3
(

2,
{

0.9e2π i0.3|0 }) (

1,
{

0.5e2π i0.7|0 })

⎛

⎝2,

⎧

⎨

⎩

0.3e2π i0.6|0.9,
0.6e2π i0.7|0.8,
0.1e2π i0.2|0.3

⎫

⎬

⎭

⎞

⎠

Table 11 Representation of
bottom weak complement

(̂I�,B, 5) b1 b2 b3

z1

(

0,

{

0.3e2π i0.6|0.8,
0.2e2π i0.2|0.2

})

⎛

⎝0,

⎧

⎨

⎩

0.1e2π i0.2|0.8,
0.6e2π i0.8|0.7,
0.2e2π i0.9|0.5

⎫

⎬

⎭

⎞

⎠

(

0,

{

0.2e2π i0.4|0.6,
0.3e2π i0.8|0.4

})

z2

⎛

⎝4,

⎧

⎨

⎩

0.7e2π i0.3|0.8,
0.8e2π i0.6|0.8,
0.5e2π i0.7|0.4

⎫

⎬

⎭

⎞

⎠

(

0,
{

0.1e2π i0.4|0 })

(

0,

{

0.6e2π i0.1|0.9,
0.9e2π i0.4|0.1

})

z3
(

0,
{

0.9e2π i0.3|0 }) (

0,
{

0.5e2π i0.7|0 })

⎛

⎝0,

⎧

⎨

⎩

0.3e2π i0.6|0.9,
0.6e2π i0.7|0.8,
0.1e2π i0.2|0.3

⎫

⎬

⎭

⎞

⎠

Definition 4.13 Let Z be a universal set. For any CPHFNSS
(̂I,B, N ) over Z then top weak CPHFNSS complement is
represented by (̂I�,B, N ); ∀b j ∈ B and it is defined as:

̂I
�(b j ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(zi , N − 1), ĥ
I�

(

(

1 − r̂
Im

(zi , ri j )
)

e2π i
(

1−ω̂
Im

(zi ,ri j )
)
∣

∣

∣1 − P̂
Im

)

, if ri j < N − 1,

(zi , 0), ĥ
I�

(

(

1 − r̂
Im

(zi , ri j )
)

e2π i
(

1−ω̂
Im

(zi ,ri j )
)
∣

∣

∣1 − P̂
Im

)

, if ri j = N − 1.

Example 4.14 Consider (̂I,B, 5) CPHFNSS as described in
Example 3.2. Then, by using Definition 4.13 the top weak
CPHFNSS complement is illustrated in Table 12.

Definition 4.15 Soft max-AND operation of two CPHFSS
(̂I1,B1, N1) and (̂I2,B2, N2)

(

where ̂I1 : B1 → I(Z) × R
and ̂I2 : B2 → I(Z) × R

)

defined as:

(̂I1,B1, N1) ∧ (̂I2,B2, N2) = (̂L,G,K),

where ̂L : G → I(Z) × R such that ̂L = ̂I1 ∪ ̂I2 and
G = B1 × B2; ∀(gu, gv) ∈ (B1 × B2), gu, gv ∈ � and
K = max(N1, N2),
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Table 12 Representation of top
weak complement

(̂I�,B, 5) b1 b2 b3

z1

(

4,

{

0.3e2π i0.6|0.8,
0.2e2π i0.2|0.2

})

⎛

⎝4,

⎧

⎨

⎩

0.1e2π i0.2|0.8,
0.6e2π i0.8|0.7,
0.2e2π i0.9|0.5

⎫

⎬

⎭

⎞

⎠

(

4,

{

0.2e2π i0.4|0.6,
0.3e2π i0.8|0.4

})

z2

⎛

⎝4,

⎧

⎨

⎩

0.7e2π i0.3|0.8,
0.8e2π i0.6|0.8,
0.5e2π i0.7|0.4

⎫

⎬

⎭

⎞

⎠

(

0,
{

0.1e2π i0.4|0 })

(

4,

{

0.6e2π i0.1|0.9,
0.9e2π i0.4|0.1

})

z3
(

4,
{

0.9e2π i0.3|0 }) (

4,
{

0.5e2π i0.7|0 })

⎛

⎝4,

⎧

⎨

⎩

0.3e2π i0.6|0.9,
0.6e2π i0.7|0.8,
0.1e2π i0.2|0.3

⎫

⎬

⎭

⎞

⎠

〈

(zi , ri(u,v)), h
̂L

(

r
̂Lm

(zi , ri(u,v))e
2π iω

̂Lm
(zi ,ri(u,v))

∣

∣

∣P̂
Lm

)〉

∈
̂L(gu, gv) ⇐⇒ ri(u,v) = max(r �

i(u,v), r�

i(u,v)) and

r
̂Lm

(zi , ri(u,v))e
2π iω

̂Lm
(zi ,ri(u,v))

∣

∣

∣P̂
Lm

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i(u,v))e
2π iω

̂I1m
(zi ,r

�

i(u,v)
)
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i(u,v))e
2π iω

̂I2m
(zi ,r

�

i(u,v)
)
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

max
{

r
̂I1m

(zi , r �

i(u,v)), r
̂I2m

(zi , r�

i(u,v))
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i(u,v)
),ω

̂I2m
(zi ,r

�

i(u,v)
)

}

∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

with (zi , r �

i(u,v)) ∈ ̂I1(B1) and (zi , r�

i(u,v)) ∈ ̂I2(B2).

Definition 4.16 Soft min-OR operation of two CPHFSS
(̂I1,B1, N1) and (̂I2,B2, N2)

(

where ̂I1 : B1 → I(Z) × R
and ̂I2 : B2 → I(Z) × R

)

defined as:

(̂I1,B1, N1) ∨ (̂I2,B2, N2) = (̂N,G,J ),

where ̂N : G → I(Z) × R such that ̂N = ̂I1 ∩ ̂I2 and
G = B1 × B2; ∀(gu, gv) ∈ (B1 × B2), gu, gv ∈ � and
J = min(N1, N2),
〈

(zi , ri(u,v)), h
̂N

(

r
̂Nm

(zi , ri(u,v))e
2π iω

̂Nm
(zi ,ri(u,v))

∣

∣

∣P
̂Nm

)〉

∈
̂N(gu, gv) ⇐⇒ ri(u,v) = min(r �

i(u,v), r�

i(u,v)) and

r
̂Nm

(zi , ri(u,v))e
2π iω

̂Nm
(zi ,ri(u,v))

∣

∣

∣P
̂Nm

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i(u,v))e
2π iω

̂I1m
(zi ,r

�

i(u,v)
)
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i(u,v))e
2π iω

̂I2m
(zi ,r

�

i(u,v)
)
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

min
{

r
̂I1m

(zi , r �

i(u,v)), r
̂I2m

(zi , r�

i(u,v))
}

e
2π imin

{

ω
̂I1m

(zi ,r
�

i(u,v)
),ω

̂I2m
(zi ,r

�

i(u,v)
)

}

∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

with (zi , r �

i(u,v)) ∈ ̂I1(B1) and (zi , r�

i(u,v)) ∈ ̂I2(B2).

Fundamental laws

Proposition 4.17 Given that (̂I1,B1, N1), (̂I2,B2, N2) and
(̂I3,B3, N3) are any three CPHFNSS on Z , then following
laws holds:

Idempotent Laws:

i. (̂I1,B1, N1) � (̂I1,B1, N1) = (̂I1,B1, N1),

ii. (̂I1,B1, N1) � (̂I1,B1, N1) = (̂I1,B1, N1),

iii. (̂I1,B1, N1) � (̂I1,B1, N1) = (̂I1,B1, N1),

iv. (̂I1,B1, N1) � (̂I1,B1, N1) = (̂I1,B1, N1).
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Commutative Laws:

v. (̂I1,B1, N1)�(̂I2,B2, N2)=(̂I2,B2, N2)�(̂I1,B1, N1),
vi. (̂I1,B1, N1)�(̂I2,B2, N2)=(̂I2,B2, N2)�(̂I1,B1, N1),

vii. (̂I1,B1, N1)�(̂I2,B2, N2)=(̂I2,B2, N2)�(̂I1,B1, N1),
viii. (̂I1,B1, N1)�(̂I2,B2, N2)=(̂I2,B2, N2)�(̂I1,B1, N1).

Associative Laws:

ix. (̂I1,B1, N1)�
(

(̂I2,B2, N2)� (̂I3,B3, N3)
)

=
(

(̂I1,B1,

N1) � (̂I2,B2, N2)
)

� (̂I3,B3, N3),

x. (̂I1,B1, N1)�
(

(̂I2,B2, N2)� (̂I3,B3, N3)
)

=
(

(̂I1,B1,

N1) � (̂I2,B2, N2)
)

� (̂I3,B3, N3),

xi. (̂I1,B1, N1)�
(

(̂I2,B2, N2)� (̂I3,B3, N3)
)

=
(

(̂I1,B1,

N1) � (̂I2,B2, N2)
)

� (̂I3,B3, N3),

xii. (̂I1,B1, N1)�
(

(̂I2,B2, N2)� (̂I3,B3, N3)
)

=
(

(̂I1,B1,

N1) � (̂I2,B2, N2)
)

� (̂I3,B3, N3).

Proof Laws from (i) to (viii) are hold by definition.
(ix) L.H.S:

Let (̂I2,B2, N2) and (̂I3,B3, N3)
(

wherêI2 : B2 → I(M)×
R and ̂I3 : B3 → I(Z) × R

)

be two CPHFNSS on Z . By
using definition of the restricted union, we have (̂P,M,S)

(wherêP : M → I(Z) × R) such that,

(̂P,M,S) = (̂I2,B2, N2) � (̂I3,B3, N3),

where ̂P = ̂I2 � ̂I3, M = B2 ∩ B3, S = max(N2, N3);
∀m j ∈ M and zi ∈ Z ,
〈

(zi , ri j ), h
̂P

(

r
̂Pm

(zi , ri j )e
2π iω

̂Pm
(zi ,ri j )

∣

∣

∣P̂
Pm

)〉

∈ ̂P(m j )

⇐⇒ ri j = max(r�

i j , r��

i j ) and

r
̂Pm

(zi , ri j )e
2π iω

̂Pm
(zi ,ri j )

∣

∣

∣P̂
Pm

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I3m

,

r
̂I3m

(zi , r��

i j )e
2π iω

̂I3m
(zi ,r

��

i j )
∣

∣

∣P
̂I3m

, if m ∈ h
̂I3m

− h
̂I2m

,

max
{

r
̂I2m

(zi , r�

i j ), r
̂I3m

(zi , r��

i j )
}

e
2π imax

{

ω
̂I2m

(zi ,r
�

i j ),ω̂I3m
(zi ,r

��

i j )

}

∣

∣

∣P
̂I2m

· P
̂I3m

, if m ∈ h
̂I2m

∩ h
̂I3m

.

with r�

i j ∈ ̂I2(b2j ) and r��

i j ∈ ̂I3(b3j ) while b2j ∈ B2 and b3j ∈
B3.

As, (̂I1,B1, N1) �
(

(̂I2,B2, N2) � (̂I3,B3, N3)
)

= (̂I1,B1,

N1) � (̂P,M,S). Suppose that (̂I1,B1, N1) � (̂P,M,S) =
(̂Q,N , T ) such that ̂Q : N → I(Z) × R, where ̂Q =
(̂I1�̂P),N = B1∩M = B1∩B2∩B3, T = max(N1,S) =
max(N1, N2, N3); ∀n j ∈ N ,
〈

(zi , ri j ), h
̂Q

(

r
̂Qm

(zi , ri j )e
2π iω

̂Qm
(zi ,ri j )

∣

∣

∣P
̂Qm

)〉

∈ ̂Q(n j )

⇐⇒ ri j = max(r �

i j , r�

i j , r��

i j ) and

r
̂Qm

(zi , ri j )e
2π iω

̂Qm
(zi ,ri j )

∣

∣

∣P
̂Qm

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i j )e
2π iω

̂I1m
(zi ,r

�

i j )
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

− h
̂I3m

,

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I3m

− h
̂I1m

,

r
̂I3m

(zi , r��

i j )e
2π iω

̂I3m
(zi ,r

��

i j )
∣

∣

∣P
̂I3m

, if m ∈ h
̂I3m

− h
̂I1m

− h
̂I2m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j )

}

∣

∣

∣P♣, if m ∈ h
̂I1m

∩ h
̂I2m

− h
̂I3m

,

max
{

r
̂I2m

(zi , r�

i j ), r
̂I3m

(zi , r��

i j )
}

e
2π imax

{

ω
̂I2m

(zi ,r
�

i j ),ω̂I3m
(zi ,r

��

i j )

}

∣

∣

∣P♦, if m ∈ h
̂I2m

∩ h
̂I3m

− h
̂I1m

,

max
{

r
̂I3m

(zi , r��

i j ), r
̂I1m

(zi , r �

i j )
}

e
2π imax

{

ω
̂I3m

(zi ,r
��

i j ),ω
̂I1m

(zi ,r
�

i j )

}

∣

∣

∣P♠, if m ∈ h
̂I3m

∩ h
̂I1m

− h
̂I2m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j ), r
̂I3m

(zi , r��

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j ),ω̂I3m
(zi ,r

��

i j )

}

∣

∣

∣P♥, if m ∈ h
̂I1m

∩ h
̂I2m

∩ h
̂I3m

123



Early infectious diseases identification based on complex probabilistic 18295

where P♣ = P
̂I1m

· P
̂I2m

, P♦ = P
̂I2m

· P
̂I3m

, P♠ = P
̂I3m

· P
̂I1m

and P♥ = P
̂I1m

· P
̂I2m

· P
̂I3m

and r �

i j ∈ ̂I1(b1j ), r�

i j ∈ ̂I2(b2j )

and r��

i j ∈ ̂I3(b3j ) while b1j ∈ B1, b2j ∈ B2 and b3j ∈ B3.
R.H.S:
Let (̂I1,B1, N1) and (̂I2,B2, N2)

(

where ̂I1 : B1 → I(Z)×
R and ̂I2 : B2 → I(Z) × R

)

be two CPHFNSS on Z . By
using definition of the restricted union, we have (̂L, E,K)

(where ̂L : E → I(Z) × R) such that,

(̂L, E,K) = (̂I1,B1, N1) � (̂I2,B2, N2),

wherêL = ̂I1�̂I2,E = B1∩B2,K = max(N1, N2);∀e j ∈ E
and zi ∈ Z ,
〈

(zi , ri j ), h
̂L

(

r
̂Lm

(zi , ri j )e
2π iω

̂Lm
(zi ,ri j )

∣

∣

∣P̂
Lm

)〉

∈ ̂L(e j )

⇐⇒ ri j = max(r �

i j , r�

i j ) and

r
̂Lm

(zi , ri j )e
2π iω

̂Lm
(zi ,ri j )

∣

∣

∣P̂
Lm

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i j )e
2π iω

̂I1m
(zi ,r

�

i j )
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j )

}

∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

with r �

i j ∈ ̂I1(b1j ) and r�

i j ∈ ̂I2(b2j ) while b1j ∈ B1 and b2j ∈
B2.

As,
(

(̂I1,B1, N1)�(̂I2,B2, N2)
)

�(̂I3,B3, N3) = (̂L, E,K)�
(̂I3,B3, N3). Suppose that (̂L, E,K) � (̂I3,B3, N3) =
(̂R,N , T ) such that ̂R : N → I(Z) × R, where ̂R =
(̂L�̂I3),N = E∩B3 = B1∩B2∩B3,T = max(N1, N2, N3);
∀n j ∈ N ,
〈

(zi , ri j ), h
̂R

(

r
̂Rm

(zi , ri j )e
2π iω

̂Rm
(zi ,ri j )

∣

∣

∣P
̂Rm

)〉

∈ ̂R(n j )

⇐⇒ ri j = max(r �

i j , r�

i j , r��

i j ) and

r
̂Rm

(zi , ri j )e
2π iω

̂Rm
(zi ,ri j )

∣

∣

∣P
̂Rm

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i j )e
2π iω

̂I1m
(zi ,r

�

i j )
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

− h
̂I3m

,

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I3m

− h
̂I1m

,

r
̂I3m

(zi , r��

i j )e
2π iω

̂I3m
(zi ,r

��

i j )
∣

∣

∣P
̂I3m

, if m ∈ h
̂I3m

− h
̂I1m

− h
̂I2m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j )

}

∣

∣

∣P♣, if m ∈ h
̂I1m

∩ h
̂I2m

− h
̂I3m

,

max
{

r
̂I2m

(zi , r�

i j ), r
̂I3m

(zi , r��

i j )
}

e
2π imax

{

ω
̂I2m

(zi ,r
�

i j ),ω̂I3m
(zi ,r

��

i j )

}

∣

∣

∣P♦, if m ∈ h
̂I2m

∩ h
̂I3m

− h
̂I1m

,

max
{

r
̂I3m

(zi , r��

i j ), r
̂I1m

(zi , r �

i j )
}

e
2π imax

{

ω
̂I3m

(zi ,r
��

i j ),ω̂I1m
(zi ,r

�

i j )

}

∣

∣

∣P♠, if m ∈ h
̂I3m

∩ h
̂I1m

− h
̂I2m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j ), r
̂I3m

(zi , r��

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j ),ω̂I3m
(zi ,r

��

i j )

}

∣

∣

∣P♥, if m ∈ h
̂I1m

∩ h
̂I2m

∩ h
̂I3m
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where P♣ = P
̂I1m

· P
̂I2m

, P♦ = P
̂I2m

· P
̂I3m

, P♠ = P
̂I3m

· P
̂I1m

and P♥ = P
̂I1m

· P
̂I2m

· P
̂I3m

and r �

i j ∈ ̂I1(b1j ), r�

i j ∈ ̂I2(b2j )

and r��

i j ∈ ̂I3(b3j ) while b1j ∈ B1, b2j ∈ B2 and b3j ∈ B3.

Then ̂Q(n j ) = ̂R(n j ), ∀n j ∈ N .
Hence L.H.S = R.H.S.
Thus, (ix) is hold. ��
Proof (x) L.H.S:
Let (̂I2,B2, N2) and (̂I3,B3, N3)

(

wherêI2 : B2 → I(M)×
R and ̂I3 : B3 → I(Z) × R

)

be two CPHFNSS on Z . By
using definition of the extended union, we have (̂S,O,S)

(wherêS : O → I(Z) × R )such that,

(̂S,O,S) = (̂I2,B2, N2) � (̂I3,B3, N3),

where ̂S = ̂I2 � ̂I3, O = B2 ∪ B3, S = max(N2, N3);
∀o j ∈ O and zi ∈ Z , with o1j ∈ B2 and o2j ∈ B3.

̂S(o j ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂I1(o1j ), if o j ∈ B2 − B3,

̂I2(o2j ), if o j ∈ B3 − B2,

̂I1(o1j ) � ̂I2(o2j ), if o j ∈ B2 ∩ B3.

As, (̂I1,B1, N1)�
(

(̂I2,B2, N2)�(̂I3,B3, N3)
)

=(̂I1,B1, N1)

� (̂S,O,S). Suppose that (̂I1,B1, N1) � (̂S,O,S) =
(̂T,P, T ) such that̂T : P → I(Z)× R, wherêT = (̂I1�̂S),
P = B1 ∪ O = B1 ∪ B2 ∪ B3, T = max(N1,S) =
max(N1, N2, N3); ∀p j ∈ P , with p1j ∈ B1, p2j ∈ B2 and

p3j ∈ B3,

̂T(p j ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂I1(p1j ), if p j ∈ B1 − B2 − B3,

̂I2(p2j ), if p j ∈ B2 − B3 − B1,

̂I3(p3j ), if p j ∈ B3 − B1 − B2,

̂I1(p1j ) � ̂I2(p2j ), if p j ∈ B1 ∩ B2 − B3,

̂I2(p2j ) � ̂I3(p3j ), if p j ∈ B2 ∩ B3 − B1,

̂I3(p3j ) � ̂I1(p1j ), if p j ∈ B3 ∩ B1 − B2,

̂I1(p1j ) � ̂I2(p2j ) � ̂I3(p3j ), if p j ∈ B1 ∩ B2 ∩ B3.

R.H.S:
Let (̂I1,B1, N1) and (̂I2,B2, N2)

(

wherêI1 : B1 → I(M)×
R and ̂I2 : B2 → I(Z) × R

)

be two CPHFNSS on Z . By
using definition of the extended union, we have (̂M,F ,K)

(where ̂M : F → I(Z) × R) such that,

(̂M,F ,K) = (̂I1,B1, N1) � (̂I2,B2, N2),

where ̂M = ̂I1 � ̂I2, F = B1 ∪ B2, K = max(N1, N2);
∀ f j ∈ F and zi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

̂M( f j ) =

⎧

⎪

⎨

⎪

⎩

̂I1( f 1j ), if f j ∈ B1 − B2,

̂I2( f 2j ), if f j ∈ B2 − B1,

̂I1( f 1j ) � ̂I2( f 2j ), if f j ∈ B1 ∩ B2.

As,
(

(̂I1,B1, N1)�(̂I2,B2, N2)
)

�(̂I3,B3, N3) = (̂M,F ,K)

� (̂I3,B3, N3). Suppose that (̂M,F ,K) � (̂I3,B3, N3) =
(̂U,P, T ) such that ̂U : P → I(Z) × R, where ̂U =
(̂M� ̂I3),P = F ∩B3 = B1 ∪B2 ∪B3, T = max(N1,S) =
max(N1, N2, N3); ∀p j ∈ P , with p1j ∈ B1, p2j ∈ B2 and

p3j ∈ B3,

̂U(p j ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂I1(p1j ), if p j ∈ B1 − B2 − B3,

̂I2(p2j ), if p j ∈ B2 − B3 − B1,

̂I3(p3j ), if p j ∈ B3 − B1 − B2,

̂I1(p1j ) � ̂I2(p2j ), if p j ∈ B1 ∩ B2 − B3,

̂I2(p2j ) � ̂I3(p3j ), if p j ∈ B2 ∩ B3 − B1,

̂I3(p3j ) � ̂I1(p1j ), if p j ∈ B3 ∩ B1 − B2,

̂I1(p1j ) � ̂I2(p2j ) � ̂I3(p3j ), if p j ∈ B1 ∩ B2 ∩ B3.

Then, ̂T(p j ) = ̂U(p j ), ∀p j ∈ P .
Hence L.H.S = R.H.S.
Thus, (x) is hold. ��
The proof of (xi) and (xii) is similar to (ix) and (x).

Proposition 4.18 Given that (̂I1,B1, N1) and (̂I2,B2, N2)

are any two CPHFSS on Z , then following laws holds:
Involution Law:

i.

(

(

̂I1
c
)c

,B1, N1

)

= (̂I1,B1, N1),

De Morgan’s Laws:

ii.
(

̂I1
c
,B1, N1

)

�
(

̂I2
c
,B2, N2

)

=
(

(

̂I1 � ̂I2
)c

, (B1 ∩
B2), min(N1, N2)

)

,

iii.
(

̂I1
c
,B1, N1

)

�
(

̂I2
c
,B2, N2

)

=
(

(

̂I1 � ̂I2
)c

, (B1 ∪
B2), max(N1, N2)

)

,

iv.
(

̂I1
c
,B1, N1

)

�
(

̂I2
c
,B2, N2

)

=
(

(

̂I1 � ̂I2
)c

, (B1 ∩
B2), max(N1, N2)

)

,

v.
(

̂I1
c
,B1, N1

)

�
(

̂I2
c
,B2, N2

)

=
(

(

̂I1 � ̂I2
)c

, (B1 ∪
B2), max(N1, N2)

)

,

vi
(

̂I1
c
,B1, N1

)

∧
(

̂I2
c
,B2, N2

)

=
(

(

̂I1 ∨ ̂I2
)c

, (B1 ×
B2), max(N1, N2)

)

,

vii
(

̂I1
c
,B1, N1

)

∨
(

̂I2
c
,B2, N2

)

=
(

(

̂I1 ∧ ̂I2
)c

, (B1 ×
B2), min(N1, N2)

)

.

Proof Law (i) is hold by definition.
(ii). L.H.S:
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Let (̂I1,B1, N1) and (̂I2,B2, N2)
(

where ̂I1 : B1 → I(Z)×
R and ̂I2 : B2 → I(Z) × R

)

be two CPHFNSS on Z .
By using definition of the weak complement and restricted
intersection, we have (̂L, E,K) (wherêL : E → I(Z) × R)

such that,

(̂V, E,J ) =
(

̂I1
c
,B1, N1

)

�
(

̂I2
c
,B2, N2

)

,

where ̂V = ̂I1
c � ̂I2

c
, E = B1 ∩ B2, J = min(N1, N2);

∀e j ∈ E and zi ∈ Z ,
〈

(zi , ri j ), h
̂V

(

r
̂Vm

(zi , ri j )e
2π iω

̂Vm
(zi ,ri j )

∣

∣

∣P
̂Vm

)〉

∈ ̂V(e j )

⇐⇒ ri j = min(r �

i j , r�

i j ) and

r
̂Vm

(zi , ri j )e
2π iω

̂Vm
(zi ,ri j )

∣

∣

∣P
̂Vm

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1

c
m
(zi , r �

i j )e
2π iω

̂I1
c
m

(zi ,r
�

i j )
∣

∣

∣P
̂I1

c
m
, if m ∈ h

̂I1
c
m

− h
̂I2

c
m
,

r
̂I2

c
m
(zi , r�

i j )e
2π iω

̂I2
c
m

(zi ,r
�

i j )
∣

∣

∣P
̂I2

c
m
, if m ∈ h

̂I2m
− h

̂I1
c
m
,

min
{

r
̂I1

c
m
(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imin

{

ω
̂I1

c
m

(zi ,r
�

i j ),ω̂I2
c
m

(zi ,r
�

i j )

}

∣

∣

∣P
̂I1

c
m

· P
̂I2

c
m
, if m ∈ h

̂I1
c
m

∩ h
̂I2

c
m
.

with r �

i j ∈ ̂I1
c
(b1j ) and r�

i j ∈ ̂I2
c
(b2j ) while b1j ∈ B1 and

b2j ∈ B2.
R.H.S:

we have (̂I1,B1, N1) and (̂I2,B2, N2) are two CPHFNSS
over Z then taking restricted union with given conditions in
R.H.S, is described as:

(̂L, E,J ) = (̂I1,B1, N1) � (̂I2,B2, N2)

wherêL = ̂I1�̂I2, E = B1∩B2 �= φ andJ = min(N1, N2);
∀e j ∈ E and zi ∈ Z ,
〈

(zi , ri j ), h
̂L

(

r
̂Lm

(zi , ri j )e
2π iω

̂Lm
(zi ,ri j )

∣

∣

∣P̂
Lm

)〉

∈ ̂L(e j )

⇐⇒ ri j = min(r �

i j , r�

i j ) and

r
̂Lm

(zi , ri j )e
2π iω

̂Lm
(zi ,ri j )

∣

∣

∣P̂
Lm

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i j )e
2π iω

̂I1m
(zi ,r

�

i j )
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i j )e
2π iω

̂I2m
(zi ,r

�

i j )
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

max
{

r
̂I1m

(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imax

{

ω
̂I1m

(zi ,r
�

i j ),ω̂I2m
(zi ,r

�

i j )

}

∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

with r �

i j ∈ ̂I1(b1j ) and r�

i j ∈ ̂I2(b2j ) while b1j ∈ B1 and b2j ∈
B2. Now, by the definition of weak complement

(

̂I1 � ̂I2
)c ∈ ̂L

c(e j ) =
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1

c
m
(zi , r �

i j )e
2π iω

̂I1
c
m

(zi ,r
�

i j )
∣

∣

∣P
̂I1

c
m
, if m ∈ h

̂I1
c
m

− h
̂I2

c
m
,

r
̂I2

c
m
(zi , r�

i j )e
2π iω

̂I2
c
m

(zi ,r
�

i j )
∣

∣

∣P
̂I2

c
m
, if m ∈ h

̂I2m
− h

̂I1
c
m
,

min
{

r
̂I1

c
m
(zi , r �

i j ), r
̂I2m

(zi , r�

i j )
}

e
2π imin

{

ω
̂I1

c
m

(zi ,r
�

i j ),ω̂I2
c
m

(zi ,r
�

i j )

}

∣

∣

∣P
̂I1

c
m

· P
̂I2

c
m
, if m ∈ h

̂I1
c
m

∩ h
̂I2

c
m
.
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with r �

i j ∈ ̂I1
c
(b1j ) and r�

i j ∈ ̂I2
c
(b2j ) while b1j ∈ B1 and

b2j ∈ B2.

Then, ̂V(e j ) = ̂L
c(e j ); ∀e j ∈ E .

Hence L.H.S = R.H.S.
Thus, (ii) is hold. ��
Proof (iii) L.H.S:
Let (̂I1,B1, N1) and (̂I2,B2, N2)

(

where ̂I1 : B1 → I(Z)×
R and ̂I2 : B2 → I(Z) × R

)

be two CPHFNSS on Z .
By using definition of the weak complement and extended
intersection, we have (̂W,F ,K) (where ̂W : F → I(Z) ×
R) such that,

(̂W,F ,K) =
(

̂I1
c
,B1, N1

)

�
(

̂I2
c
,B2, N2

)

,

where ̂W = ̂I1
c � ̂I2

c
, F = B1 ∪ B2, K = max(N1, N2);

∀ f j ∈ F and zi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

̂W( f j ) =

⎧

⎪

⎨

⎪

⎩

̂I1
c
( f 1j ), if f j ∈ B1 − B2,

̂I2
c
( f 2j ), if f j ∈ B2 − B1,

̂I1
c
( f 1j ) � ̂I2

c
( f 2j ), if f j ∈ B1 ∩ B2.

R.H.S:
we have (̂I1,B1, N1) and (̂I2,B2, N2) are two CPHFNSS
over Z then taking extended union with given conditions in
R.H.S, is described as:

(̂M,F ,K) = (̂I1,B1, N1) � (̂I2,B2, N2)

where ̂M = ̂I1 � ̂I2, F = B1 ∪ B2 and K = max(N1, N2);
∀ f j ∈ F and zi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

̂M( f j ) =

⎧

⎪

⎨

⎪

⎩

̂I1( f 1j ), if f j ∈ B1 − B2,

̂I2( f 2j ), if f j ∈ B2 − B1,

̂I1( f 1j ) � ̂I2( f 2j ), if f j ∈ B1 ∩ B2.

Now, by using the definition of weak complement we have,

̂M
c( f j ) =

⎧

⎪

⎨

⎪

⎩

̂I1
c
( f 1j ), if f j ∈ B1 − B2,

̂I2
c
( f 2j ), if f j ∈ B2 − B1,

̂I1
c
( f 1j ) � ̂I2

c
( f 2j ), if f j ∈ B1 ∩ B2.

Then, ̂W( f j )) = ̂M
c( f j ); ∀ f j ∈ F .

Hence L.H.S = R.H.S.
Thus, (iv) is hold. ��
Proof (vi) L.H.S:
Let (̂I1,B1, N1) and (̂I2,B2, N2)

(

where ̂I1 : B1 → I(Z)×
R and ̂I2 : B2 → I(Z) × R

)

be two CPHFNSS on Z . Then
by using the definition of weak complement and soft max-
AND operation, we have,

(̂X,G,K) =
(

̂I1
c
,B1, N1

)

∧
(

̂I2
c
,B2, N2

)

,

where ̂X = ̂I1
c ∧ ̂I2

c
, G = B1 × B2, K = max(N1, N2);

∀(gu, gv) ∈ (B1 × B2), gu, gv ∈ �and zi ∈ Z ,
〈

(zi , ri(u,v)), h
̂X

(

r
̂Xm

(zi , ri(u,v))e
2π iω

̂Xm
(zi ,ri(u,v))

∣

∣

∣P
̂Xm

)〉

∈
̂X(g(u,v)) ⇐⇒ ri(u,v) = max(r �

i(u,v), r�

i(u,v)) and

r
̂Xm

(zi , ri(u,v))e
2π iω

̂Xm
(zi ,ri(u,v))

∣

∣

∣P
̂Xm

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

r
̂I1

c
m
(zi , r �

i(u,v))e
2π iω

̂I1
c
m

(zi ,r
�

i(u,v)
)
∣

∣

∣P
̂I1

c
m
, if m ∈ h

̂I1
c
m

− h
̂I2

c
m
,

r
̂I2

c
m
(zi , r�

i(u,v))e
2π iω

̂I2
c
m

(zi ,r
�

i(u,v)
)
∣

∣

∣P
̂I2

c
m
, if m ∈ h

̂I2m
− h

̂I1
c
m
,

max
{

r
̂I1

c
m
(zi , r �

i(u,v)), r
̂I2m

(zi , r�

i(u,v))
}

e
2π imax

{

ω
̂I1

c
m

(zi ,r
�

i(u,v)
),ω

̂I2
c
m

(zi ,r
�

i(u,v)
)

}

∣

∣

∣P
̂I1

c
m

· P
̂I2

c
m
, if m ∈ h

̂I1
c
m

∩ h
̂I2

c
m
.

with r �

i(u,v) ∈ ̂I1
c
(b1(u,v)) and r�

i(u,v) ∈ ̂I2
c
(b2(u,v)) while

b1(u,v) ∈ B1 and b2(u,v) ∈ B2.
R.H.S:
Let (̂I1,B1, N1) and (̂I2,B2, N2)

(

where ̂I1 : B1 → I(Z)×
R and ̂I2 : B2 → I(Z)× R

)

by using definition of soft min-
OR and given conditions in R.H.S, we have

(̂I1,B1, N1) ∨ (̂I2,B2, N2) = (̂N,G,K),

where ̂N : G → I(Z) × R such that ̂N = ̂I1 ∩ ̂I2 and
G = B1 × B2; ∀(gu, gv) ∈ (B1 × B2), gu, gv ∈ � and
K = max(N1, N2),
〈

(zi , ri(u,v)), h
̂N

(

r
̂Nm

(zi , ri(u,v))e
2π iω

̂Nm
(zi ,ri(u,v))

∣

∣

∣P
̂Nm

)〉

∈
̂N(gu, gv) ⇐⇒ ri(u,v) = max(r �

i(u,v), r�

i(u,v)) and
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r
̂Nm

(zi , ri(u,v))e
2π iω

̂Nm
(zi ,ri(u,v))

∣

∣

∣P
̂Nm

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r
̂I1m

(zi , r �

i(u,v))e
2π iω

̂I1m
(zi ,r

�

i(u,v)
)
∣

∣

∣P
̂I1m

, if m ∈ h
̂I1m

− h
̂I2m

,

r
̂I2m

(zi , r�

i(u,v))e
2π iω

̂I2m
(zi ,r

�

i(u,v)
)
∣

∣

∣P
̂I2m

, if m ∈ h
̂I2m

− h
̂I1m

,

min
{

r
̂I1m

(zi , r �

i(u,v)), r
̂I2m

(zi , r�

i(u,v))
}

e
2π imin

{

ω
̂I1m

(zi ,r
�

i(u,v)
),ω

̂I2m
(zi ,r

�

i(u,v)
)

}

∣

∣

∣P
̂I1m

· P
̂I2m

, if m ∈ h
̂I1m

∩ h
̂I2m

.

Fig. 1 Flowchart of Algorithm 4.1
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with (zi , r �

i(u,v)) ∈ ̂I1(B1) and (zi , r�

i(u,v)) ∈ ̂I2(B2). Now,

by taking the weak complement we get ̂Nc(gu, gv)

=
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⎪
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⎪

⎪
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⎪

⎪
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⎩
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̂I1
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(zi , r �

i(u,v))e
2π iω
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(zi ,r
�

i(u,v)
)
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∣

∣P
̂I1

c
m
, if m ∈ h

̂I1
c
m

− h
̂I2
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m
,

r
̂I2
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m
(zi , r�

i(u,v))e
2π iω

̂I2
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m

(zi ,r
�

i(u,v)
)
∣

∣

∣P
̂I2

c
m
, if m ∈ h

̂I2m
− h

̂I1
c
m
,

max
{

r
̂I1

c
m
(zi , r �

i(u,v)), r
̂I2m

(zi , r�

i(u,v))
}

e
2π imax

{

ω
̂I1

c
m

(zi ,r
�

i(u,v)
),ω

̂I2
c
m

(zi ,r
�

i(u,v)
)

}

∣

∣

∣P
̂I1

c
m

· P
̂I2

c
m
, if m ∈ h

̂I1
c
m

∩ h
̂I2

c
m
.

with r �

i(u,v) ∈ ̂I1
c
(b1(u,v)) and r�

i(u,v) ∈ ̂I2
c
(b2(u,v)) while

b1(u,v) ∈ B1 and b2(u,v) ∈ B2.

Then, ̂X(g(u,v)) = ̂N
c(gu, gv); ∀(gu, gv) ∈ (B1 × B2).

Hence L.H.S = R.H.S.
Thus, (vi) is hold. ��
The proof of (iv), (v) and (vii) are similar to (ii), (iii) and (vi).

5 Algorithms

Choosing the best approach to solve a problem is frequently
essential to get the best result. The method that people use
to make decisions is algorithms. An algorithm is a predeter-
mined series of detailed steps that offers the ideal solution
to a specific problem. It is preferable to use an algorithm if
perfect accuracy is required because accuracy is improved
and the likelihood of errors is decreased by the use of an
algorithm. Using an algorithm is your quality alternative if
you are working in a scenario where you truly need to have
the proper or high-quality solution. Here, we introduced two
algorithms based on CPHF information with parameterized
family and grading for decision-making where the choice of
first algorithm is best if there exists a single expert for eval-
uation or construct a single evaluation by the committee and
second algorithm is best if there exist two ormore evaluations
by the experts.

Algorithm 5.1
Step 1: The input consist of the universal set Z =
{z1, z2, z3, ..., zl} and a set of attributes B where B ⊆ H.
Step 2: Determine CPHFNSS (̂I,B, N ) where ̂I : B →
I(Z) × R on Z while using the grading set.
Step 3: Construct tables separately for r̂

I
, ω̂

I
, and P̂

I
of com-

plex valued membership of CPHFNSS (̂I,B, N ).
Step 4: Calculate the choice value Ĉ for the amplitude term
Ĉ(r̂

I
) and the phase term Ĉ(ω̂

I
) by calculating the average

and for the probability Ĉ(P̂
I
) by calculating their product.

Step 5: Quantify the comparison tables of amplitude term
C̄(r̂

I
) and the phase term C̄(ω̂

I
), where

C̄(zi , zi ′) = ∑

b j ∈B

(

if zi w.r.t b j ≥ zi ′ w.r.t b j then 1 otherwise

0
)

where i, i ′ = {1, 2, 3, ... no. of universal objects}.

Step 6: Design the table for grade sum, row and column sum
for amplitude and phase term.
Step 7: Figure out the score of amplitude term S̄(r̂

I
) and

phase term S̄(ω̂
I
) by subtracting the column sum from the

row sum and for probability S̄(P̂
I
) by calculating the prod-

uct of choice values.
Step 8: Compute the final score S̄ by multiplying with the
probability score value after adding the score of amplitude
and phase terms.
Step 9: Any of the alternative is selected as optimal decision
with the highest score and highest grade.

The flowchart of Algorithm 4.1 is shown in Fig. 1:

Algorithm 5.2
Step 1: The input consist of the universal set Z =
{z1, z2, z3, ..., zl} and a set of attributes B where B ⊆ H.
Step 2: Determine CPHFNSSs (̂I1,B1, N1) and (̂I1,B1, N1)

where ̂I1 : B1 → I(Z)× R and ̂I2 : B2 → I(Z)× R on Z .
Step 3: Evaluate

(̂I1,B1, N1) ∧ (̂I2,B2, N2) = (̂L,G,K),

where ̂L : G → I(Z) × R such that ̂L = ̂I1 ∪ ̂I2 and
G = B1 × B2; ∀(gu, gv) ∈ (B1 × B2), gu, gv ∈ � and
K = max(N1, N2),

Step 4: Calculate choice value Ĉ(gu, gv)(zi ); ∀ zi ∈
Z, (gu, gv) ∈ (B1 × B2) defined as:

Ĉ(gu, gv)(zi ) =
∑

m

(

r
̂Lm

(zi ) × ω
̂Lm

(zi )
)

∑

m

(

r
̂Lm

(zi )
)

∣

∣

∣

∣

∏

m

P̂
Lm

,

where m = 1, 2, 3, ..., l and l is the possible number of ele-

ments in h
̂L

(

r
̂Lm

(zi )e
2π iω

̂Lm
(zi )

∣

∣

∣P̂
Lm

)

.

Step 5: Evaluate score values Ŝ(gu, gv)(zi ) the product
of Ĉ(gu, gv) with corresponding probability and grading
against each zi .
Step 6: The weighted values for each S̄(gu, gv)(zi ) is:

S̄(zi ) = max S̄(gu, gv)(zi ).
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Fig. 2 Flowchart of Algorithm 4.2

Table 13 Star evaluation of anesthesia machine

Z/B b1 b2 b3 b4 b5 b6 b7

z1 ��� ���� �� ���� �� � ���

z2 ���� ��� � ��� �� �� �

z3 � �� ���� �� ���� �� �
z4 � � ���� � ��� ���� ��

z5 �� ��� ��� � �� ���� ��

z6 ���� ��� � ��� �� ��� ����

Table 14 5-soft set by Table 13

5-soft set b1 b2 b3 b4 b5 b6 b7

z1 3 4 2 4 2 1 3

z2 4 3 1 3 2 2 1

z3 1 2 4 2 4 2 0

z4 0 1 4 0 3 4 2

z5 2 3 3 1 2 4 2

z6 4 3 0 3 2 3 4

where (gu, gv)) ∈ (B1 × B2) and zi ∈ Z .
Step 7: Calculate the sum of each zi . Then the optimal deci-
sion is in the form of series in the descending order.

The flowchart of Algorithm 4.2 is shown in Fig. 2:
We go on to apply these algorithms to fully developed

real-world scenarios in order to demonstrate their value and
viability.

6 Applications

This section uses applications and case studies of our sug-
gested sets to demonstrate the validity and superiority of

the research where we are using parameterized families and
grading with fuzziness, hesitancy, and randomness together.
Which plays a very significant role in taking decisions in a
short interval of time and as accurately as we can.

Case study 6.1 The management of the X hospital wants to
purchase an anesthesia machine for its department. Medical
professionals use anesthesia machines to deliver a precise
and consistent flow of anesthetic gases during anesthesia
administration. Oxygen, isoflurane, and nitrous oxide gases
are used. The gases should deliver at a secure pressure and
in a truly united flow to the patient. Because of this, con-
temporary anesthesia machines are equipped with a suction
unit, a ventilator, and patient monitoring tools. In addi-
tion, they comprise touchscreen monitors and displays that
remain focused on the patient’s heart rate and oxygen satu-
ration level. Furthermore, an anesthesia machine’s primary
function is to regulate a patient’s level of consciousness
during a surgical procedure. It’s necessary to buy effec-
tive devices because they will ensure the patient’s safety.
The management of the hospital accomplishes this by hir-
ing experts and giving them six different machines. Let
Z = {z1, z2, z3, z4, z5, z6} be the set of anesthesia machines.
To choose the best model the concern department wants that
following features should be under consideration B = {b1 =
“ventilator system,” b2 = “safety features,” b3 = “gas deliv-
ery system,” b4 = “cost and life span,” b5 = “vaporizer
technology, b6 = “dimensions,” b7 = “audio-visual alarms
for high/low set values of different parameters” }. Table 13
can be used to create a 5-soft set which consists of the evalu-
ation of anesthesia machine by the expert concerning star
rating where 4 stars represent excellent working, 3 stars
represent good, 2 stars represent normal, 1 star represents
satisfactory and the box represents unsatisfactory perfor-
mance.
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) For convenience, we will convert Table 13 in 5-soft set,

as represented in Table 14.
When this information is precisely and ambiguously

extracted from actual data, it is sufficient then it has to do
with the N-soft set theory. However, if the rating is ambigu-
ous, hesitant or random thenwemight need to useCPHFNSS.
Then, the CPHF 5-soft set is evaluated in Table 15. By using
step 3 of Algorithm 5.1, we construct tables separately for
r̂
I
, ω̂

I
, and P̂

I
as illustrated in Tables 16, 17 and 18.

By using step 4 of Algorithm 5.1, we will calculate the
choice value of Ĉ(r̂

I
), Ĉ(ω̂

I
) and Ĉ(P̂

I
), as illustrated inTables

19, 20 and 21.
After this, we will quantify the comparison tables for

amplitude and phase terms by using step 5 of Algorithm 5.1,
as represented in Tables 22 and 23.

Thenwewill construct tables by using step 6 of Algorithm
5.1 for grade sum, row and column sum for amplitude and
phase terms, representing in Table 24.

Now, we will design the table for score values by using
steps 7 and 8 of Algorithm 5.1, represented in Table 25.

However, z6 have highest grading with highest score
value. Therefore, the management of the hospital will select
the z6 anesthesia machine for its department.

The graphical representation of ranking is shown in Fig. 3.

Case study 6.2 Pakistan is the fifth most populous nation in
the world with a total population of about 230 million (Pop-
ulation of Pakistan (xxxx)). According to 2020–2022, the
poverty rate is around about 39 percent (Poverty rate of Pak-
istan (xxxx)). Numerous infectious diseases are prevalent
in Pakistan as a result of the country’s dense population,
poverty, and inadequate healthcare infrastructure. Accord-
ing to World Health Organization (WHO), infectious diseases
remained one of the leading causes of death. Infectious dis-
eases are a disorder brought on by microorganisms like
bacteria, viruses, fungi, or parasites. Infectious diseases
include COVID-19, dengue, TB, malaria, measles, hepati-
tis, etc., that require proper monitoring or treatment and
can result in hospitalizations, long-term impairment, lower
quality of life, and even mortality. Infectious diseases have a
negative impact on many people’s life quality and health.

According to WHO, the total cases of COVID-19 from
January 3, 2020, to August 23, 2022, were 1,566,652 and
the death cases were 30,555 (Covid-19 cases of Pakistan
(xxxx)). Last year, 52,894 dengue cases together with 224
deaths (Dengue fever cases of Pakistan (2021)). There are
more cases of tuberculosis (TB) than ever before, with over
27,000 new cases being reported yearly. The incidence rate of
tuberculosis is 5,25,000 per year, according to data from the
national TB control program; however, 3,68,589 TB patients
are currently receiving treatment, and 56,000 TB-related
fatalities occur annually in Pakistan (Tuberculosis cases in
Pakistan (2020)). Globally, there were reportedly 229 million
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Table 16 Representation of the
amplitude term

r̂
I

b1 b2 b3 b4 b5 b6 b7

z1 {0.5, 0.6} 0.9 {0.4, 0.5} {0.9, 0.8} {0.5, 0.5} {0.3, 0.4} {0.6, 0.7}
z2 0.8 {0.5, 0.7} 0.4 0.6 {0.4, 0.4} {0.5, 0.4} 0.3

z3 {0.6, 0.7} 0.4 {0.9, 0.9} 0.6 {0.8, 0.6} 0.6 {0.1, 0.2}
z4 {0.1, 0.1} 0.4 {0.7, 0.9} 0.2 {0.5, 0.7} 0.8 0.5

z5 0.6 0.7 {0.6, 0.7} {0.4, 0.3} 0.4 0.9 0.5

z6 0.9 0.6 0.1 {0.5, 0.6} {0.4, 0.8} {0.6, 0.4} {0.9, 0.9}

Table 17 Representation of the
phase term

ω̂
I

b1 b2 b3 b4 b5 b6 b7

z1 {0.6, 0.6} 0.8 {0.8, 0.6} {0.7, 0.8} {0.6, 0.8} {0.5, 0.5} {0.3, 0.6}
z2 0.6 {0.9, 0.5} 0.6 0.9 {0.5, 0.8} {0.3, 0.2} 0.8

z3 {0.6, 0.4} 0.5 {0.6, 0.9} 0.4 {0.7, 0.4} 0.6 {0.5, 0.3}
z4 {0.2, 0.3} 0.3 {0.9, 0.8} 0.2 {0.4, 0.8} 0.9 0.4

z5 0.5 0.5 {0.5, 0.4} {0.3, 0.3} 0.4 0.9 0.3

z6 0.9 0.7 0.1 {0.7, 0.8} {0.6, 0.5} {0.6, 0.4} {0.8, 0.9}

Table 18 Representation of the
probability

P̂
I

b1 b2 b3 b4 b5 b6 b7

z1 {0.4, 0.6} 1 {0.2, 0.8} {0.3, 0.7} {0.2, 0.8} {0.1, 0.9} {0.4, 0.6}
z2 1 {0.5, 0.5} 1 1 {0.2, 0.8} {0.3, 0.7} 1

z3 {0.1, 0.9} 1 {0.1, 0.9} 1 {0.4, 0.6} 1 {0.5, 0.5}
z4 {0.4, 0.6} 1 {0.3, 0.7} 1 {0.1, 0.9} 1 1

z5 1 1 {0.2, 0.8} {0.4, 0.6} 1 1 1

z6 1 1 1 {0.3, 0.7} {0.4, 0.6} {0.2, 0.8} {0.5, 0.5}

cases of malaria in 2019 with an estimated 409,000 deaths.
According to Pakistan’s annual report for 2019, 6.5 million
malaria suspects were checked at public sector health facili-
ties across the country, resulting in a total of 374,513 verified
malaria cases (Butt and Ahmed 2022). One of the top five
nations in the world including the highest measles prevalence
rates in Pakistan. Although an effective and safe vaccine
against measles is available, recent setbacks in the campaign
to eradicate the disease are concerning. Measles cases were
reported 84 percent fewer times worldwide between 2000 and
2016 thanks to immunization. Unexpectedly, the number of
cases of measles surged between 2016 and 2019 (Rana et al.
2022). The laboratory surveillance system recorded more
than 34,000 measles cases in 2018 and 8,345 measles cases
in 2019. Each year, measles kills about 20,000 children in
Pakistan (Mere et al. 2019). Pakistan has the second-highest
prevalence of the disease Hepatitis C with 9.8 million per-
sons suffering from chronic Hepatitis C (Hepatitis in Pakistan
2022).

Table 19 Choice value of the amplitude term

Ĉ(r̂
I
) b1 b2 b3 b4 b5 b6 b7

z1 0.55 0.9 0.45 0.85 0.5 0.35 0.65

z2 0.8 0.6 0.4 0.6 0.4 0.45 0.3

z3 0.65 0.4 0.9 0.6 0.7 0.6 0.15

z4 0.1 0.4 0.8 0.2 0.6 0.8 0.5

z5 0.6 0.7 0.65 0.35 0.4 0.9 0.5

z6 0.9 0.6 0.1 0.55 0.6 0.5 0.9

According to WHO these infectious diseases are included
in the top 10 diseases which are the globally leading cause of
death. But the one major issue with these infectious diseases
is that their symptoms or clinical characteristics showed
a significant degree of similarity, as indicated in Table 26
Rana et al. (2021). The clinical profile of COVID-19 is fre-
quently mistaken for those of several infectious illnesses,
which makes early identification difficult. The co-epidemic
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Table 20 Choice value of the phase term

Ĉ(ω̂
I
) b1 b2 b3 b4 b5 b6 b7

z1 0.6 0.8 0.7 0.75 0.7 0.5 0.45

z2 0.6 0.7 0.6 0.9 0.65 0.25 0.8

z3 0.5 0.5 0.75 0.4 0.55 0.6 0.4

z4 0.25 0.3 0.85 0.2 0.6 0.9 0.4

z5 0.5 0.5 0.45 0.3 0.4 0.9 0.3

z6 0.9 0.7 0.1 0.75 0.55 0.5 0.85

Table 21 Choice value of the probability

Ĉ(P̂
I
) b1 b2 b3 b4 b5 b6 b7

z1 0.24 1 0.16 0.21 0.16 0.09 0.24

z2 1 0.25 1 1 0.16 0.21 1

z3 0.09 1 0.09 1 0.24 1 0.25

z4 0.24 1 0.21 1 0.09 1 1

z5 1 1 0.16 0.24 1 1 1

z6 1 1 1 0.21 0.24 0.16 0.25

Table 22 Comparison of the
amplitude term

C̄(r̂
I
) z1 z2 z3 z4 z5 z6

z1 7 5 3 4 4 3

z2 2 7 4 3 3 3

z3 4 4 7 5 4 4

z4 3 4 3 7 3 3

z5 3 5 3 5 7 3

z6 4 5 3 5 4 7

Table 23 Comparison of the
phase term

C̄(ω̂
I
) z1 z2 z3 z4 z5 z6

z1 7 5 5 5 6 5

z2 3 7 5 5 6 4

z3 2 2 7 5 6 3

z4 2 2 4 7 4 3

z5 1 1 3 4 7 2

z6 4 4 5 4 5 7

Table 24 Representation of the grade sum

Grade
sum

Row sum
(r̂

I
)

Column
sum (r̂

I
)

Row sum
(ω̂

I
)

Column
sum (ω̂

I
)

z1 19 26 23 33 19

z2 16 22 30 30 21

z3 15 28 23 25 29

z4 14 23 29 22 30

z5 17 26 25 18 34

z6 19 28 23 29 24

Table 25 Representation of the score values

Grade sum S̄(r̂
I
) S̄(ω̂

I
) S̄(P̂

I
) S̄

z1 19 3 14 0.0000278 0.000474

z2 16 −8 9 0.0084 0.0084

z3 15 5 −4 0.000486 0.000486

z4 14 −6 −8 0.004536 −0.0635

z5 17 1 −16 0.0384 −0.576

z6 19 5 5 0.002016 0.02016

of COVID-19 and prevalent infectious disease in Pakistan
presents several public health issues, and such complex com-
binations not only make diagnosis more difficult but also
place a double load on the country’s already frail healthcare
system. The availability of various kits, the ability to perform
diagnostic procedures, available funding, and technical staff
are all factors in the diagnostic process of several pathogens
with comparable clinical characteristics. While infectious
diseases are the main reason for death and disability of the
nation. Thus, if society wants to provide citizens with better
healthcare and raise their standard of living generally, it is
crucial that we understand, manage, and prevent infectious
diseases. Doctors can use Algorithm 5.2 scores to determine
a patient’s overall prognosis, and researchers can use them
to find particular hazards that persons with several infectious
conditions face. Here we illustrate the numerical example for
better understanding.

There exist two doctors for the examination of patients. Let
Z = {z1, z2, z3, z4, z5}be the set of diseases and the set of the
attribute consist of common symptoms or clinical character-
istics of the set of diseases which is under consideration that
is, B = {b1, b2, b3} and R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be
the set of ordered grades concerning the severity of disease,
where zero represents that there exists no severity of the dis-
ease, while 9 indicates the entire severity of the disease. The
doctors will collect the data in CPHFNSS where the ampli-
tude term of membership grade represents the belongingness
of the disease and the phase term represents the durability of
the symptom concerning the disease while probability indi-
cates how likely is that a particular statement given by the
patient is accurate. Tables 27 and 28 represent the data col-
lected by the doctors from the patient.

Now we will run Algorithm 5.2. By using Step 3: we will
apply soft max-AND operator, as represented in Table 29.

By using step 4 of Algorithm 5.2, we will calculate the
choice value, as represented in Table 30.

By using step 5 of Algorithm 5.2, we will evaluate the score
value, as represented in Table 31.

By using step 6 of Algorithm 5.2, we will evaluate the
weighted value, as represented in Table 32.
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Fig. 3 Ranking results

Table 26 Overlapping of
clinical characteristics of
infectious diseases

Clinical symptoms COVID-19 Dengue TB Malaria Measles Hepatitis

Fever � � � � � � � � � � � � � � � � �
Headache � � � � � � � � � � � � � � �
Rash � � � � � � � �
Myalgia � � � � � � � � � � � � � �
Cough � � � � � � � �
Sore throat � � - � � � -

Diarrhea � � � � � � � � � �
Vomiting � � � � � � � �
Chest pain � � � � � � � � -

Table 27 Data collected by the
doctor 1

(̂I1,B1, 10) b1 b2 b3

z1

(

4,

{

0.7e2π i0.7|0.5,
0.6e2π i0.7|0.5

}) (

6,

{

0.3e2π i0.8|0.4,
0.2e2π i0.4|0.6

})

(

2,
{

0.3e2π i0.9|1 })

z2
(

9,
{

0.6e2π i0.6|1 })

(

0,

{

0.8e2π i0.4|0.1,
0.6e2π i0.1|0.9

}) (

8,

{

0.3e2π i0.8|0.3,
0.3e2π i0.5|0.7

})

z3
(

7,
{

0.4e2π i0.7|1 }) (

7,
{

0.5e2π i0.6|1 })

(

4,

{

0.4e2π i0.3|0.3,
0.5e2π i0.8|0.7

})

z4

(

1,

{

0.2e2π i0.9|0.4,
0.5e2π i0.3|0.6

})

(

7,
{

0.3e2π i0.8|1 }) (

3,
{

0.2e2π i0.1|1 })

z5

(

3,

{

0.4e2π i0.6|0.2,
0.8e2π i0.6|0.8

}) (

5,

{

0.3e2π i0.2|0.1,
0.6e2π i0.4|0.9

})

(

1,
{

0.1e2π i0.1|1 })

By using step 7 of Algorithm 5.2.

S̄(z1) = 8.1, S̄(z2) = 5.4, S̄(z3) = 21.56,

S̄(z4) = 5.6, S̄(z5) = 0.

S̄(z3) ≥ S̄(z1) ≥ S̄(z4) ≥ S̄(z2) ≥ S̄(z5)

This indicates that the patient has greater chances to suffer
with infectious disease z3 as compared to other infectious
diseases and the doctor will start laboratory testing for z3.

The graphical representation of ranking is shown in Fig. 4.

7 Comparison analysis

In order to solve a real-world difficult issues, we devel-
oped a strategy using the theory of constraints in conjunction
withmultiattribute andmultiobjective decision-making tech-
niques. We discussed two algorithms under the CPHFNSS.
Without respect to the existence of a unique optimum solu-
tion, both methods provide an ordered list of all feasible
alternatives. When such information as CPHFNSS is pre-
sented to a decision-maker, none of the current works are
able to adequately deal with it. While the proposed approach
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Table 28 Data collected by the
doctor 2

(̂I2,B2, 10) b1 b2 b3

z1

(

3,

{

0.8e2π i0.7|0.5,
0.7e2π i0.6|0.5

})

(

7,
{

0.2e2π i0.5|1 }) (

2,
{

0.3e2π i0.9|1 })

z2
(

8,
{

0.5e2π i0.5|1 })

(

1,

{

0.9e2π i0.5|0.4,
0.8e2π i0.3|0.6

})

(

8,
{

0.3e2π i0.5|1 })

z3
(

8,
{

0.5e2π i0.7|1 }) (

7,
{

0.5e2π i0.6|1 })

(

3,

{

0.5e2π i0.6|0.4,
0.5e2π i0.8|0.6

})

z4

(

0,

{

0.3e2π i0.8|0.4,
0.4e2π i0.4|0.6

}) (

8,

{

0.3e2π i0.8|0.4,
0.4e2π i0.8|0.6

})

(

2,
{

0.1e2π i0.1|1 })

z5

(

3,

{

0.4e2π i0.6|0.2,
0.8e2π i0.6|0.8

}) (

6,

{

0.4e2π i0.3|0.2,
0.6e2π i0.5|0.8

})

(

2,
{

0.2e2π i0.1|1 })

Table 29 Tabular representation
of collected data after applying
soft max-AND operation

(̂L,G, 10) b1 × b1 b1 × b2 b1 × b3

z1

(

4,

{

0.8e2π i0.7|0.25,
0.7e2π i0.7|0.25

}) (

7,

{

0.7e2π i0.7|0.5,
0.6e2π i0.7|0.5

}) (

4,

{

0.7e2π i0.9|0.5,
0.6e2π i0.7|0.5

})

z2
(

9,
{

0.6e2π i0.6|1 })

(

9,

{

0.9e2π i0.6|0.4,
0.8e2π i0.3|0.6

})

(

9,
{

0.6e2π i0.6|1 })

z3
(

8,
{

0.5e2π i0.7|1 }) (

7,
{

0.5e2π i0.7|1 })

(

7,

{

0.5e2π i0.7|0.4,
0.7e2π i0.8|0.6

})

z4

(

1,

{

0.3e2π i0.9|0.16,
0.5e2π i0.4|0.36

}) (

8,

{

0.3e2π i0.9|0.16,
0.5e2π i0.8|0.36

}) (

2,

{

0.2e2π i0.9|0.4,
0.5e2π i0.3|0.6

})

z5

(

3,

{

0.4e2π i0.6|0.04,
0.8e2π i0.6|0.64

}) (

6,

{

0.4e2π i0.6|0.04,
0.8e2π i0.6|0.64

}) (

3,

{

0.4e2π i0.6|0.2,
0.8e2π i0.6|0.8

})

(̂L,G, 10) b2 × b1 b2 × b2 b2 × b3

z1

(

6,

{

0.8e2π i0.8|0.2,
0.7e2π i0.6|0.3

}) (

7,

{

0.3e2π i0.8|0.4,
0.2e2π i0.4|0.6

}) (

6,

{

0.3e2π i0.9|0.4,
0.2e2π i0.4|0.6

})

z2

(

8,

{

0.8e2π i0.5|0.1,
0.6e2π i0.1|0.9

}) (

1,

{

0.9e2π i0.5|0.04,
0.8e2π i0.3|0.0.54

}) (

8,

{

0.8e2π i0.5|0.1,
0.6e2π i0.1|0.9

})

z3
(

8,
{

0.5e2π i0.7|1 }) (

7,
{

0.5e2π i0.6|1 })

(

7,

{

0.5e2π i0.6|0.4,
0.5e2π i0.8|0.6

})

z4

(

7,

{

0.3e2π i0.8|0.4,
0.4e2π i0.4|0.6

}) (

8,

{

0.3e2π i0.8|0.4,
0.4e2π i0.8|0.6

})

(

7,
{

0.3e2π i0.8|1 })

z5

(

5,

{

0.4e2π i0.6|0.02,
0.8e2π i0.6|0.72

}) (

6,

{

0.4e2π i0.3|0.02,
0.6e2π i0.5|0.72

}) (

5,

{

0.3e2π i0.2|0.1,
0.6e2π i0.4|0.9

})

(̂L,G, 10) b3 × b1 b3 × b2 b3 × b3

z1

(

3,

{

0.8e2π i0.9|0.5,
0.7e2π i0.6|0.5

})

(

7,
{

0.3e2π i0.9|1 }) (

2,
{

0.3e2π i0.9|1 })

z2

(

8,

{

0.5e2π i0.8|0.3,
0.3e2π i0.5|0.7

}) (

8,

{

0.9e2π i0.8|0.12,
0.8e2π i0.5|0.42

}) (

8,

{

0.3e2π i0.8|0.3,
0.3e2π i0.5|0.7

})

z3

(

8,

{

0.5e2π i0.7|0.3,
0.5e2π i0.8|0.7

}) (

7,

{

0.5e2π i0.6|0.3,
0.5e2π i0.8|0.7

}) (

4,

{

0.5e2π i0.6|0.12,
0.5e2π i0.8|0.42

})

z4

(

3,

{

0.3e2π i0.8|0.4,
0.4e2π i0.4|0.6

}) (

8,

{

0.3e2π i0.8|0.4,
0.4e2π i0.8|0.6

})

(

3,
{

0.2e2π i0.1|1 })

z5

(

3,

{

0.4e2π i0.6|0.2,
0.8e2π i0.6|0.8

}) (

6,

{

0.4e2π i0.3|0.2,
0.6e2π i0.5|0.8

})

(

2,
{

0.2e2π i0.1|1 })

can also dealwith the existing approaches (Zadeh 1965;Torra
2010; Akram et al. 2019a, b; Garg et al. 2021; Zhang et al.
2017; Mahmood et al. 2021) information. To illustrate the

efficacy of the suggested technique in comparison to the
current ones for multi-parameter decision-making, a com-
parative study employing different structures provided by

123



Early infectious diseases identification based on complex probabilistic 18307

Table 30 Tabular representation
of choice value Ĉ b1 × b1 b1 × b2 b1 × b3

z1
(

4, 0.7
∣

∣0.0625
) (

7, 0.7
∣

∣0.25
) (

4, 0.807692
∣

∣0.25
)

z2
(

9, 0.6
∣

∣1
) (

9, 0.458824
∣

∣0.24
) (

9, 0.6
∣

∣1
)

z3
(

8, 0.7
∣

∣1
) (

7, 0.7
∣

∣1
) (

7, 0.75
∣

∣0.24
)

z4
(

1, 0.5875
∣

∣0.0576
) (

8, 0.8375
∣

∣0.0576
) (

2, 0.471429
∣

∣0.24
)

z5
(

3, 0.6
∣

∣0.0256
) (

6, 0.6
∣

∣0.0256
) (

3, 0.6
∣

∣0.16
)

Ĉ b2 × b1 b2 × b2 b2 × b3

z1
(

6, 0.7066667
∣

∣0.06
) (

7, 0.64
∣

∣0.24
) (

6, 0.7
∣

∣0.24
)

z2
(

8, 0.328571
∣

∣0.09
) (

1, 0.405882
∣

∣0.0216
) (

8, 0.328571
∣

∣0.09
)

z3
(

8, 0.7
∣

∣1
) (

7, 0.6
∣

∣1
) (

7, 0.7
∣

∣0.24
)

z4
(

7, 0.571429
∣

∣0.24
) (

8, 0.8
∣

∣0.24
) (

7, 0.8
∣

∣1
)

z5
(

5, 0.6
∣

∣0.0144
) (

6, 0.42
∣

∣0.0144
) (

5, 0.3333
∣

∣0.09
)

Ĉ b3 × b1 b3 × b2 b3 × b3

z1
(

3, 0.76
∣

∣0.25
) (

7, 0.9
∣

∣1
) (

2, 0.9
∣

∣1
)

z2
(

8, 0.6875
∣

∣0.21
) (

8, 0.658824
∣

∣0.0504
) (

8, 0.65
∣

∣0.21
)

z3
(

8, 0.75
∣

∣0.21
) (

7, 0.7
∣

∣0.21
) (

4, 0.7
∣

∣0.0504
)

z4
(

3, 0.571429
∣

∣0.24
) (

8, 0.8
∣

∣0.24
) (

3, 0.1
∣

∣1
)

z5
(

3, 0.6
∣

∣0.16
) (

6, 0.42
∣

∣0.16
) (

2, 0.1
∣

∣1
)

Table 31 Tabular representation
of score value Ŝ b1 × b1 b1 × b2 b1 × b3

z1 0.175 1.225 0.807692

z2 5.4 0.99106 5.4

z3 5.6 4.9 1.26

z4 0.03384 0.38592 0.226286

z5 0.04608 0.09216 0.288

Ŝ b2 × b1 b2 × b2 b2 × b3

z1 0.2544 1.0752 1.008

z2 0.236571 0.008767 0.236571

z3 5.6 4.2 1.176

z4 0.960001 1.563 5.6

z5 0.0432 0.036288 0.14999

Ŝ b3 × b1 b3 × b2 b3 × b3

z1 0.57 6.3 1.8

z2 1.155 0.265638 1.092

z3 1.26 1.029 0.14112

z4 0.411429 1.536 0.3

z5 0.288 0.4032 0.2
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Table 32 Tabular representation
of weighted value

S̄(gu , gv)(zi ) Weighted value S̄(gu , gv)(zi ) Weighted value

S̄(b1, b1)(z3) 5.6 S̄(b2, b3)(z4) 5.6

S̄(b1, b2)(z3) 4.9 S̄(b3, b1)(z3) 1.26

S̄(b1, b3)(z2) 5.4 S̄(b3, b2)(z1) 6.3

S̄(b2, b1)(z3) 5.6 S̄(b3, b3)(z1) 1.8

S̄(b2, b2)(z3) 4.2

Fig. 4 Ranking results

Table 33 Analytical comparison with existing approaches

Methods Grading Membership 2-D Probability Hesitancy Multi-parameter

Zadeh (1965) No Yes No No No No

Torra (2010) No Yes No No Yes No

Akram et al. (2019a) Yes Yes No No Yes Yes

Akram et al. (2019b) Yes No No No Yes Yes

Garg et al. (2021) No Yes Yes No Yes No

Zhang et al. (2017) No Yes No Yes Yes No

Mahmood et al. (2021) Yes Yes Yes No No Yes

Proposed approach Yes Yes Yes Yes Yes Yes

Table 34 Characteristic comparison with existing approaches

Methods Capable of making
decisions using
comparison method

Capable of handling
two dimensional
information

Flexible to adapt
decision-makers’
choices

Capable of integrate
information

Soft max-AND,
min-OR operators

Zadeh (1965) No No No No No

Torra (2010) No No Yes No No

Akram et al. (2019a) Yes No Yes No No

Akram et al. (2019b) No No Yes Yes No

Garg et al. (2021) Yes Yes Yes No No

Zhang et al. (2017) Yes No Yes Yes No

Mahmood et al. (2021) Yes Yes No No No

Proposed approach Yes Yes Yes Yes Yes
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different researchers was done. The analytical comparison
of CPHFNS approach with the existing approaches is given
in Table 33 and characteristic comparison is given in Table
34. Thus, our suggested approaches are better andmore trust-
worthy than those now in use.

8 Conclusion

In this research work, we expose and motivate the idea of
complexprobabilistic hesitant fuzzyN-soft sets (CPHFNSS).
It is extremely important for improving the effectiveness
of decision-making processes in many theories of uncer-
tainty. In contrast to the soft set theory, the N-soft set theory
is emerging as a powerful mathematical tool for handling
precision and uncertainty. In this regard, N-soft set theory,
complex fuzzy set theory, as well as probabilistic hesitant
fuzzy theory, which are modified forms of soft sets and
fuzzy sets intended to capture ambiguities and uncertain
information in the application settings, are accumulated into
CPHFNSS. We split this manuscript into three major sec-
tions. Firstly, we broaden the concept of CPHFNSS and
presented its restricted and extended union, restricted and
extended intersection, weak complement, top and bottom
weak complement, soft max-AND, soft min-OR operation
and to demonstrate these essential characteristics, we offer
numerical examples. Secondly, we established their essential
laws, including the De Morgan, idempotent, commutative,
associative, involution, and idempotent laws. Finally, we
developed a set of algorithms for effective decision-making.
Also, we illustrated the examples for the selection of anes-
thesia machines and make early identification of infectious
diseases easier for doctors. Furthermore, improvements in the
treatment of infectious diseases, mental health, care quality,
and hospitalizations, as well as the potential for enhanced
population health. In the future, we may develop inno-
vative decision-making strategies such as TODIM, TAOV
or by using possibilities of hybridization with the model
“The multi-fuzzy N-soft set and its applications to decision-
making” (Fatimah and Alcantud 2021), etc.
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