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Abstract
With the continuous depletion of global fossil energy, optimizing the energy structure has become the focus of attention of

all countries. With the support of policy and finance, renewable energy occupies an important position in the energy

structure of the USA. Being able to predict the trend of renewable energy consumption in advance plays a vital role in

economic development and policymaking. Aiming at the small and changeable annual data of renewable energy con-

sumption in the USA, a fractional delay discrete model of variable weight buffer operator based on grey wolf optimizer is

proposed in this paper. Firstly, the variable weight buffer operator method is used to preprocess the data, and then, a new

model is constructed by using the discrete modeling method and the concept of fractional delay term. The parameter

estimation and time response formula of the new model are deduced, and it is proved that the new model combined with the

variable weight buffer operator satisfies the new information priority principle of the final modeling data. The grey wolf

optimizer is used to optimize the order of the new model and the weight of the variable weight buffer operator. Based on

the renewable energy consumption data of solar energy, total biomass energy and wind energy in the field of renewable

energy, the grey prediction model is established. The results show that the model has better prediction accuracy, adapt-

ability and stability than the other five models mentioned in this paper. According to the forecast results, the consumption

of solar and wind energy in the USA will increase incrementally in the coming years, while the consumption of biomass

will decrease year by year.

Keywords Fractional discrete grey model � Variable weight buffer operator � New information priority �
Grey wolf optimizer � Renewable energy prediction

1 Introduction

1.1 Background

With the development of science and technology, the

demand and consumption of energy in the world are

increasing. At the same time, people pay more and more

attention to environmental protection. Therefore, the pop-

ular vocabulary of renewable energy has attracted a lot of

attention (Rehbein et al. 2020; Sharif et al. 2020; Wu et al.

2019a), and the statistics and prediction of renewable

energy consumption have become particularly important.

To address different types of data samples, a large number

of predictive models have been generated. For the predic-

tion problem of ‘‘large sample, more data’’, the method of

probability and mathematical statistics can be used to solve

it. Mehedintu et al. (2018) made statistics and Analysis on

the economic indicators of the 28 EU countries, and esti-

mated the consumption of renewable energy by using five

regression models, and finally obtained the forecast results

of 2020. Ma et al. (2018) proposed a machine learning

prediction algorithm without a large number of indepen-

dent variables and assumptions, and predicted the biomass

and hydropower consumption in the USA. Huang et al.

(2020) used the improved state transition algorithm to

optimize the parameters of the Gaussian process regression

method, proposed a new model, and predicted the total
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consumption of renewable energy and the consumption of

each renewable energy in China. Brodny et al. (2020) uses

artificial neural network analysis to cover eight main

sources of renewable energy production in Poland and

forecast the sources of renewable energy production in

2025. Khan et al. (2020) combined multi-layer perceptron,

support vector back and CatBoost to propose a new hybrid

method for power prediction based on machine learning.

By combining the idea of the random effect regression

model, piecewise regression model and minimum pruning

double estimation, Zhou et al. (2022) proposed a mixed

effect piecewise regression model and a new robust esti-

mation to predict the baseline power consumption in

Southern California. Khan et al. (2022) combines convo-

lutional neural network with echo state network to predict

renewable energy generation and consumption. Kilic et al.

(2022) used the artificial neural network method to predict

the total wind and solar power generation of G8 member

Germany and European countries. These methods have

strict requirements on the size of the data set. However, in

the early stage of industry development, the data samples

obtained are less and the amount of information is rela-

tively poor, and the probability and mathematical statistics

methods for such data samples often cannot be accurately

analysed.

1.2 Literature review

In order to process the time series of ‘‘small sample’’ and

‘‘poor data’’, the Grey system theory was first put forward

by Deng (1982). After more than 30 years of development,

it has been widely used in energy consumption, industrial

production, environment, social development decision-

making, economic forecasting and other fields (Wu et al.

2020a, 2019b; Wang et al. 2023a, 2022a). Wu et al.

(2018a) optimized the GM (1,n) model with convolution

solution by changing the order of fractional order accu-

mulation, combined with grey correlation analysis, and a

multivariable prediction model is proposed to predict the

power consumption in Shandong Province of China. Liu

et al. (2020) proposed a new adjacent non-homogeneous

grey model to predict renewable energy consumption in

Europe. Wu et al. (2018b) proposed a new fractional grey

model and applied it to the prediction of China’s nuclear

energy consumption. Ma et al. (2019a) combined Bernoulli

equation and GM(1,n) model with convolution solution to

establish a nonlinear grey Bernoulli multivariate model and

predict China’s tourism income. Based on Grunwald–Let-

nikov fractional calculus, Wang et al. (2022b) proposed an

adaptive fractional order multivariable grey model based

on a new sequence, and predicted the total per capita

energy consumption, energy conversion efficiency and

total renewable energy in China. He et al. (2022) estab-

lished a new discrete grey prediction model of structural

adaptive new information priority, and the disturbance

analysis showed that the model was suitable for small

sample modeling. Zeng et al. (2020a) used a new structural

grey Verhulst model to predict tight gas production in

China. Wang et al. (2022c) proposed a new fractional order

structure adaptive grey Chebyshev polynomial Bernoulli

model and verified the model with four actual cases of

renewable energy production and consumption in China.

Wu et al. (2020b) used the grey Riccati model to study the

consumption of oil and nuclear energy in China. Wang

et al. (2022d) put forward a new grey model to forecast

China’s crude oil production data. Zeng et al. (2020b),

considering the influence of extreme values of independent

variables, proposed a multivariable grey prediction model

based on smooth generation and predicted China’s grain

production. Wang et al. (2022e) proposed a structural

adaptive grey model FCSAGM (p, 1) with Caputo frac-

tional derivative and a new Caputo fractional cumulative

generation operator to predict China’s energy data. Wu

et al. (2020c) used the new Grey Bernoulli model to study

the consumption of natural gas in the USA, Germany, the

United Kingdom, China and Japan. Wang et al. (2022f)

introduced the time delay term and Bernoulli equation,

proposed a new fractional order time delay grey Bernoulli

model, and predicted the development trend of renewable

energy, crude oil and fossil fuels. In order to reduce the

interference of data collection and statistics, and to explore

the internal relationship of data, Liu first proposed the

concept of buffer operator in 1990 (Yamaguchi et al.

2007). Subsequently, a large number of scholars have

innovated and optimized it on the basis of it, and proposed

the average buffer operator (Zeng et al. 2020c), the

weighted average buffer operator (Xie and Liu 2003), the

variable weight buffer operator (Wang et al. 2009), the

multivariable buffer operator (Wu et al. 2016). Therefore,

for a small sample of annual data on renewable energy

consumption in the USA, the grey prediction model shows

unique advantages.

Because the univariate grey forecasting model only

needs to use a single time series to model and predict the

time series, the GM(1,1) model has the advantages of

simple operation and convenient operation and has been

extensively studied (Ma et al. 2019b). In order to enhance

the tendency catching ability of GM(1,1) model, Xie and

Liu proposed a more accurate discrete model DGM(1,1) by

using the discrete modeling method (Xie and Liu 2009). In
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practical application, because of the complexity of time

series, the integer-order model shows its own limitations.

In order to improve the accuracy of integer order model

and enhance the applicability of the single variable model,

many scholars have established fractional order modeling

technology (Ma et al. 2020) and put forward a large

number of fractional grey models (Ma et al. 2019c; Wu

et al. 2019c). Wu et al. (2013) defined the fractional order

accumulation theory by using binomials and established

the FGM(1,1) model on this basis. Meng et al. (2020)

established the FDGM(1,1) model by using the unified

fractional grey accumulation generating operator. In Zeng

et al. (2020d) by introducing the non-homogeneous expo-

nential function into the traditional Verhulst model, the

structural defects of the traditional Verhulst model were

improved, and the N_Verhulst model with the stronger

modeling ability was proposed. Most models do not con-

sider the influence of time delay in the process of model-

ing. Zhang et al. (2015) introduced the time delay term into

the grey model and proposed a multivariate time delay grey

model. Yu et al. (2021a) considered the time delay power

effect with high flexibility and established a grey model of

time delay power-driven. Ma et al. (2019d) revealed the

essence of fractional order time delayed and proposed a

fractional time delayed grey model. Wang et al. (2021)

combined the Hausdorff fractional accumulation operator

and Grunwald–Letnikov fractional derivative to improve

the GM(1,n) model of kernel regularization nonlinear with

convolution solution, and proposed a Hausdorff fractional-

order nonlinear grey prediction model. Lu et al. (2021b)

proposed a hybrid method combining elastic networks and

multi-objective optimization to optimize nonlinear grey

Bernoulli multivariate models. Wu et al. (2021) used

Simpson numerical integration formula to construct the

background value and proposed a new discrete grey pre-

diction model. Wang et al. (2022g) defined a new fractional

order self-adaptive accumulation sequence, introduced the

time power term and discrete modeling techniques, and

proposed a self-adaptive reverse accumulation discrete

grey model with time power term. Wang et al. (2023b)

proposed a self-adaptive fractional grey Euler model with

dynamic accumulation order and used the model to forecast

energy production of China. Yao et al. (2022) studied the

representation of bifinite domains by rough approximable

concepts. Yan et al. (2022) revealed a broadband vibration

energy harvester based on nonlinear magnetic force and

rotary pendulums. Feng et al. (2020) considered the almost

periodic solutions for certain differential equations with

piecewise constant arguments. Dai et al. (2014) introduced

a multi-parameter magnetoelectric response modeling of

magnetostrictive laminate. Wang et al.

(2017, 2018a, 2019, 2020a) studied the optimizing injec-

tion process of water-alternate-gas using different produced

gas. Wang et al. (2020b, 2020c) (Wang and Yi 2018)

proposed the dynamic analysis of oil–water two-phase flow

for a multiple-fractured horizontal well with multiple

finite-conductivity fractures in triple media carbonate

reservoir. Wang et al. (2017, 2018b, 2018c) considered the

nonlinear oil–water two-phase flow behaviour for a hori-

zontal well in triple media carbonate reservoir.

1.3 Contribution and motivation

However, some models do not consider the interference of

the data itself, which leads to the accuracy of the grey

prediction model is not ideal. At the same time, the integer

modeling technology cannot fine-tune the model, which

limits the flexibility and application scope of the model. In

this paper, the operation of the variable weight buffer

operator is used to reduce the interference of system data.

Combined with the concept of fractional delay, the discrete

modeling method is used, and the Grey Wolf Optimizer

(GWO) (Mirjalili 2015) is used to optimize the parameters.

A novel fractional delay discrete model with variable

weight buffer operator is established. For this, we derive

the parameter estimation and time response formula of the

new model. Finally, we established a prediction model for

the US solar, biomass and wind energy data sets. Com-

pared with other models, the main innovations and con-

tributions of this paper are as follows:

(1) This paper introduces the concept of variable weight

buffer operator and proves that the combination of

the new model and variable weight buffer operator

satisfies the new information first principle of the

latest modeling data;

(2) In this paper, a fractional delay discrete model with

variable weight buffer operator is proposed. Its

prediction accuracy is better than the other five

models, and FTDDGM(1,1) has the smallest range of

change and better stability than the other five

models;

(3) In this paper, the Grey Wolf optimizer is used to

optimize the two parameters of FTDDGM(1,1) with

variable weight buffer operator;

(4) This paper can reasonably predict the renewable

energy consumption in the USA and can provide
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reference for policy formulation, government expen-

diture arrangement and project planning.

The rest of this paper is arranged as follows: In Sect. 2,

the fractional order discrete time delay model

(FTDDGM(1,1)) is proposed, and the parameter estimation

equation and time response formula of the new model are

derived. It is proved that the new model satisfies the new

information priority principle of the last modeling data. In

Sect. 3, the Grey Wolf Optimizer, the two-parameter

optimization steps and the modeling steps of the new

model are introduced. In Sect. 4, the new model is verified

in three actual cases of renewable energy consumption in

the USA, and the conclusion is drawn in Sect. 5.

2 Fractional time delay discrete model
with variable weight buffer operator

This section briefly introduces the definition of variable

weight buffer operator and fractional order accumulation.

A novel fractional time delay discrete grey prediction

model is proposed.

2.1 Modeling steps of the DGM (1,1) model

Definition 1 Assuming that the original non-negative

sequence is Xð0Þ ¼ xð0Þð1Þ; xð0Þð2Þ; . . .; xð0ÞðnÞ
� �

, its first-

order cumulative generation sequence is

Xð1Þ ¼ xð1Þð1Þ; xð1Þð2Þ; . . .; xð1ÞðnÞ
� �

, where.

xð1ÞðkÞ ¼
Xk

i¼1

xð0ÞðiÞ; k ¼ 1; 2; . . .; n: ð1Þ

Then, the discrete equation is

xð1Þðk þ 1Þ ¼ b1x
ð1ÞðkÞ þ b2: ð2Þ

It is called DGM (1,1) model. Its parameters are

determined as

b̂ ¼ ðb1; b2ÞT ¼ BTB
� ��1

BTY : ð3Þ

where

B ¼

xð1Þð1Þ 1

xð1Þð2Þ 1

..

. ..
.

xð1Þðn� 1Þ 1

2

6664

3

7775
; Y ¼

xð1Þð2Þ
xð1Þð3Þ

..

.

xð1ÞðnÞ

2

6664

3

7775
:

The time response formula of DGM (1,1) model is.

x̂ð1Þðk þ 1Þ ¼ bk1 xð0Þð1Þ � b2
1� b1

� �

þ b2
1� b1

; k ¼ 1; 2; . . .; n

ð4Þ

The DGM (1,1) model is the first discrete grey model,

which can perfectly fit a non-negative series of pure indices

compared to the continuous grey model. Many discrete

grey models are built on the basis of the DGM(1,1) model.

The model built in this paper is also based on DGM(1,1).

2.2 The operation of variable weight buffer
operator and fractional order accumulation

Definition 2 Mao et al. 2016). Assume that the non-neg-

ative sequence Xð0Þ ¼ xð0Þð1Þ; xð0Þð2Þ; . . .; xð0ÞðnÞ
� �

, its

variable weight buffer sequence is Xð0ÞD ¼
xð0Þð1Þd; xð0Þð2Þd; . . .; xð0ÞðnÞd
� �

where

xð0ÞðkÞd ¼ kxð0ÞðnÞ þ ð1� kÞxð0ÞðkÞ;
0\k\1; k ¼ 1; 2; . . .; n

ð5Þ

Therefore, D is called a variable weight buffer operator.

Compared with the original sequence, the variable-

weighted buffer sequence has a higher priority of new

information due to the inclusion of the same proportion of

the latest element items in each element, which further

increases the importance of new information in the model.

Definition 3 Mao et al. (2016). Let the sequence

Xð0Þ ¼ xð0Þð1Þ; xð0Þð2Þ; . . .; xð0ÞðnÞ
� �

, if XðrÞ is called the

fractional cumulative sequence r � FAOð Þ of Xð0Þ, then

XðrÞ ¼ xðrÞð1Þ; xðrÞð2Þ; . . .; xðrÞðnÞ
� �

; r 2 Rþ where

xðrÞðkÞ ¼
Xk

i¼1

Cðk þ r � iÞ
Cðk � iþ 1ÞCðrÞ x

ð0ÞðiÞ; i ¼ 1; 2; . . .; n ð6Þ

2.3 A novel fractional time delay discrete model

Definition 4 Assume that the original sequence is

Xð0Þ ¼ xð0Þð1Þ; xð0Þð2Þ; . . .; xð0ÞðnÞ
� �

, the r � FAO

sequence of Xð0Þ is XðrÞ; d1, d2 and d3 are called undeter-

mined parameter, then,

xðrÞðkÞ ¼ d1x
ðrÞðk � 1Þ þ d2½kðrÞ þ ðk � 1ÞðrÞ�

þ d3; k ¼ 2; 3; . . .; n
ð7Þ

is called Fractional Time Delay Discrete Grey Model,

abbreviated as FTDDGM(1,1).
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Compared with the DGM(1,1) model, the

FTDDGM(1,1) model expands the order of the cumulative

series to fractional order and adds a time delay term. For

most data, the FTDDGM(1,1) model has stronger adapt-

ability than the DGM(1,1) model.

2.4 Parameter estimation

Theorem 1 Assume that XðrÞ is defined in Definition 3, the

parameters vector d̂ ¼ ðd1; d2; d3ÞT , and

Y ¼

xðrÞð2Þ
xðrÞð3Þ

..

.

xðrÞðnÞ

2

6664

3

7775
;

B ¼

xðrÞð1Þ 1ðrÞ þ 2ðrÞ 1

xðrÞð2Þ 2ðrÞ þ 3ðrÞ 1

..

. ..
. ..

.

xðrÞðn� 1Þ ðn� 1ÞðrÞ þ nðrÞ 1

2

6664

3

7775
:

Then,

d̂ ¼ ðd1; d2; d3ÞT ¼ BTB
� ��1

BTY ð8Þ

Proof Let Eq. (3) as Y ¼ B � d̂. Generally, the number of

modeling data is greater than 3, that is n[ 3. Therefore,

the number of linear equations Y ¼ B � d̂ is greater than the

number of unknowns, Then the system of linear equations

Y ¼ B � d̂ has no solution. According to the least square

estimation method, the error e ¼ Y � B � d̂ and the loss

function.

Q ¼
Xn

i¼2

e2

¼
Xn

i¼2

xðrÞðkÞ � d1x
ðrÞðk � 1Þ � d2ðtðrÞ þ ðt � 1ÞðrÞÞ � d3

h i2

ð9Þ

are minimized, that is, the partial derivative of the loss

function Q is 0, then,

For Eq. (5), we have BT Y � B � d̂
� 	

¼

0 ) d̂ ¼ BTBð Þ�1
BTY .

End of proof.

2.5 Time response of fractional time delay
discrete model

Theorem 2 Assume that XðrÞ and d̂ as defined in Definition

4 and Theorem 1, then the time response of the fractional

time delay discrete model is determined as.

x̂ðrÞðkÞ ¼ dðk�1Þ
1 xðrÞð1Þ þ

Xk�1

i¼1

d2 iðrÞ þ ðiþ 1ÞðrÞ
� 	

þ d3
h i

dk�i�1
1 ;

k ¼ 1; 2; . . .; n

ð11Þ

The recovery value x̂ð0ÞðkÞ is stated as

x̂ð0ÞðkÞ ¼ x̂ðrÞðkÞ
� 	ð�rÞ

¼
Xk�1

i¼0

ð�1Þi Cðr þ 1Þ
Cðiþ 1ÞCðr � iþ 1Þ x̂

ðrÞðk � iÞ; k

¼ 1; 2; . . .; n

ð12Þ

Proof In Eq. (3), k ¼ 2; 3; . . .; n, which can be obtained

through iteration.

oQ

od1
¼
Xn

i¼2

xðrÞ k � 1ð Þ xðrÞðkÞ � d1x
ðrÞ k � 1ð Þ � d2 tðrÞ þ t � 1ð ÞðrÞ

� 	
� d3

� 	
¼ 0

oQ

od2
¼
Xn

i¼2

tðrÞ þ t � 1ð ÞðrÞ
� 	

xðrÞðkÞ � d1x
ðrÞ k � 1ð Þ � d2 tðrÞ þ t � 1ð ÞðrÞ

� 	
� d3

� 	
¼ 0

oQ

od3
¼
Xn

i¼2

xðrÞðkÞ � d1x
ðrÞ k � 1ð Þ � d2 tðrÞ þ t � 1ð ÞðrÞ

� 	
� d3

� 	
¼ 0

8
>>>>>>>>><

>>>>>>>>>:

ð10Þ
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xðrÞð2Þ ¼ d1x
ðrÞð1Þ þ d2 2ðrÞ þ 1ðrÞ

� 	
þ d3

xðrÞð3Þ ¼ d1x
ðrÞð2Þ þ d2 3ðrÞ þ 2ðrÞ

� 	
þ d3

¼ d1 d1x
ðrÞð1Þ þ d2 2ðrÞ þ 1ðrÞ

� 	
þ d3

� 	
þ d2 3ðrÞ þ 2ðrÞ

� 	
þ d3

¼ d21x
ðrÞð1Þ þ d1d2 2ðrÞ þ 1ðrÞ

� 	
þ d1d3 þ d2 3ðrÞ þ 2ðrÞ

� 	
þ d3

xðrÞð4Þ ¼ d1x
ðrÞð3Þ þ d2 4ðrÞ þ 3ðrÞ

� 	
þ d3

¼ d1 d21x
ðrÞð1Þ þ d1d2 2ðrÞ þ 1ðrÞ

� 	
þ d1d3 þ d2 3ðrÞ þ 2ðrÞ

� 	
þ d3

� 	

þ d2 4ðrÞ þ 3ðrÞ
� 	

þ d3 ¼ d31x
ðrÞð1Þ þ d21d2 2ðrÞ þ 1ðrÞ

� 	
þ d21d3

þ d1d2 3ðrÞ þ 2ðrÞ
� 	

þ d1d3 þ d2 4ðrÞ þ 3ðrÞ
� 	

þ d3

..

.

xðrÞðkÞ ¼ d1x
ðrÞðk � 1Þ þ d2 kðrÞ þ k � 1ð ÞðrÞ

� 	
þ d3

¼ dðk�1Þ
1 xðrÞð1Þ þ dðk�2Þ

1 d2 2ðrÞ þ 1ðrÞ
� 	

þ dðk�2Þ
1 d3 þ dðk�3Þ

1 d2 3ðrÞ þ 2ðrÞ
� 	

þ dðk�3Þ
1 d3

þ dðk�4Þ
1 d2 4ðrÞ þ 3ðrÞ

� 	
þ dðk�4Þ

1 d3 þ � � � þ d2 kðrÞ þ k � 1ð ÞðrÞ
� 	

þ d3

¼ dðk�1Þ
1 xðrÞð1Þ þ

Xk�1

i¼1

d2 iðrÞ þ iþ 1ð ÞðrÞ
� 	

þ d3
� 	

dðk�i�1Þ
1

End of proof.

2.6 The fractional time delay discrete model
with variable weight buffer operator
satisfies the new information priority
principle

Lemma 1 Swewart (1977). Assume that A 2 Cm�n,

b 2 Cm, Ay is the generalized inverse matrix of A,

B ¼ Aþ E, and c ¼ bþ k 2 Cm. Then, xþ h and x satisfy

the linear least squares problem that Bx� ck k2¼ min and

Ax� ck k2¼ min. If rankðAÞ ¼ rankðBÞ ¼ n, and

Ay









2
Ek k2\1, then.

hk k�
jy
cy

Ek k2
Ak k xk k þ kk k

Ak k þ
jy
cy

Ek k2
Ak k

rxk k
Ak k

 !

;

where jy ¼ Ay









2
Ak k, cy ¼ 1� Ay









2
Ek k, rx ¼ b� Ax.

Theorem 3 Assume that x̂ð0ÞðkÞ is the solution of the

fractional time delay discrete model. When x̂ð0ÞðkÞ is per-
turbed by e, the perturbation bound is L xð0ÞðkÞ

� �
. if e 6¼ 0,

Bþk k2 DBk k2 6¼ 0 and Bþk k2 DBk k2\1, then

L xð0ÞðnÞ
� �

[ L xð0ÞðkÞ
� �

; k ¼ 1; 2; . . .; n� 1.

Proof According to Definition 2 and Definition 3, the

original sequence Xð0Þ is subjected to variable weight

buffering operation, and then XðrÞD ¼
ðxðrÞð1Þd; xðrÞð2Þd; . . .; xðrÞðnÞdÞ is obtained by fractional

order accumulation.

xðrÞð1Þd
xðrÞð2Þd

..

.

xðrÞðn� 1Þd
xðrÞðnÞd

2

66666664

3

77777775

¼

1 0 � � � 0 0

C1
r 1 � � � 0 0

..

. ..
.

� � � ..
. ..

.

Cn�2
nþr�3 Cn�3

nþr�4 � � � 1 0

Cn�1
nþr�2 Cn�2

nþr�3 � � � C1
r 1

2

66666664

3

77777775

1� k 0 � � � 0 k

0 1� k � � � 0 k

..

. ..
.

� � � ..
. ..

.

0 0 � � � 1� k k

0 0 � � � 0 k

2

6666664

3

7777775

xð0Þð1Þ
xð0Þð2Þ

..

.

xð0Þðn� 1Þ
xð0ÞðnÞ

2

66666664

3

77777775
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xðrÞð1Þd
xðrÞð2Þd

..

.

xðrÞðn� 1Þd
xðrÞðnÞd

2

66666664

3

77777775

¼

1� k 0 � � � 0 k

ð1� kÞC1
r 1� k � � � 0 kð1þ C1

r Þ
..
. ..

.
� � � ..

. ..
.

ð1� kÞCn�2
nþr�3 ð1� kÞCn�3

nþr�4 � � � 1� k k
Pn

i¼1

Cn�i
nþr�i�1

ð1� kÞCn�1
nþr�2 ð1� kÞCn�2

nþr�3 � � � ð1� kÞC1
r k

Pn

i¼2

Cn�i
nþr�i�1

2

66666666664

3

77777777775

xð0Þð1Þ
xð0Þð2Þ

..

.

xð0Þðn� 1Þ
xð0ÞðnÞ

2

66666664

3

77777775

If xð0Þð1Þ is perturbed by e, then we have

Ŷ ¼ Y þ DY ¼

xðrÞð2Þ
xðrÞð3Þ

..

.

xðrÞðnÞ

2

6664

3

7775
þ

1� kð ÞeC1
r

1� kð ÞeC2
rþ1

..

.

1� kð ÞeCn�1
nþr�2

2

6664

3

7775
and

DYk k ¼ 1� kð Þ ej j C1
r þ C2

rþ1 þ � � � þ Cn�1
nþr�2

� �

¼ 1� kð Þ ej j
Xn�1

i¼1

Cn�i
nþr�i�1

B̂ ¼Bþ DB ¼

xðrÞð1Þ 1ðrÞþ2ðrÞ 1

xðrÞð2Þ 2ðrÞ þ 3ðrÞ 1

..

. ..
. ..

.

xðrÞðn� 1Þ ðn� 1ÞðrÞ þ nðrÞ 1

2

666664

3

777775

þ

ð1� kÞe 0 0

ð1� kÞeC1
r 0 0

..

. ..
. ..

.

ð1� kÞeCn�2
nþr�3 0 0

2

66664

3

77775
;

DBTDB ¼
1� kð Þe 1� kð ÞeC1

r � � � 1� kð ÞeCn�2
nþr�3

0 0 � � � 0

0 0 � � � 0

2

64

3

75

1� kð Þe 0 0

1� kð ÞeC1
r 0 0

..

. ..
. ..

.

1� kð ÞeCn�2
nþr�3 0 0

2

66664

3

77775

¼
1� kð Þeð Þ2þ 1� kð ÞeC1

r

� �2þ � � � þ 1� kð ÞeCn�2
nþr�3

� �2
0 0

0 0 0

0 0 0

2

64

3

75

So the maximum eigenvalue of DBTDB is

1� kð Þeð Þ2 1þ C1
r

� �2þ � � � þ Cn�2
nþr�3

� �2� 	
, then

Bk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax DBTDBð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kð Þeð Þ2 1þ C1

r

� �2þ � � � þ Cn�2
nþr�3

� �2� 	r
¼

1� kð Þ ej j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼2

Cn�i
nþr�i�1

� �2
s

According to Lemma 1, we

have

L xð0Þð1Þ
h i

¼ 1� kð Þ ej j
jy
cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼2

Cn�i
nþr�i�1

� �2
s

Bk k xk k þ

Pn�1

i¼1

Cn�i
nþr�i�1

Bk k þ
jy
cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼2

Cn�i
nþr�i�1

� �2
s

Bk k
rxk k
Bk k

0

BBBB@

1

CCCCA

If xð0Þ kð Þ; k ¼ 2; 3; . . .; n� 1 is perturbed by e, then

Ŷ ¼ Y þ DY ¼

xðrÞð2Þ
..
.

xðrÞðkÞ
..
.

xðrÞðnÞ

2

6666664

3

7777775

þ

0

..

.

1� kð Þe
..
.

1� kð ÞeCn�k
nþr�k�1

2

666664

3

777775
and

DYk k ¼ 1� kð Þ ej j 1þ C1
r þ � � � þ Cn�k

nþr�k�1

� �

¼ 1� kð Þ ej j
Xn

i¼k

Cn�i
nþr�i�1
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B̂ ¼Bþ DB ¼

xðrÞð1Þ 1ðrÞþ2ðrÞ 1

..

. ..
. ..

.

xðrÞðkÞ kðrÞ þ ðk þ 1ÞðrÞ 1

..

. ..
. ..

.

xðrÞðn� 1Þ ðn� 1ÞðrÞ þ nðrÞ 1

2

666666664

3

777777775

þ

0 0 0

..

. ..
. ..

.

ð1� kÞe 0 0

..

. ..
. ..

.

ð1� kÞeCn�k�1
nþr�k�2 0 0

2

666666664

3

777777775

;

DBTDB ¼
0 � � � ð1� kÞe � � � ð1� kÞeCn�k�1

nþr�k�2

0 � � � 0 � � � 0

0 � � � 0 � � � 0

2

64

3

75

0 0 0

..

. ..
. ..

.

ð1� kÞe 0 0

..

. ..
. ..

.

ð1� kÞeCn�k�1
nþr�k�2 0 0

2

666666664

3

777777775

¼
1� kð Þeð Þ2þ � � � þ 1� kð ÞeCn�k�1

nþr�k�2

� �2
0 0

0 0 0

0 0 0

2

64

3

75:

So the maximum eigenvalue of DBTDB

is 1� kð Þeð Þ2 1þ C1
r

� �2þ � � � þ Cn�k�1
nþr�k�2

� �2� 	
,

then Bk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax DBTDBð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kð Þeð Þ2 1þ C1

r

� �2þ � � � þ Cn�k�1
nþr�k�2

� �2� 	r
¼

1� kð Þ ej j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼kþ1

Cn�i
nþr�i�1

� �2
s

According to Lemma 1, we

have

L xð0ÞðkÞ
h i

¼ 1� kð Þ ej j
jy
cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼kþ1

Cn�i
nþr�i�1

� �2
s

Bk k xk k þ

Pn

i¼k

Cn�i
nþr�i�1

Bk k þ
jy
cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼kþ1

Cn�i
nþr�i�1

� �2
s

Bk k
rxk k
Bk k

0

BBBB@

1

CCCCA
:

From the above formula, we can see that L xð0ÞðkÞ
� �

; k ¼
2; 3; . . .; n� 1 is a decreasing function, that is, under the

same disturbance e, the disturbance bound decreases

gradually.

If xð0ÞðnÞ is perturbed by e, then

Ŷ ¼ Y þ DY ¼

xðrÞð2Þ
xðrÞð3Þ

..

.

xðrÞðnÞ

2

66664

3

77775

þ

ke 1þ C1
r

� �

ke 1þ C1
r þ C2

rþ1

� �

..

.

ke 1þ C1
r þ C2

rþ1 þ � � � þ Cn�1
nþr�2

� �

2

666664

3

777775
and

DYk k ¼ k ej j n� 1ð Þ þ n� 1ð ÞC1
r þ n� 2ð ÞC2

rþ1 þ � � � þ Cn�1
nþr�2

� �

¼ k ej j n� 1þ
Xn�1

i¼1

iCn�i
nþr�i�1

 !

:

B̂ ¼Bþ DB ¼

xðrÞð1Þ 1ðrÞþ2ðrÞ 1

xðrÞð2Þ 2ðrÞ þ 3ðrÞ 1

..

. ..
. ..

.

xðrÞðn� 1Þ ðn� 1ÞðrÞ þ nðrÞ 1

2

666664

3

777775

þ

ke 0 0

ke 1þ C1
r

� �
0 0

..

. ..
. ..

.

ke 1þ C1
r þ � � � þ Cn�2

nþr�3

� �
0 0

2

666664

3

777775
;

DBTDB ¼
ke ke 1þ C1

r

� �
� � � ke 1þ C1

r þ � � � þ Cn�2
nþr�3

� �

0 0 � � � 0

0 0 � � � 0

2

64

3

75

ke 0 0

ke 1þ C1
r

� �
0 0

..

. ..
. ..

.

ke 1þ C1
r þ � � � þ Cn�2

nþr�3

� �
0 0

2

666664

3

777775

¼
keð Þ2þ ke 1þ C1

r

� �� �2þ � � � þ ke 1þ C1
r þ � � � þ Cn�2

nþr�3

� �� �2
0 0

0 0 0

0 0 0

2

64

3

75

So the maximum eigenvalue of DBTDB is

keð Þ2 1þ 1þ C1
r

� �2þ � � � þ 1þ C1
r þ � � � þ Cn�2

nþr�3

� �2� 	
,

then
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Bk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax DBTDBð Þ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keð Þ2 1þ 1þ C1

r

� �2þ � � � þ 1þ C1
r þ � � � þ Cn�2

nþr�3

� �2� 	r

¼ k ej j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn�1

i¼1

Xi

j¼1

Ci�j
i�jþr�1

 !2
vuut

According to Lemma 1, we have

L xð0ÞðnÞ
h i

¼ k ej j
jy
cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn�1

i¼1

Pi

j¼1

Ci�j
i�jþr�1

 !2
vuut

Bk k xk k þ
n� 1þ

Pn�1

i¼1

iCn�i
nþr�i�1

Bk k

0

BBBBBB@

þ
jy
cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn�1

i¼1

Pi

j¼1

Ci�j
i�jþr�1

 !2
vuut

Bk k
rxk k
Bk k

1

CCCCCCA

:

From the expressions of L xð0Þð1Þ
� �

, L xð0ÞðkÞ
� �

and

L xð0ÞðnÞ
� �

, we can get L xð0ÞðnÞ
� �

[ L xð0Þð1Þ
� �

and

L xð0ÞðnÞ
� �

[ L xð0ÞðkÞ
� �

; k ¼ 2; 3; . . .; n� 1. That is to say,

when the disturbance e is the same, the disturbance bound

of the n - th data of the new model is larger than that of the

previous n� 1, so the new information of the n - th data

has priority.

2.7 Property analysis of the FTDDGM(1,1) model

Property 1 The FTDDGM(1,1) model is compatible with

the DGM(1,1) model and the FDGM(1,1) model.

Proof When the parameters d2 ¼ 0 and r ¼ 1, Eq. (7) will

become.

xð1Þðk þ 1Þ ¼ b1x
ð1ÞðkÞ þ b2:

When the parameters d2 ¼ 0 and r 6¼ 1, Eq. (7) will

become

xðrÞðk þ 1Þ ¼ b1x
ðrÞðkÞ þ b2:

Property 2 Assuming that the original sequence of the

FTDDGM(1,1) model is

Xð0Þ ¼ xð0Þð1Þ; xð0Þð2Þ; . . .; xð0ÞðnÞ
� �

, and the sequence

after scaling is Zð0Þ ¼ zð0Þð1Þ; zð0Þð2Þ; . . .; zð0ÞðnÞ
� �

, where

zð0ÞðkÞ ¼ axð0ÞðkÞ, the predicted value satisfies

ẑð0ÞðkÞ ¼ ax̂ð0ÞðkÞ.

Proof According to Eq. (6), the fractional accumulation

sequence ZðrÞ of Zð0Þ is described as

zðrÞðkÞ ¼
Xk

i¼1

Cðk þ r � iÞ
Cðk � iþ 1ÞCðrÞ z

ð0ÞðiÞ

¼ a
Xk

i¼1

Cðk þ r � iÞ
Cðk � iþ 1ÞCðrÞ x

ð0ÞðiÞ ¼ axðrÞðkÞ;

then, the expressions of matrices Ya and Ba are obtained as

Ya ¼

zðrÞð2Þ
zðrÞð3Þ

..

.

zðrÞðnÞ

2

6664

3

7775
¼

axðrÞð2Þ
axðrÞð3Þ

..

.

axðrÞðnÞ

2

6664

3

7775
¼ aY ;

Ba ¼

zðrÞð1Þ 1ðrÞþ2ðrÞ 1

zðrÞð2Þ 2ðrÞ þ 3ðrÞ 1

..

. ..
. ..

.

zðrÞðn� 1Þ ðn� 1ÞðrÞ þ nðrÞ 1

2

666664

3

777775
¼

a 0 0

0 1 0

0 0 1

2

64

3

75

xðrÞð1Þ 1ðrÞþ2ðrÞ 1

xðrÞð2Þ 2ðrÞ þ 3ðrÞ 1

..

. ..
. ..

.

xðrÞðn� 1Þ ðn� 1ÞðrÞ þ nðrÞ 1

2

666664

3

777775
¼ AB:

Using least squares estimation, the parameters are

determined as

d̂0 ¼ ðd01; d
0
2; d

0
3Þ

T ¼ BT
aBa

� ��1
BT
aYa

¼ aA�1 BTB
� ��1

BTY :

Thus, there are d01 ¼ d1; d
0
2 ¼ ad2; d

0
3 ¼ ad3.

According to the time response of the FTDDGM(1,1)

model in Eq. (11), we get

ẑðrÞðkÞ ¼ d
0ðk�1Þ

1 xðrÞð1Þ þ
Xk�1

i¼1

d02 iðrÞ þ ðiþ 1ÞðrÞ
� 	

þ d03

h i
dk�i�1
1

¼ adðk�1Þ
1 xðrÞð1Þ þ a

Xk�1

i¼1

d2 iðrÞ þ ðiþ 1ÞðrÞ
� 	

þ d3
h i

dk�i�1
1

¼ ax̂ðrÞðkÞ

A novel fractional discrete grey model with variable weight buffer operator… 9329

123



Finally, the predicted reduction value is

ẑð0ÞðkÞ ¼
Xk�1

i¼0

ð�1Þi Cðr þ 1Þ
Cðiþ 1ÞCðr � iþ 1Þ ẑ

ðrÞðk � iÞ

¼ a
Xk�1

i¼0

ð�1Þi Cðr þ 1Þ
Cðiþ 1ÞCðr � iþ 1Þ x̂

ðrÞðk � iÞ

¼ ax̂ð0ÞðkÞ

Similarly, the FTDDGM(1,1) model with variable

weight buffer operator also satisfies property 2, and the

proof method is similar. From property 2, it can be seen

that the FTDDGM(1,1) model has scaling stability.

3 The calculation steps of the new model
and the parameter optimization steps
using the Grey Wolf Optimizer

It is worth noting that both the theory and the modeling

process of the new model are derived under the condition

that the weight k and order r are known. Therefore, in the

actual case, we need to determine the values of parameters

k and r first. In this section, the Grey Wolf Optimizer is

used to optimize k and r, and the overall calculation pro-

cess of the fractional time delay discrete grey prediction

model with variable weight buffer operator is shown.

3.1 FTDDGM(1,1) with variable weight buffer
operator nonlinear programming

According to the modeling procedure of FTDDGM(1,1)

and the definition of variable weight buffer operator, the

sum of the average relative error MAPE of the model

simulation reaches the minimum value, so as to find the

optimal weight k and order r in the modeling process.

Assuming that the modeling number of samples is s and the

prediction number is p, then we can construct the nonlinear

programming of samples as

min
k; r

Fðk; rÞ ¼
Xs

k¼1

x̂ð0ÞðkÞ � xð0ÞðkÞ
xð0ÞðkÞ

����

����� 100% ð14Þ

s.t:

B ¼

xðrÞð1Þd 1ðrÞþ2ðrÞ 1

xðrÞð2Þd 2ðrÞ þ 3ðrÞ 1

..

. ..
. ..

.

xðrÞðs� 1Þd ðs� 1ÞðrÞ þ sðrÞ 1

2

666664

3

777775
; Y ¼

xðrÞð2Þ
xðrÞð3Þ

..

.

xðrÞðsÞ

2

66664

3

77775

d̂ ¼ ðd1; d2; d3ÞT ¼ BTBð Þ�1
BTY

x̂ðrÞðkÞd ¼ dðk�1Þ
1 xðrÞð1Þ

þ
Pk�1

i¼1

d2 iðrÞ þ ðiþ 1ÞðrÞ
� 	

þ d3
h i

dk�i�1
1 ; i ¼ 1; 2; . . .; s

X̂ð0ÞðkÞd ¼ X̂
ðrÞ
1 ðkÞ

� 	ð�rÞ

¼
Pk

i¼1

k � i� r � 1

k � i

 !

X̂ð0ÞðiÞd; k ¼ 1; 2; . . .; sþ p

X̂ð0ÞðkÞ ¼
X̂ð0ÞðkÞd � kX̂ð0ÞðsÞd
� �

1� k
; k ¼ 1; 2; ; s

X̂ð0ÞðkÞ ¼ X̂ð0ÞðkÞd; k ¼ sþ 1; . . .; sþ p

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

3.2 Grey Wolf Optimizer (GWO)

The grey wolf optimizer was proposed by Mirjalili et al.

(2014), which has the characteristics of fast convergence

speed and strong optimization ability. By simulating the

preying behaviour of grey wolves, the steps of social

hierarchy, searching for prey, encircling and attacking prey

are included. According to the fitness of the individual, the

grey wolf population was assigned a social ranking of fit-

ness from highest to lowest, a, b, d and x. The position

information of the current three optimal solutions a, b and

d is used to update the position of other search agents. The

iterative formula is as follows:

D~a ¼ C~1 � X~a � X~
���

��� ; D~b ¼ C~2 � X~b � X~
���

��� ; D~d ¼ C~3 � X~d � X~
���

���

X~1 ¼ X~a � A~1 � D~a; X~2 ¼ X~b � A~2 � D~b; X~3 ¼ X~d � A~3 � D~d

X~ðt þ 1Þ ¼ X~1 þ X~2 þ X~3

3

8
>>>><

>>>>:

ð15Þ

where X~a, X~b, and X~d represent the position vectors of a, b

and d; D~a, D~b and D~d represent the distance between the

current individual and a, b, and d; X~ represents the position

vector of the grey wolf.

The vectors A~ and C~ are calculated as follows:

A~¼ 2a~ � r~1 � a~; C~ ¼ 2 � r~2
where a~ is linearly reduced from 2 to 0 in the iteration

process, r~1 and r~2 are random vectors between ½0; 1�.

3.3 The parameter optimization
and the calculation steps

The GWO is used to optimize the order r of the new model

and the weight k of the buffer operator. The specific steps

are shown in the source code of Algorithm 1.
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4 Applications

This section first introduces the evaluation criteria of the

model and then uses the data of solar renewable energy

consumption, total biomass renewable energy consumption

and wind renewable energy consumption in the USA to

build the grey prediction model, which verifies the effec-

tiveness of FTDDGM(1,1) model with variable weight

buffer operator. Finally, FTDDGM(1,1) model with vari-

able weight buffer operator is used to predict the solar

renewable energy consumption, total biomass renewable

energy consumption and wind renewable energy con-

sumption in the USA from 2020 to 2024.

4.1 Evaluation criteria

In order to verify the prediction effect of the new model in

practical application, this section selects three cases of

renewable energy consumption in the USA to analyse the

performance of the FTDDGM(1,1) model and compares it

with the other five models. The relative percentage error

(DðkÞ) and the mean absolute percentage error (MAPE)
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were used as the evaluation criteria. The expression is

described as

DðkÞ ¼ xð0ÞðkÞ � x̂ð0ÞðkÞ
xð0ÞðkÞ

����

����� 100%; k ¼ 1; 2; . . .; n ð16Þ

MAPEs ¼ 1

s
�
Xs

k¼1

x̂ð0ÞðkÞ � xð0ÞðkÞ
xð0ÞðkÞ

����

����� 100% ð17Þ

MAPEp ¼ 1

n� s
�
Xn

k¼sþ1

x̂ð0ÞðkÞ � xð0ÞðkÞ
xð0ÞðkÞ

����

����� 100% ð18Þ

where n is the total number of samples, s is the number of

models, MAPEs is the mean absolute percentage error of

model simulation, and MAPEp is the mean absolute per-

centage error of model prediction. Table 1 is the abbrevi-

ation of grey model in this paper.

4.2 Case analysis

This section will illustrate the effectiveness of

FTDDGM(1,1) model with variable weight buffer operator

from three aspects. Firstly, the actual data of solar renew-

able energy consumption, total biomass renewable energy

consumption and wind renewable energy consumption in

the USA are used to build the prediction model. Secondly,

the prediction accuracy is compared with the existing grey

model. Finally, in case 1 and case 2, the data from 2009 to

2015 were used as the training set to establish the model,

and the data from 2016 to 2019 were used as the test set to

compare the prediction performance. In case 3, In case 3, set

the parameter k ¼ 0 of the variable weight buffer operator,

and the data from 2006 to 2015 was used as the training set,

and the data from 2016 to 2019 was used as the test set.

Case 1 The solar renewable energy consumption of the

USA.

In this case, the consumption of solar energy in the USA

from 2009 to 2015 recorded by the US Energy Information

Administration (EIA) is shown in Table 2 (https://www.eia.

gov/totalenergy/data/browser/?tbl=T10.01#/). Data from

2009 to 2015 were set as modeling data for model training,

and data from 2016 to 2019 were set as prediction data for

model prediction performance analysis (Fig. 1).

In order to clearly observe the effect of the buffer

operator on processing the original data, we substituted the

modeling data in Case 1 into Eq. (1) to get the values under

different weights, and drew the curves as shown in Fig. 2.

When k ¼ 0, the curve acted by the variable weight buffer

operator coincides with the curve of the original data, that

is, the FTDDGM(1,1) model uses the original data for

modeling. As k increases from 0 to 1, the rate of change of

data decreases, and the growth rate of data gradually tends

to be flat.

The Grey Wolf Optimizer is used to search the optimal

weight k and the optimal order r, and the search process is

shown in Fig. 3. According to the calculation process of

FTDDGM(1,1) with variable weight buffer operator in

Fig. 1, the parameter values of Case 1 are shown in

Table 3. At this time, the weight is k ¼ 0:00044734, and

the effect of the buffer operator is relatively small. At the

same time, the simulation and prediction data were

obtained and the relative percentage errors of each year

Table 2 Solar renewable energy consumption of the USA from 2009 to 2019

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Consumption 78 91 112 159 225 338 427 570 777 916 1018

Table 1 Abbreviation of grey

model in this paper
Abbreviation Expression Meaning

GM(1,1) dxð1ÞðtÞ
dt

þ axð1ÞðtÞ ¼ b Basic grey model

GM(1,n) dXð1Þ
1

ðtÞ
dt

þ aX
ð1Þ
1 ðtÞ ¼

Pn

j¼2

bjX
ð1Þ
j ðtÞ Basic multivariate grey model

DGM(1,1) xð1Þðk þ 1Þ ¼ b1x
ð1ÞðkÞ þ b2 Discrete GM(1,1) model

FGM(1,1) dxðrÞðtÞ
dt

þ axðrÞðtÞ ¼ b Fractional-order GM(1,1) model

FDGM(1,1) xðrÞðk þ 1Þ ¼ b1x
ðrÞðkÞ þ b2 Fractional-order discrete GM(1,1) model

Verhulst dxð1ÞðtÞ
dt

þ axð1ÞðtÞ ¼ b xð1ÞðtÞ
� �2 Single sequence first-order nonlinear dynamic model

N_Verhulst dyð1ÞðtÞ
dt

þ ayð1ÞðtÞ ¼ 1
2
ð2t � 1Þbþ c New grey Verhulst model
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were calculated. The mean absolute percentage errors of

the simulation and prediction are shown in Table 4. The

simulation and prediction mean absolute percentage errors

of the six models are plotted as a column chart, as shown in

Fig. 4, and the broken line chart of the six models in Case 1

Fig. 1 Flow chart of

FTDDGM(1,1) with variable

weight buffer operator
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is drawn in combination with Fig. 5 to visually analyse and

compare the performance of the six models.

In particular, because the prediction effect of N_Ver-

hulst model in Case 1 is not good, which affects the display

effect of other models, the line chart of N_Verhulst model

is not shown in Fig. 5.

Through Table 4, Figs. 4 and 5, the simulation and

prediction effects of the six models in Case 1 are intuitively

displayed. It can be clearly seen that the FTDDGM(1,1)

model has a lower simulation MAPE value than the other

five models in the case, and has the best fitting effect with

the original data. Of course, we mainly focus on the pre-

diction effect of FTDDGM(1,1) model. The prediction

MAPE value of the FTDDGM(1,1) model is much lower

Fig. 2 The effect diagram of the modeling data of Case 1 in the buffer operator with different weights

Fig. 3 The three-dimensional

search graph of the best weight

k and order r of the
FTDDGM(1,1) model is in Case

1

Table 3 The parameter values of FTDDGM(1,1) with variable weight

buffer operator in Case 1

k r d1 d2 d3

0.00044734 1.5864 0.9782 8.93618 97.7022
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than the other five models, and the prediction effect is the

best. Therefore, the FTDDGM(1,1) model showed high

performance in Case 1. Figure 6 shows the effect diagram

of the training data of Case 2 in different weight buffer

operators.

Case 2 The total biomass renewable energy consumption

of the USA.

In this case, the total biomass renewable energy con-

sumption of the USA from 2009 to 2019 recorded in the

US Energy Information Administration (EIA) is shown in

Table 5 (Wang et al. 2022g). The training data from 2009

to 2015 were used for modeling, and the test data from

2016 to 2019 were used for model performance

comparison.

The training data in Case 2 is buffered according to

definition 2. The effect of changing k from 0 to 1 with step

size of 0.5 is shown in Fig. 5. Combined with algorithm 1,

the parameters of FTDDGM(1,1) model in Case 2 are

optimized. The three-dimensional search diagram is shown

in Fig. 7.

The Grey Wolf Optimizer is used to search for the

optimal weight k and order r, then we can calculate matrix

B and matrix Y . Therefore, combining formula 4, we can

get the FTDDGM(1,1) model with variable weight buffer

operator in Case 2 each The values of the parameters are

shown in Table 6. It can be seen that the searched optimal

weight k¼0:97599, so the buffer operator has a strong

effect on FTDDGM(1,1).

Table 4 The Simulation and prediction data of six models in Case 1

Year z FTDDGM(1,1) FGM(1,1) FDGM(1,1) N_Verhulst GM(1,1) DGM(1,1)

x̂ 0ð Þ kð Þ x̂ 0ð Þ kð Þ D kð Þ x̂ 0ð Þ kð Þ D kð Þ x̂ 0ð Þ kð Þ D kð Þ x̂ 0ð Þ kð Þ D kð Þ x̂ 0ð Þ kð Þ D kð Þ x̂ 0ð Þ kð Þ D kð Þ

Simulation

2009 78 78 0 78 0 78 0 78 0 78 0 78 0

2010 91 91 0 91 0 91 0 89.27 1.9 85.8 5.71 86.95 4.45

2011 112 108.61 3.03 117.02 4.48 119.57 6.76 117.69 5.08 118.39 5.71 120.25 7.37

2012 159 161.4 1.51 159.4 0.25 163.69 2.95 157.93 0.68 163.36 2.74 166.3 4.59

2013 225 234.33 4.15 221.2 1.69 227.43 1.08 217.43 3.36 225.41 0.18 229.99 2.22

2014 338 324.95 3.86 309.42 8.46 318.09 5.89 311.33 7.89 311.02 7.98 318.08 5.89

2015 427 432.22 1.22 434.5 1.76 446.35 4.53 475.77 11.42 429.14 0.5 439.89 3.02

MAPEs 1.9678 2.3762 3.0305 4.333 3.2608 3.9347

Prediction

2016 570 555.42 2.56 611.37 7.26 627.43 10.08 824.21 44.6 592.13 3.88 608.37 6.73

2017 777 694.11 10.67 861.22 10.84 882.84 13.62 1991.71 156.33 817.03 5.15 841.36 8.28

2018 916 847.85 7.44 1213.93 32.52 1242.93 35.69 - 14,890 1725.57 1127.34 23.07 1163.58 27.03

2019 1018 1016.27 0.17 1711.73 68.15 1750.48 71.95 - 1912.9 287.91 1555.51 52.8 1609.22 58.08

MAPEp 5.209 29.6921 32.8352 553.6007 21.227 25.0297

Fig. 4 Comparison of the simulation and prediction mean relative errors between FTDDGM(1,1) and other five models in Case 1. a is the MAPE

value of six models simulation; b represents the MAPE values prediction by the six models
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According to Eq. (10), the simulation value and the

prediction value in Case 2 are calculated, and the relative

percentage error and average relative error of each year are

calculated and statistics are shown in Table 7. In order to

more intuitively compare the prediction effect of the six

models in the Case 2, the simulation of various models and

the average relative error of prediction are drawn into a bar

graph, as shown in Fig. 8. At the same time, the simulation

and prediction values of the six models in each year are

drawn into a line chart, as shown in Fig. 9.

According to Table 7, Figs. 8 and 9, we can draw

obvious conclusions through data and charts. In Case 2, the

Fig. 5 The simulation and prediction line charts of the six models in Case 1

Fig. 6 The effect diagram of the training data of Case 2 in different weight buffer operators

Table 5 Total biomass renewable energy consumption of the USA

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Consumption 3940 4506 4609 4508 4848 4994 4983 5015 4979 5031 4924
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simulation MAPE value of FTDDGM(1,1) is only

1.1386%, which is less than that of the other five models. In

particular, the significant effect of FTDDGM(1,1) in the

prediction of Case 2. The numerically prediction MAPE

value is only 0.6627%, which is much lower than the other

five models. At the same time, we can see that the

FTDDGM(1,1) model and the variable weight buffer

operator have a strong correlation with the test data.

Therefore, in the prediction of Case 2, the prediction per-

formance of the FTDDGM(1,1) model and the variable

weight buffer operator is better than the other five models.

Case 3 The wind renewable energy consumption of the

USA.

In order to verify the prediction performance of the

FTDDGM(1,1) model when the buffer operator weight

k¼ 0. In this case, the consumption of wind energy in the

Fig. 7 The three-dimensional

search graph of the best weight

k and the order r of the
FTDDGM(1,1) model is in Case

2

Table 6 The parameter values of FTDDGM(1,1) with variable weight

buffer operator in Case 2

k r d1 d2 d3

0.97599 1.0149 1.0097 - 2.7849 5009.8482

Table 7 The Simulation and prediction data of six models in Case 2

Year FTDDGM(1,1) FGM(1,1) FDGM(1,1) N_Verhulst GM(1,1) DGM(1,1)

x 0ð Þ kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ

Simulation

2009 3940 3940 0 3940 0 3940 0 3940 0 3940 0 3940 0

2010 4506 4564.84 1.31 4506.05 0 4506 0 4462.98 0.95 4467.54 0.85 4468.43 0.83

2011 4609 4450.37 3.44 4557.66 1.11 4558.97 1.09 4576.27 0.71 4573.54 0.77 4574.2 0.76

2012 4508 4631.23 2.73 4654.03 3.24 4655.48 3.27 4687.7 3.99 4682.06 3.86 4682.46 3.87

2013 4848 4841.52 0.13 4772.46 1.56 4773.5 1.54 4797.09 1.05 4793.15 1.13 4793.29 1.13

2014 4994 4976.37 0.35 4905.69 1.77 4905.97 1.76 4904.25 1.8 4906.88 1.74 4906.74 1.75

2015 4983 4983 0 5050.5 1.35 5049.77 1.34 5009.04 0.52 5023.31 0.81 5022.87 0.8

MAPEs 1.1386 1.2908 1.2852 1.2887 1.3098 1.305

Prediction

2016 5015 4979.34 0.71 5205.27 3.79 5203.31 3.75 5111.31 1.92 5142.49 2.54 5141.76 2.53

2017 4979 4971.39 0.15 5369.09 7.83 5365.71 7.77 5210.94 4.66 5264.51 5.73 5263.46 5.71

2018 5031 4958.8 1.44 5541.49 10.15 5536.5 10.05 5307.83 5.5 5389.42 7.12 5388.03 7.1

2019 4924 4941.33 0.35 5722.2 16.21 5715.44 16.07 5401.88 9.71 5517.3 12.05 5515.56 12.01

MAPEp 0.66274 9.4965 9.4106 5.4466 6.8625 6.8378
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USA from 2006 to 2019 recorded in the US Energy

Information Administration (EIA) is shown in Table 8

(Wang et al. 2022g). The data from 2006 to 2015 were

modeling and the data from 2016 to 2019 were compared

to the model prediction performance.

We set k¼ 0, and Case 3 just searches for order r. The

Algorithm 1 is used to optimize the order of

FTDDGM(1,1) model, and the iteration process is shown in

Fig. 10. Then, the searched optimal order r and weight

k¼ 0 were substituted into Eq. (4), and the relevant

parameters of the model are obtained in Table 9.

At this time, the simulation values and prediction values

of Case 3 were obtained by the modeling process of

FTDDGM(1,1) model. The statistics of data of each year

are shown in Table 10, and the simulation MAPE values

and prediction MAPE values are drawn into a bar graph in

Fig. 11. Finally, in order to clearly compare the effects of

each model, the simulation values and prediction values of

the six models in Case 3 were drawn into a line chart, as

shown in Fig. 12.

Through the presentation of numerical results in

Table 10, we can clearly see that the relative percentage

error in the simulation and prediction of the FTDDGM(1,1)

model in Case 3 is small. Combined with Fig. 11, it can be

concluded that both FTDDGM(1,1) model and N_Verhulst

model show good fitting effect, but the simulation MAPE

Fig. 8 Comparison of the simulation and prediction mean relative errors between FTDDGM(1,1) and other five models in Case 2. a is the MAPE

value of six models simulation; b represents the MAPE values prediction by the six models

Fig. 9 The simulation and prediction line charts of the six models in Case 2

Table 8 Wind energy consumption of the USA

Year 2006 2007 2008 2009 2010 2011 2012

Consumption 264 341 546 721 923 1168 1340

Year 2013 2014 2015 2016 2017 2018 2019

Consumption 1601 1728 1777 2096 2343 2482 2626
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value of FTDDGM(1,1) model is lower and the fitting

effect is better. The most noteworthy is the prediction

effect of FTDDGM(1,1), the prediction MAPE value is

only 1.4111%. It can be clearly seen from Fig. 12 that the

prediction curve of FTDDGM(1,1) and FGM(1,1) is close

Fig. 10 The optimal order r iteration process of FTDDGM(1,1) model in Case 3

Table 9 The parameter values of FTDDGM(1,1) in Case 3

k r d1 d2 d3

0 0.37421 - 0.1231 110.2808 100.1960

Table 10 The simulation and prediction data of six models in Case 3

Year FTDDGM(1,1) FGM(1,1) FDGM(1,1) N_Verhulst GM(1,1) DGM(1,1)

x 0ð Þ kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ x 0ð Þ kð Þ D kð Þ

Simulation

2006 264 264 0 264 0 264 0 264 0 264 0 264 0

2007 341 341 0 429.01 25.81 448.84 31.63 346.27 1.54 567.06 66.29 572.48 67.88

2008 546 554.11 1.48 598.67 9.65 629.16 15.23 516.26 5.45 664.8 21.76 670.65 22.83

2009 721 744.94 3.32 773.12 7.23 805.11 11.67 728.99 1.11 779.4 8.1 785.67 8.97

2010 923 938.99 1.73 952.49 3.2 976.86 5.83 965.45 4.6 913.75 1 920.4 0.28

2011 1168 1133.23 2.98 1136.92 2.66 1144.54 2.01 1196.05 2.4 1071.25 8.28 1078.25 7.68

2012 1340 1327.91 0.9 1326.55 1 1308.28 2.37 1393.96 4.03 1255.91 6.28 1263.16 5.73

2013 1601 1522.86 4.88 1521.52 4.96 1468.21 8.29 1546.02 3.43 1472.39 8.03 1479.79 7.57

2014 1728 1718.03 0.58 1722 0.35 1624.41 5.99 1653.21 4.33 1726.19 0.1 1733.56 0.32

2015 1777 1913.37 7.67 1928.13 8.5 1777 0 1724.27 2.97 2023.74 13.89 2030.85 14.29

MAPEs 2.3547 6.3362 8.3023 2.9856 13.3736 13.556

Prediction

2016 2096 2108.83 0.61 2140.07 2.1 1926.06 8.11 1769.48 15.58 2372.58 13.2 2379.13 13.51

2017 2343 2304.4 1.65 2357.99 0.64 2071.69 11.58 1797.5 23.28 2781.55 18.72 2787.14 18.96

2018 2482 2500.06 0.73 2582.06 4.03 2213.97 10.8 1814.57 26.89 3261.02 31.39 3265.11 31.55

2019 2626 2695.78 2.66 2812.44 7.1 2352.97 10.4 1824.88 30.51 3823.13 45.59 3825.06 45.66

MAPEp 1.4111 3.4684 10.2209 24.0646 27.2219 27.4193
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to the original curve. By comparing the prediction curve of

FTDDGM(1,1) and FGM(1,1), we find that the prediction

curve of FTDDGM(1,1) is closer to the original data.

Therefore, the prediction effect and performance of

FTDDGM(1,1) in Case 3 are the best among the six

models.

4.3 Forecast research

According to the case analysis in Sect. 4.2, the

FTDDGM(1,1) model with variable weight buffer operator

shows better prediction performance in solar renewable

energy consumption, total biomass renewable energy

consumption and wind renewable energy consumption in

the USA. Therefore, in this section, FTDDGM(1,1) model

with variable weight buffer operator is used to predict solar

renewable energy consumption, total biomass renewable

energy consumption and wind renewable energy con-

sumption in the USA from 2020 to 2024.

Case 1 Forecast of solar renewable energy consumption of

the USA from 2020 to 2024.

In this case, the prediction method of case 1 in Sect. 4.2

will continue to be used. The USA solar renewable energy

Fig. 11 Comparison of the simulation and prediction mean relative errors between FTDDGM(1,1) and other five models in Case 3. a is the

MAPE value of six models simulation; b represents the MAPE values prediction by the six models

Fig. 12 The simulation and prediction line charts of the six models in Case 3

Table 11 Forecast data of solar renewable energy consumption in the

USA from 2020 to 2024

Year 2020 2021 2022 2023 2024

Consumption 1199.00 1395.72 1606.09 1829.80 2066.56
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Fig. 13 Prediction trend of FTDDGM(1,1) with variable weight buffer in Case 1

Table 12 Forecast data of total biomass renewable energy con-

sumption in the USA from 2020 to 2024

Year 2020 2021 2022 2023 2024

Consumption 4918.78 4890.99 4857.83 4819.17 4774.92

Fig. 14 Prediction trend of FTDDGM(1,1) with variable weight buffer in Case 2

Table 13 Forecast data of wind renewable energy consumption in the

USA from 2020 to 2024

Year 2020 2021 2022 2023 2024

Consumption 2891.57 3087.41 3283.29 3479.21 3675.16
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consumption data from 2009 to 2015 will be used as the

training set to establish FTDDGM(1,1) model with variable

weight buffer operator. The forecast results of solar

renewable energy consumption in the USA from 2020 to

2024 are recorded in Table 11, and the prediction trend is

shown in Fig. 13.

According to the forecast results in Table 11 and

Fig. 13, the solar renewable energy consumption in the

USA will keep increasing year by year from 2020 to 2024.

As the USA solar power industry has received strong

support from government funds and policies, a large

number of solar power generation facilities have been put

into use, increasing the proportion of solar renewable

energy consumption in energy consumption. Therefore, the

forecast results of this case conforms to the objective

reality.

Case 2 Forecast of total biomass renewable energy con-

sumption of the USA from 2020 to 2024.

In Case 2 of Sect. 4.2, the FTDDGM(1,1) model with

variable weight buffer operator was established by using

the total biomass renewable energy consumption data in

the USA from 2009 to 2015, and the MAPEp value of the

data from 2016 to 2019 was only 0.66274, so this case

continues to use the USA total biomass renewable energy

consumption data from 2009 to 2015 as the training set to

establish the FTDDGM(1,1) model with variable weight

buffer operator. Forecast the total biomass renewable

energy consumption in the USA from 2020 to 2024. The

forecast results are recorded in Table 12, and the prediction

trend is shown in Fig. 14.

According to the forecast results in Table 12 and

Fig. 14, the total biomass renewable energy consumption

in the USA will decrease year by year from 2020 to 2024.

As a renewable fuel, the total biomass energy is mainly

used in industry and transportation, due to the COVID-19

pandemic, the use of transportation and transportation

industries in the USA declined. Therefore, the forecast

results of this case conforms to the objective reality.

Case 3 Forecast of wind renewable energy consumption

of the USA from 2020 to 2024.

In this case, the US wind renewable energy consumption

data from 2009 to 2015 is used as the training set, and the

FTDDGM(1,1) model with variable weight buffer operator

is established. The forecast results for the US wind

renewable energy consumption from 2020 to 2024 are

recorded in Table 13 and the prediction trend is shown in

Fig. 15.

According to the forecast results in Table 13 and

Fig. 15, the wind renewable energy consumption will keep

increasing year by year from 2020 to 2024. As the wind

power industry in the USA has attracted a large amount of

investment, as well as the encouragement of the finance

and policies, the wind power industry has developed

rapidly, and the wind renewable energy consumption has

also maintained a steady increase. Therefore, the forecast

results of this case conforms to the objective reality.

Fig. 15 Prediction trend of FTDDGM(1,1) with variable weight buffer in Case 3
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5 Conclusion

In this paper, a novel fractional time delay discrete model

is proposed by introducing the fractional time delay term

and combining with the discrete modeling technology, and

the parameter estimation and time response formula of the

new model are deduced. In order to improve the prediction

accuracy of the new model, the variable weight buffer

operator is introduced, and it is proved that the combina-

tion of the new model and the variable weight buffer

operator satisfies the new information first principle of the

last modeling data. The FTDDGM(1,1) model is simple in

structure and easy to analyse its properties. The variable

weight buffer operator enhances the importance of new

information in disguise by adding up the elements in the

sequence with the latest elements in a certain proportion. In

Case 2, other grey models focus too much on the overall

information and ignore the trend of new information

change, which leads to unsatisfactory final prediction

results. the fractional order operator can fine tune the

parameters of the model and the FTDDGM(1,1) model

observes the trend of new element change, so the

FTDDGM(1,1) model has better prediction results and

adaptability than other grey models through the analysis of

three actual cases of solar energy, wind energy consump-

tion and biomass consumption.

In order to verify the practicability of FTDDGM(1,1)

with variable weight buffer operator in the renewable

energy case of the United States. Build a prediction model

for the USA solar energy, total biomass energy and wind

energy datasets. According to the experimental results, the

MAPEs and MAPEp values of FTDDGM(1,1) with vari-

able weight buffer operator are smaller than the other five

models, showing better simulation and prediction accuracy

than the other five models. At the same time, the values of

each model are compared and analysed, and the value of

FTDDGM(1,1) with variable weight buffer operator has

the lowest variation range, showing better stability than the

other five models. Therefore, the FTDDGM(1,1) with

variable weight buffer operator is used to predict the solar

energy, total biomass energy, and wind energy consump-

tion in the USA from 2020 to 2024.

According to the prediction results in Sect. 4.3, the

consumption of solar energy and wind energy in the USA

will show an increasing trend in the future. The growth rate

of solar energy and wind energy consumption will increase

in 2020 and decrease year by year from 2021 to 2024. In

view of this phenomenon, the government should increase

financial and policy support for solar and wind energy,

promote the development of solar and wind energy

industries, and advocate the use of solar and wind energy to

promote the development of renewable energy, so as to

optimize the energy structure. The total biomass con-

sumption showed a trend of gradual decline, lead to this

phenomenon may be COVID—19 during a pandemic, the

US department of transportation of the biomass energy

consumption decreased, so the government need to guar-

antee the development of biomass energy at the same time,

increasing the rest of the clean energy investment, so as to

ensure the renewable energy in the energy structure will

occupy the important position in the future.

In today’s global energy structure optimization trend,

the development of renewable energy is conducive to

economic, environmental and energy development.

Therefore, FTDDGM(1,1) with variable weight buffer

operator is constructed in this paper to reasonably forecast

the consumption of renewable energy in the USA, pro-

viding reference for policymaking, government expendi-

ture arrangement and project planning. Meanwhile,

FTDDGM(1,1) with variable weight buffer operator can be

applied to other fields.
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