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Abstract
Recently, image thresholding methods based on various entropy functions have been found popularity. Nonetheless,

entropic-based methods depend on the spatial distribution of the grey level values in an image. Hence, the accuracy of

these methods is limited due to the non-uniform distribution of the grey values. Further, the analysis of the COVID-19

X-ray images is evolved as an important area of research. Therefore, it is needed to develop an efficient method for the

segmentation of the COVID-19 X-ray images. To address these issues, an efficient non-entropy-based thresholding method

is suggested. A novel fitness function in terms of the segmentation score (SS) is introduced, which is used to reduce the

segmentation error. A soft computing approach is suggested. An efficient optimizer using the chance-based birds’ intel-

ligence is introduced to maximize the fitness values. The new optimizer is validated utilizing the benchmark test functions.

The statistical parameters reveal that the suggested optimizer is efficient. It shows a quite significant improvement over its

counterparts—optimization based on seagull/cuckoo birds. Precisely, the paper includes three novel contributions—

(i) fitness function, (ii) chance-based birds’ intelligence for optimization, (iii) multiclass segmentation. The COVID-19

X-ray images are taken from the Kaggle Radiography database, to the experiment. Its results are compared with three

different state-of-the-art entropy-based techniques—Tsallis, Kapur’s, and Masi. For providing a statistical analysis,

Friedman’s mean rank test is conducted and our method Ranked one. Its superiority is claimed in terms of Peak Signal to

Noise Ratio (PSNR), Feature Similarity Index (FSIM) and Structure Similarity Index (SSIM). On the whole, an

improvement of about 11% in PSNR values is achieved using the proposed method. This method would be helpful for

medical image analysis.
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1 Introduction

In medical image analysis, the segmentation is an essential

phase. It is needed to partition the image into several

regions. The accuracy of a segmentation methodology is

crucial. Hence, researchers try to investigate efficient

methods in this connection. The threshold selection-based

image segmentation method is the easiest one. Through this

technique, foreground objects are separated from the

background easily. Good enough research papers are found

in the literature (Freixenet et al. 2002; Sezgin and Sankur

2004; Zaitoun and Aqel 2015). Some of the important

thresholding-based segmentation methods are found in

(Freixenet et al. 2002). Many other interesting threshold

selection schemes are available in (Sezgin and Sankur

2004; Zaitoun and Aqel 2015). These methods, more or

less, are classified into two categories—(i) bi-level, (ii)

multilevel. We need to choose one threshold value in the

case of bi-level segmentation, in which one can find only

two classes, i.e., background and foreground. Therefore, it

is inadequate to analyze the medical image in a better way.

When there are more regions in an image, it is not suitable.

This has led the researchers to develop multilevel seg-

mentation schemes to facilitate a better analysis of the

medical images. In general, multilevel segmentation

schemes use K [ 1ð Þ thresholds in order to partition the

digital image into K þ 1 classes (segments or regions)

(Yue and Zhang 2020). The abbreviations with their

descriptions are itemized below in Table 1 for an easy

readability.

In the earlier technologies, bi-level thresholding was

used to segment the X-ray image into two distinct regions.

The bi-level segmented output image was used for the

analysis. However, a limited number of features are seen in

a bi-level threshold X-ray image. Therefore, it is suggested

to extend the idea of bi-level thresholding into a multiclass

thresholding, yielding a multiclass segmented image.

Remarkably, more useful features are observed in a mul-

tilevel thresholded (output) image of a COVID-19 X-ray

image, which is important for the analysis. Note that the

output attained is the multiclass segmented output. A

generalized block diagram of the thresholding-based mul-

ticlass segmentation methodology is displayed in Fig. 1.

As shown in Fig. 1, a chest X-ray image is the input.

Then, it is the user who has to decide the number of

threshold levels K. Then, pixel counts in different classes

are optimized using an efficient optimizer. As a result, the

error in segmentation gets minimized, which is the

underlying principle. Thus, K numbers of the optimum

threshold values are computed using different objective

functions.

Mostly, entropy-based methods are used for multilevel

segmentation. These entropy-based schemes already pro-

posed for the threshold selection greatly rely on the image

histogram (Zaitoun and Aqel 2015). The scholars utilize

the image histogram for computing various entropy infor-

mation. Then by maximizing the information, they used to

compute the multiple threshold values for multilevel

thresholding. Some of the popular entropic methods are—

Otsu (Otsu 1979), Tsallis entropy (Sharma et al. 2020),

Kapur’s entropy (Kapur et al. 1985), and Masi entropy

(Masi 2005). The histogram-based techniques require the

computation of order O(LK), where L is the number of grey

level values and K is the number of thresholds. Therefore,

Table 1 Abbreviations with descriptions

Abbreviations Description

SS segmentation Score

SGCS Seagull Cuckoo Search

GWO Grey Wolf Optimizer

KHO Krill Herd Optimization

MFO Moth-Flame Optimization

WOA Whale Optimization Algorithm

LSMA Leader Slime Mould Algorithm

OEO Opposition Equilibrium Algorithm

SOA Seagull Optimization Algorithm

Ave Average

Std Standard deviation

CT Computerized Tomography

PET Positron Emission Tomography

PSNR Peak Signal to Noise Ratio

SSIM Structure Similarity Index

FSIM Feature Similarity Index

Th Threshold

PC Phase Congruency

GM Gradient Magnitude

Fig. 1 Block diagram for the thresholding-based multiclass

segmentation
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the problem is an exhaustive search one. When K increases,

the number of computations increases fast. There is also a

drawback in the entropy-based approaches. When the grey

level spatial distribution is not uniform, the result is less

accurate. In some real world images, spatial distribution of

these grey level pixels is not uniform. Therefore, these

methods are not suited for the multiclass segmentation of

the medical images. Especially, for the multiclass seg-

mentation of the COVID-19 X-ray images, there is a strong

need to develop new methods.

This has motivated the authors to investigate a novel

non-entropy-based multiclass threshold selection scheme,

which is free from the spatial distribution of the grey level

pixels. In this work, it is proposed. A firsthand fitness

function is introduced to compute the optimal multiple

threshold values. This contribution may enrich the image

processing literature. First, we suggest a segmentation

score (SS) as the fitness function for the bi-level thresh-

olding. Then, it extends to the multilevel threshold selec-

tion. The method is not dependent on any calculation of the

entropy, rather it maximizes the SS to minimize the seg-

mentation error. As opposed to the entropy methods, the

proposed technique is unique in the sense that it never

depend on the spatial grey level distribution. The novel

idea contributed in this paper may be a breakthrough

technique for the future multiclass segmentation applica-

tion. More importantly, the proposal may benefit

researchers in achieving significantly better results. Nev-

ertheless, COVID-19 X-ray images have inherent charac-

teristics that limits the uniform distribution of grey level

values throughout the entire picture. Hence, entropic-based

methods are less useful for the multiclass segmentation of

these images. In contrary, the contribution would be more

useful for such applications. This is the main contribution

of the paper. The proposed method may deal with other

biomedical images, because of the low contrast and non-

uniform distribution of grey levels.

It may be noted that the conventional mathematical tools

are not useful to solve the exhaustive search problems due

to their complexity issue as discussed above. Instead, it is

wise to utilize the nature-inspired optimization algorithms.

These optimizers help us to maximize/minimize the fitness

values. Hence, for the optimal threshold selection, it is

essential to deploy the nature-inspired optimization algo-

rithms. Some of the recently used optimizers are—Cuckoo

Search (CS) (Agrawal et al. 2013), Crow Search Algorithm

(CSA) (Shahabi et al. 2020), Krill Herd Optimization

(KHO) (Baby Resma and Nair 2018), Moth-Flame Opti-

mization (MFO) (Aziz et al. 2017), newly proposed Whale

Optimizer (WOA) (Aziz et al. 2017), Leader Slime Mould

Algorithm (LSMA) (Naik et al. 2022), Opposition

Equilibrium Algorithm (OEO) (Naik et al. 2021), A

Covariance-based Moth–flame Optimization Algorithm

(Zhao et al. 2022), horizontal and vertical multiverse

optimization (Su et al. 2022), Entropy-Controlled Firefly

Optimization (Khan et al. 2021), Chaotic marine predators’

algorithm (Kumar et al. 2023), Marine predator inspired

naked mole-rat algorithm (Salgotra et al. 2022), Multi-trial

vector-based monkey king evolution algorithm (Nadimi-

Shahraki et al. 2023). More or less, these optimizers have

shown their potential use in the meticulous segmentation.

The primary versions of these algorithms are found not

useful for solving different optimization problems. This has

led the scholars to enhance the scope by updating the

position vectors through hybridization. There is a merit in

devolving hybrid models for maximizing/minimizing the

fitness values to obtain the optimal thresholds for multi-

level thresholding. These enhanced versions could ensure

the improvements in the optimization applications. Further,

it is noticed that the birds’ intelligence plays more

important role in the metaheuristics. These birds are God’s

creatures. They possess both exploring and exploiting the

solution space. More chances of exploring the search space

(solution space) are the present focus of the study.

This is the motivation behind the proposed optimizer.

The contribution in this direction is quite significant in the

sense that the study on the chance-based bird intelligence is

carried out here. The findings are quite encouraging. A new

idea of incorporating the chance factor in enhancing the

solution space is contributed in this paper. Here, the

inherent feature of the cuckoo bird, i.e., the Levy flight

along with a chance factor is embedded within the Seagull

bird (Panagant et al. 2020). It ensures a better solution.

This could improvise the exploration and the exploitation

mechanism. It is interesting to understand that the present

research is a countless breakthrough. Its innovator in its

implications. Someone may claim the superiority for cer-

tain merits. These new discoveries, offered in this paper,

are in fact the outcomes of the innovative idea. One must

realize this and then, and only then, one can begin to

explore its applications to solve real world optimization

problems. According to the ‘‘No Free Lunch Theorem’’

(Wolpert and Macready 1997), only one or a particular

optimizer cannot solve all types of problems. In this sense,

the suggested optimizer may be useful for optimal multi-

level threshold selection.

The search strategy of a Cuckoo bird (Agrawal et al.

2013) using a Levy step has shown the encouraging results

in the benchmark test functions. It has shown superiority in

the multimodal functions with fixed dimensions. However,

there is no improvement over the unimodal/multimodal

(variable dimensions) benchmark functions. Recently, the

Seagull birds’ intelligence has shown good performances

over its counterparts. The disadvantage of Seagull bird is

its requirement of creating more number of generations.

Hence, its convergence is sluggish. In this paper, the
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solution update rule adapted the Levy flight feature of the

Cuckoo bird along with a chance factor. This step guides

the bird’s intelligence to global optimal solutions with a

faster convergence. This is the reason why the suggested

optimizer is worth for optimizing fitness functions. It is

basically a chance-based birds’ intelligence. The contri-

bution is the development of a chance-based birds’ intel-

ligence for optimization. In this work, the performances of

the suggested algorithm have shown better convergences,

when tested using 23 standard benchmark functions. It

provides the quality optimal solutions. These merits of the

optimizer enforce the authors to deploy it for maximizing

the pixel counts (SS score). As a result, the segmentation

error is automatically reduced. Further, an efficient

scheme for the optimal multilevel threshold selection

called SS-SGCS is presented for the segmentation of the

X-ray images (Chowdhury et al. 2020). To experiment, the

COVID-19 X-ray images are taken from the COVID-19

Radiography Database | Kaggle (Kaggle dataset 2021). The

performances of the SS-SGCS scheme also compares with

the recently published work using Tsallis, Kapur’s and

Masi entropy-based multiclass segmentation. The statisti-

cal analysis in terms of PSNR (Naik et al. 2021), SSIM

(Zhou et al. 2004), FSIM (Lin Zhang et al. 2011) also

provides for a comparison.

In summary, the present work established a new non-

entropic objective function, for the first time. New tech-

nology in terms of the segmentation score is developed

firsthand. The investigated technology is used for X-ray

image segmentation for analysis. This method is compared

with state-of-the-art technologies. The thrust is to enrich

the literature to encourage researchers to explore more in

this track. The following are the main contributions:

i. A novel multilevel fitness function is suggested by

maximizing the segmentation score (SS), which is

independent of the spatial distribution of the grey

level pixels in an image.

ii. An efficient chance-based birds’ intelligence algo-

rithm is introduced which is found better than the

Seagull and the Cuckoo birds’ intelligence. The best

optimal solutions are achieved.

iii. A novel SS-SGCS technique is proposed for multi-

class segmentation of the COVID-19 X-ray images.

The rest of the paper is ordered as follows. The sug-

gested SS-based multilevel thresholding objective function

is derived in Section 2. A novel chance-based SOA-CS

algorithm is proposed in Section 3. The SS-SGCS method

for the optimal multilevel threshold selection is presented

in Section 4. The results and discussions are presented in

Section 5. The concluding remark is presented in Section 6.

2 The proposed non-entropy objective
function

In this section, a novel idea for the computation of the

optimal threshold values for multiclass segmentation is

presented. The contribution in the development of this

article is quite significant. Original theoretical investiga-

tions are made. New equations for the calculation of the

optimal threshold values are explicitly derived. This pro-

posal is different from the entropy-based techniques

reported for the multilevel threshold selection. Here, the

idea is to reduce the segmentation error significantly, which

is practically very close to zero. The problem is empirically

formulated below. The method is clearly illustrated

empirically. Interesting numerical examples are cited for a

clear understanding of the problem on hand.

Let I 2 <M be an image. Let M be the total number of

pixels. Note that the pixel intensities range from 0 to 255.

First, the image I is partitioned into two classes using a

threshold T. Initially, the value of T is chosen arbitrarily.

Thus, the image is separated into two segments called C0

and C1. The 0-th segment C0 contains pixel values ranging

from 0 to T. Similarly, the 1-th segment has pixel values

ranging from T ? 1 to 255.

Let Ci agrees whether the i-th pixel fits to the class

(segment) zero or one. It is clear that the sum of the

squared error of the segmented image Is is expressed as in

Eq. (1):

E ¼
X

Ci¼0
ðIi � g0Þ2 þ

X

Ci¼1
ðIi � g1Þ2 ð1Þ

where Ii represents the intensity value of the ith pixel in the

class (segment) zero or one, g0 ¼
P
Ci¼0

Ii
mC
; g1 ¼

P
Ci¼1

Ii
ðM�mCÞ

are the means of the class zero (C0) and one (C1),

respectively. It is assumed that the 0-th segment (class)

contains mc number of pixels. Hence, primarily mC is a

count. It may be noted that the number of pixels in the 1-th

segment of the bi-level segmented image is M � mCð Þ.
Thus, the segmentation error in this methodology is written

as in Eq. (2):

Eseg ¼ jjIjj22 �
1

mC

X

Ci¼0
Ii

 !2

� 1

M � mC

X

Ci¼1
Ii

 !2

ð2Þ

where the 1-st term || I ||2 is the norm of the original image

considered for the segmentation. Note that the mean terms

disappear in the 2-nd and the 3-rd terms of Eq. (2). For

simplification in the calculations, an approximate error

formula is presented here.

For further simplification of Eq. (2), it is assumed that

the 2-nd and the 3-rd term are identical. With this

assumption, Eq. (2) is further simplified to be as Eq. (3):
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Eseg ¼ jjIjj22 �
M

mCðM � mCÞ
X

Ci¼0
Ii

 !2

ð3Þ

Eq. (3) plays an important role in this theoretical

development. This is treated as an approximate rule for

computing the segmentation error. The primary objective is

to reduce the segmentation error to achieve a better seg-

mentation accuracy. Such an assumption is needed to make

the development simple. Interestingly, the maximization of

the 2-nd term leads to the minimization of the segmenta-

tion error, which is explicitly clear from Eq. (3). From

these ideas, a segmentation score (SS) is newly defined as

in Eq. (4):

SSI;T ¼ max
C2f0;1gM

M

mCðM � mCÞ
X

Ii

� �
ð4Þ

Need to mention here that, Eq. (4) is the objective

function of the work. Most importantly, the SS gets max-

imized when T is the optimal value. Alternatively, there is

a close connection between the SS and the threshold T. The

objective is to optimize the count mC, because the count mC

depends on the value of T. In other words, the corre-

sponding T is the optimum value of the threshold point. It

is important to note that, initially the thresholds are taken

randomly. Then the segmentation score is computed using

Eq. (4). The optimizer then uses Eq. (4) to obtain a max-

imum value of the segmentation score (corresponding to

the maximum number of pixel counts in segments). The

corresponding value of T is the optimum value of the

threshold and is fixed in the work.

For a clear understanding of the problem, it is demon-

strated empirically. Especially, it helps readers to under-

stand that the proposed scheme is based on non-entropy

values. Instead, the method depends on the SS. To be more

specific, Eq. (4) plays the important role in this work. To

explain the problem on hand, plots for 2 digital standard

test images ((a) Cameraman and (b) Lena of size

512 9 512 and 151 9 152, respectively) available in

MATLAB are shown in Fig. 2. In this figure, the results on

a bi-level segmentation are highlighted. The empirical

values are shown in Table 2. It is clearly observed that the

count mC and their corresponding thresholding T values are

optimal when the SS gets maximized. Note that the max-

imum SS and its corresponding mC and T values are

noticeable in boldface letters. For instance, the optimal

values of mC and T are 173,422 and 158 for a maximum SS

of 379.16 (for Cameraman sample test image). Hence, the

optimal threshold (Topt) for the bi-level segmentation is

158, to separate it into 2 distinct classes. It is to be noted

that the total number of pixels in the Cameraman image is

512 9 512 = 262,144. Similarly, for the Lena image, the

maximum SS is 324.40 for a corresponding threshold

T value of 160, which is the optimal threshold value (Topt).

Note that for Lena test image, the total number of pixels is

151 9 152 = 22,952.

The main contribution of the work is primarily to

investigate a non-entropy methodology for multiclass

threshold selection. The above bi-level threshold selection

method is extended below for the multilevel medical image

thresholding.

Multiple thresholds are utilized to partition I into K

segments S1; S2; . . .; SK through the use of the thresholds

T1; T2; . . .; TK�1. It is assumed that T0 is equal to 0 and TK
takes a value of L-1. Note that Eq. (4) plays the central

role. The optimal counts mC are calculated using Eq. (4).

Their corresponding T values are chosen as the optimum

threshold values. The firsthand fitness functions are derived

below. The key to the success is to optimize the multiple

f ð�Þ for obtaining the optimum threshold values. To be

more precise, the thrust is to obtain the best count mC so as

to get an optimum T out of the range [2, 254]. Therefore,

the complexity of the problem depends on the number of

thresholds TK. The threshold selection process described

here is quite interesting. The suggested fitness functions are

maximized to achieve the optimal thresholds. The new

fitness function is defined below in Eq. (5):

T1 opt; T2 opt; :::; TðK�1Þopt
� �

¼ arg max f mC1;mC2; :::;mCðK�1Þ
� �� 	 ð5Þ

with the constraints as in Eq. (6):

0\T1opt\T2opt\:::\TðK�1Þopt\L� 1 ð6Þ

There are profound differences between our method and

the earlier techniques. It is important to note that the

thresholds are optimal, when the SS (summation over the

count mC) is maximized. The 0-th segment pixel count mC

is optimized using the proposed algorithm; the chance-

based birds’ intelligence is deployed. In a multilevel

threshold selection problem, the dimension of the search

space increases with an increase in the threshold values.

The T value is initialized randomly at the beginning.

Subsequently, the pixel counts, i.e., mC are randomly

chosen. Finally, the solutions with the best fitness values

are chosen as the best optimal values here. The multiple

optimal thresholds are calculated by utilizing the following

derivations in Eqs. (7) to (9):

T1 opt ¼ arg max
M

mCðM � mCÞ


 � XmC1

u¼0

XmC2

v¼mC1þ1
Iu;v
� �

 !

ð7Þ
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T2 opt ¼ arg max
M

mCðM � mCÞ


 � XmC2

u¼mC1þ1

XmC3

v¼mC2þ1
Iu;v
� �

 !

ð8Þ

TðK�1Þopt ¼ arg max
M

mCðM � mCÞ


 � XmCðK�1Þ

u¼mCðK�2Þþ1

XM�mCðK�1Þ

v¼mCðK�1Þþ1
Iu;v
� �

0
@

1
A

ð9Þ

In the above Eqs. (7), (8), (9), mC1
;mC2

; . . .;mCðK�1Þ

represent the pixel counts of different segments (classes)

corresponding to their optimal threshold values. It is

important to mention here that mC(appearing) in Eqs. (7),

(8), and (9) is the highest count among the classes. For

example, mC assumes the highest count value out of three

counts mC1
;mC2

; and mC3
while dealing with the Eq. (8). It

is reiterated that the number of classes is three when the

Fig. 2 Plots of the segmentation

scores. a Cameraman image,

b Lena image

Table 2 Numerical values for

the two different images

(Cameraman image and Lena

image)

Input image Threshold (T) No. of Pixels (mC) Segmentation Score Optimal threshold

Cameraman 155 165,119 364.14 158

156 168,080 369.52

157 170,804 374.45

158 173,422 379.16

159 176,027 365.13

160 178,587 350.37

161 181,095 336.27

Lena 157 13,516 315.59 160

158 13,744 319.70

159 13,975 323.81

160 14,214 324.40

161 14,459 313.33

162 14,660 304.36

163 14,873 294.97

Bold values indicate the the best results
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number of thresholds are two. Thus, three counts are found

for three different classes. The optimal thresholds required

for multiclass segmentation are obtained using the sug-

gested algorithm. It is reiterated that the threshold values

obtained here are optimal, while the SS is maximized. The

suggested process is displayed in Fig. 3.

As opposed to the earlier methodologies, the proposed

idea is based on the optimization of the pixel counts only.

As the pixel counts are simple numbers only, these are

completely free from the spatial grey level distributions

throughout the image I. The above counts

mC1
;mC2

; . . .;mCðK�1Þ are numbers only. Further, the process

of maximization of the SS reduces the error of the multi-

class segmentation significantly. Even more interesting

idea is to get their corresponding threshold values TK’s,

which are eventually the optimal values. The beauty of the

proposal is that it is good enough to maximize the func-

tional f ð�Þ. To solve this exhaustive search problem, we use

the newly suggested optimization algorithm.

3 The proposed chance-based birds’
intelligence algorithm

To maximize the segmentation score, an efficient optimizer

is needed. The corresponding optimal thresholds would

provide us a better segmented image. It is reiterated that the

suggested objective function Eq. (9) is utilized here in a

computationally efficient manner. This headed to the

investigation of a new algorithm by awakening the intel-

ligence of the sea birds (Zhao et al. 2022), the cuckoo birds

(Agrawal et al. 2013) through the use of chance factor. As a

result, the convergences and the performances of the

algorithm are improved.

3.1 Background

3.1.1 Algorithm based on the cuckoo bird’s intelligence

Search strategies (CS) based on the intelligence of cuckoo

birds are a general community-based nature-driven algo-

rithm. Cuckoo birds incubate their eggs astutely, puts her

eggs inside others nest. Usually, they prefer that of crows.

In this sense, the Indian species of cuckoo birds are very

intelligent. The inherent intelligence of cuckoo birds is an

inherent gift for them by God. When the crow goes outside

the nest, a Cuckoo bird puts her eggs very intelligently. The

crow may identify the eggs with a probability pa 2 ½0; 1�. In
case it identifies, then probably it leaves the nest or

destroys the eggs.

Numerically it is portrayed like the equations presented

here. Let us assume that N is the no. of cuckoos available

here and a cuckoo addresses a nest. Interestingly, a nest

implies a solution to the given task. Assume that the

dimension of the problem is n. Note that the dimension

decides the complexity. The vector representation of the i-

th bird at period t is KiðtÞ ¼ ðk1i ; :::; kdi ; :::; kni Þ. For the

instance, when the period is t þ 1, the corresponding vector

for the i-th bird is shown in Eq. (10):

Kiðt þ 1Þ ¼ KiðtÞ þ a� LevyðcÞ ð10Þ

Note that a[ 0. Normally a is equal to one. The step

size LevyðcÞ is computed using the well-known Lévy flight

principle. Here, � is an entry-wise multiplication. Its

walking strategy adopted is quite genuine. In more itera-

tions, this idea provides good enough exploration space.

That is the reason why the Lévy step idea is implemented

while developing the cuckoo search strategy. This is

basically resulting from the Lévy spread, got from the

Mantegna algorithm. Thus, it is expressed as in Eq. (11):

LevyðcÞ ¼ u= vj j
1
ðc�1Þ ð11Þ

In Eq. (11) both u and v denote the Gauss kind of dis-

persion, c varies within the range 1\c\3. Further, the

both deviations are expressed by Eq. (12):

rvðcÞ ¼ 1

ruðcÞ ¼
Cð1þ cÞ sin pc

2

� �

C 1þc
2

� �
c2

c�1
2ð Þ

" #1
c

ð12Þ

Note that Cð:Þ is called Gamma function. An infinite

variance is depicted below in Eq. (13):

Levy� u ¼ t�c ð13Þ

Hence, the CS uses a search strategy which is interesting

enough. Its step sizes are small for a shorter length while

these are long for the lengthier distances. However, it is not

Fig. 3 Primary concept of the methodology
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just sufficient to explore the all possible solutions. There is

always more scope to further include and verify other

possible solutions. The accuracy in achieving the optimal

solution may be further improved. This is the reason behind

the present study. Later on it is explained how to explore

other possible solutions which are not successfully

explored so far. The inclusion of these chances is the key

contribution in this study, which is presented in

Section 3.2.

3.1.2 Algorithm based on the seagull bird’s intelligence

Sea birds also possess a certain amount of intelligence,

which is God gifted. Seagull’s migration and attacking

behavior are modeled as an algorithm and is named as SOA

(Panagant et al. 2020). Their attacking behaviors for food is

very interesting. They do it intelligently. Upon change of

season, they move to another place for food and shelter.

They create a spiral system of effort to assault their prey.

This kind of a mathematical model is depicted as

underneath.

The parameter M is used to simulate avoiding collision

issues among adjacent seagulls as in Eq. (14).

F~c ¼ M � F~currentðxÞ ð14Þ

F~currentðxÞ denotes the current location. Here, M repre-

sents the parameter for drive of the agent as in Eq. (15):

M ¼ fc � ðx� ðfc=MaxiterationÞÞ: ð15Þ

Here, the minimum value of x is zero and the max value

is Maxiteration. The number of iterations decide the speed of

the convergence. The seagull birds’ intelligence is used

here to minimize the number of iterations in getting the

optimal solution.

Note that fc is the boundary condition of the parameter

M; it is decremented in each iteration linearly. The value

should change smoothly over iterations. Here, the value of

fc ¼ 2: The decision is taken from the knowledge acquired

through the extensive simulation results. The phenomena

are very carefully studied with different values of fc.

Finally, to achieve the best results, it is decided to fix the

value of fc as 2.

Next, the swarm of seagull birds move near the location

of the best bird. This location is treated as the best solution.

This position is defined as Eq. (16):

G~s ¼ N � ðF~bestðxÞ � F~currentðxÞÞ ð16Þ

In this model, G~s denotes the most efficient locations

near the best-fit contender F~bestðxÞ. N assumes a random

value. This parameter is used to monitor the good balance

between the exploration and the exploitation. The value of

N is shown in Eq. (17):

N ¼ 2�M2 � rand ð17Þ

where rand is a random number within the range ½0; 1�.
Then, the next updated location is as in Eq. (18):

D~s ¼ F~c þ G~s

���
��� ð18Þ

This is basically the parting between the search agent

and the best bird.

Interestingly, their attacking behavior is just like a spiral

path that changes speed continuously. This kind of move-

ment in the x; y and z plane is as follows in Eqs. (19) to

(22).

x
0 ¼ r � cosðkÞ ð19Þ

y
0 ¼ r � sinðkÞ ð20Þ

z
0 ¼ r � k ð21Þ

r ¼ u� ekv ð22Þ

Note that r represents the radial turn of spiral defined in

Eq. (22), k range is ½0� k� 2p�. Here, u, v assume constant

values. These values decide the shape (kind of spiral twist).

The new location is computed using Eqs. (18) to (22) and is

displayed in Eq. (23).

F~currentðxÞ ¼ ðD~s � x
0 � y

0 � z
0 Þ þ F~bestðxÞ ð23Þ

Here, F~currentðxÞ saves the best sites. The locations of other
agents are also updated.

It is noteworthy to mention here that the foraging

strategy adapted by the seagull birds is based on their

intelligence. Nonetheless, the exploration capacity of the

seagull bird is better than the cuckoo bird. However, still

the exploration capacity is limited by the seagull birds’

intelligence. An effort is made here to enhance the explo-

ration capacity by using a chance factor. Further, the

exploitation capability is also improved by using the

cuckoo birds’ intelligence. These novel ideas are explained

in the following section.

3.2 The proposed algorithm using chance-based
birds’ intelligence

In this section, the main idea behind this proposed method

is highlighted. The strategic development of the work is

explained. The search strategy, adapted by the Cuckoo

birds, employs the random walk via a Lévy flight. This

makes it supplementary active in exploring the required

search space. This provides an appropriate step size. It is

primarily the idea behind this proposal. It is also needed to

further include some more solutions, which are not covered

during the search process. It is wise to explore more pos-

sible solutions from the entire search space to improvise

the results. This contribution has considered the chances of
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the inclusions of more solutions. Investigations are made in

this direction. Finally, it is proposed to incorporate a

chance factor to address the problem. The newest contri-

bution is the chance-based birds’ intelligence, which is

discussed in this section.

In this contribution, the chance factor is used to improve

both the exploration and the exploitation issues. To

strengthen the algorithm, the Lévy flight along with a

chance factor is used. Considering the Lévy flight with a

chance factor, Eq. (18) is modified below as in Eq. (24):

D~s ¼ F~c þ G~s � LevyðcÞ
���

��� for r1\z; ð24Þ

¼ F~c þ G~s

���
��� otherwise:

As a result, the exploration stage as well as the

exploitation phase becomes dominant. Note that z is a

positive number decided by the user. It is important to note

that a random value for the chance factor r1 is chosen. It

enables us to consider additional search areas, which is

targeted for, chances of trapping in the local minima are

avoided. The choice of this factor r1 is crucial. This

improves the optimization methods under various uncer-

tainties. Through this, it is ensured that the optimization

problem can explore more solutions beyond some level.

Here, the confidence of getting better solutions is quite

high compared to the existing algorithms. The chance-

based birds’intelligence is especially important to improve

the optimal solutions. Wherever, there is a chance of

exclusion of some possible solutions for the solution space,

the chance factor enforces it to explore further solutions

that are not covered so far.

This is the novelty of the approach, which is efficient in

finding out the best solution candidate. The best candidate

is prepared now to wisely follow an exploitation phase. Its

solution space is shown in Fig. 4. The projection parts

x
0
y
0
(as expressed in Eq. (19) and Eq. (20)) are consistently

lessening. It similarly takes care of the elevation by

deploying the proper assaulting strategy. It is noteworthy to

mention here that the radius r is responsible to ensure a

better exploitation stage. This concept of the shape that

looks like spiral in nature is its confronting behavior. This

kind of attack (the prey attitude) is blended here to develop

a new chance-based optimizer. Finally, Eq. (23) is

expressed as Eq. (25) below:

F~currentðxÞ ¼ D~s � x
0 � y

0 � z
0

� �
þ F~bestðxÞ ð25Þ

Here, Eq. (25) is considered as the key expression used

to implement the proposed optimizer. The pseudocode is

presented below:

3.3 Performance evaluation of the proposed
chance-based optimizer

In this section, the performance analysis of the method is

carried out. The purpose of this section is to validate the

algorithm using standard test functions. A good optimiza-

tion algorithm should have a good trade-off between the

exploitation and exploration capability to obtain the opti-

mal solutions. The exploitation capability better describes

how fast the optimization algorithm converges to optimal

solutions. The exploitation capability describes how the

optimization algorithm avoided local minima. For the

validation of the proposed algorithm called SOA-CS, 23
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test functions are considered, which are reported in (Naik

et al. 2021). Here, all 23 test functions constitute a com-

bination of three groups such as unimodal (f 1 � f 7), mul-

timodal with variable dimensions (f 8 � f 13) and

multimodal with fixed dimensions (f 14 � f 23). The uni-

modal test functions are used to test the exploitation

capability. Note that the multimodal test functions are

utilized for the exploration.

To maintain the consistency among the performance of

the compared algorithm SOA-CS, SOA and CS, the same

parameters are chosen. The experiments are carried out for

population count N as 25, fc ¼ 2 and maximum generation

tMAX as 500 and abandoned probability pa as 0.25. It is

reiterated that a random value for the chance factor r1 is

chosen. The algorithms are runs 31 times to obtain the

average fitness value ‘Ave.’ and standard deviation ‘Std.’

for performance comparison. The lower ‘Ave.’ and ‘Std.’

reported the best results among the optimization

algorithms.

Its performance on 23 test functions is reported in

Table 3. The SOA-CS shows superior performance on the

test functions f 1 � f 13 than SOA and CS except for the test

function f 8. However, SOA-CS shows similar perfor-

mances like SOA and CS on test functions f 14 � f 23. A

statistical comparison based on Freedman’s mean rank is

conducted. The SOA-CS ranked one as compared to the

Fig. 4 Confronting behavior of Seagull

Table 3 Performance comparison of SOA-CS with SOA and CS

Function type Test function SOA-CS SOA CS

Ave Std Ave Std Ave Std

Unimodal f 1 1.21e-30 4.32e-30 6.56e-19 1.14e-18 0.0040 0.0029

f 2 1.77e-16 8.97e-16 3.28e-08 3.57e-08 0.0916 0.0345

f 3 7.53e-22 3.65e-21 4.32e-04 0.0012 14.3940 5.0768

f 4 3.45e-14 1.31e-13 0.0254 0.0847 1.3424 0.6374

f 5 26.6754 0.4252 28.3940 0.5040 17.6889 6.5084

f 6 0 0 3.4397 0.5619 0 0

f 7 0.0040 0.0028 0.0040 0.0026 0.0193 0.0080

Multimodal (variable dimensions) f 8 2 8.45e 1 03 1.36e ? 03 2 5.02e ? 03 567.0950 2 4.57e ? 03 168.3655

f 9 0 0 2.9063 10.0971 31.9087 5.4852

f 10 3.25e-15 4.78e-15 19.9613 0.0014 2.1064 0.7928

f 11 0 0 0.0172 0.0276 0.1735 0.0355

f 12 5.31e-04 3.07e-04 0.3294 0.1581 0.4805 0.3986

f 13 0.0666 0.0682 2.1234 0.2093 0.0253 0.0218

Multimodal (fixed dimensions) f 14 0.9980 1.35e-16 3.1904 3.3545 0.9980 1.35e-16

f 15 0.0013 0.0036 0.0011 2.99e-04 4.40e-04 1.33e-04

f 16 2 1.0316 2.34e-16 2 1.0316 2.34e-16 2 1.0316 2.34e-16

f 17 0.3979 0 0.5529 0.8475 0.3979 0

f 18 3 0 3.0001 1.53e-04 3 0

f 19 2 3.8628 0 2 3.8550 0.0012 2 3.8628 0

f 20 2 3.2792 0.0572 2 2.8532 0.4872 2 3.3220 1.36e-15

f 21 2 10.1532 0 2 2.5544 3.5899 2 10.1532 0

f 22 2 10.4029 0 2 5.3456 4.5773 2 10.4029 0

f 23 2 10.5364 0 2 7.4852 4.0973 2 10.5364 0

Friedman’s mean rank

Rank

1.46 2.50 2.04

1 3 2

Bold values indicate the the best results
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others. Moreover, it is also observed that the standard

deviation values obtained in the case are consistent, vari-

ation is minimum, which is desirable for an efficient

algorithm. This property is depicted in Table 3. In this

simulation experiment, the number of maximum iterations

considered are 500. A comparative performance, conver-

gence curves for six different test functions, is presented in

Fig. 5.

From Fig. 5, it is noted that SOA-CS has shown sig-

nificant improvements in the convergence as compared to

Fig. 5 Convergence curves of SOA-CS vs. others for 6 test functions
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the SOA. The algorithm quickly converges to the minimum

value. Now, it is claimed that the suggested SOA-CS has a

better ability to solve various engineering problems, where

an optimizer is needed. The improved performances of the

proposed chance-based birds’ intelligence could yield

better results. The convergence is also faster, which is

needed to quickly get the optimum solutions. These sta-

tistical and convergences-based result analysis evoke us

many more ideas regarding the use of the proposed opti-

mizer for solving constrained optimization problems in

engineering application areas. In summary, the Lévy flight

along with a chance factor could improve the results

significantly.

4 The suggested SS-SGCS for optimal
multilevel thresholding

In this section, the proposed method called SS-SGCS is

described. The suggested SOA-CS optimizer is used to

maximize the thresholding objective functions discussed in

Sect. 2. The corresponding optimal threshold values

T	1; T
	
2; � � � ; T	K

� �
are obtained from the knowledge of the

maximum counts. The flow diagram is displayed in Fig. 6.

The computed optimal threshold values are used for the

multiclass segmentation of the images.

5 Results and discussion

The purpose of this section is to highlight the results. An

in-depth discussion is also carried out. The proposal, of the

SS-SGCS for optimal multilevel threshold selection, is

validated using randomly selected 6 chest X-ray images out

of a total of 3616 images from (Kaggle database 2021;

Chakraborty et al. 2021). To conserve space only, six

sample images are chosen. Fig. 7 shows the six grey scale

images of chest X-rays with an identification number and

their histograms. For a performance comparison, the sug-

gested SGCS methodology is also employed for Tsallis

entropy named Tsallis-SGCS, Kapur’s entropy named as

Kapur-SGCS, and Masi entropy named as Masi-SG CS to

find the optimal threshold values. All these methods are

implemented in MATLAB. The implementation steps are

Fig. 6 Flowchart of SS-SGCS-based optimal multilevel thresholding
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illustrated in terms of a flowchart shown in Fig. 6. To

evaluate the optimal multiclass thresholding methodolo-

gies, the PSNR, FSIM, and SSIM metrics are used. All

parameters chosen to implement the SS-SGCS are con-

sidered the same as discussed in Section 3.3. These

parameters are selected based on the results achieved

through extensive simulations.

Each method runs 11 times to get the optimal thresholds.

The optimal thresholds for K ¼ 2; 4; 6 are presented in

Table 4 and used to generate the thresholded images. Note

that K is the number of threshold levels. Optimal threshold

values for other values of K are not shown to conserve the

space only. Then the efficiency of the method is assessed

by the performance metrics PSNR, FSIM and SSIM. Note

that these metrics are evaluated using the output (thresh-

olded images). The higher PSNR, FSIM and SSIM values

suggest better thresholding methods. The performance of

the proposed method SS-SGCS vs. others are presented in

Tables 5, 6 and 7. The boldface represents the better one.

For the clinical use, it is needed to obtain the multilevel

thresholded X-ray images. Multiclass segmented X-ray

image is commonly in use for measuring and visualizing

dissimilar chest assemblies, for outlining the defected area,

for extracting lungs features, for image-guided instructions

and treatment planning. Nevertheless, it is undeniable that

automated computerized multiclass segmentation

Fig. 7 Original six COVID-19 X-ray chest images along with the histograms

Table 4 Optimal threshold values

Test Image K SS-SGCS Tsallis-SGCS Kapur-SGCS Masi-SGCS

COVID-10 2 81, 158 73, 148 108, 157 119, 220

4 58, 129, 175, 197 55, 107, 165, 189 91, 133, 173, 193 79, 103, 155, 213

6 46, 96, 134, 155, 185, 201 35, 73, 113, 143, 181, 198 27, 67, 103, 143, 174, 188 58,75, 114, 144, 176, 214

COVID-27 2 64, 154 84, 164 114, 175 115, 173

4 52, 122, 176, 195 66, 124, 184, 201 83, 134, 186, 213 89, 134, 184, 203

6 35, 82, 122, 157, 196, 216 43, 82, 123, 163, 197, 209 13, 52, 98, 148, 193, 219 38, 55, 102, 142, 182, 234

COVID-36 2 74, 124 62, 123 68, 128 96, 187

4 63, 102, 142, 159 48, 97, 144, 167 56, 103, 143, 159 68, 126, 186, 199

6 37, 67, 95, 125, 145, 168 32, 62, 96, 124, 155, 185 36, 67, 97, 125, 155, 183 32, 55, 103, 148, 189, 223

COVID-271 2 76, 176 85, 174 114, 187 112, 182

4 43, 52, 133, 203 46, 63, 125, 194 39,85, 142, 197 61, 88, 144, 194

6 35, 95, 144, 185, 201, 224 43, 84, 125, 173, 203, 214 56, 97, 144, 184, 197, 217 65, 105, 146, 186, 192, 224

COVID-351 2 145, 207 96, 175 55, 145 53, 143

4 85, 118, 172, 223 58, 124, 188, 201 55, 118, 178, 205 56, 119, 180, 209

6 96, 135, 168, 199, 209, 234 54, 94, 133, 175, 207, 212 57, 98, 126, 164, 186, 195 22, 55, 96, 147, 187, 211

COVID-549 2 126, 187 88, 169 78, 166 77, 165

4 58, 87, 144, 195 45, 73, 133, 192 49, 73, 135, 185 33, 67, 135, 186

6 66, 107, 143, 173, 209, 224 53, 95, 136, 176, 216, 231 66, 97, 137, 175, 204, 229 65,99, 137, 177, 207, 221
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technologies have revealed their abilities for use in the

doctor assisted diagnosis/therapy planning. In this context,

the results embodied in Table 4 is very crucial. These

optimal threshold values decides the accuracy, efficacy of a

method over the existing techniques. The input image is

segmented to produce an output image with different dis-

tinct regions. The implementation equations to construct

the output images are given in Appendix A. In this paper,

the chest X-ray image is in grey scale form (Fig. 7). Output

images (the segmented X-ray) are displayed (Figs. 8, 9 and

10) using pseudocoloring, to provide a superior visual

representation. For instance, when K=6, K?1, i.e., 7 seg-

ments (seven distinct colors) are seen. For a detailed sta-

tistical analysis, standard metrics are used for a comparison

of our method with other state-of-the-art methods. The

optimal PSNR values are presented in Table 5.

Table 5 Optimal PSNR values
Test Image Th SS-SGCS Tsallis-SGCS Kapur-SGCS Masi-SGCS

COVID-10 2 24.1998 21.7798 22.3730 22.3179

4 27.6732 24.9059 26.3667 25.3641

6 30.5850 27.5265 29.3114 28.5146

COVID-27 2 21.5150 20.5498 20.4413 20.4134

4 26.4169 24.4584 25.2260 23.9794

6 29.3024 27.2071 28.6479 27.5392

COVID-36 2 19.8122 14.7762 18.6207 18.5871

4 25.3635 17.6144 22.3043 22.3593

6 28.5762 18.5796 26.9090 26.4929

COVID-271 2 20.7808 19.4156 19.3851 19.3959

4 25.4405 21.2717 24.1392 23.9916

6 28.9200 23.5132 26.5652 26.2041

COVID-351 2 20.9447 19.4950 19.8463 19.8663

4 25.6174 23.5130 24.1366 24.1513

6 28.5247 25.5639 27.4418 27.1387

COVID-549 2 20.0056 16.2735 19.2439 19.2720

4 25.2249 17.0582 22.3701 22.2937

6 26.6466 18.9007 24.7988 25.5701

Bold values indicate the the best results

Table 6 Optimal FSIM values
Test Image Th SS-SGCS Tsallis-SGCS Kapur-SGCS Masi-SGCS

OVID-10 2 0.7637 0.7368 0.7180 0.7090

4 0.7938 0.7526 0.7484 0.7229

6 0.8376 0.7970 0.7934 0.7490

COVID-27 2 0.6897 0.6727 0.6760 0.6530

4 0.7471 0.7156 0.7162 0.6766

6 0.8054 0.7680 0.7569 0.7264

COVID-36 2 0.7079 0.6391 0.6868 0.6685

4 0.7520 0.7016 0.7224 0.7126

6 0.8203 0.7309 0.7841 0.7876

COVID-271 2 0.7301 0.7426 0.7382 0.7269

4 0.7628 0.7898 0.7491 0.7464

6 0.8185 0.8068 0.7884 0.7954

COVID-351 2 0.7267 0.7069 0.7057 0.6852

4 0.7505 0.7331 0.7299 0.7238

6 0.8091 0.7579 0.7559 0.7564

COVID-549 2 0.7266 0.6617 0.7068 0.6944

4 0.7550 0.6950 0.7277 0.7212

6 0.8127 0.7316 0.7750 0.7751

Bold values indicate the the best results
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It is noteworthy to mention here that the PSNR mainly

quantifies the quality of a reconstructed or thresholded

(output) image in relation to the ground truth. In this work,

Table 5 shows the PSNR values computed for four dif-

ferent technologies. Interestingly, the method yields higher

PSNR values than the other state-of-the-art techniques. For

instance, the suggested method yields 11.1%, 8.1%, 8.4%

higher values (for COVID-10 image with a threshold level

of K = 2) than the Tsallis-SGCS, Kapur-SGCS, Masi-

SGCS, respectively. It is also observed that the proposed

method exhibits 11.2%, 4.3%, 7.2% higher values (for

COVID-10 image with a threshold level of K = 6) than the

Tsallis-SGCS, Kapur-SGCS, Masi-SGCS, respectively. A

similar trend is also seen in the other COVID-19 X-ray

images. For example—with the COVID-549 image for a

threshold level of K = 2, it is seen that 22.9%, 3.9%, 3.8%

higher values than the other three methods, respectively,

are obtained. And for K = 6, the improvements seen are

40.7%, 7.4%, 4.2% higher values than others, respectively.

The reason of improvements could be due to the mini-

mization of the segmentation error. Further, the pixel

counts are optimized to get the maximum segmentation

score. Note that the pixel count is independent of the image

histogram. Therefore, the proposal is more suitable for

Table 7 Optimal SSIM values
Test Image Th SS-SGCS Tsallis-SGCS Kapur-SGCS Masi-SGCS

COVID-10 2 0.7517 0.7361 0.7278 0.7066

4 0.7997 0.7628 0.7564 0.7200

6 0.8379 0.8033 0.8049 0.7547

COVID-27 2 0.6489 0.6225 0.6378 0.6112

4 0.7327 0.6880 0.7041 0.6496

6 0.7979 0.7475 0.7603 0.7204

COVID-36 2 0.6549 0.5208 0.6104 0.6011

4 0.7249 0.6127 0.6493 0.6468

6 0.7944 0.6467 0.7865 0.7338

COVID-271 2 0.7220 0.7510 0.7473 0.7361

4 0.7836 0.7901 0.7725 0.7695

6 0.8397 0.8166 0.8055 0.80927

COVID-351 2 0.7001 0.6825 0.6779 0.6646

4 0.7481 0.7196 0.7246 0.7214

6 0.8102 0.7448 0.7509 0.7527

COVID-549 2 0.6703 0.5576 0.6460 0.6364

4 0.7236 0.6201 0.6709 0.6656

6 0.7977 0.6704 0.7184 0.7216

Bold values indicate the the best results

Fig. 8 2-level pseudo color threshold outputs
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multiclass segmentation, as opposed to the existing

techniques.

On the other hand, the SSIM (Structural Similarity)

index and the FSIM (Feature Similarity) index are more

authoritative image structure measurement metrics found

in the segmentation literature (Zhou et al. 2004; Lin Zhang

et al. 2011). These metrics are generally used for the

measurements in the image processing field. The ideal

value for the SSIM and FSIM of a reconstructed image to

ground-truth is always one, and a value close to one indi-

cates that the image is of good quality. The SSIM computes

the visual similarity between the original image I and the

thresholded image Ĩ , at a specific threshold level K. In the

segmentation literature (Zhou et al. 2004; Lin Zhang et al.

2011), it is treated as a comprehensive reference index.

This implies that the image quality assessment or mea-

surement is based on an original distortion-free image

considered as a reference image. The quality assessment

using SSIM and FSIM is treated as an improvement over

the classical approaches using metrics such as PSNR and

RMSE. The formula for computation of the SSIM and the

FSIM are given in Appendix B.

Usually, the SSIM is a perception-based metric that

takes image deterioration into account when structural

information changes. It includes crucial perceptual phe-

nomena, such as brightness masking requirements and

contrast factors. It should be emphasized that structural

information indicates a high degree of interaction between

the spatially closer pixels. These dependencies communi-

cate critical information about the image’s object structure

Fig. 9 4-level pseudo color threshold outputs

Fig. 10 6-level pseudo color threshold outputs
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(Zhou et al. 2004). Table 7 explicitly reveals that SSIM is

higher for the suggested scheme. Interestingly, the sug-

gested method achieves results that are visually better than

the entropic value-based method. The FSIM is also

deployed here to measure the similarity. The FSIM index is

used to assess the performance using the low-level features.

It makes use of two key components: the phase congruency

(PC) and the gradient magnitude (GM). These are the first

and second attributes, respectively. The PC denotes the

importance of local structures (Lin Zhang et al. 2011). The

detailed definitions of the performance indexes are given in

the respective references. The optimal FSIM values are

shown in Table 6. In this work, the FSIM values are also

higher for the suggested method, which is seen from

Table 6.

From Table 6, it is evident that the FSIM values are

higher for the suggested method, which is implicit. For

instance, the methodology yields 3.6%, 6.3%, 7.7% higher

FSIM values (for COVID-10 image with a threshold level

of K = 2) than the Tsallis-SGCS, Kapur-SGCS, Masi-

SGCS, respectively. For threshold level K = 6, the values

are 5.1%, 5.5%, 11.8% higher than the other three methods,

respectively. Similarly, for COVID-549 sample image,

with K = 2 the values are 9.8%, 2.8%, 4.6% higher, and

with K = 6 the values are 11.1%, 4.8%, 4.7% higher than

the other three methods, respectively. This speaks good

about the performance of the suggested methodology.

Results are better achieved, because the method is inde-

pendent of grey level distributions. Here, in this paper, the

segmentation score is maximized over the summation by

optimizing the pixel counts. It is reiterated that the pixel

counts are free from the non-uniform grey intensity

distributions. Although the method is also based on the

pixel intensities, it is different from the entropy-based

methods in the sense that it is histogram independent.

Therefore, free from the non-uniform distribution of the

grey intensity values throughout the image. The optimal

SSIM values are shown in Table 7.

Table 7 explicitly reveals that the SSIM is higher for the

methodology. Interestingly, the suggested method achieves

results that are visually better than the entropic value-based

methods. The SSIM is also used here to measure the

structural similarity. The SSIM index is used here for the

assessment of the segmentation performance using low-

contrast features. From Table 7, it is obvious that the SSIM

values are higher for the method. For instance, the proposal

yields 2.1%, 3.3%, 6.4% higher SSIM values (for COVID-

10 image with a threshold level of K = 2) than the Tsallis-

SGCS, Kapur-SGCS, Masi-SGCS, respectively. When

K = 6, the values are 4.3%, 4.1%, 11.0% higher than the

other three methods, respectively. Similarly, for COVID-

549 sample image, with K = 2 the values are 20.2%, 3.7%,

5.3% higher, and with K = 6 the values are 18.9%, 11.0%,

10.5% higher than the other three methods, respectively.

This shows the improvement of the suggested methodol-

ogy. Better results are achieved, because it is independent

of the grey intensity distributions. In this work, the seg-

mentation score is maximized over the summation by

considering the best pixel counts. It yields better values,

because the pixel counts are free from the non-uniform

grey intensity distributions.

Based on the comparison of the optimal PSNR results

presented in Table 5, it is claimed that the SS-SGCS

completely dominated other methods. It is implicit (from

Table 8 Friedman’s mean rank
Methods SS-SGCS Tsallis-SGCS Kapur-SGCS Masi-SGCS

Friedman’s mean rank 3.2998 2.8152 2.6123 1.3112

Rank 1 2 3 4

Bold values indicate the the best results

Fig. 11 COVID-19 chest X-ray images in (Chakraborty et al. 2021) used for the experiment
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Table 5) that the proposed method yields more PSNR

values than the other techniques. The optimal FSIM results

of Table 6 is concerned; the Tsallis-SGCS has shown some

improvements over SS-SGCS while considering two ima-

ges COVID-10 and COVID-271. However, if we consider

the optimal SSIM results in Table 7, the SS-SGCS shows

much better results than other methods in many cases. In

summary, the proposal achieves better results than other

methods. For providing a more detailed result analysis,

statistical tests are also steered on the output data.

For providing a more detailed result analysis, statistical

tests are also steered on the output data. Friedman’s mean

rank test is conducted and results are displayed in Table 8.

A Friedman’s mean ranks statistical test using four

techniques is conducted by combining the PSNR, SSIM

and FSIM values. Based on this test, SS-SGCS-based

optimal multilevel thresholding ranked one by getting the

highest score among all methods. The reason behind such

an improvement could be due to the inclusion of all

chances of exploring possible best solutions from an

enhanced search space. The chance factor incorporated

here may help us to exploit some of the missed best

solution candidates exploring better solution candidates. To

be precise, the proposal could enhance both the exploration

and the exploitation capabilities.

The optimal threshold values displayed in Table 4 are

used to construct the output (segmented) images. It is

reiterated that the number of classes (C) is one higher than

that of the number of threshold levels (C = K?1). For

illustration, thresholded images (outputs) are presented in

Figs. 8, 9 and 10.

The thresholded images are presented for K ¼ 2 in

Fig. 8, K ¼ 4 in Fig. 9 and K ¼ 6 in Fig. 10. The visual

illustrations of Figs. 8, 9 and 10 exhibit that SS-SGCS-

based optimal multilevel thresholding results in a quality

thresholded image. It is notable to point out here that the

spatial domain grey intensity distribution of the X-ray

images is not uniform, which may be seen from Fig. 7. It is

implied that the entropy-based methods are not efficient in

such situations. This is also observed from the results

shown in Figs. 8, 9 and 10. For instance, the segmented

output of the COVID-19 X-ray image (sample image

COVID-549) at threshold level K = 6 shows the superiority

of the proposal over other methods, where blue patches are

the precisely segmented outputs. The improvements in

quality may be due to a better sense of intensity variation in

the case of the SS-based approach.

Here, an in-depth analysis is delivered to clarify why the

suggested method could perform better than the compara-

ble (existing) methods. Nevertheless, the entropic-based

approaches suffer from their dependencies on spatial dis-

tribution of grey values. In reality, the grey level distri-

bution is not uniform in some of the images. The entropic-

based procedures use 1D, 2D and 3D image histograms for

multilevel threshold selection. A large variation in the

image histograms outcomes in a low segmentation accu-

racy. However, the proposed method is a non-entropic

procedure which is independent of the spatial distribution

of the grey levels. Moreover, it never uses image his-

tograms. These inherent properties of the suggested tech-

nique could improve the results compared to the other

entropic-based threshold selection techniques.

For a comparison, a case study is presented here. The

paper published recently (Chakraborty et al. 2021) is

considered here, for a further justification. Three X-ray test

images are taken into the experiment. These are shown in

Table 9 Comparison of results with (Chakraborty et al. 2021)

Images Th PSNR SSIM

mWOAPR (Chakraborty et al. 2021) Proposed mWOAPR Proposed (Chakraborty et al. 2021) Proposed

C1 3 14.9556 16.6121 0.4004 0.4502

4 17.7907 19.8623 0.5080 0.5654

5 18.7213 20.8669 0.5189 0.5861

6 20.4227 22.9132 0.5700 0.6397

C2 3 16.6228 18.5147 0.6226 0.6956

4 19.4197 21.6687 0.6671 0.7537

5 19.4291 21.8018 0.6672 0.7514

6 19.0259 21.2862 0.7189 0.8003

C3 3 15.0644 16.8625 0.5109 0.5726

4 18.4500 20.5293 0.6078 0.6839

5 20.3347 22.6020 0.6597 0.7349

6 20.5418 23.1714 0.6639 0.7494
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Fig. 11. Results are compared in Table 9. Two metrics

PSNR and SSIM as reported in the previous work (Chak-

raborty et al. 2021) are considered for a comparison. Note

that the Kapur’s entropy-based method using the modified

whale optimization algorithm with population reduction

(mWOAPR) is used in (Chakraborty et al. 2021).

To further strengthen the claim, an in-depth analysis of

the results is carried out here. From Table 9, it is explicitly

clear that the suggested method yields better results as

compared to (Chakraborty et al. 2021). For all three covid-

19 affected chest images C1, C2 and C3 shown in Fig. 11,

the proposed method works well. An overall improvement

of approximately 12% is observed. For instance, the pro-

posed technique shows 11.5% higher values for PSNR in

the case of C1 image, 11.7% higher in the case of C2

image and 11.8% higher in the case of C3 images. Similar

is the situation in the case of SSIM. Further, from this

study, it is seen that the suggested method is well suited for

both the low and high-resolution COVID-19 X-ray images

taken from different datasets.

6 Conclusion

The paper presented an efficient methodology for the

analysis of the COVID-19 X-ray images. The paper

demonstrated many merits for a variety of reasons, although

the proposed fitness function plays a primary role. It is

important to realize that the suggested idea is a great

breakthrough, it is really revolutionary in its implications.

This method never relied on the spatial distribution of the

grey values of an image histogram. Instead, it emphasizes

on the optimal pixel counts. While maximizing the seg-

mentation score, the optimal threshold values are achieved,

which is an interesting idea. This enforces the segmentation

error to be reduced to a minimum value. The results pre-

sented are very encouraging. The method is compared with

the state-of-the-art approaches and it is observed that the

proposal outperforms the other techniques. More signifi-

cantly, the proposed method yields about 11% improvement

in the PSNR values. Similarly, significant improvements are

achieved for six random samples. Exemplary outcomes

achieved discloses the detail that the proposed technology is

efficient for COVID-19 X-ray image segmentation. The

limitation of this study may be the over segmentation issue,

which may occur for higher K values, say K = 10 or higher.

It needs to be explored in future. The limitation may be due

to the inherent characteristics of the X-ray images or due to

the limitation of this method.

The proposed new SOA-CS algorithm may be very

useful for optimizing functions, because it provides better

statistical results for the standard benchmark test functions.

Further, the chance factor embedded within the optimizer

enables it to explore more search space to find better

solutions, if available. The suggested SS-SGCS method

may be useful for multiclass segmentation of the COVID-

19 X-ray images. The reason is that it has certain merits

over other techniques to capture the low-contrast features.

The success of the method is primarily due to the mini-

mization of the segmentation error. The work would be

useful for the segmentation of biomedical images such as

the brain MR images (MRI), CT scans and other modali-

ties, where one can find the intensity variations. The idea

may be extended to the multiclass segmentation of the

color images.

Appendix A

Here, the image reconstruction rules are illustrated for easy

implementation by the researchers. Note that the image I

with size (M 9 N) is transformed into a segregated image bI
with Kþ 1 classes C1;C2; � � � ;CKþ1ð Þ using the K number

of thresholds, which are given as:

C1  lm;n iflmin� lm;n\t1opt
C2  lm;n

..

.

CKþ1  lm;n

ift1opt � lm;n\t2opt

..

.

iftKopt � lm;n\lmax

;m

2 1; 2; � � � ;Mð Þand n 2 1; 2; � � � ;Nð Þ ð26Þ

Note that here the optimum thresholds

t1opt; t2opt; � � � ; tKopt
� �

need to satisfy the condition

lmin\t1opt\t2opt\ � � �\tKopt\lmax. Here, lmin and lmax
represent the minimum and maximum intensity levels.

Further, lm;n denotes the intensity level at the spatial co-

ordinates m; nð Þ: Most importantly, the following condition

is also met:

8t 2 lmin þ 1; lmax � 1½ � ð27Þ

These discussions make it explicitly clear how to

implement the proposed method.

Appendix B

Formula used for calculations of PSNR, SSIM and FSIM

are given here for a completeness. In this work, the simple

and popular performance metric PSNR is used to provide a

comparison with the recently published important works,

and is evaluated using the following formula:
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PSNR dBð Þ ¼ 10 log 10
2552

MSE I; Î
� �

 !
ð28Þ

where MSE (Mean Square Error) between the target image

I and the multiclass segmented image bI is given by:

MSE ¼ 1

M � N

XM

m¼1

XN

n¼1
lm;n � l̂m;n
� �2

The SSIM between the two images I and bI is calculated
as (Zhou et al. 2004):

SSIMðI; I
_

Þ ¼
ð2lIlIt þ c1Þð2rIIt þ c2Þ

ðl2I þ l2It þ c1Þðr2I þ r2It þ c2Þ
ð29Þ

where lI denotes the mean value of I, lIt signifies the

average value bI . Note that r denotes the variance of both

the images. Here, rIIt represents the covariance of I andbI .
Note that c1 and c2 are two variables which depend on the

dynamic range of the pixel values. The SSIM is used as a

metric for assessment.

The FSIM index is used evaluate the performance of the

segmentation methodology using the low-level features.

The formula for the calculation of the FSIM is given below

(Lin Zhang et al. 2011):

FSIMðx; yÞ ¼
P

x 2 X � SLðxÞ � PCmðxÞP
x 2 X � PCmðxÞ

ð30Þ

where the symbol X implies the total image area, SL(x) is

the similarity between the input and the multiclass seg-

mented output images. Nonetheless, a higher FSIM value

specifies higher similarity between the two images.

These formulas are useful for computing SSIM and

FSIM values for a comparison with the state-of-the-art

methodologies. Hence, these formula are provided here for

a completeness.
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